Science.gov

Sample records for parapoxvirus orf virus

  1. A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV).

    PubMed

    Rohde, Joerg; Schirrmeier, Horst; Granzow, Harald; Rziha, Hanns-Joachim

    2011-11-15

    This report describes the generation of a new recombinant Orf virus (ORFV; Parapoxvirus) expressing the major capsid protein VP1 (VP60) of the calicivirus, rabbit hemorrhagic disease virus (RHDV). Authentic expression of VP1 could be demonstrated in cells infected with the recombinant D1701-V-VP1 without the need for production of infectious ORFV progeny. Notably, infected cells also released empty calicivirus-like particles (VLPs). Challenge experiments showed that even a single immunization with ≥10(5) PFU of D1701-V-VP1 protected rabbits against lethal RHDV infection. ELISA tests indicated that the protective immunity mediated by D1701-V-VP1 did not strictly depend on the presence of detectable RHDV-specific serum antibodies. The induction of interleukin-2 found only in the sera of rabbits immunized with the D1701-V-VP1, but not in sera of rabbits immunized with the inactivated commercial vaccine RIKA-VACC, might indicate also some involvement of T-cells in protection. Collectively, this work adds another example of the successful use of the ORFV vector system for the generation of a recombinant vaccine, and demonstrates its potential as an alternative vaccine to protect rabbits against RHDV infection.

  2. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein.

    PubMed

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier; Rziha, Hanns-Joachim

    2013-02-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals.

  3. A New Rabies Vaccine Based on a Recombinant Orf Virus (Parapoxvirus) Expressing the Rabies Virus Glycoprotein

    PubMed Central

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier

    2013-01-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (107 PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals. PMID:23175365

  4. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus) genome

    PubMed Central

    2012-01-01

    Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus) was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration of B2 may provide the

  5. Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep

    PubMed Central

    Fleming, Stephen B.; McCaughan, Catherine; Lateef, Zabeen; Dunn, Amy; Wise, Lyn M.; Real, Nicola C.; Mercer, Andrew A.

    2017-01-01

    Orf virus (ORFV) is the type species of the Parapoxvirus genus of the family Poxviridae and infects sheep and goats, often around the mouth, resulting in acute pustular skin lesions. ORFV encodes several secreted immunomodulators including a broad-spectrum chemokine binding protein (CBP). Chemokines are a large family of secreted chemotactic proteins that activate and regulate inflammation induced leukocyte recruitment to sites of infection. In this study we investigated the role of CBP in vivo in the context of ORFV infection of sheep. The CBP gene was deleted from ORFV strain NZ7 and infections of sheep used to investigate the effect of CBP on pathogenesis. Animals were either infected with the wild type (wt) virus, CBP-knockout virus or revertant strains. Sheep were infected by scarification on the wool-less area of the hind legs at various doses of virus. The deletion of the CBP gene severely attenuated the virus, as only few papules formed when animals were infected with the CBP-knock-out virus at the highest dose (107 p.f.u). In contrast, large pustular lesions formed on almost all animals infected with the wt and revertant strains at 107 p.f.u. The lesions for the CBP-knock-out virus resolved approximately 5–6 days p.i, at a dose of 107 pfu whereas in animals infected with the wt and revertants at this dose, lesions began to resolve at approximately 10 days p.i. Few pustules developed at the lowest dose of 103 p.f.u. for all viruses. Immunohistochemistry of biopsy skin-tissue from pustules showed that the CBP-knockout virus replicated in all animals at the highest dose and was localized to the skin epithelium while haematoxylin and eosin staining showed histological features of the CBP-knockout virus typical of the parent virus with acanthosis, elongated rete ridges and orthokeratotic hyperkeratosis. MHC-II immunohistochemistry analysis for monocytes and dendritic cells showed greater staining within the papillary dermis of the CBP-knock-out virus compared

  6. Parapoxvirus papillomatosis in the muskoxen (Ovibos moschatus): genetical differences between the virus causing new outbreak in a vaccinated herd, the vaccine virus and a local orf virus.

    PubMed

    Moens, U; Wold, I; Mathiesen, S D; Jørgensen, T; Sørensen, D; Traavik, T

    1990-01-01

    Since 1981 a domesticated muskoxen herd had been successfully vaccinated against papillomatosis with homogenated, glutaraldehyde inactivated papilloma tissue. In the fall of 1985 a new clinical outbreak of disease occurred, affecting previously infected as well as vaccinated animals. The purification of parapox virions directly from papilloma tissue and orf scabs collected in a local sheep farm was followed by restriction endonuclease analysis of viral DNA. The morphological identity of purified virus was controlled by electron microscopy. Comparison of restriction endonuclease digests (10 different enzymes) by gel electrophoresis demonstrated that the muskoxen parapoxvirus from the new outbreak 1985 differed considerably from the 2 other isolates (muskoxen 1981 and local orf). The latter viruses demonstrated a high degree of homology, but differences were evident after digestion with the enzyme EcoRI. During metrizamide gradient purification minor bands containing morphologically intact virions were isolated in addition to the major fractions. The restriction enzyme digests indicated that the virions of the minor bands differed from those in the major bands.

  7. New Orf Virus (Parapoxvirus) Recombinant Expressing H5 Hemagglutinin Protects Mice against H5N1 and H1N1 Influenza A Virus

    PubMed Central

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV. PMID:24376753

  8. First molecular characterization of a Turkish orf virus strain from a human based on a partial B2L sequence.

    PubMed

    Karakas, Ahmet; Oguzoglu, Tuba Cigdem; Coskun, Omer; Artuk, Cumhur; Mert, Gurkan; Gul, Hanefi Cem; Sener, Kenan; Özkul, Aykut

    2013-05-01

    Cases of orf virus infection in human in Turkey have been reported for many years. Scab material from a man was found positive by PCR using pan-parapox-specific primers for parapoxvirus infection. The amplicon was purified and sequenced. The present study provides for the first time a phylogenetic analysis of parapoxviruses from Turkey. The partial B2L gene sequence of a Turkish orf virus from a human presented here may be useful for characterization of parapoxvirus infections in Turkey based on the phylogenetic analysis studies.

  9. Orf virus encodes a homolog of the vaccinia virus interferon-resistance gene E3L.

    PubMed

    McInnes, C J; Wood, A R; Mercer, A A

    1998-01-01

    A homolog of the vaccinia virus (VAC) interferon resistance gene E3L has been discovered in orf virus strain NZ-2, a parapoxvirus that infects sheep, goats and humans. The gene is located 20 kb from the left terminus of the orf virus genome and is transcribed towards this terminus. RNase protection studies have been used to define the limits of the gene and Northern analysis revealed that it is expressed early in infection. The predicted amino acid sequence of the orf virus protein shares 31% identity (57% similarity) with the VAC E3L protein. Four of the six residues identified as being essential to dsRNA binding in the vaccinia virus protein are conserved in the orf virus protein whilst the other two amino acid changes are conservative substitutions. The orf virus gene has been sequenced in two other orf virus strains which vary markedly in their ability to produce experimental lesions in vivo. Their predicted protein sequences vary by less than 3% from the NZ-2 protein. The recombinant orf virus protein, expressed as a fusion protein in E. coli, bound double-stranded (ds)RNA but not dsDNA, single-stranded (ss)DNA or ssRNA . This is the first demonstration of a VAC E3L-like gene encoded by a parapoxvirus.

  10. Genetic characterization of orf virus associated with an outbreak of severe orf in goats at a farm in Lusaka, Zambia (2015).

    PubMed

    Simulundu, Edgar; Mtine, Nandi; Kapalamula, Thoko F; Kajihara, Masahiro; Qiu, Yongjin; Ngoma, James; Zulu, Victor; Kwenda, Geoffrey; Chisanga, Chrispin; Phiri, Isaac K; Takada, Ayato; Mweene, Aaron S

    2017-04-04

    Orf or contagious ecthyma is a neglected and economically important zoonotic disease caused by a dermatotropic parapoxvirus that commonly affects domestic small ruminants. Although orf is globally distributed, there is a paucity of information on the disease in many African countries. Here, a suspected severe outbreak of orf in goats at a farm in Lusaka was investigated. Orf virus (ORFV) infection was confirmed by PCR amplification of viral DNA (RNA polymerase, B2L and virus interferon-resistance genes) in clinical samples. Some detected genes were sequenced and phylogenetically analyzed. This is the first report on molecular characterization of ORFV in goats in Zambia.

  11. Isolation and partial characterization of a parapoxvirus isolated from a skin lesion of a Weddell seal.

    PubMed

    Tryland, M; Klein, J; Nordøy, E S; Blix, A S

    2005-03-01

    A solitary skin lesion was found on the neck of a Weddell seal (Leptonychotes weddellii), chemically immobilized in Queen Maud Land (70 degrees 09'S, 05 degrees 22'E) Antarctica 2001. The lesion was elevated and 3cm in diameter, consisting of partly fresh and partly necrotic tissue, and proliferative papilloma-like structures were seen. Electron microscopy on a biopsy from the lesion revealed typical parapoxvirus particles. Polymerase chain reaction (PCR; B2L gene) generated amplicons of approximately 594 base pairs, comparable to Orf-virus, the prototype parapoxvirus. A comparison of these B2L PCR amplicon DNA sequences with corresponding sequences from other parapoxviruses, showed that the Weddell seal virus resembled isolates from grey seal (Halichoerus grypus) and harbour seal (Phoca vitulina) more than parapoxvirus from red deer (Cervus elaphus), sheep, cattle and Japanese serows (Capricornis crispus). It is thus concluded that the Weddell seal parapoxvirus belong to the tentative seal parapoxvirus species. Since parapox and orthopoxviruses may cause similar clinical diseases, we suggest that the term sealpox should be restricted to the clinical disease, whereas seal parapoxvirus should be used when caused by a parapoxvirus, rather than the general term "sealpox virus". This is the first verified case of parapoxvirus infection in a Weddell seal, and also the first report of any such infections in the Antarctic.

  12. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    PubMed Central

    Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.

    2015-01-01

    Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056

  13. Suppression of influenza virus infection by the orf virus isolated in Taiwan

    PubMed Central

    LIN, Fong-Yuan; TSENG, Yeu-Yang; CHAN, Kun-Wei; KUO, Shu-Ting; YANG, Cheng-Hsiung; WANG, Chi-Young; TAKASU, Masaki; HSU, Wei-Li; WONG, Min-Liang

    2015-01-01

    Orf virus (ORFV), a member of parapoxvirus, is an enveloped virus with genome of double-stranded DNA. ORFV causes contagious pustular dermatitis or contagious ecthyma in sheep and goats worldwide. In general, detection of viral DNA and observing ORFV virion in tissues of afflicted animals are two methods commonly used for diagnosis of orf infection; however, isolation of the ORFV in cell culture using virus-containing tissue as inoculum is known to be difficult. In this work, the ORFV (Hoping strain) isolated in central Taiwan was successfully grown in cell culture. We further examined the biochemical characteristic of our isolate, including viral genotyping, viral mRNA and protein expression. By electron microscopy, one unique form of viral particle from ORFV infected cellular lysate was demonstrated in the negative-stained field. Moreover, immunomodulating and anti-influenza virus properties of this ORFV were investigated. ORFV stimulated human monocytes (THP-1) secreting proinflammatory cytokines IL-8 and TNF-α. And, pre-treatment of ORFV-infected cell medium prevents A549 cells from subsequent type A influenza virus (IAV) infection. Similarly, mice infected with ORFV via both intramuscular and subcutaneous routes at two days prior to IAV infection significantly decreased the replication of IAV. In summary, the results of a current study indicated our Hoping strain harbors the immune modulator property; with such a bio-adjuvanticity, we further proved that pre-exposure of ORFV protects animals from subsequent IAV infection. PMID:25855509

  14. Isolation and characterization of orf viruses from Korean black goats.

    PubMed

    Oem, Jae-Ku; Chung, Joon-Yee; Kim, Yong-Joo; Lee, Kyoung-Ki; Kim, Seong-Hee; Jung, Byeong-Yeal; Hyun, Bang-Hun

    2013-01-01

    Five cases of orf virus infection in Korean black goats were diagnosed in our laboratory between 2010 and 2011. One orf virus (ORF/2011) was isolated from an ovine testis cell line (OA3.Ts) for use as a vaccine candidate. Sequences of the major envelope protein and orf virus interferon resistance genes were determined and compared with published reference sequences. Phylogenetic analyses revealed that orf viruses from Korean black goats were most closely related to an isolate (ORF/09/Korea) from dairy goats in Korea. This result indicates that the orf viruses might have been introduced from dairy goats into the Korean black goat population.

  15. An Investigation of a Cluster of Parapoxvirus Cases in Missouri, Feb-May 2006: Epidemiologic, Clinical and Molecular Aspects.

    PubMed

    Lederman, Edith R; Tao, Min; Reynolds, Mary G; Li, Yu; Zhao, Hui; Smith, Scott K; Sitler, Lisa; Haberling, Dana L; Davidson, Whitni; Hutson, Christina; Emerson, Ginny; Schnurr, David; Regnery, Russell; Zhu, Bao-Ping; Pue, Howard; Damon, Inger K

    2013-02-28

    In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC), two of which were initially diagnosed as cutaneous anthrax. This investigation was conducted to determine the level of recognition of zoonotic parapoxvirus infections and prevention measures, the degree to which veterinarians may be consulted on human infections and what forces were behind this perceived increase in reported infections. Interviews were conducted and clinical and environmental sampling was performed. Swab and scab specimens were analyzed by real-time polymerase chain reaction (PCR), whereas serum specimens were evaluated for parapoxvirus antibodies. Three case patients were found to have fed ill juvenile animals without using gloves. Forty-six percent of veterinarians reported having been consulted regarding suspected human orf infections. Orf virus DNA was detected from five of 25 asymptomatic sheep. Analysis of extracellular envelope gene sequences indicated that sheep and goat isolates clustered in a species-preferential fashion. Parapoxvirus infections are common in Missouri ruminants and their handlers. Infected persons often do not seek medical care; some may seek advice from veterinarians rather than physicians. The initial perception of increased incidence in Missouri may have arisen from a reporting artifact stemming from heightened concern about anthrax. Asymptomatic parapoxvirus infections in livestock may be common and further investigation warranted.

  16. Specific qPCR assays for the detection of orf virus, pseudocowpox virus and bovine papular stomatitis virus.

    PubMed

    Zhao, Hui; Wilkins, Kimberly; Damon, Inger K; Li, Yu

    2013-12-01

    The genus Parapoxvirus (PAPV) is comprised traditionally of orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV), which cause infections of ruminants and their handlers in the U.S. and worldwide. Unlike orthopoxvirus infections, which can cause systemic or localized infections, PAPV infections present normally as benign, self-limited and localized skin lesions; infections do not confer lifelong immunity. In recent years, related potentially to enhanced awareness and the availability of diagnostic methods, there has been an observed increase in reported cases of PAPV in animals and humans. This study describes TaqMan based real-time PCR assays for both generic and specific detection of PAPV species for surveillance and outbreak investigations. These assays target highly conserved PAPV RNA polymerase gene sequences and are capable of detecting three known species of PAPVs (ORFV, PCPV, and BPSV). The assays were evaluated using a panel of PAPV DNA derived from human infections or animal specimen remainders. The sensitivities of all four assays were determined using droplet digital PCR; fewer than 10 copies of clinical PAPV DNA can be detected consistently. These assays provide a reliable and sensitive method for rapid confirmation and characterization PAPV infections with varying clinical presentations.

  17. Immune responses of patients to orf virus infection.

    PubMed

    Yirrell, D L; Vestey, J P; Norval, M

    1994-04-01

    Orf is a disease of sheep and goats which is caused by a parapox virus. It can be transmitted to humans, and is considered an occupational hazard by those handling sheep. In this paper we present the first report of both cell-mediated and humoral immune responses to naturally acquired orf virus infection in humans. Lymphoproliferative responses of peripheral blood mononuclear cells of patients to an orf virus antigen were vigorous soon after infection, but rapidly declined. Orf virus antibody levels, detected by ELISA, were shown to rise during infection. Western blot analysis confirmed this, and demonstrated that the antibody produced in response to the infection was directed against the 40-kDa viral surface tubule protein. Where direct comparisons were possible, the immune response of humans to orf virus infection was similar to that previously reported for sheep. Evidence was obtained suggesting that prior exposure to vaccinia virus (smallpox vaccination) provided no protection from subsequent orf virus infection. In addition, orf virus infection did not enhance immune responses to vaccinia virus antigens.

  18. Detection and phylogenetic analysis of Orf virus from sheep in Brazil: a case report

    PubMed Central

    Abrahão, Jônatas S; Campos, Rafael K; Trindade, Giliane S; Guedes, Maria IM; Lobato, Zélia IP; Mazur, Carlos; Ferreira, Paulo CP; Bonjardim, Cláudio A; Kroon, Erna G

    2009-01-01

    Background Orf virus (ORFV), the prototype of the genus Parapoxvirus (PPV), is the etiological agent of contagious ecthyma, a severe exanthematic dermatitis that afflicts domestic and wild small ruminants. Although South American ORFV outbreaks have occurred and diagnosed there are no South American PPV major membrane glycoprotein B2L gene nucleotide sequences available. Case presentation an outbreak of ovine contagious ecthyma in Midwest Brazil was investigated. The diagnosis was based on clinical examinations and molecular biology techniques. The molecular characterization of the virus was done using PCR amplification, cloning and DNA sequencing of the B2L gene. The phylogenetic analysis demonstrated a high degree of identity with ORFV strains, and the isolate was closest to the ORFV-India 82/04 isolate. Another Brazilian ORFV isolate, NE1, was sequenced for comparative analysis and also showed a high degree of identity with an Asian ORFV strain. Conclusion Distinct ORFV strains are circulating in Brazil. This is the first report on the phylogenetic analysis of an ORFV in South America. PMID:19413907

  19. ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic

    PubMed Central

    Rintoul, Julia L; Lemay, Chantal G; Tai, Lee-Hwa; Stanford, Marianne M; Falls, Theresa J; de Souza, Christiano T; Bridle, Byram W; Daneshmand, Manijeh; Ohashi, Pamela S; Wan, Yonghong; Lichty, Brian D; Mercer, Andrew A; Auer, Rebecca C; Atkins, Harold L; Bell, John C

    2012-01-01

    Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent Th-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer. PMID:22273579

  20. Phylogenetic analysis of Croatian orf viruses isolated from sheep and goats

    PubMed Central

    2010-01-01

    Background The Orf virus (ORFV) is the prototype of the parapoxvirus genus and it primarily causes contagious ecthyma in goats, sheep, and other ruminants worldwide. In this paper, we described the sequence and phylogenetic analysis of the B2L gene of ORFV from two natural outbreaks: i) in autochthonous Croatian Cres-breed sheep and ii) on small family goat farm. Results Sequence and phylogenetic analyses of the ORFV B2L gene showed that the Cro-Cres-12446/09 and Cro-Goat-11727/10 were not clustered together. Cro-Cres-12446/09 shared the highest similarity with ORFV NZ2 from New Zealand, and Ena from Japan; Cro-Goat-11727/10 was closest to the HuB from China and Taiping and Hoping from Taiwan. Conclusion Distinct ORFV strains are circulating in Croatia. Although ORFV infections are found ubiquitously wherever sheep and goats are farmed in Croatia, this is the first information on genetic relatedness of any Croatian ORFV with other isolates around the world. PMID:21073725

  1. Molecular characterization of Brazilian isolates of orf virus.

    PubMed

    Mazur, C; Ferreira, I I; Rangel Filho, F B; Galler, R

    2000-05-11

    Outbreaks of an epidermic disease suggesting parapox virus infections have been observed in all major herds of sheep and goats from different geographical areas of Brazil. Clinical samples (dried scabs) were collected and orf virus was isolated and characterized by electron microscopy in previous work. In order to characterize these viruses at the molecular level, a modified methodology for genomic DNA extraction directly from scabs was used and such DNA was used to derive the restriction enzyme digestion patterns for clinical samples from three distinct geographic origins. Pulsed field gel electrophoresis was used to separate restriction enzyme DNA fragments and heterogeneity among isolates from different geographic areas could be observed on stained gels. The HindIII-G DNA fragment from orf-A virus genome was cloned and hybridized to DNA of other orf virus isolates. Further heterogeneity was confirmed by these hybridizations.

  2. A viral infection of the hand commonly seen after the feast of sacrifice: human orf (orf of the hand).

    PubMed

    Uzel, M; Sasmaz, S; Bakaris, S; Cetinus, E; Bilgic, E; Karaoguz, A; Ozkul, A; Arican, O

    2005-08-01

    Orf of the hand is an uncommon zoonotic infection caused by a dermotropic DNA virus that belongs to the Parapoxvirus genus of the family Poxviridae. It is transmitted to humans through contact with infected sheep and goats and is reported as an occupational disease. We report nine cases of human orf seen in the hands of individuals, who were not occupationally exposed, after the feast of sacrifice in Turkey. Three cases were teachers and six out of the nine were housewives. We observed musculoskeletal complications and misdiagnoses. It is important to consider human orf in the differential diagnosis of hand lesions to prevent overtreatment and complications.

  3. Parapoxvirus infections of red deer, Italy.

    PubMed

    Scagliarini, Alessandra; Vaccari, Francesca; Turrini, Filippo; Bianchi, Alessandro; Cordioli, Paolo; Lavazza, Antonio

    2011-04-01

    To characterize parapoxviruses causing severe disease in wild ruminants in Stelvio Park, Italy, we sequenced and compared the DNA of several isolates. Results demonstrated that the red deer isolates are closely related to the parapox of red deer in New Zealand virus.

  4. Parapoxvirus Infections of Red Deer, Italy

    PubMed Central

    Vaccari, Francesca; Turrini, Filippo; Bianchi, Alessandro; Cordioli, Paolo; Lavazza, Antonio

    2011-01-01

    To characterize parapoxviruses causing severe disease in wild ruminants in Stelvio Park, Italy, we sequenced and compared the DNA of several isolates. Results demonstrated that the red deer isolates are closely related to the parapox of red deer in New Zealand virus. PMID:21470460

  5. An Investigation of a Cluster of Parapoxvirus Cases in Missouri, Feb–May 2006: Epidemiologic, Clinical and Molecular Aspects

    PubMed Central

    Lederman, Edith R.; Tao, Min; Reynolds, Mary G.; Li, Yu; Zhao, Hui; Smith, Scott K.; Sitler, Lisa; Haberling, Dana L.; Davidson, Whitni; Hutson, Christina; Emerson, Ginny; Schnurr, David; Regnery, Russell; Zhu, Bao-Ping; Pue, Howard; Damon, Inger K.

    2013-01-01

    Simple Summary In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC). We conducted surveys of herders and veterinarians, performed animal and environmental sampling and obtained sera from potential case-patients. We determined that, in general, infected persons may seek advice from veterinarians rather than physicians, thereby giving physicians less clinical experience. The initial perception of increased incidence in Missouri was likely due to reporting bias due to misdiagnosis and increased awareness due to recent publications. Basic personal protective measures are not being routinely utilized. Asymptomatic parapoxvirus infections in livestock may be common and warrants further investigation. Abstract In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC), two of which were initially diagnosed as cutaneous anthrax. This investigation was conducted to determine the level of recognition of zoonotic parapoxvirus infections and prevention measures, the degree to which veterinarians may be consulted on human infections and what forces were behind this perceived increase in reported infections. Interviews were conducted and clinical and environmental sampling was performed. Swab and scab specimens were analyzed by real-time polymerase chain reaction (PCR), whereas serum specimens were evaluated for parapoxvirus antibodies. Three case patients were found to have fed ill juvenile animals without using gloves. Forty-six percent of veterinarians reported having been consulted regarding suspected human orf infections. Orf virus DNA was detected from five of 25 asymptomatic sheep. Analysis of extracellular envelope gene sequences indicated that sheep and goat isolates clustered in a species-preferential fashion. Parapoxvirus infections are common in Missouri ruminants

  6. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all...

  7. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all...

  8. Parapoxvirus (PPV) of red deer reveals subclinical infection and confirms a unique species.

    PubMed

    Friederichs, Schirin; Krebs, Stefan; Blum, Helmut; Lang, Heike; Büttner, Mathias

    2015-06-01

    Parapoxvirus (PPV) infections are of worldwide importance, particularly in sheep and goat herds. Owing to the zoonotic potential of all PPV species, they are a permanent threat to human health as well. The virus is also known to affect wildlife, as reported for pinnipeds, red deer and several other wild ruminants. PPVs found in red deer have been claimed as a unique species according to certain genomic features. So far infection of wildlife has been recognized because of clinical manifestation such as inflammation, stomatitis or typical pox-like lesions in the skin or mucous membranes. Here we report the use of targeted molecular diagnostics for the presence of PPV genomes in tonsil swabs of apparently healthy red deer in the Bavarian Alps. Out of 1764 swabs, 0.79 % tested positive for PPV genome presence. From one sample, PPV was successfully isolated in cell culture. This virus became the subject of complete genome characterization using next generation sequencing and various subsidiary PCR protocols. Strikingly, about a quarter of all ORFs were found to be larger than the corresponding ORFs in the reference PPV genome sequences used for comparison. To our knowledge this is the first genome-wide analysis that confirms red deer PPV as a unique species within the genus Parapoxvirus in Europe. Persistence of PPV in Alpine red deer indicates a source for virus transmission to susceptible livestock and hunters. The findings provide a further example of wildlife animals playing an important role as an inconspicuous reservoir of zoonotic diseases.

  9. The immune and inflammatory response to orf virus.

    PubMed

    Haig, D M; McInnes, C; Deane, D; Reid, H; Mercer, A

    1997-06-01

    Orf virus is a zoonotic, epitheliotropic DNA parapox virus that principally infects sheep and goats. The fact that the virus can repeatedly reinfect sheep has provoked an interest in the underlying cellular, virological and molecular mechanisms for its apparent escape from the host protective immune response. The local immune and inflammatory response in skin and the cell phenotype and cytokine response in lymph analysed around a single lymph node are characteristic of an anti-viral response. An unusual feature is the dense accumulation of MHC Class II+ dendritic cells in the skin lesion. The function of these cells is not known. Orf virus virulence genes and activities have been identified that may interfere with the development of the host protective immune and inflammatory response.

  10. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. 174.513 Section 174.513... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance....

  11. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. 174.513 Section 174.513... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance....

  12. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. 174.513 Section 174.513... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance....

  13. Construction and testing of orfA +/- FIV reporter viruses.

    PubMed

    Fadel, Hind J; Saenz, Dyana T; Poeschla, Eric M

    2012-01-01

    Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.

  14. Human Orf virus infection from household exposures - United States, 2009-2011.

    PubMed

    2012-04-13

    Orf, also known as contagious ecthyma, is a zoonotic infection caused by a dermatotropic parapoxvirus that commonly infects sheep and goats; it is transmitted to humans through contact with an infected animal or fomites. In humans, orf manifests as an ulcerative skin lesion sometimes resembling bacterial infection or neoplasm. Human infection typically is associated with occupational animal contact and has been reported in children after visiting petting zoos and livestock fairs. Cases lacking these exposure histories might be misdiagnosed, leading to unnecessary treatment of orf lesions, which do not usually require any specific treatment. This report describes four cases of human orf associated with household meat processing or animal slaughter, highlighting the importance of nontraditional risk factors. Orf should be included in the differential diagnosis of patients with clinically compatible skin lesions and a history of household meat processing or animal slaughter. Persons and communities with these exposure risks also should receive counseling regarding the use of nonpermeable gloves and hand hygiene to prevent infection.

  15. Antiviral Activity of HPMPC (Cidofovir) Against ORF Virus Infected Lambs

    PubMed Central

    Scagliarini, A.; McInnes, C.J.; Gallina, L.; Dal, Pozzo F.; Scagliarini, L.; Snoeck, R.; Prosperi, S.; Sales, J.; Gilray, J.A.; Nettleton, P.F.

    2007-01-01

    (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPC, cidofovir, CDV, Vistide®) is an acyclic nucleoside analogue with a potent and selective activity against a broad spectrum of DNA viruses including the poxviruses. In this study we present the results of different treatment regimens in lambs experimentally infected with orf virus with different cidofovir formulations prepared in Beeler basis and Unguentum M. Our results show that choice of excipient, concentration of cidofovir and treatment regimen were all important to the clinical outcome of the therapy. Whilst one particular regimen appeared to exacerbate the lesion, treatment with 1% w/v cidofovir cream, prepared in Beeler Basis, for 4 consecutive days did result in milder lesions that resolved more quickly than untreated lesions. Furthermore the scabs of the treated animals contained significantly lower amounts of viable virus meaning there should be less contamination of the environment with virus than would normally occur. PMID:17049627

  16. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2.

    PubMed

    Tyagi, Shweta; Korkaya, Hasan; Zafrullah, Mohammad; Jameel, Shahid; Lal, Sunil K

    2002-06-21

    Hepatitis E virus (HEV) is a human RNA virus containing three open reading frames. Of these, ORF1 encodes the viral nonstructural polyprotein; ORF2 encodes the major capsid protein, which exists in a glycosylated and non-glycosylated form; and ORF3 codes for a phosphoprotein of undefined function. Using fluorescence-based colocalization, yeast two-hybrid experiments, transiently transfected COS-1 cell co-immunoprecipitation, and cell-free coupled transcription-translation techniques, we have shown that the ORF3 protein interacts with the ORF2 protein. The domains involved in this ORF2-ORF3 association have been identified and mapped. Our deletion analysis showed that a 25-amino acid region (residues 57-81) of the ORF3 protein is required for this interaction. Using a Mexican HEV isolate, site-directed mutagenesis of ORF3, and a phosphatase digestion assay, we showed that the ORF2-ORF3 interaction is dependent upon the phosphorylation at Ser(80) of ORF3. Finally, using COS-1 cell immunoprecipitation experiments, we found that the phosphorylated ORF3 protein preferentially interacts with the non-glycosylated ORF2 protein. These findings were confirmed using tunicamycin inhibition, point mutants, and deletion mutants expressing only non-glycosylated ORF2. ORF3 maps in the structural region of the HEV genome and now interacts with the major capsid protein, ORF2, in a post-translational modification-dependent manner. Such an interaction of ORF2 with ORF3 suggests a possible well regulated role for ORF3 in HEV structural assembly.

  17. ORF33 and ORF38 of Kaposi's Sarcoma-Associated Herpesvirus Interact and Are Required for Optimal Production of Infectious Progeny Viruses

    PubMed Central

    Wu, Jian-jun; Avey, Denis; Li, Wenwei; Gillen, Joseph; Fu, Bishi; Miley, Wendell; Whitby, Denise

    2015-01-01

    ABSTRACT We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918–4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion

  18. Phylogenetic analysis and characterization of Korean orf virus from dairy goats: case report.

    PubMed

    Oem, Jae-Ku; Roh, In-Soon; Lee, Kyung-Hyun; Lee, Kyoung-Ki; Kim, Hye-Ryoung; Jean, Young-Hwa; Lee, O-Soo

    2009-10-16

    An outbreak of orf virus infection in dairy goats in Korea was investigated. Suspected samples of the skin and lip of affected goats were sent to the laboratory for more exact diagnosis. Orf virus was detected by electron microscopy and viral DNA was identified by PCR. To reveal the genetic characteristics of the Korean strain (ORF/09/Korea), the sequences of the major envelope protein (B2L) and orf virus interferon resistance (VIR) genes were determined and then compared with published reference sequences. Phylogenetic analysis revealed that the ORF/09/Korea strain was closest to the isolates (Taiping) from Taiwan. This is believed to be the first report on the molecular characterization of orf virus in Korea.

  19. Parapoxvirus infection in harbor seals (Phoca vitulina) from the German North Sea.

    PubMed

    Müller, G; Gröters, S; Siebert, U; Rosenberger, T; Driver, J; König, M; Becher, P; Hetzel, U; Baumgärtner, W

    2003-07-01

    In the summer of 2000, proliferative lesions of the skin and oral mucosa were observed in 26 young harbor seals (Phoca vitulina) from a rehabilitation center in Schleswig-Holstein, Germany. Verrucose, roundish nodules, approximately 1-2 cm in diameter, were presented in the oral cavity, especially on the tongue. Some animals developed similarly sized spherical dermal elevations with ulceration on flippers, chest, neck, and perineum. Necropsy of one animal showed multifocal, verrucose nodules in the oral cavity and a mild tonsillitis. Histologically, the nodules were characterized by ballooning degeneration of the outer parts of the spiny layer and stratum granulosum, with large eosinophilic cytoplasmic inclusions and a perivascular to interstitial lymphohistiocytic infiltration accompanied by fibroblastic proliferation and neovascularization. Negative staining of mucosal tissue homogenates demonstrated parapoxvirus-like particles. The presence of parapoxvirus was confirmed by polymerase chain reaction, using primers specific for parapoxvirus of ungulates. By in situ hybridization, using a parapox-specific, digoxigenin-labeled DNA probe, abundant parapoxvirus DNA-positive epithelial cells were detected in the stratum granulosum and the outer parts of the spiny layer. There was no parapoxvirus-positive signal in the adjacent submucosa. Although DNA analysis revealed that the causative agent can clearly be distinct from terrestrial parapoxviruses, lesions resembled parapoxvirus infections in other terrestrial species, and the pattern of virus DNA distribution indicated a direct effect of the virus on keratinocytes. In contrast, changes in the corium may be considered an indirect response mediated by the virus or the immune system.

  20. Identification and characterization of the orf virus type I topoisomerase.

    PubMed

    Klemperer, N; Lyttle, D J; Tauzin, D; Traktman, P; Robinson, A J

    1995-01-10

    Vaccinia virus (VV) and Shope fibroma virus (SFV), representatives of the orthopox and leporipox genera, respectively, encode type I DNA topoisomerases. Here we report that the 957-nt F4R open reading frame of orf virus (OV), a representative of the parapox genus, is predicted to encode a 318-aa protein with extensive homology to these enzymes. The deduced amino acid sequence of F4R has 54.7 and 50.6% identity with the VV and SFV enzymes, respectively. One hundred forty amino acids are predicted to be conserved in all three proteins. The F4R protein was expressed in Escherichia coli under the control of an inducible T7 promoter, partially purified, and shown to be a bona fide type I topoisomerase. Like the VV enzyme, the OV enzyme relaxed negatively supercoiled DNA in the absence of divalent cations or ATP and formed a transient covalent intermediate with cleaved DNA that could be visualized by SDS-PAGE. Both the noncovalent and covalent protein/DNA complexes could be detected in an electrophoretic mobility shift assay. The initial PCR used to prepare expression constructs yielded a mutant allele of the OV topoisomerase with a G-A transition at nt 677 that was predicted to replace a highly conserved Tyr residue with a Cys. This allele directed the expression of an enzyme which retained noncovalent DNA binding activity but was severely impaired in DNA cleavage and relaxation. Incubation of pUC19 DNA with the wild-type OV or VV enzyme yielded an indistinguishable set of DNA cleavage fragments, although the relative abundance of the fragments differed for the two enzymes. Using a duplex oligonucleotide substrate containing the consensus site for the VV enzyme, we demonstrated that the OV enzyme also cleaved efficiently immediately downstream of the sequence CCCTT.

  1. Seroepidemiology of parapoxvirus infections in captive and free-ranging California sea lions Zalophus californianus.

    PubMed

    Nollens, Hendrik H; Gulland, Frances M D; Hernandez, Jorge A; Condit, Richard C; Klein, Paul A; Walsh, Michael T; Jacobson, Elliott R

    2006-04-06

    Cutaneous nodular lesions caused by parapoxvirus infections are commonly observed in stranded pinnipeds following their arrival at rehabilitation facilities. An indirect enzyme-linked immunosorbent assay (ELISA) was developed and validated to determine exposure to parapoxviruses in California sea lions Zalophus californianus in captivity and in the wild. The diagnostic performance of this assay was evaluated using receiver-operating characteristic analysis. At a selected cut-off value, the calculated sensitivity was 100% (95% CI = 86 to 100%) and the specificity was 100% (95% CI = 87 to 100%). Analysis of sera collected from 26 affected sea lions during various stages of the disease revealed anti-parapoxvirus antibodies in all affected sea lions prior to the development of cutaneous pox lesions. This indicated that previous exposure to a parapoxvirus does not confer protection against clinical disease. In at least 7 cases, exposure to the virus occurred during hospitalization. Analysis of paired sera from 74 unaffected sea lions indicated subclinical infections in at least 3 animals. Finally, the prevalence of anti-parapoxviral antibodies in 761 free-ranging California sea lions captured and tested was 91% (95% CI = 89 to 93%). This indicated that infection with a parapoxvirus is a common occurrence in the wild and that the release of captive sea lions infected with parapoxvirus into the wild should not increase the risk of a parapoxvirus outbreak in free-ranging sea lions.

  2. Mapping regions of the cauliflower mosaic virus ORF III product required for infectivity.

    PubMed

    Jacquot, E; Geldreich, A; Keller, M; Yot, P

    1998-03-15

    The open reading frame (ORF) III product (PIII) of the pararetrovirus cauliflower mosaic virus (CaMV) has nucleic acid-binding properties in vitro, but its biological role is not yet determined. ORF III is closely linked to ORF II and overlaps ORF IV out of frame in the CaMV genome. A new CaMV-derived vector (Ca delta) devoid of ORF III and containing unique restriction sites between ORFs II and IV was designed. Introduction of the wild-type CaMV ORF III into Ca delta results in a clone (Ca3) infectious in turnip plants. Truncated or point-mutated versions of ORF III were then inserted into Ca delta and tested in vivo. Inoculation of the different mutants into turnip revealed that the four C-terminal amino acid residues of PIII are dispensable for infectivity as well as an internal domain (amino acids 61 to 80). Taken together the results show that PIII possesses a functional two-domain organization. Moreover, the CaMV PIII function(s) cannot be replaced either by the PIII protein of another caulimovirus, the figwort mosaic virus, or by the P2 protein of the cacao swollen shoot badnavirus, a member of the second plant pararetrovirus group.

  3. Isolation and molecular characterization of Orf virus from natural outbreaks in goats of Assam.

    PubMed

    Bora, Mousumi; Bora, Durlav Prasad; Barman, Nagendra Nath; Borah, Biswajyoti; Bora, Padma Lochan; Talukdar, Archana; Tamuly, Shantanu

    2015-06-01

    Outbreaks of contagious ecthyma (caused by a Parapox virus) in goats were investigated in 6 districts of Assam, a north eastern state of India. Diagnosis of the disease was carried out employing both standard virological as well as molecular methods. Four representative isolates from different places were selected for phylogenetic analysis. The major envelop protein (B2L) of Orf virus was targeted for molecular analysis. The sequencing and phylogenetic analysis of the selected sequences at nucleotide level revealed that the Orf virus isolates were closely related to each other (97.6-100 %) and showed highest similarity to the Orf virus isolate 82/04 (98.4 %), reported from Shahjahanpur, India. The data will provide an insight in transmission of the virus from northern to North eastern part of the country.

  4. The Kaposi's-sarcoma-associated herpesvirus orf35 gene product is required for efficient lytic virus reactivation.

    PubMed

    Bergson, Shir; Itzhak, Inbal; Wasserman, Talya; Gelgor, Anastasia; Kalt, Inna; Sarid, Ronit

    2016-12-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated in the etiology of several human malignancies. KSHV open reading frame (orf) 35 encodes a conserved gammaherpesvirus protein with an, as yet, unknown function. Employing the bacterial artificial chromosome (BAC) system, we generated a recombinant viral clone that fails to express ORF35 (BAC16-ORF35-stop) but preserves intact adjacent and overlapping reading frames. Using this construct, we studied the role of this previously uncharacterized gene product during lytic reactivation of KSHV. Upon lytic reactivation, the ORF35-stop recombinant virus displayed significantly reduced lytic viral gene expression, viral DNA replication, and progeny virus production as compared to control wild-type virus. Exogenous expression of ORF35-Flag reversed the effects of ORF35 deficiency. These results demonstrate that ORF35 is important for efficient lytic virus reactivation.

  5. Phylogenetic correlation of Greek and Italian orf virus isolates based on VIR gene.

    PubMed

    Kottaridi, Christine; Nomikou, Kyriaki; Teodori, Liana; Savini, Giovanni; Lelli, Rossella; Markoulatos, Panayotis; Mangana, Olga

    2006-09-10

    Thirteen orf virus isolates obtained during the time period between 1995 and 2004 from crusted scab lesions of nine sheep and four goats from different geographical areas of Greece and Italy with suspected contagious ecthyma infection were analyzed. DNA of all isolates was successfully amplified by PCR with the primers 045F-045R and identified them as parapox virus. Partial DNA sequence of orf virus interferon resistant (VIR) gene, phylogenetic analysis of the available isolates and amino acid comparison of the interferon resistance protein encoded by this genomic region was carried out. According to the results of the present report a precise characterisation of the genomic region studied might provide evidence for the genetic variation and movement of the circulating orf virus strains.

  6. ORF virus infection in children: clinical characteristics, transmission, diagnostic methods, and future therapeutics.

    PubMed

    Lederman, Edith R; Austin, Connie; Trevino, Ingrid; Reynolds, Mary G; Swanson, Holly; Cherry, Bryan; Ragsdale, Jennifer; Dunn, John; Meidl, Susan; Zhao, Hui; Li, Yu; Pue, Howard; Damon, Inger K

    2007-08-01

    Orf virus leads to self-limited, subacute cutaneous infections in children who have occupational or recreational contact with infected small ruminants. Breaches in the integument and contact with animals recently vaccinated for orf may be important risk factors in transmission. Common childhood behaviors are likely important factors in the provocation of significant contact (ie, bites) or in unusual lesion location (eg, facial lesions). Clinician recognition is important in distinguishing orf infection from life-threatening cutaneous zoonoses. Recently developed molecular techniques provide diagnostic precision and newer topical therapeutics may hasten healing.

  7. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability.

    PubMed

    Sun, Lichang; Zhou, Yan; Liu, Runxia; Li, Yanhua; Gao, Fei; Wang, Xiaomin; Fan, Hongjie; Yuan, Shishan; Wei, Zuzhang; Tong, Guangzhi

    2015-02-02

    ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30.

  8. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection.

    PubMed

    Plana Duran, J; Climent, I; Sarraseca, J; Urniza, A; Cortés, E; Vela, C; Casal, J I

    1997-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a new arterivirus that has spread rapidly all around the world in the last few years. The genomic region containing open reading frames (ORFs) 2 to 7 of PRRSV Spanish isolate Olot/91 was cloned and sequenced. The genomic sequence shared 95% identity with Lelystad and Tübingen isolates and between 61-64% with the ORF7 region of the American isolates. ORFs 2 to 7 were inserted into recombinant baculoviruses downstream of the polyhedrin promoter. Only ORFs 2, 3 5 and 7 were expressed in insect cells as detected by PRRS-specific pig antisera. To analyze the immunogenicity of these proteins and their ability to confer protection, Sf9 cells infected with recombinant baculoviruses expressing ORFs 3, 5 and 7 gene products were used to immunize pregnant sows, either individually or in combination. The results obtained indicate that ORFs 3 and 5 gene products could be major candidates for the development of a vaccine against PRRS since they conferred 68.4 and 50% protection, respectively, as evaluated by the number of piglets born alive and healthy at the time of weaning. In addition, piglets born to sows immunized with ORFs 3 and 5 proteins were seronegative to PRRSV after weaning, indicating absence of viral replication. ORF7 is the most immunogenic protein of PRRSV, but the antibodies induced in sows are non-protective and may even interfere with protection.

  9. Identification, phylogenetic evolutionary analysis of GDQY orf virus isolated from Qingyuan City, Guangdong Province, southern China.

    PubMed

    Duan, Chaohui; Liao, Meiying; Wang, Han; Luo, Xiaohong; Shao, Jing; Xu, Ying; Li, Wei; Hao, Wenbo; Luo, Shuhong

    2015-01-25

    Infection with the orf virus (ORFV) leads to contagious ecthyma, also called contagious pustular dermatitis, which usually affects sheep, goats and other small ruminants. It has a great distribution throughout the world and has also been reported to infect humans. Though many strains have been isolated from differing parts of mainland China, rarely has any strain been reported from the southern provinces of China. We studied a case of orf virus infection that occurred at Qingyuan City, Guangdong Province in southern China. An orf virus strain, GDQY, was successfully isolated and identified through cell culture techniques and transmission electron microscopy. Complete genes of ORFV011, ORFV059, ORFV106 and ORFV107 were amplified for the sequence analysis based on their nucleotide or amino acid level. In order to discuss the genetic variation, precise sequences were used to compare to other reference strains isolated from different districts or countries. Phylogenetic trees based on those strains were built up and evolutionary distances were calculated based on the alignment of their complete sequences. The typical structure of the orf virus was observed in cell-culture suspensions inoculated with GDQY, and the full-length of four genes was amplified and sequenced. Phylogenetic analysis indicated that GDQY is homologous to FJ-DS and CQ/WZ on ORFV011 nucleotides. ORFV059 may be more variable than ORFV011 based on the comparison between GDQY and other isolates. Genetic studies of ORFV106 and 107 are reported for the first time in the presented study.

  10. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    SciTech Connect

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-02-20

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.

  11. Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication.

    PubMed Central

    Luciw, P A; Cheng-Mayer, C; Levy, J A

    1987-01-01

    Mutations were made by recombinant DNA techniques in an infectious molecular clone of the human immunodeficiency virus San Francisco isolate 2 (HIVSF2) [formerly the prototype isolate of the acquired immunodeficiency syndrome-associated retrovirus (ARV-2)]. The effect of these changes on the replicative and cytopathologic properties of the virus was studied by transfecting modified virus clones into cultured human cells. Mutations in the gag, pol, env, and tat regions precluded virus replication and cytopathology in lymphoid cells. A mutation in orf-A dramatically reduced but did not abolish virus replication. Mutant viruses with deletions in the orf-B region were highly cytopathic and replicated to approximately 5-fold higher levels than wild-type virus. They also produced approximately 5-fold more viral DNA in infected lymphoid cells than did wild-type virus. Thus, the orf-B region may function to down-regulate virus replication. This mutational analysis of the HIVSF2 genome is a means of assessing genes regulating viral replication and cytopathology. Images PMID:2434956

  12. Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines.

    PubMed Central

    Tompkins, Daniel M; Sainsbury, A W; Nettleton, P; Buxton, D; Gurnell, J

    2002-01-01

    The disease implications of novel pathogens need to be considered when investigating the ecological impact of species translocations on native fauna. Traditional explanations based on competition or predation may often not be the whole story. Evidence suggests that an emerging infectious disease, caused by a parapoxvirus, may be a significant component of the impact that the introduced grey squirrel has had on UK red squirrel populations. Here we validate the potential role of parapoxvirus by proving that the virus is highly pathogenic in the red squirrel while having no detectable effect on grey squirrel health. PMID:11886647

  13. ORF43 of Maize rayado fino virus is dispensable for systemic infection of maize and transmission by leafhoppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize rayado fino virus (MRFV) possesses an open reading frame (ORF) encoding a protein with predicted mass of 43 kDa (ORF43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to eithe...

  14. Characterization of antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian hepatitis E virus.

    PubMed

    Zhao, Qin; Sun, Ya-ni; Hu, Shou-bin; Wang, Xin-jie; Xiao, Yi-hong; Hsu, Walter H; Xiao, Shu-qi; Wang, Cheng-bao; Mu, Yang; Hiscox, Julian A; Zhou, En-Min

    2013-12-27

    Avian hepatitis E virus (HEV) is an emerging virus associated with the big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens and subclinical infections by the virus are also common. The complete genome of avian HEV contains three open-reading frames (ORFs) in which ORF2 protein is part of virus particles and thus contains primary epitopes. Antigenic epitopes of avian HEV ORF2 protein have been described but those associated with the ORF3 have not. To analyze the antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian HEV (CaHEV), we generated a series of antigens comprised of the complete ORF3 and also five truncated overlapping ORF3 peptides. The antibodies used in this study were mouse antisera and monoclonal antibodies against ORF3, positive chicken sera from Specific Pathogen Free chickens experimentally infected with CaHEV and clinical chicken sera. Using these antigens and antibodies, we identified three antigenic domains at amino acids (aa) 1-28, 55-74 and 75-88 in which aa 75-88 was a dominant domain. The dominant domain contained at least two major epitopes since field chickens infected with avian HEV produced antibodies against the domain and epitopes. These results provide useful information for future development of immunoassays for the diagnosis of avian HEV infection.

  15. Genetic diversity of ORF 4-6 of type 1 porcine reproductive and respiratory syndrome virus in naturally infected pigs.

    PubMed

    Lee, Dong-Uk; Yoo, Sung J; Kwon, Taeyong; Je, Sang H; Shin, Jeong Y; Byun, Jeong J; Kim, Myung H; Lyoo, Young S

    2017-02-01

    Genotype 1 porcine reproductive and respiratory syndrome virus (PRRSV) has been highly prevalent throughout Korea since the virus was first detected in 2005. However, genetic analyses of genotype 1 PRRSV in Korea have been limited to ORF5 and/or ORF7. In the present study, we determined 10 representative sequence covering ORF4 to ORF6 and each individual ORFs of genotype 1 PRRSV in Korea, and performed molecular analyses. The most variable gene among the individual ORFs of field strains was ORF4, and this gene exhibited only 74.5-87.3% sequence homology compared with strains reported elsewhere. However, the strains showed analogous sequence arrangements with each other. In the phylogenetic analysis, the sequences of Korean field strains formed a distinct cluster with some Austrian and German strains compared to genotype 1 PRRSV strains available in GenBank. In the amino acid analysis, the putative antigenic region of GP4 was highly variable, whereas the predicted epitope regions of ORF5 and ORF6 were relatively conserved. The hydropathy plots of GP4 showed a highly variable pattern in the antigenic region. The non-synonymous and synonymous substitution analysis suggested that ORF4 presumably had more immunogenic pressure compare with the other ORFs. According to these findings, genotype 1 PRRSV in Korea has been diversified and indigenized in Korea, and these strains might have multifarious immunological and genetic properties. This study provides novel insights into genotype 1 PRRSV in a geographically remote area and contributes to the information for further research on the evolution of type 1 PRRSV in the Korean peninsula.

  16. Genetic diversity of fusion gene (ORF 117), an analogue of vaccinia virus A27L gene of capripox virus isolates.

    PubMed

    Dashprakash, M; Venkatesan, Gnanavel; Ramakrishnan, Muthannan Andavar; Muthuchelvan, Dhanavelu; Sankar, Muthu; Pandey, Awadh Bihari; Mondal, Bimelendu

    2015-04-01

    The fusion gene (ORF 117) sequences of twelve (n = 12) capripox virus isolates namely sheeppox (SPPV) and goatpox (GTPV) viruses from India were demonstrated for their genetic and phylogenetic relationship among them. All the isolates were confirmed for their identity by routine PCR before targeting ORF 117 gene for sequence analysis. The designed primers specifically amplified ORF 117 gene as 447 bp fragment from total genomic DNA extracted from all the isolates. Sequence analysis revealed a significant percentage of identity among GTPV, SPPV and between them at both nucleotide and amino acid levels. The topology of the phylogenetic tree revealed that three distinct clusters corresponding to SPPV, GTPV and lumpy skin disease virus was formed. However, SPPV Pune/08 and SPPV Roumanian Fanar isolates were clustered into GTPV group as these two isolates showed a 100 and 99.3 % identity with GTPV isolates of India at nt and aa levels, respectively. Protein secondary structure and 3D view was predicted and found that it has high antigenic index and surface probability with low hydrophobicity, and it can be targeted for expression and its evaluation to explore its diagnostic potential in epidemiological investigation in future.

  17. [Fusion proteins encoded by orf 129L of ectromelia and orf A30L of smallpox viruses cross-react with neutralizing monoclonal antibodies].

    PubMed

    razumov, I A; Gileva, I P; Vasil'eva, M A; Nepomniashchikh, T S; Mishina, M N; Belanov, E F; Kochneva, G V; Konovalov, E E; Shchelkunov, S N; Loktev, V B

    2005-01-01

    Open reading frame (orf) 129L of ectromelia (EV) and orf A30L of smallpox viruses (SPV) encoding fusion proteins were cloned and expressed in E. coli cells. The recombinant polypeptides (prA30L H pr129L) were purified from cell lysates by Ni-NTA chromatography. Recombinant polypeptides were able to form trimers in buffered saline and they destroyed under treatment with SDS and 2-mercaptoethanol. Reactivity of prA30L, pr129L and orthopoxvirus proteins was analyzed by ELISA and Western blotting with panel of 22 monoclonal antibodies (MAbs) against orthopoxviruses (19 against EV, 2 MAbs against vaccinia virus and 1 Mabs against cowpox virus). This data allowed us to conclude that there are 12 EV-specific epitopes of pr129L and EV fusion proteins, ten orthopox-specific epitopes of EV, VV, CPV fusion proteins, from them 9 orthopox-specific epitopes of prA30L and SPV fusion proteins. Five Mabs, which cross-reacted with orthopox-specific epitopes, were able to neutralize the VV on Vero cells and from them two MAbs has neutralizing activity against smallpox virus. Our findings demonstrate that 129L fusion protein have EV-specific epitopes, that EV 129L and SPV A30L fusion proteins have a several orthopox-specific epitopes to induce a neutralizing antibodies against human pathogenic orthopoxviruses.

  18. ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells.

    PubMed

    Jiang, Hai-Fei; Wang, Wei; Jiang, Xuan; Zeng, Wen-Bo; Shen, Zhang-Zhou; Song, Yi-Ge; Yang, Hong; Liu, Xi-Juan; Dong, Xiao; Zhou, Jing; Sun, Jin-Yan; Yu, Fei-Long; Guo, Lin; Cheng, Tong; Rayner, Simon; Zhao, Fei; Zhu, Hua; Luo, Min-Hua

    2017-03-29

    Although a varicella-zoster virus (VZV) vaccine has been used for many years, the neuropathy caused by VZV infection is still a major health concern. ORF7 of VZV has been recognized as a neurotropic gene in vivo, but its neurovirulent role remains unclear. In the present study, we investigated the effect of ORF7 deletion on VZV replication cycle at virus entry, genome replication, gene expression, capsid assembly and cytoplasmic envelopment, and transcellular transmission in differentiated neural progenitor cells (dNPCs) and neuroblastoma SH-SY5Y (dSY5Y) cells. Our results demonstrate that the ORF7 protein is a component of the tegument layer of VZV virions. Deleting ORF7 did not affect viral entry, viral genome replication or expression of typical viral genes, but clearly impacted cytoplasmic envelopment of VZV capsids resulting in a dramatic increase of envelop-defective particles and a decrease in intact virions. The defect was more severe in differentiated neuronal cells of dNPCs and dSY5Y. ORF7 deletion also impaired transmission of ORF7-deficient virus among the neuronal cells. These results indicate that ORF7 is required for cytoplasmic envelopment of VZV capsids, virus transmission among neuronal cells and probably the neuropathy induced by VZV infection.IMPORTANCE The neurological damage caused by varicella-zoster virus (VZV) reactivation is commonly manifested as clinical problems. Thus, identifying viral neurovirulent genes and characterizing their functions are important for relieving VZV related neurological complications. ORF7 has been previously identified as a potential neurotropic gene, but its involvement in VZV replication is unclear. In this study, we found that ORF7 is required for VZV cytoplasmic envelopment in differentiated neuronal cells, and the envelopment deficiency caused by ORF7 deletion results in poor dissemination of VZV among neuronal cells. These findings imply that ORF7 plays a role in neuropathy, highlighting a potential

  19. Early secretory pathway localization and lack of processing for hepatitis E virus replication protein pORF1.

    PubMed

    Perttilä, Julia; Spuul, Pirjo; Ahola, Tero

    2013-04-01

    Hepatitis E virus (HEV) is a positive-strand RNA virus and a major causative agent of acute sporadic and epidemic hepatitis. HEV replication protein is encoded by ORF1 and contains the predicted domains of methyltransferase (MT), protease, macro domain, helicase (HEL) and polymerase (POL). In this study, the full-length protein pORF1 (1693 aa) and six truncated variants were expressed by in vitro translation and in human HeLa and hepatic Huh-7 cells by using several vector systems. The proteins were visualized by three specific antisera directed against the MT, HEL and POL domains. In vitro translation of full-length pORF1 yielded smaller quantities of two fragments. However, these fragments were not observed after pORF1 expression and pulse-chase studies in human cells, and their production was not dependent on the predicted protease domain in pORF1. The weight of evidence supports the proposition that pORF1 is not subjected to specific proteolytic processing, which is unusual among animal positive-strand RNA viruses but common for plant viruses. pORF1 was membrane associated in cells and localized to a perinuclear region, where it partially overlapped with localization of the endoplasmic reticulum (ER) marker BAP31 and was closely interspersed with staining of the ER-Golgi intermediate compartment marker protein ERGIC-53. Co-localization with BAP31 was enhanced by treatment with brefeldin A. Therefore, HEV may utilize modified early secretory pathway membranes for replication.

  20. Genotype analysis of ORF 62 identifies varicella-zoster virus infections caused by a vaccine strain in children.

    PubMed

    Kwak, Byung Ok; Lee, Hoan Jong; Kang, Hyun Mi; Oh, Chi Eun; Choi, Eun Hwa

    2017-02-15

    This study was performed to differentiate vaccine-type strains from wild-type strains and determine the genotype of varicella-zoster virus (VZV) in 51 Korean children. A sequencing analysis of ORF 62 identified two cases of herpes zoster caused by the vaccine-type virus, without a previous history of varicella, 22 months and 5 months after VZV vaccination. The wild-type strain was identified in the remaining children. A genotype analysis of ORF 22 amino acids revealed genotype J in all children except one. Genotype E was identified in an infant with varicella imported from Egypt.

  1. Functional Analysis of the Short Isoform of Orf Virus Protein OV20.0

    PubMed Central

    Tseng, Yeu-Yang; Lin, Fong-Yuan; Cheng, Sun-Fang; Chulakasian, Songkhla; Chou, Chia-Chi; Liu, Ya-Fen; Chang, Wei-Shan; Wong, Min-Liang

    2015-01-01

    ABSTRACT Orf virus (ORFV) OV20.0L is an ortholog of vaccinia virus (VACV) gene E3L. The function of VACV E3 protein as a virulence factor is well studied, but OV20.0 has received less attention. Here we show that like VACV E3L, OV20.0L encodes two proteins, a full-length protein and a shorter form (sh20). The shorter sh20 is an N-terminally truncated OV20.0 isoform generated when a downstream AUG codon is used for initiating translation. These isoforms differed in cellular localization, with full-length OV20.0 and sh20 found throughout the cell and predominantly in the cytoplasm, respectively. Nonetheless, both OV20.0 isoforms were able to bind double-stranded RNA (dsRNA)-activated protein kinase (PKR) and dsRNA. Moreover, both isoforms strongly inhibited PKR activation as shown by decreased phosphorylation of the translation initiation factor eIF2α subunit and protection of Sindbis virus infection against the activity of interferon (IFN). In spite of this apparent conservation of function in vitro, a recombinant ORFV that was able to express only the sh20 isoform was attenuated in a mouse model. IMPORTANCE The OV20.0 protein of orf virus (ORFV) has two isoforms and contributes to virulence, but the roles of the two forms are not known. This study shows that the shorter isoform (sh20) arises due to use of a downstream initiation codon and is amino-terminally truncated. The sh20 form also differs in expression kinetics and cellular localization from full-length OV20.0. Similar to the full-length isoform, sh20 is able to bind dsRNA and PKR, inactivate PKR, and thus act as an antagonist of the interferon response in vitro. In vivo, however, wild-type OV20.0 could not be replaced with sh20 alone without a loss of virulence, suggesting that the functions of the isoforms are not simply redundant. PMID:25694596

  2. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  3. Designing, Construction and Expression of a Recombinant Fusion Protein Comprising the Hepatitis E Virus ORF2 and Rotavirus NSP4 in the Baculovirus Expression System

    PubMed Central

    Makvandi, Manoochehr; Teimoori, Ali; Neisi, Niloofar; Samarbafzadeh, Alireza

    2016-01-01

    Background The hepatitis E virus (HEV) accounts for hepatitis E infection with relatively high mortality rate in pregnant women that can lead to fulminant hepatitis. The baculovirus expression system (BES) has the capability to produce high-level recombinant proteins and could be useful for vaccine designing. Objectives The aim of this study was designing a recombinant hepatitis E virus ORF2 and Rotavirus NSP4 (ORF2-NSP4) and to evaluating construction these recombinant proteins in the BES. Methods The truncated ORF2 gene (112-607) and truncated ORF2-NSP4 were subcloned in pFastBac1 plasmid, separately, followed by digestion and confirmed by digestion and sequencing. Then the products were transformed into Escherichia coli DH5α and retransformed in DH10Bac competent cells. Finally the white colonies containing Bacmid DNA subjected to PCR for confirming transformation. Bacmid DNA containing HEV truncated ORF2 and HEV truncated ORF2-NSP4 genes were transfected into SF9 cells using BES. The expressed proteins in the cell lysate were evaluated by SDS-PAGE and determined by the western blot assay. Results The lengths of subcloned genes, truncated ORF2 and truncated ORF2-NSP4 were 1500 and 2000bp, respectively. After retransforming in DH10Bac, the size of PCR products were 300 bp in Bacmid DNA without recombination while it was 4300 and 3800 bp in Bacmid truncated ORF2-NSP4 and Bacmid truncated ORF2 PCR products. The analysis of protein expression by SDS-PAGE and immunoblotting revealed the presence of 56 KDa for truncated ORF2 and 74.5 KDa for truncated ORF2-NSP4 proteins. Conclusions The results of the present study showed that the baculovirus expression system (SF9 cells) was able to express truncated ORF2 and truncated ORF2-NSP4 proteins as a potential candidate vaccine. PMID:28138375

  4. Enhancement of Interferon Induction by ORF3 Product of Hepatitis E Virus

    PubMed Central

    Nan, Yuchen; Ma, Zexu; Wang, Rong; Yu, Ying; Kannan, Harilakshmi; Fredericksen, Brenda

    2014-01-01

    ABSTRACT Hepatitis E virus (HEV) causes both the endemic and epidemic spread of acute hepatitis in many parts of the world. HEV open reading frame 3 (ORF3) encodes a 13-kDa multifunctional protein (vp13) that is essential for HEV infection of animals. The exact role of vp13 in HEV infection remains unclear. In this study, vp13 was found to enhance interferon (IFN) production induced by poly(I · C), a synthetic analog of double-stranded RNA. Poly(I · C) treatment induced a higher level of IFN-β mRNA in HeLa cells stably expressing vp13 than in control cells. Using a luciferase reporter construct driven by the IFN-β promoter, we demonstrated that vp13 enhanced retinoic acid-inducible gene I (RIG-I)-dependent luciferase expression. This enhancement was found to be due to both an increased level of RIG-I protein and its activation. The levels of both endogenous and exogenous RIG-I were increased by vp13 by extension of the half-life of RIG-I. Additionally, vp13 interacts with the RIG-I N-terminal domain and enhances its K63-linked ubiquitination, which is essential for RIG-I activation. Analysis of vp13 deletion constructs suggested that the C-terminal domain of vp13 was essential for the enhancement of RIG-I signaling. In HEV-infected hepatoma cells, wild-type HEV led to a higher level of RIG-I and more poly(I · C)-induced IFN-β expression than did ORF3-null mutants. Analysis of vp13 from four HEV genotypes showed that vp13 from genotype I and III strains boosted RIG-I signaling, while vp13 from genotype II and IV strains had a minimal effect. These results indicate that vp13 enhances RIG-I signaling, which may play a role in HEV invasion. IMPORTANCE Hepatitis E virus (HEV) is a significant pathogen causing hepatitis in many parts of the world, yet it is understudied compared with other viral hepatitis pathogens. Here we found that the HEV open reading frame 3 product, vp13, enhances interferon induction stimulated by a synthetic analog of double-stranded RNA

  5. A Case of Orf Disease Complicated with Erythema Multiforme and Bullous Pemphigoid-Like Eruptions

    PubMed Central

    Alian, Shahriar; Ahangarkani, Fatemeh; Arabsheybani, Sara

    2015-01-01

    Parapoxvirus infection in sheep and goats is usually referred to as contagious pustular dermatitis/ecthyma, or orf, and the corresponding human infection is referred to as orf. In humans, after a brief incubation period of 3 to 5 days, lesions begin as pruritic erythematous macules and then rise to form papules, often with a target appearance. Lesions become nodular or vesicular, and orf lesions often ulcerate after 14 to 21 days. Erythema multiforme and bullous pemphigoid have been associated with parapoxvirus infections and they are rare complications of orf disease. In this case report, we presented a 36-year-old woman with history of contact with sheep, developing a typical orf lesion that is complicated with erythema multiforme and bullous pemphigoid-like eruptions. PMID:26294986

  6. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    PubMed

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  7. [Expression and subcellular localization of the ORF4 gene of barley yellow dwarf virus GAV strain in baculovirus-insect cell expression system].

    PubMed

    Xia, Zong-Liang; Wang, Mei-Ping; Liu, Quan-Jun; Wang, Dao-Wen

    2007-11-01

    According to published nucleotide sequences, ORF4 gene of barley yellow dwarf virus GAV (BYDV-GAV) was synthesized by reverse transcription-polymerase chain reaction (RT-PCR). The BYDV-GAV ORF4 gene was expressed in baculovirus -insect cell expression system efficiently, and western bolt analysis confirmed its expression product. Confocal laser scanning microscopy showed that GFP: ORF4 fusion protein was associated with the nuclear envelope of insect cells. By expressing the N- and C-terminal regions of ORF4-encoding product (P4) in insect cells combined with structure prediction, it was found that the N-terminal region of P4 containing four a-helices is required for targeting P4 to the nuclear envelope. These results provide a base for biological function of ORF4 gene during systemic infection of BYDV-GAV in host plants further.

  8. Heparan Sulfate Proteoglycans Are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection▿ †

    PubMed Central

    Kalia, Manjula; Chandra, Vivek; Rahman, Sheikh Abdul; Sehgal, Deepak; Jameel, Shahid

    2009-01-01

    The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an ∼56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors. PMID:19812150

  9. Establishment of an on-site diagnostic procedure for detection of orf virus from oral lesions of Japanese serows (Capricornis crispus) by loop-mediated isothermal amplification

    PubMed Central

    INOSHIMA, Yasuo; TAKASU, Masaki; ISHIGURO, Naotaka

    2016-01-01

    Orf virus infection has been prevalent continuously in the population of wild Japanese serows (Capricornis crispus), goat-like grazing cloven-hoofed mammal species that live mainly in mountainous areas of Japan. Currently, definitive diagnosis of infection requires time-consuming laboratory work. To diagnose rapidly on-site, we developed a field-friendly procedure for the detection of orf virus from oral cavity lesions. DNA was extracted from goat saliva spiked with orf virus as a proxy for Japanese serows by a commercial kit without the use of electricity, and the quality of the extracted DNA was evaluated by conventional polymerase chain reaction (PCR). Extracted DNA was amenable to DNA amplification, the same as when extracted in a laboratory. Next, to find optimal conditions for DNA amplification by loop-mediated isothermal amplification (LAMP), Bst and Csa DNA polymerases and 3 colorimetric indicators for visual diagnosis, hydroxy naphthol blue (HNB), malachite green and D-QUICK, were compared using a portable cordless incubator. The combination of Bst or Csa DNA polymerase with HNB was found to be easiest for visual diagnosis by the naked eye, and viral DNA was successfully amplified from all orf virus strains used. These results suggest that the procedure established here can work completely on-site and can be useful for definitive diagnosis and differentiation of orf virus infection in Japanese serows in remote mountainous areas. PMID:27628591

  10. Development of a SYBR Green I real-time PCR for the detection of the orf virus.

    PubMed

    Wang, Yong; Yang, Kankan; Bai, Caixia; Yin, Dongdong; Li, Gang; Qi, Kezong; Wang, Guijun; Li, Yongdong

    2017-12-01

    Orf is a non-systemic, ubiquitous disease of sheep and goats caused by the orf virus (ORFV). ORFV occasionally causes cutaneous lesions in humans in contact with infected animals. In the present study, a real-time PCR method was established for detection of ORFV using the fluorescent chimeric dye SYBR Green I. Specific primers were designed to target a highly conserved region of the ORFV B2L gene. This method was able to detect a minimum of 20 copies of ORFV genomic DNA. The results showed no cross-reactions with other common DNA viruses. The time required for the test was approximately 1.5 h. Clinical test samples showed that this method was faster and had a higher sensitivity than traditional PCR. In conclusion, this novel, real-time PCR-based assay provides a rapid, sensitive, and specific method for ORFV detection. This test provides improved technical support for studies regarding the clinical diagnosis and epidemiology of ORFV.

  11. Avian hepatitis E virus identified in Russian chicken flocks exhibits high genetic divergence based on the ORF2 capsid gene.

    PubMed

    Sprygin, A V; Nikonova, Z B; Zinyakov, N G

    2012-10-01

    A total of 79 liver samples from clinically sick and asymptomatic chickens were tested for avian hepatitis E virus (aHEV). Samples were received from 19 farms, five of which tested positive with primers targeting the ORF2 capsid gene. The phylogenetic analysis of a 242-base-pair fragment demonstrated that the Russian aHEV isolates share between 78.2 and 96.2% over the fragment sequenced, whereas the nucleotide sequence identities between the Russian isolates and the other representatives from GeneBank varied from 76.3 to 96.2%. The homology between the studied hepatitis E viruses and swine hepatitis E virus varied between 46.9 to 48.1%. The most divergent isolate aHEV16050 showed homology of 82.6% as compared with the strains in the dendrogram. The three positive hepatitis E virus samples (aHEV16279, aHEV16050 and aHEV18196) did not cluster with the European genotype 3 as expected due to the close location of Russia to Europe, nor did they with the other two genotypes, separating to a distinct branch. The aHEV16211 grouped together with European and Chinese isolates, and the aHEV18198 with Canadian ones.

  12. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    PubMed

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  13. Perianal orf.

    PubMed

    Kennedy, C T; Lyell, A

    1984-07-01

    The parapox viral infection orf is usually diagnosed without difficulty when the lesions have the characteristic morphology and there is an appropriate history of contact with sheep. Two cases of orf in a perineal location in young children are presented to illustrate modification of the physical signs by flexural occluded sites. Electron microscopy of scrapings from the lesions established the diagnosis.

  14. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice.

    PubMed

    Gao, Shenyang; Li, Dandan; Liu, Ying; Zha, Enhui; Zhou, Tiezhong; Yue, Xiqing

    2015-01-01

    Hepatitis E virus (HEV) as a recognized zoonotic pathogen has posed global burden on public health, which is exacerbated by lack of efficient vaccine. In this study, we constructed a recombinant (inaQ-ORF2 gene fusion) Lactococcus lactis (L. lactis) strain NZ3900 that expresses and displays the hepatitis E virus antigen ORF2 utilizing an ice uncleation protein-based anchor system. After oral vaccination of BALB/c mice, significantly higher levels of ORF2-specific mucosal IgA and serum IgG were detected and cellular immunity was also induced. These findings further support that L. lactis-based HEV antigen vaccines could be used for human and animal protection against infection.

  15. Recombinant subunit ORF2.1 antigen and induction of antibody against immunodominant epitopes in the hepatitis E virus capsid protein.

    PubMed

    Li, F; Riddell, M A; Seow, H F; Takeda, N; Miyamura, T; Anderson, D A

    2000-04-01

    A recombinant subunit antigen (ORF2.1), representing the carboxy-terminal 267 amino acids of the 660-amino-acid hepatitis E virus (HEV) capsid protein, was expressed in Escherichia coli and used for the immunisation of rats. Purified antigen formulated with either Aluminium Hydroxide Gel Adjuvant (Alum) or Titermax gave high and equivalent levels of antibody after three doses. Responses to two doses of 15, 75, or 150 microg antigen, formulated with Alum and given at 0 and 4 weeks, were also equivalent by 17 weeks after immunisation. Rats initially developed antibody to a wide range of linear epitopes in the ORF2.1 region, but by 27 weeks the predominant response detected by Western immunoblotting was restricted to the conformational epitope unique to ORF2.1 [Li et al. (1997) Journal of Medical Virology 52:289-300], a pattern that was also observed when comparing acute-phase patient serum samples with serum samples from convalescing patients. Antibody from immunised rats blocked the majority of patients' serum reactivity in enzyme-linked immunosorbent assay against both ORF2.1 (57-92% inhibition) and virus-like particles of HEV produced using the baculovirus system (74-97% inhibition). Together, these results suggest that the ORF2.1 subunit vaccine induces an antibody response against immunodominant, conformational epitopes in the viral capsid, which largely mimics that seen in convalescent patients, who are presumed to be immune to HEV infection.

  16. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  17. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins.

    PubMed

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, C T; Surjit, Milan

    2016-04-26

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66(th),67(th) isoleucine and 101(st),102(nd) leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV.

  18. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication.

    PubMed

    Suzuki, Youichi; Chin, Wei-Xin; Han, Qi'En; Ichiyama, Koji; Lee, Ching Hua; Eyo, Zhi Wen; Ebina, Hirotaka; Takahashi, Hirotaka; Takahashi, Chikako; Tan, Beng Hui; Hishiki, Takayuki; Ohba, Kenji; Matsuyama, Toshifumi; Koyanagi, Yoshio; Tan, Yee-Joo; Sawasaki, Tatsuya; Chu, Justin Jang Hann; Vasudevan, Subhash G; Sano, Kouichi; Yamamoto, Naoki

    2016-01-01

    Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.

  19. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication

    PubMed Central

    Ichiyama, Koji; Lee, Ching Hua; Eyo, Zhi Wen; Ebina, Hirotaka; Takahashi, Hirotaka; Takahashi, Chikako; Tan, Beng Hui; Hishiki, Takayuki; Ohba, Kenji; Matsuyama, Toshifumi; Koyanagi, Yoshio; Tan, Yee-Joo; Sawasaki, Tatsuya; Chu, Justin Jang Hann; Vasudevan, Subhash G.; Sano, Kouichi; Yamamoto, Naoki

    2016-01-01

    Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells. PMID:26735137

  20. Identification and phylogenetic analysis of contagious ecthyma virus from camels (Camelus dromedarius) in Iran.

    PubMed

    Oryan, Ahmad; Mosadeghhesari, Mahboobe; Zibaee, Saeed; Mohammadi, Ali

    2017-03-24

    Contagious ecthyma is a highly contagious disease affecting domestic and wild ruminants such as sheep, goats and camels. The identification and characterisation of a parapoxvirus (PPV) infecting camels is described here. The virus was detected in dromedary camels (Camelus dromedarius) from Kerman and Shiraz in Iran. PPV-specific amplification by polymerase chain reaction (PCR) further confirmed that the disease was associated with PPV infection. Phylogenetic analysis of ORF011 (B2L) gene sequences showed 99.79% and 82.13% similarity of the PPV identified in this study with the Jodhpur isolate and the bovine papular stomatitis virus (BPSV) isolates (CE41), respectively. Moreover, phylogenetic analysis of the ORF045 gene indicated that the Shiraz sample was in all probability closely related to VR634 and to F00.120R and PCPV776. In conclusion, the results suggest that camel PPV (CPPV) is a likely cause of contagious ecthyma in dromedary camels in Iran.

  1. Understanding the role of ORF-C gene in the pathogenicity of infectious laryngotracheitis virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious laryngotracheitis (ILT) is a very serious and widespread respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Conventional attenuated ILT vaccines, obtained by continuous passages in chicken embryos and tissue culture, had been the main tools utilized by th...

  2. [The Orf nodule].

    PubMed

    Dellamonica, P; Bernard, E; Ortonne, J P; Defontaine, A

    1983-09-15

    Human Orf disease is an exceptional dermatologic benign condition, due to a Parapox virus. In sheep and goats this infection is termed "Ecthyma Contagiosum". Human beings are contaminated from infected animals. We report three cases of Orf disease in the same family. Typical viral particles have been identified in the skin of one of these patients by electronic microscopy but cultures failed to recover the pathogen. A complete study of the literature allows us to review current knowledge on this disease with which practitioners are unfamiliar.

  3. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light chain subunit of human ferritin (FTL). In cultured hepatoma cells, HEV-macro domain reduces secretion of ferritin without causing any change in the expression levels of FTL. This inhibitory effect was further enhanced upon Brefeldin-A treatment. The levels of transferrin Receptor 1 or ferroportin, two important proteins in iron metabolism, remained unchanged in HEV-macro domain expressing cells. Similarly, there were no alterations in the levels of cellular labile iron pool and reactive oxygen species, indicating that HEV-macro domain does not influence cellular iron homeostasis/metabolism. As ferritin is an acute-phase protein, secreted in higher level in infected persons and HEV-macro domain has the property of reducing synthesis of inflammatory cytokines, we propose that by directly binding to FTL, macro domain prevents ferritin from entering into circulation and helps in further attenuation of the host immune response.

  4. The PSAP motif within the ORF3 protein of an avian strain of the hepatitis E virus is not critical for viral infectivity in vivo but plays a role in virus release.

    PubMed

    Kenney, Scott P; Pudupakam, R S; Huang, Yao-Wei; Pierson, F William; LeRoith, Tanya; Meng, Xiang-Jin

    2012-05-01

    The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.

  5. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.

    PubMed

    Coelho, João; Martins, Carlos; Ferreira, Fernando; Leitão, Alexandre

    2015-01-01

    Topoisomerases modulate the topological state of DNA during processes, such as replication and transcription, that cause overwinding and/or underwinding of the DNA. African swine fever virus (ASFV) is a nucleo-cytoplasmic double-stranded DNA virus shown to contain an OFR (P1192R) with homology to type II topoisomerases. Here we observed that pP1192R is highly conserved among ASFV isolates but dissimilar from other viral, prokaryotic or eukaryotic type II topoisomerases. In both ASFV/Ba71V-infected Vero cells and ASFV/L60-infected pig macrophages we detected pP1192R at intermediate and late phases of infection, cytoplasmically localized and accumulating in the viral factories. Finally, we used a Saccharomyces cerevisiae temperature-sensitive strain in order to demonstrate, through complementation and in vitro decatenation assays, the functionality of P1192R, which we further confirmed by mutating its predicted catalytic residue. Overall, this work strengthens the idea that P1192R constitutes a target for studying, and possibly controlling, ASFV transcription and replication.

  6. A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication.

    PubMed

    Xu, Yiyang; AuCoin, David P; Huete, Alicia Rodriguez; Cei, Sylvia A; Hanson, Lisa J; Pari, Gregory S

    2005-03-01

    Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus type 8 [HHV8]) latently infects a number of cell types. Reactivation of latent virus can occur by treatment with the phorbol ester tetradecanoyl phorbol acetate (TPA) or with the transfection of plasmids expressing the lytic switch activator protein K-Rta, the gene product of ORF50. K-Rta expression is sufficient for the activation of the entire lytic cycle and the transactivation of viral genes necessary for DNA replication. In addition, recent evidence has suggested that K-Rta may participate directly in the initiation of lytic DNA synthesis. We have now generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a large deletion within the ORF50 locus. This BAC, BAC36Delta50, failed to produce infectious virus upon treatment with TPA and was defective for DNA synthesis. Expression of K-Rta in trans in BAC36Delta50-containing cells was able to abolish both defects. Real-time PCR revealed that K-bZIP, ORF40/41, and K8.1 were not expressed when BAC36Delta50-containing cells were induced with TPA. However, the mRNA levels of ORF57 were over fivefold higher in TPA-treated BAC36Delta50-containing cells than those observed in similarly treated wild-type BAC-containing cells. In addition, immunohistochemical analysis showed that while the latency-associated nuclear antigen (LANA) was expressed in the mutant BAC-containing cells, ORF59 and K8.1 expression was not detected in TPA-induced BAC36Delta50-containing cells. These results showed that K-Rta is essential for lytic viral reactivation and transactivation of viral genes contributing to DNA replication.

  7. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs.

    PubMed

    van Rooij, E M A; Rijsewijk, F A M; Moonen-Leusen, H W; Bianchi, A T J; Rziha, H-J

    2010-02-17

    Both DNA and Orf virus (ORFV; Parapox virus) based vaccines have shown promise as alternatives for conventional vaccines in pigs against pseudorabies virus (PRV) infection causing Aujeszky's disease. In the present study we evaluated the efficacy of different prime-boost regimes in pigs in terms of immunogenicity and protection against challenge infection with PRV. The different prime-boost regimes consisted of the homologous prime-boost regimes (DNA followed by DNA or ORFV followed by ORFV) and the heterologous prime-boost regimes (DNA followed by ORFV and ORFV followed by DNA), all based on glycoprotein D (gD) of PRV. Moreover, we compared the efficacy of the different prime-boost regimes with the efficacy of a conventional modified live vaccine (MLV). The different prime-boost regimes resulted in different levels of immunity and protection against challenge infection. Most effective was the regime of priming with DNA vaccine followed by boosting with the ORFV based vaccine. This regime resulted in strong antibody responses, comparable to the antibody responses obtained after prime-boost vaccination with a conventional MLV vaccine. Also with regard to protection, the prime DNA-boost ORFV regime performed better than the other prime-boost regimes. This study demonstrates the potential of a heterologous prime-boost vaccination strategy against PRV based on a single antigen, and that in the natural host, the pig.

  8. Cellular Human CLE/C14orf166 Protein Interacts with Influenza Virus Polymerase and Is Required for Viral Replication ▿

    PubMed Central

    Rodriguez, Ariel; Pérez-González, Alicia; Nieto, Amelia

    2011-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including RNA polymerase II. We previously described the interaction of influenza virus polymerase subunit PA with human CLE/C14orf166 protein (hCLE), a positive modulator of this cellular RNA polymerase. Here, we show that hCLE also interacts with the influenza virus polymerase complex and colocalizes with viral ribonucleoproteins. Silencing of hCLE causes reduction of viral polymerase activity, viral RNA transcription and replication, virus titer, and viral particle production. Altogether, these findings indicate that the cellular transcription factor hCLE is an important protein for influenza virus replication. PMID:21900157

  9. Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine

    PubMed Central

    Liu, Jian; Li, Chunyan; Zhang, Hua; Ma, Ping; Luo, Xianfeng; Zeng, Zhiyong; Hong, Nining; Liu, Xia; Wang, Bin; Wang, Feng; Gan, Zhenlei; Hao, Fei

    2014-01-01

    The purpose of this study was to investigate the effects of porcine interleukin (IL)-2 and IL-4 genes on enhancing the immunogenicity of a porcine reproductive and respiratory syndrome virus ORF5 DNA vaccine in piglets. Eukaryotic expression plasmids pcDNA-ORF5, pcDNA-IL-2, and pcDNA-IL-4 were constructed and then expressed in Marc-145 cells. The effects of these genes were detected using an indirect immunofluorescent assay and reverse transcription polymerase chain reaction (RT-PCR). Characteristic fluorescence was observed at different times after pcDNA-ORF5 was expressed in the Marc-145 cells, and PCR products corresponding to ORF5, IL-2, and IL-4 genes were detected at 48 h. Based on these data, healthy piglets were injected intramuscularly with different combinations of the purified plasmids: pcDNA-ORF5 alone, pcDNA-ORF5 + pcDNA-IL-2, pcDNA-ORF5 + pcDNA-IL-4, and pcDNA-ORF5 + pcDNAIL-4 + pcDNA-IL-2. The ensuing humoral immune responses, percentages of CD4+ and CD8+ T lymphocytes, proliferation indices, and interferon-γ expression were analyzed. Results revealed that the piglets co-immunized with pcDNA-ORF5 + pcDNA-IL-4 + pcDNA-IL-2 plasmids developed significantly higher antibody titers and neutralizing antibody levels, had significantly increased levels of specific T lymphocyte proliferation, elevated percentages of CD4+ and CD8+ T lymphocytes, and significantly higher IFN-γ production than the other inoculated pigs (p < 0.05). PMID:24136204

  10. Use of Protein AG in an Enzyme-Linked Immunosorbent Assay for Screening for Antibodies against Parapoxvirus in Wild Animals in Japan

    PubMed Central

    Inoshima, Yasuo; Shimizu, Shinya; Minamoto, Nobuyuki; Hirai, Katsuya; Sentsui, Hiroshi

    1999-01-01

    Using protein AG in an enzyme-linked immunosorbent assay (ELISA), we tried to detect antibodies against parapoxvirus in 9 species of wild animals in Japan: the Japanese badger (Meles meles anakuma), Japanese black bear (Ursus thibetanus japonicus), Japanese deer (Cervus nippon centralis), Japanese monkey (Macaca fuscata), Japanese raccoon dog (Nyctereutes procyonoides viverrinus), Japanese serow (Capricornis crispus), Japanese wild boar (Sus scrofa leucomystax), masked palm civet (Paguma larvata), and nutria (Myocastor coypus). A total of 272 serum samples were collected over the period from 1984 to 1995 and were tested by the protein AG-ELISA, the agar gel immunodiffusion test, and an indirect immunofluorescence assay. The protein AG-ELISA was effective in a serological survey for parapoxvirus in wild animals, and antibodies were detected only in Japanese serows. A total of 24 of 66 (36.4%) Japanese serows reacted positively, and they were found in almost all prefectures in all years tested. These results suggest that epizootic cycles of parapoxvirus exist widely in Japanese serows and that they could be reservoirs for the virus in the field in Japan. Moreover, it is probable that they might carry the virus to domestic animals such as cattle, sheep, and goats. PMID:10225841

  11. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    SciTech Connect

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.; Sinning, Allan; Henegar, Jeffrey; Norcross, Erin; Chinchar, V. Gregory

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.

  12. Autographa californica Multiple Nucleopolyhedrovirus orf132 Encodes a Nucleocapsid-Associated Protein Required for Budded-Virus and Multiply Enveloped Occlusion-Derived Virus Production

    PubMed Central

    Yang, Ming; Wang, Shuo; Yue, Xiu-Li

    2014-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132

  13. Intrahost evolution of envelope glycoprotein and OrfA sequences after experimental infection of cats with a molecular clone and a biological isolate of feline immunodeficiency virus.

    PubMed

    Huisman, Willem; Schrauwen, Eefje J A; Rimmelzwaan, Guus F; Osterhaus, Albert D M E

    2008-10-01

    Feline immunodeficiency virus (FIV) is a member of the genus Lentivirus and causes AIDS-like disease in its natural host, the cat. Like other lentiviruses, FIV displays a high degree of nucleotide sequence variability that is reflected in both the geographic distribution of the viruses and the different cat species that are infected. Although a lot of data on sequence variation at the population level is available, relatively little is known about the intrahost variation of FIV sequences. In the present study, cats were infected with either a biological isolate of FIV or a molecular clone that was derived from the same isolate, AM19. After infection, the cats were monitored for up to 3 years and at various time points sequences were obtained of virus circulating in the plasma. Regions of the env gene and the orfA gene were amplified, cloned and their nucleotide sequence analyzed. Furthermore, the extent of sequence variation in the original inocula was also determined. It was found that FIV is displaying relative little sequence variation during infection of its host, both in the env and the orfA gene, especially after infection with molecular clone 19k1. Although the extent of variation was higher after infection with biological isolate AM19, a large portion of these variant sequences was already present in the inoculum.

  14. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36

    PubMed Central

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further

  15. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C

    2015-04-02

    Honey bees (Apis mellifera) are susceptible to a wide range of pathogens, including a broad set of viruses. Recently, next-generation sequencing has expanded the list of viruses with, for instance, two strains of Lake Sinai Virus. Soon after its discovery in the USA, LSV was also discovered in other countries and in other hosts. In the present study, we assemble four almost complete LSV genomes, and show that there is remarkable sequence heterogeneity based on the Orf1, RNA-dependent RNA polymerase and capsid protein sequences in comparison to the previously identified LSV 1 and 2 strains. Phylogenetic analyses of LSV sequences obtained from single honey bee specimens further revealed that up to three distinctive clades could be present in a single bee. Such superinfections have not previously been identified for other honey bee viruses. In a search for the putative routes of LSV transmission, we were able to demonstrate the presence of LSV in pollen pellets and in Varroa destructor mites. However, negative-strand analyses demonstrated that the virus only actively replicates in honey bees and mason bees (Osmia cornuta) and not in Varroa mites.

  16. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters.

    PubMed Central

    Wu, C L; Wilcox, K W

    1991-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), pseudorabies virus (PRV), varicella-zoster virus (VZV), and equine herpesvirus 1 (EHV-1) are all classified as Alphaherpesvirinae. Each of these five viruses encodes an essential immediate-early (IE) regulatory protein referred to as HSV-1 ICP4, HSV-2 ICP4, PRV IE180, VZV ORF62 protein, and EHV-1 IE1, respectively. These five proteins share extensive homology with each other in domains referred to as regions 2 and 4. The HSV-1 ICP4 region 2 domain contains residues that are required for the DNA-binding capability of ICP4. In this report, we describe the expression of region 2 domains from the ICP4, IE180, and ORF62 genes as fusion proteins in Escherichia coli. DNA-binding assays revealed that each of these region 2 fusion proteins binds to a sequence that overlaps the transcription start site in the promoter for the gene encoding the corresponding protein. Each of the sites with high affinity for one or more of these fusion proteins contains the sequence 5'-ATCGT-3'. This sequence spans the mRNA cap site in the HSV-2 ICP4 gene promoter and is immediately upstream from the transcription start site in the EHV-1 IE1 gene. These results suggest that formation of a specific complex between an IE protein and its own gene promoter may be a common mechanism used by Alphaherpesvirinae to autoregulate transcription of an essential IE gene. Images PMID:1847444

  17. Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus ORF51 is a ChaB homologous gene involved in budded virus production and DNA replication.

    PubMed

    Zheng, Fangliang; Huang, Yi; Long, Gang; Sun, Xiulian; Wang, Hanzhong

    2011-01-01

    The baculovirus ChaB proteins are conserved in all completely sequenced Lepidopteran NPVs and are annotated as putative DNA binding proteins. Here we investigated Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) ORF51 (ha51), one of the ChaB homologues in HearNPV. 5'-RACE revealed that Ha51 is transcribed from a conventional early promoter transcriptional initiator motif (CATT) located at 159nt upstream of ATG. RT-PCR confirmed that ha51 is an early transcribed gene. To study the function of Ha51 in the life cycle of HearNPV, Ha51 knockout and repair bacmids were generated by homologous recombination in Escherichia coli. Growth curve and DNA replication analyses showed that the levels of budded virus (BV) production and viral DNA accumulation were significantly higher in cells infected with Ha51 null virus than those infected with wild-type bacmid derived virus. Electron microscopy revealed that polyhedra formation was not affected by the deletion of Ha51. Bioassay demonstrated that the Ha51-deleted virus had similar oral infectivity as the wild-type and rescued virus. Western blot analyses suggested that HA51 is a component of the nucleocapsid of BV and occlusion-derived virus as well as the envelope of BV. Immunofluorescence microscopy showed that HA51 protein is mainly localized in the cytoplasm of infected cells. Taken together, our results indicate that, unlike previously characterized baculovirual ChaB genes, Ha51 is involved in viral DNA replication and BV production and is transcribed in the early stage of infection.

  18. [Orf nodules and immunosuppression: a case report and review of therapeutics].

    PubMed

    de Vicq de Cumptich, M; Snoeck, R; Sass, U; del Marmol, V; Binet, H

    2015-01-01

    In immunocompromised patient, parapoxvirus infection can be extensively necrotic and recurrent evolution. We describe a case of Orf nodule in a liver transplanted woman. We will consider the therapeutic options in case of infections by parapox in immunosuppressive patients, as described in the medical literature. In our specific case, local application of cidofovir (concentration of 1 %) together with local antiseptic solution, povidone iodine, led to complete remission of the lesion without any sign of toxicity. Finally, we will consider the therapeutic use of local cidofovir.

  19. Serological survey of parapoxvirus infection in wild ruminants in Japan in 1996-9.

    PubMed Central

    Inoshima, Y.; Yamamoto, Y.; Takahashi, T.; Shino, M.; Katsumi, A.; Shimizu, S.; Sentsui, H.

    2001-01-01

    The prevalence of parapoxvirus infection was examined in free-ranging wild ruminants in Japan, Japanese serow (Capricornis crispus) and Japanese deer (Cervus nippon centralis), in 1996-9. We collected a total of 151 serum samples from 101 Japanese serows and 50 Japanese deer and tested for antibodies against parapoxvirus by an enzyme-linked immunosorbent assay and an agar gel immunodiffusion test. Overall seroprevalences among Japanese serows were 5/25 (20.0%) in 1996, 4/14 (28.6%) in 1997, 5/32 (15.6%) in 1998 and 2/30 (6.7%) in 1999, respectively. The seroprevalence increased with age but was not affected by sex. No antibodies were detected from any of 50 serum samples taken from Japanese deer. Our results in this study suggest that parapoxvirus infection is widespread among the population of Japanese serows, however, Japanese deer appear to be still free of the disease. PMID:11293676

  20. Phylogenetics based on partial ORF2 of triatoma virus in triatomines collected over a decade from domiciliary habitats.

    PubMed

    Susevich, María Laura; Marti, Gerardo Aníbal; Balsalobre, Agustín; Echeverría, María Gabriela

    2015-01-01

    The only virus sequenced and studied in triatomines is the Triatoma virus, from the Dicistroviridae family, which causes delayed development, reduced oviposition, and premature death of infected insects. With the goal of expanding the sequences already obtained in previous years and verifying if any changes occurred in their genomic sequences, 68 samples of triatomines from several provinces of Argentina were analyzed. Sixteen positive samples were obtained by Reverse Transcription (RT)-polymerase chain reaction using the VP3-VP1 subregion of open reading frame-2 as a diagnostic method; after sequencing, 11 samples were obtained from Triatoma infestans. These new sequences showed no significant differences in the analyzed regions, which were not grouped by species or habitat or geographical distribution. There were no differences when compared with the sequences found during 2002-2012, all obtained from the wild. We conclude that despite being an RNA virus, the different sequences show high homology.

  1. Phylogenetics Based on Partial ORF2 of Triatoma Virus in Triatomines Collected Over a Decade From Domiciliary Habitats

    PubMed Central

    Susevich, María Laura; Marti, Gerardo Aníbal; Balsalobre, Agustín; Echeverría, María Gabriela

    2015-01-01

    The only virus sequenced and studied in triatomines is the Triatoma virus, from the Dicistroviridae family, which causes delayed development, reduced oviposition, and premature death of infected insects. With the goal of expanding the sequences already obtained in previous years and verifying if any changes occurred in their genomic sequences, 68 samples of triatomines from several provinces of Argentina were analyzed. Sixteen positive samples were obtained by Reverse Transcription (RT)-polymerase chain reaction using the VP3-VP1 subregion of open reading frame-2 as a diagnostic method; after sequencing, 11 samples were obtained from Triatoma infestans. These new sequences showed no significant differences in the analyzed regions, which were not grouped by species or habitat or geographical distribution. There were no differences when compared with the sequences found during 2002–2012, all obtained from the wild. We conclude that despite being an RNA virus, the different sequences show high homology. PMID:25797795

  2. Effects of Early or Overexpression of the Autographa californica Multiple Nucleopolyhedrovirus orf94 (ODV-e25) on Virus Replication.

    PubMed

    Luo, Xiao-Chun; Wang, Shan-Shan; Zhang, Jie; Qian, Duo-Duo; Wang, Si-Min; Li, Lu-Lin

    2013-01-01

    odv-e25(e25) is one of the core genes of baculoviruses. To investigate how it functions in the replication cycle of a baculovirus, a number of Autographa californica multiple nucleopolyhedrovirus recombinants with e25 under control of the promoter of immediate early gene ie1, or the promoter of the very late hyperexpressed gene p10, were constructed using a bacmid system, and the effects of early expression or overexpression of e25 on replication of the virus were evaluated. Microscopy and titration assays demonstrated that bacmids with e25 under control of ie1 promoter were unable to produce budded viruses; and that the recombinant viruses with e25 under control of p10 promoter generated budded virus normally, but formation of occlusion bodies were dramatically reduced and delayed in the infected cells. Electron microscopy showed that there were no mature virions or intact nucleocapsids present in the cells transfected with a recombinant bacmid with e25 under control of ie1 promoter. Quantitative real-time PCR analysis demonstrated that alteration of the e25 promoter did not affect viral DNA synthesis. The reporter gene expression from the promoter of the major capsid protein gene vp39 was reduced 63% by early expression of e25. Confocal microscopy revealed that E25 was predominantly localized in nuclei by 24 hours post infection with wild-type virus, but it remained in the cytoplasm in the cells transfected with a recombinant bacmid with e25 under control of the ie1 promoter, suggesting that the transport of E25 into nuclei was regulated in a specific and strict time dependent manner.

  3. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.

    PubMed Central

    Wirblich, C; Sibilia, M; Boniotti, M B; Rossi, C; Thiel, H J; Meyers, G

    1995-01-01

    Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size. PMID:7474137

  4. Mutational analysis of hepatitis E virus ORF1 "Y-domain": Effects on RNA replication and virion infectivity

    PubMed Central

    Parvez, Mohammad Khalid

    2017-01-01

    AIM To investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle. METHODS Sequences of human HEV Y-domain (amino acid sequences 216-442) and closely-related viruses were analyzed in silico. Site-directed mutagenesis of the Y-domain (HEV SAR55) was carried out and studied in the replicon-baculovirus-hepatoma cell model. In vitro transcribed mRNA (pSK-GFP) constructs were transfected into S10-3 cells and viral RNA replicating GFP-positive cells were scored by flow cytometry. Mutant virions’ infectivity was assayed on naïve HepG2/C3A cells. RESULTS In silico analysis identified a potential palmitoylation-site (C336C337) and an α-helix segment (L410Y411S412W413L414F415E416) in the HEV Y-domain. Molecular characterization of C336A, C337A and W413A mutants of the three universally conserved residues showed non-viability. Further, of the 10 consecutive saturation mutants covering the entire Y-domain nucleotide sequences (nts 650-1339), three constructs (nts 788-994) severely affected virus replication. This revealed the indispensability of the internal sequences but not of the up- or downstream sequences at the transcriptional level. Interestingly, the three mutated residues corresponded to the downstream codons that tolerated saturation mutation, indicating their post-translational functional/structural essentiality. In addition, RNA secondary structure prediction revealed formation of stable hairpins (nts 788-994) where saturation mutation drastically inhibited virion infectivity. CONCLUSION This is the first demonstration of the critical role of Y-domain sequences in HEV life cycle, which may involve gene regulation and/or membrane binding in intracellular replication complexes. PMID:28216965

  5. Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59.

    PubMed

    Majerciak, Vladimir; Uranishi, Hiroaki; Kruhlak, Michael; Pilkington, Guy R; Massimelli, Maria Julia; Bear, Jenifer; Pavlakis, George N; Felber, Barbara K; Zheng, Zhi-Ming

    2011-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.

  6. Human orf (ecthyma contagious) a report of two cases from Saudi Arabia.

    PubMed

    Roy-Boulos, A M; Akhtar, M; Bendl, B

    1986-01-01

    Two cases of orf occuring in one family are reported. The patients developed characteristic skin lesions one week after sustaining cuts while slaughtering a sheep. The diagnosis of orf was confirmed by electron microscopy which revealed numerous large oval virus particle characteristics of parapox virus. This we believe is the first report of orf in Saudi Arabia.

  7. Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments.

    PubMed

    Gushchin, Vladimir A; Lukhovitskaya, Nina I; Andreev, Dmitri E; Wright, Kathryn M; Taliansky, Michael E; Solovyev, Andrey G; Morozov, Sergey Y; MacFarlane, Stuart A

    2013-01-01

    ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.

  8. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  9. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication.

    PubMed

    Qiu, Jianxiang; Tang, Zhimin; Yuan, Meijin; Wu, Wenbi; Yang, Kai

    2017-01-15

    During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.

  10. [Clinical findings and diagnosis of a severs parapoxvirus epidemic in Finnish reindeer].

    PubMed

    Büttner, M; von Einem, C; McInnes, C; Oksanen, A

    1995-12-01

    During the winter of 1992/93 a parapox epidemic in reindeer occurred in the southern and central areas of Finland which killed 400 animals and 2750 animals showed clinical symptoms. At least ten cases of human infections and disease were reported. In addition to the uncertain epidemiology, the diagnosis using conventional methods was difficult and time consuming. Based upon published sequence data of the parapoxvirus (PPV) ovis prototype strain NZ-2, two different polymerase chain reaction (PCR) protocols were performed. The detection of a PPV specific nucleotide sequence encoding a region of the 42 kD major envelope protein proved to be reproducible. DNA extraction from scab samples was not absolutely necessary prior to the PCR procedure. PCR for the detection of PPV infection can be recommended as a flanking diagnostic method, especially when electron microscopy shows negative results. PCR may be a useful method to differentiate sheep-poxvirus and to reveal epidemiology and identity of new PPV isolates.

  11. The Ep152R ORF of African Swine Fever Virus strain Georgia encodes for an essential gene that interacts with host protein BAG6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few have been studied in some detail. Here we rep...

  12. The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6.

    PubMed

    Borca, Manuel V; O'Donnell, Vivian; Holinka, Lauren G; Rai, Devendra K; Sanford, Brenton; Alfano, Marialexia; Carlson, Jolene; Azzinaro, Paul A; Alonso, Covadonga; Gladue, Douglas P

    2016-09-02

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few of these genes have been studied in some detail. Here we report the characterization of open reading frame Ep152R that has a predicted complement control module/SCR domain. This domain is found in Vaccinia virus proteins that are involved in blocking the immune response during viral infection. A recombinant ASFV harboring a HA tagged version of the Ep152R protein was developed (ASFV-G-Ep152R-HA) and used to demonstrate that Ep152R is an early virus protein. Attempts to construct recombinant viruses having a deleted Ep152R gene were consistently unsuccessful indicating that Ep152R is an essential gene. Interestingly, analysis of host-protein interactions for Ep152R using a yeast two-hybrid screen, identified BAG6, a protein previously identified as being required for ASFV replication. Furthermore, fluorescent microscopy analysis confirms that Ep152R-BAG6 interaction actually occurs in cells infected with ASFV.

  13. Attenuation, transmission, and immunogenicity of an ORF-C gene deleted strain of infectious laryngotracheitis virus (ILTV) in specific pathogen free chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious laryngotracheitis (ILT) is a very serious and widespread respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Conventional attenuated ILT vaccines, obtained by continuous passages in chicken embryos and tissue culture, had been the main tools utilized by th...

  14. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.

  15. Orf Disease Following "Eid ul-Adha": A Rare Cause of Erythema Multiforme.

    PubMed

    Shahmoradi, Zabihollah; Abtahi-Naeini, Bahareh; Pourazizi, Mohsen; Meidani, Mohsen

    2014-07-01

    Orf, also known as contagious pustular dermatitis, is an exanthemous disease caused by a parapox virus. It is usually a benign locally self-limiting illness; it can have systemic complication or progressive infected locations can include the finger, hand, arm, and face. Development of erythema multiforme following Orf infection is very rare. In Islamic populations such as those of Iran, Orf can be observed in individuals who are not occupationally involved, but may be in contact with sheep or goats after the Islamic worship as an "Eid ul-Adha." Here we report an erythema multiforme associated with multiple lesion of Orf disease following the "Eid ul-Adha" in Iranian housewives.

  16. Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples

    PubMed Central

    Abrahão, Jônatas S; Lima, Larissa S; Assis, Felipe L; Alves, Pedro A; Silva-Fernandes, André T; Cota, Marcela MG; Ferreira, Vanessa M; Campos, Rafael K; Mazur, Carlos; Lobato, Zélia IP; Trindade, Giliane S; Kroon, Erna G

    2009-01-01

    Background Orthopoxvirus (OPV) and Parapoxvirus (PPV) have been associated with worldwide exanthematic outbreaks. Some species of these genera are able to infect humans and domestic animals, causing serious economic losses and public health impact. Rapid, useful and highly specific methods are required to detect and epidemiologically monitor such poxviruses. In the present paper, we describe the development of a nested-multiplex PCR method for the simultaneous detection of OPV and PPV species directly from exanthematic lesions, with no previous viral isolation or DNA extraction. Methods and Results The OPV/PPV nested-multiplex PCR was developed based on the evaluation and combination of published primer sets, and was applied to the detection of the target pathogens. The method showed high sensitivity, and the specificity was confirmed by amplicon sequencing. Exanthematic lesion samples collected during bovine vaccinia or contagious ecthyma outbreaks were submitted to OPV/PPV nested-multiplex PCR and confirmed its applicability. Conclusion These results suggest that the presented multiplex PCR provides a highly robust and sensitive method to detect OPV and PPV directly from clinical samples. The method can be used for viral identification and monitoring, especially in areas where OPV and PPV co-circulate. PMID:19747382

  17. Mutations in the UL97 ORF of ganciclovir-resistant clinical cytomegalovirus isolates differentially affect GCV phosphorylation as determined in a recombinant vaccinia virus system.

    PubMed

    Baldanti, Fausto; Michel, Detlef; Simoncini, Lavinia; Heuschmid, Maria; Zimmermann, Albert; Minisini, Rosalba; Schaarschmidt, Peter; Schmid, Thomas; Gerna, Giuseppe; Mertens, Thomas

    2002-04-01

    Mutations in the human cytomegalovirus (HCMV) UL97 phosphotransferase have been associated with ganciclovir (GCV) resistance due to an impairment of GCV monophosphorylation. Vaccinia virus recombinants (rVV) were generated that encoded different HCMV UL97 proteins (pUL97) with mutations previously detected in resistant HCMV clinical isolates at codons 460, 520, 592, 594, 595, 598 and 607. These rVVs allowed quantification of GCV phosphorylation catalyzed by the different mutated pUL97s. When compared to rVV-UL97 wild type, mean levels of residual intracellular GCV phosphorylation differed by a factor of 10 for the mutated UL97 proteins ranging from 5.2 to 51.8%. Mutations M460V (located in a UL97 region homologous to domain VIb of protein kinases) and H520Q (located in a cytomegalovirus-specific, functionally critical domain) were responsible for the lowest levels of residual GCV phosphorylation (9.3 and 5.2%). Mutations in a region homologous to the domain IX had a lower impact on GCV phosphorylation (15.8-51.8%). The relevance of pUL97 mutation G598S in inducing GCV resistance was demonstrated for the first time.

  18. Lamb pays lip service: two cases of ecthyma contagiosum (orf).

    PubMed

    de Wet, Carl; Murie, Jill

    2011-02-01

    Ecthyma contagiosum (orf) is caused by a parapox virus, which results in ulcerative stomatitis of mainly sheep and goats. The disease may be transmitted to humans through direct contact. Complications are rare in healthy individuals, who rarely report the disease. Two married, recreational sheep farmers, were bitten on their index fingers by an affected lamb. While the husband made an uneventful recovery after oral flucloxacillin, his wife was admitted to hospital with necrosis of her finger, cellulitis and lymphangitis requiring intravenous clindamycin. She subsequently developed a generalized maculo-papular rash, which was initially thought to be an adverse drug reaction, but, on hindsight, may have been erythema multiforme associated with orf. Orf is a common zoonosis, rarely reported in general practice. The disease is usually self-limiting and resolves in 6-8 weeks, but complications may occur. The diagnosis should be considered in at-risk occupational and religious groups.

  19. [Three patients with orf (ecthyma contagiosum)].

    PubMed

    Schimmer, B; Sprenger, H G; Wismans, P J; van Genderen, P J

    2004-04-17

    Orf was diagnosed in three patients: a 16-year-old Moroccan girl who had cut her finger in a butcher's shop, a 47-year-old Dutch woman who had allowed a lamb to suck on her finger on a children's farm, and a 50-year-old Dutch farm woman. Orf or ecthyma contagiosum is a well-known viral disease among sheep and goats. Transmission to humans as a zoonosis is rare but can take place via direct contact with infected animals or animal products. The clinical picture is usually characterized by a solitary lesion that develops on the dorsal side of the fingers or hands. This viral condition produces little or no systemic complaints and the lesions usually regress spontaneously without scar formation within 6 weeks (range 4-9 weeks). The correct diagnosis can usually be made on clinical grounds. The diagnosis may be confirmed by demonstration of the virus by electron microscopy or the polymerase chain reaction in fluid obtained from the skin lesions or by conventional histopathology. Early clinical recognition and knowledge of this benign, self-limiting viral condition is vital to avoid unnecessary surgical intervention. Proper information and reassurance of the infected patient are very important. All three patients recovered.

  20. Electron tomography of negatively stained complex viruses: application in their diagnosis

    PubMed Central

    Mast, Jan; Demeestere, Lien

    2009-01-01

    Background Electron tomographic analysis can be combined with the simple and rapid negative staining technique used in electron microscopy based virus diagnosis. Methods Standard negative staining of representative examples of parapoxviruses and paramyxoviruses was combined with electron tomographic analysis. Results Digital sectioning of reconstructions of these viruses at a selected height demonstrated the viral ultrastructure in detail, including the characteristic diagnostic features like the surface threads on C-particles of a parapoxvirus and individual glycoproteins and the internal nucleoprotein strand of Newcastle disease virus. For both viruses, deformation and flattening were observed. Conclusion The combination of negative staining of complex viruses with electron tomographic analysis, allows visualizing and measuring artifacts typical for negative staining. This approach allows sharp visualisation of structures in a subnanometer-thick plane, avoiding blurring due to superposition which is inherent to TEM. In selected examples, such analyses can improve diagnosis of viral agents. PMID:19208223

  1. Roles for the E4 orf6, orf3, and E1B 55-Kilodalton Proteins in Cell Cycle-Independent Adenovirus Replication

    PubMed Central

    Goodrum, Felicia D.; Ornelles, David A.

    1999-01-01

    Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G1 and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548–561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G1 cells infected with the mutant viruses compared to that in G1 cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G1. However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G1 than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G1. Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth. PMID:10438837

  2. Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication.

    PubMed

    Goodrum, F D; Ornelles, D A

    1999-09-01

    Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.

  3. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium.

    PubMed

    Pohlscheidt, M; Langer, U; Minuth, T; Bödeker, B; Apeler, H; Hörlein, H-D; Paulsen, D; Rübsamen-Waigmann, H; Henzler, H-J; Reichl, U

    2008-03-17

    For the production of a chemically inactivated Parapoxvirus ovis (PPVO), an adherent bovine kidney cell line was cultivated on Cytodex-3 microcarriers in suspension culture. The inactivated and purified virus particles have shown immune modulatory activity in several animal models. PPVO was produced by a biphasic batch process at the 3.5 and 10 L scale. Aeration was realised by bubble-free membrane oxygenation via a tube stator with a central two-blade anchor impeller. In order to increase efficiency, process robustness and safety, the established process was optimised. The cell line was adapted to a protein-free medium (except recombinant insulin) in order to increase biosafety. A scale up to a 50 L pilot plant with direct cell expansion was performed successfully. In parallel, the biphasic batch process was optimised with special emphasis on different operating conditions (cell number, Multiplicity of Infection (MOI), etc.) and process management (fed-batch, dialysis, etc.). The quality and concentration of the purified virus particles was assessed by quantitative electron microscopy, residual host cell protein and DNA-content and, finally, biologic activity in a transgenic mouse model. This integrated approach led to a new, safe, robust and highly productive large-scale production process, called "Volume-Expanded-Fed" Batch with cell densities up to 6-7e06 cells/mL. By subsequent dilution of infected cells into the next process scale, an increase in total productivity by a factor of 40 (related to an established biphasic batch process) was achieved.

  4. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs

    PubMed Central

    Pellet, J.; Tafforeau, L.; Lucas-Hourani, M.; Navratil, V.; Meyniel, L.; Achaz, G.; Guironnet-Paquet, A.; Aublin-Gex, A.; Caignard, G.; Cassonnet, P.; Chaboud, A.; Chantier, T.; Deloire, A.; Demeret, C.; Le Breton, M.; Neveu, G.; Jacotot, L.; Vaglio, P.; Delmotte, S.; Gautier, C.; Combet, C.; Deleage, G.; Favre, M.; Tangy, F.; Jacob, Y.; Andre, P.; Lotteau, V.; Rabourdin-Combe, C.; Vidalain, P. O.

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins. PMID:20007148

  5. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    PubMed

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  6. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    PubMed Central

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam; Schulz, Sarah; Daviter, Tina; Smollett, Katherine; Mahieu, Emilie; Erdmann, Susanne; Tinnefeld, Philip; Garrett, Roger; Grohmann, Dina; Rappsilber, Juri; Werner, Finn

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP). PMID:27882920

  7. Fluorescent Tagging and Cellular Distribution of the Kaposi's Sarcoma-Associated Herpesvirus ORF45 Tegument Protein

    PubMed Central

    Bergson, Shir; Kalt, Inna; Itzhak, Inbal; Brulois, Kevin F.; Jung, Jae U.

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is a cancer-related human virus, classified as a member of the Gammaherpesvirinae subfamily. We report here the construction of a dual fluorescent-tagged KSHV genome (BAC16-mCherry-ORF45), which constitutively expresses green fluorescent protein (GFP) and contains the tegument multifunctional ORF45 protein as a fusion protein with monomeric Cherry fluorescent protein (mCherry). We confirmed that this virus is properly expressed and correctly replicates and that the mCherry-ORF45 protein is incorporated into the virions. Using this labeled virus, we describe the dynamics of mCherry-ORF45 expression and localization in newly infected cells as well as in latently infected cells undergoing lytic induction and show that mCherry can be used to monitor cells undergoing the lytic viral cycle. This virus is likely to enable future studies monitoring the dynamics of viral trafficking and tegumentation during viral ingress and egress. IMPORTANCE The present study describes the construction and characterization of a new recombinant KSHV genome BAC16 clone which expresses mCherry-tagged ORF45. This virus enables the tracking of cells undergoing lytic infection and can be used to address issues related to the trafficking and maturation pathways of KSHV virions. PMID:25165104

  8. Mechanisms of Cancer Cell Killing by the Adenovirus E4orf4 Protein

    PubMed Central

    Kleinberger, Tamar

    2015-01-01

    During adenovirus (Ad) replication the Ad E4orf4 protein regulates progression from the early to the late phase of infection. However, when E4orf4 is expressed alone outside the context of the virus it induces a non-canonical mode of programmed cell death, which feeds into known cell death pathways such as apoptosis or necrosis, depending on the cell line tested. E4orf4-induced cell death has many interesting and unique features including a higher susceptibility of cancer cells to E4orf4-induced cell killing compared with normal cells, caspase-independence, a high degree of evolutionary conservation of the signaling pathways, a link to perturbations of the cell cycle, and involvement of two distinct cell death programs, in the nucleus and in the cytoplasm. Several E4orf4-interacting proteins including its major partners, protein phosphatase 2A (PP2A) and Src family kinases, contribute to induction of cell death. The various features of E4orf4-induced cell killing as well as studies to decipher the underlying mechanisms are described here. Many explanations for the cancer specificity of E4orf4-induced cell death have been proposed, but a full understanding of the reasons for the different susceptibility of cancer and normal cells to killing by E4orf4 will require a more detailed analysis of the complex E4orf4 signaling network. An improved understanding of the mechanisms involved in this unique mode of programmed cell death may aid in design of novel E4orf4-based cancer therapeutics. PMID:25961489

  9. Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters.

    PubMed

    Jeong, J; Papin, J; Dittmer, D

    2001-02-01

    Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.

  10. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement

    PubMed Central

    Smirnova, Ekaterina; Firth, Andrew E.; Miller, W. Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M.; Chung, Betty Y.-W.; Ziegler-Graff, Véronique

    2015-01-01

    Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. PMID:25946037

  11. Adenoviral E4orf3 and E4orf6 Proteins, But Not E1B55K, Increase Killing of Cancer Cells by Radiotherapy in vivo

    SciTech Connect

    Liikanen, Ilkka; Dias, Joao D.; Nokisalmi, Petri; Sloniecka, Marta; Kangasniemi, Lotta; Rajecki, Mari; Dobner, Thomas; Tenhunen, Mikko; Kanerva, Anna; Pesonen, Sari; Ahtiainen, Laura Ph.D.; Hemminki, Akseli

    2010-11-15

    Purpose: Radiotherapy is widely used for treatment of many tumor types, but it can damage normal tissues. It has been proposed that cancer cells can be selectively sensitized to radiation by adenovirus replication or by using radiosensitizing transgenes. Adenoviral proteins E1B55K, E4orf3, and E4orf6 play a role in radiosensitization, by targeting the Mre11, Rad50, and NBS1 complex (MRN) and inhibiting DNA double-strand break (DSB) repair. We hypothesize that combined with irradiation, these adenoviral proteins increase cell killing through the impairment of DSB repair. Methods and Materials: We assessed the radiosensitizing/additive potential of replication-deficient adenoviruses expressing E1B55K, E4orf3, and E4orf6 proteins. Combination treatments with low-dose external photon beam radiotherapy were studied in prostate cancer (PC-3MM2 and DU-145), breast cancer (M4A4-LM3), and head and neck cancer (UT-SCC8) cell lines. We further demonstrated radiosensitizing or additive effects in mice with PC-3MM2 tumors. Results: We show enhanced cell killing with adenovirus and radiation combination treatment. Co-infection with several of the viruses did not further increase cell killing, suggesting that both E4orf6 and E4orf3 are potent in MRN inhibition. Our results show that adenoviral proteins E4orf3 and E4orf6, but not E1B55K, are effective also in vivo. Enhanced cell killing was due to inhibition of DSB repair resulting in persistent double-strand DNA damage, indicated by elevated phospho-H2AX levels at 24 h after irradiation. Conclusions: This knowledge can be applied for improving the treatment of malignant tumors, such as prostate cancer, for development of more effective combination therapies and minimizing radiation doses and reducing side effects.

  12. Orf Disease Following “Eid ul-Adha”: A Rare Cause of Erythema Multiforme

    PubMed Central

    Shahmoradi, Zabihollah; Abtahi-Naeini, Bahareh; Pourazizi, Mohsen; Meidani, Mohsen

    2014-01-01

    Orf, also known as contagious pustular dermatitis, is an exanthemous disease caused by a parapox virus. It is usually a benign locally self-limiting illness; it can have systemic complication or progressive infected locations can include the finger, hand, arm, and face. Development of erythema multiforme following Orf infection is very rare. In Islamic populations such as those of Iran, Orf can be observed in individuals who are not occupationally involved, but may be in contact with sheep or goats after the Islamic worship as an “Eid ul-Adha.” Here we report an erythema multiforme associated with multiple lesion of Orf disease following the “Eid ul-Adha” in Iranian housewives. PMID:25105005

  13. Identification and Characterization of the Orf49 Protein of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    González, Carlos M.; Wong, Emily L.; Bowser, Brian S.; Hong, Gregory K.; Kenney, Shannon; Damania, Blossom

    2006-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Kaposi's sarcoma is the most common neoplasm among human immunodeficiency virus-positive individuals. Like other herpesviruses, KSHV is able to establish a predominantly latent, life-long infection in its host. The KSHV lytic cycle can be triggered by a number of stimuli that induce the expression of the key lytic switch protein, the replication and transcription activator (RTA) encoded by Orf50. The expression of Rta is necessary and sufficient to trigger the full lytic program resulting in the ordered expression of viral proteins, release of viral progeny, and host cell death. We have characterized an unknown open reading frame, Orf49, which lies adjacent and in the opposite orientation to Orf50. Orf49 is expressed during the KSHV lytic cycle and shows early transcription kinetics. We have mapped the 5′ and 3′ ends of the unspliced Orf49 transcript, which encodes a 30-kDa protein that is localized to both the nucleus and the cytoplasm. Interestingly, we found that Orf49 was able to cooperate with Rta to activate several KSHV lytic promoters containing AP-1 sites. The Orf49-encoded protein was also able to induce transcriptional activation through c-Jun but not the ATF1, ATF2, or CREB transcription factor. We found that Orf49 could induce phosphorylation and activation of the transcription factor c-Jun, the Jun N-terminal kinase (JNK), and p38. Our data suggest that Orf49 functions to activate the JNK and p38 pathways during the KSHV lytic cycle. PMID:16501115

  14. A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin

    PubMed Central

    Sharif, Saeed; Nakatani, Yoshio; Wise, Lyn; Corbett, Michael; Real, Nicola C.; Stuart, Gabriella S.; Lateef, Zabeen; Krause, Kurt; Mercer, Andrew A.; Fleming, Stephen B.

    2016-01-01

    Bovine papular stomatitis virus (BPSV) is a Parapoxvirus that induces acute pustular skin lesions in cattle and is transmissible to humans. Previous studies have shown that BPSV encodes a distinctive chemokine-binding protein (CBP). Chemokines are critically involved in the trafficking of immune cells to sites of inflammation and infected tissue, suggesting that the CBP plays a role in immune evasion by preventing immune cells reaching sites of infection. We hypothesised that the BPSV-CBP binds a wide range of inflammatory chemokines particularly those involved in BPSV skin infection, and inhibits the recruitment of immune cells from the blood into inflamed skin. Molecular analysis of the purified protein revealed that the BPSV-CBP is a homodimeric polypeptide with a MW of 82.4 kDa whilst a comprehensive screen of inflammatory chemokines by surface plasmon resonance showed high-affinity binding to a range of chemokines within the CXC, CC and XC subfamilies. Structural analysis of BPSV-CBP, based on the crystal structure of orf virus CBP, provided a probable explanation for these chemokine specificities at a molecular level. Functional analysis of the BPSV-CBP using transwell migration assays demonstrated that it potently inhibited chemotaxis of murine neutrophils and monocytes in response to CXCL1, CXCL2 as well as CCL2, CCL3 and CCL5 chemokines. In order to examine the effects of CBP in vivo, we used murine skin models to determine its impact on inflammatory cell recruitment such as that observed during BPSV infection. Intradermal injection of BPSV-CBP blocked the influx of neutrophils and monocytes in murine skin in which inflammation was induced with lipopolysaccharide. Furthermore, intradermal injection of BPSV-CBP into injured skin, which more closely mimics BPSV lesions, delayed the influx of neutrophils and reduced the recruitment of MHC-II+ immune cells to the wound bed. Our findings suggest that the CBP could be important in pathogenesis of BPSV infections

  15. Rapid improvement of human orf (ecthyma contagiosum) with topical imiquimod cream: report of four complicated cases.

    PubMed

    Erbağci, Zülal; Erbağci, Ibrahim; Almila Tuncel, A

    2005-01-01

    Orf is a zoonosis caused by an epitheliotropic DNA parapox virus. Human orf is a generally benign, self-limiting condition that usually regresses in 6-8 weeks without specific treatment. However, it may be accompanied by local symptoms including pain, pruritus, lymphangitis and axillary adenitis, or less frequently by systemic symptoms such as fever or malaise. Furthermore, it may be complicated by erythema multiforme, Stevens-Johnson syndrome, erysipelas, generalized mucocutaneous eruption, toxic erythema, eyelid oedema and giant, persistent or recurrent lesions in immunocompromised patients. Imiquimod, a potent topical immune response modifier, enhances both the innate and acquired immunity by stimulation of immune system cells resulting in local antiviral, antitumour and immunoregulatory activity. We present, for the first time, four complicated cases of orf successfully treated by topical imiquimod resulting in rapid regression of both orf and associated lesions. Two of the cases were complicated with erythema multiforme, one with recurrent eyelid oedema, and another had giant orf associated with axillary lymphadenitis. We suggest that topical imiquimod may be an effective and safe therapy for complicated orf cases.

  16. Differential Regulation of the Overlapping Kaposi's Sarcoma-Associated Herpesvirus vGCR (orf74) and LANA (orf73) Promoters

    PubMed Central

    Jeong, Joseph; Papin, James; Dittmer, Dirk

    2001-01-01

    Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator. PMID:11160678

  17. Sequence analysis of ORF IV RTBV isolated from tungro infected Oryza sativa L. cv Ciherang

    NASA Astrophysics Data System (ADS)

    Hastilestari, Bernadetta Rina; Astuti, Dwi; Estiati, Amy; Nugroho, Satya

    2015-09-01

    The Effort to increase rice production is often constrained by pest and disease such as Tungro. The Tungro disease is caused by the joint infection with two dissimilar viruses; a bacil-form-DNA virus, the Rice tungro bacilliform virus(RTBV) and the spherical RNA virus, Rice tungro spherical virus (RTSV) and transmitted by Green leafhopper (Nephotettix virescens). The symptom of disease is caused by the presence of RTBV. The genome of RTBV consists of four Open reading frames (ORFs) which encode functional proteins. Of the four, ORF IV is unique because it exists only in RTBV. The most efficient method of generating disease resistance plants is to look for natural sources of resistance genes in wild or germplasm and then transfer the gene and the accompanying resistance in cultivated crop varieties. The aim of this study is, therefore, to isolate and analyze of 1170 bp gene of ORF 4 of Tungro virus isolated from an Indonesian rice cultivar, Ciherang (Oryza sativa L. cv Indica). DNA sequencing analysis using BLAST showed 94% similarity with the reference sequence gen bank Acc.M65026.1. The comparisons and mutation analysis of DNA sequences were discussed in this research.

  18. A 65-Year-Old Female from Connecticut with Orf Infection

    PubMed Central

    Estela Cubells, Jose Ramón; Braverman, Irwin; Kashgarian, Michael; Lazova, Rossitza

    2016-01-01

    The virus, which causes orf and induces acute pustular skin lesions in sheep and goats, is transmissible to humans yet is rarely observed in North America. We present a case of a 65-year-old female farmer from Connecticut who contracted orf from her sheep. The clinical and histopathologic features, important to arrive at the correct diagnosis of this uncommon yet important infection, are described. We also discuss the benign nature of this condition and emphasize that treatment is not required. PMID:27504446

  19. [Expanding papillomatous nodule on forearm with acute lymphangitis. Case of diagnosis].

    PubMed

    Radtke, M A; Günzl, H-J; Siemann-Harms, U; Augustin, M; Coors, E A

    2009-06-01

    Ecthyma contagiosum (orf) is a dermatosis commonly seen in those in contact with sheep. It is caused by Parapoxvirus ovis (orf virus), an oval epitheliotropic DNA parapox virus. The skin disease develops in stages starting as a macule or papule, becoming nodular, and then regressing. Diagnosis is based on history and histology, as well as identifying the virus through cell culture or specified polymerase chain reaction (PCR). The treatment of this self-limited disease is usually symptomatic.

  20. Regulation of Notch-mediated transcription by a bovine herpesvirus 1 encoded protein (ORF2) that is expressed in latently infected sensory neurons.

    PubMed

    Liu, Yilin; Jones, Clinton

    2016-08-01

    Bovine herpesvirus 1 (BoHV-1) is an Alphaherpesvirinae subfamily member that establishes life-long latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed during latency. An LR mutant virus containing stop codons at the amino-terminus of open reading frame (ORF)2 does not reactivate from latency and replicates less efficiently in tonsils and trigeminal ganglia. ORF2 inhibits apoptosis, interacts with Notch family members, and interferes with Notch-dependent transcription suggesting ORF2 expression enhances survival of infected neurons. The Notch signaling pathway is crucial for neuronal differentiation and survival suggesting that interactions between ORF2 and Notch family members regulate certain aspects of latency. Consequently, for this study, we compared whether ORF2 interfered with the four mammalian Notch family members. ORF2 consistently interfered with Notch1-3-mediated transactivation of three cellular promoters. Conversely, Notch4-mediated transcription was not consistently inhibited by ORF2. Electrophoretic shift mobility assays using four copies of a consensus-DNA binding site for Notch/CSL (core binding factor (CBF)-1, Suppressor of Hairless, Lag-2) as a probe revealed ORF2 interfered with Notch1 and 3 interactions with a CSL family member bound to DNA. Additional studies demonstrated ORF2 enhances neurite sprouting in mouse neuroblastoma cells that express Notch1-3, but not Notch4. Collectively, these studies indicate that ORF2 inhibits Notch-mediated transcription and signaling by interfering with Notch interacting with CSL bound to DNA.

  1. Nucleotide sequence of papaya mosaic virus RNA.

    PubMed

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  2. Complete nucleotide sequence of Rose yellow leaf virus, a new member of the family Tombusviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the Rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides containing seven open reading frames (ORFs). ORF1 encodes a 27 kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode a 87 kDa (p87) protein t...

  3. Structural and antigenic identification of the ORF12 protein (alpha TIF) of equine herpesvirus 1.

    PubMed

    Lewis, J B; Thompson, Y G; Feng, X; Holden, V R; O'Callaghan, D; Caughman, G B

    1997-04-14

    The equine herpesvirus 1 (EHV-1) homolog of the herpes simplex virus type 1 (HSV-1) tegument phosphoprotein, alpha TIF (Vmw65; VP16), was identified previously as the product of open reading frame 12 (ORF12) and shown to transactivate immediate early (IE) gene promoters. However, a specific virion protein corresponding to the ORF12 product has not been identified definitively. In the present study the ORF12 protein, designated ETIF, was identified as a 60-kDa virion component on the basis of protein fingerprint analyses in which the limited proteolysis profiles of the major 60-kDa in vitro transcription/ translation product of an ORF12 expression vector (pT7-12) were compared to those of purified virion proteins of similar size. ETIF was localized to the viral tegument in Western blot assays of EHV-1 virions and subvirion fractions using polyclonal antiserum and monoclonal antibodies generated against a glutathione-S-transferase-ETIF fusion protein. Northern and Western blot analyses of EHV-1-infected cell lysates prepared under various metabolic blocks indicated that ORF12 is expressed as a late gene, and cross reaction of polyclonal anti-GST-ETIF with a 63.5-kDa HSV-1 protein species suggested that ETIF and HSV-1 alpha TIF are antigenically related. Last, DNA band shift assays used to assess ETIF-specific complex formation indicated that ETIF participates in an infected cell protein complex with the EHV-1 IE promoter TAATGARAT motif.

  4. No evidence for translation of pog, a predicted overlapping gene of Solenopsis invicta virus 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overlapping open reading frame (ORF) with a potential to encode a functional protein has been identified within the 3'-proximal ORF of Solenopsis invicta virus 1 (SINV-1) and three bee viruses. This ORF has been referred to as predicted overlapping gene (pog). Protein motif searches of pog reve...

  5. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein.

    PubMed

    Orlando, Joseph S; Ornelles, David A

    2002-02-01

    The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.

  6. Expression and detection of LINE-1 ORF-encoded proteins.

    PubMed

    Dai, Lixin; LaCava, John; Taylor, Martin S; Boeke, Jef D

    2014-01-01

    LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.

  7. Occurrence of Pseudocowpox virus associated to Bovine viral diarrhea virus-1, Brazilian Amazon.

    PubMed

    Alves, Pedro A; Figueiredo, Poliana O; de Oliveira, Cairo H S; Barbosa, José D; Lima, Danillo H S; Bomjardim, Henrique A; Silva, Natália S; Campos, Karinny F; Oliveira, Carlos Magno C; Barbosa-Stancioli, Edel Figueiredo; Abrahão, Jônatas S; Kroon, Erna G; de Souza Trindade, Giliane

    2016-12-01

    In 2011, an outbreak of severe vesicular disease occurred in the state of Pará, Amazon region. Besides proliferative or verrucous lesions, cattle showed atypical clinical signs such as diarrhea and leading to death. The animals were submitted to clinical, pathological and molecular diagnosis, and laboratory tests have confirmed the presence of Pseudocowpox virus (PCPV), a Parapoxvirus genus member, and have also found Bovine viral diarrhea virus-1 (BVDV-1), probably causing persistent infection. The results of molecular diagnostics, followed by sequencing data demonstrated the circulation of both viruses (PCPV and BVDV-1) in an area previously affected by another poxvirus, as Vaccinia virus.The cocirculation between PCPV and BVDV-1 indicates a major concern for animal health because the clinical presentation can be a severe disease. This is the first detection of PCPV in the Brazilian Amazon.

  8. ORF Organization and Gene Recognition in the Yeast Genome

    PubMed Central

    Li, Hong; Zhang, Lirong

    2003-01-01

    Some rules on gene recognition and ORF organization in the Saccharomyces cerevisiae genome are demonstrated by statistical analyses of sequence data. This study includes: (a) The random frame rule—that the six reading frames W1, W2, W3, C1, C2 and C3 in the double-stranded genome are randomly occupied by ORFs (related phenomena on ORF overlapping are also discussed). (b) The inhomogeneity rule—coding and non-coding ORFs differ in inhomogeneity of base composition in the three codon positions. By use of the inhomogeneity index (IHI), one can make a distinction between coding (IHI > 14) and non-coding (IHI ≤ 14) ORFs at 95% accuracy. We find that ‘spurious’ ORFs (with IHI ≤ 14) are distributed mainly in three classes of ORFs, namely, those with ‘similarity to unknown proteins’, those with ‘no similarity’, or ‘questionable ORFs’. The total number of spurious ORFs (which are unlikely to be regarded as coding ORFs) is estimated to be 470. (c) The evaluation of ORF length distribution shows that below 200 amino acids the occurrence of ATG initiator ORFs is close to random. PMID:18629282

  9. Upstream ORFs are prevalent translational repressors in vertebrates.

    PubMed

    Johnstone, Timothy G; Bazzini, Ariel A; Giraldez, Antonio J

    2016-04-01

    Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates.

  10. The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response.

    PubMed

    Brestovitsky, Anna; Nebenzahl-Sharon, Keren; Kechker, Peter; Sharf, Rakefet; Kleinberger, Tamar

    2016-02-01

    The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition

  11. The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response

    PubMed Central

    Kechker, Peter; Sharf, Rakefet; Kleinberger, Tamar

    2016-01-01

    The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition

  12. An Arginine-Faced Amphipathic Alpha Helix Is Required for Adenovirus Type 5 E4orf6 Protein Function

    PubMed Central

    Orlando, Joseph S.; Ornelles, David A.

    1999-01-01

    A region in the carboxy terminus of the protein encoded by open reading frame 6 in early region 4 (E4orf6) of adenovirus type 5 was determined to be required for directing nuclear localization of the E1B 55-kDa protein and for efficient virus replication. A peptide encompassing this region, corresponding to amino acids 239 through 255 of the E4orf6 protein, was analyzed by circular dichroism spectroscopy. The peptide showed evidence of self-interaction and displayed the characteristic spectra of an amphipathic α helix in the helix-stabilizing solvent trifluoroethanol. Disrupting the integrity of this α helix in the E4orf6 protein by proline substitutions or by removing amino acids 241 through 250 abolished its ability to direct the E1B 55-kDa protein to the nucleus when both proteins were transiently expressed in HeLa cells. Expression of E4orf6 variants that failed to direct nuclear localization of the E1B 55-kDa protein failed to enhance replication of the E4 mutant virus, dl1014, whereas expression of the wild-type E4orf6 protein restored growth of dl1014 to near-wild-type levels. These results suggest that the E4orf6 protein contains an arginine-faced, amphipathic α helix that is critical for a functional interaction with the E1B 55-kDa protein in the cell and for the function of the E4orf6 protein during a lytic infection. PMID:10233919

  13. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication

    PubMed Central

    Avey, Denis; Tepper, Sarah; Li, Wenwei; Turpin, Zachary; Zhu, Fanxiu

    2015-01-01

    Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates

  14. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K

    PubMed Central

    Malik, Poonam; Clements, J. Barklie

    2004-01-01

    ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic α/α′ and regulatory β subunits of CK2. CK2 modification enhanced the ORF57–hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago. PMID:15486205

  15. C9ORF72 mutations in neurodegenerative diseases.

    PubMed

    Liu, Ying; Yu, Jin-Tai; Zong, Yu; Zhou, Jing; Tan, Lan

    2014-02-01

    Recent works have demonstrated an expansion of the GGGGCC hexanucleotide repeat in the first intron of chromosome 9 open reading frame 72 (C9ORF72), encoding an unknown C9ORF72 protein, which was responsible for an unprecedented large proportion of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases of European ancestry. C9ORF72 is expressed in most tissues including the brain. Emerging evidence has demonstrated that C9ORF72 mutations could reduce the level of C9ORF72 variant 1, which may influence protein expression and the formation of nuclear RNA foci. The spectrum of mutations is broad and provides new insight into neurological diseases. Clinical manifestations of diseases related with C9ORF72 mutations can vary from FTD, ALS, primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), Huntington disease-like syndrome (HDL syndrome), to Alzheimer's disease. In this article, we will review the brief characterizations of the C9ORF72 gene, the expansion mutations, the related disorders, and their features, followed by a discussion of the deficiency knowledge of C9ORF72 mutations. Based on the possible pathological mechanisms of C9ORF72 mutations in ALS and FTD, we can find new targets for the treatment of C9ORF72 mutation-related diseases. Future studies into the mechanisms, taking into consideration the discovery of those disorders, will significantly accelerate new discoveries in this field, including targeting identification of new therapy.

  16. KSHV ORF57, a Protein of Many Faces

    PubMed Central

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis. PMID:25674768

  17. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation.

  18. Discovery and Characterization of smORF-Encoded Bioactive Polypeptides

    PubMed Central

    Saghatelian, Alan; Couso, Juan Pablo

    2016-01-01

    Analysis of genomes, transcriptomes, and proteomes reveals the existence of hundreds to thousands of translated, yet non-annotated short open reading frames (small ORFs or smORFs). The discovery of smORFs, and their protein products, smORF-encoded polypeptides (SEPs), reveals a fundamental gap in our knowledge of protein-coding genes. Different studies have identified central roles for smORFs in metabolism, apoptosis, and development. The discovery of these bioactive SEPs emphasizes the functional potential of this unexplored class of biomolecules. Here, we provide an overview of this emerging field and highlight the opportunities for chemical biology to answer fundamental questions about these novel genes. Such studies will provide new insights into the protein-coding potential of genomes and identify functional genes with roles in biology and disease. PMID:26575237

  19. Comparison of virokine from camel pseudocowpoxvirus (PCPV) with interleukin 10 of the Dromedary camel (Camelus dromedarius).

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Sivakumar, G; Narnaware, S D; Tuteja, F C; Patil, N V

    2013-02-01

    Cellular interleukin-10 (IL-10) gene from the peripheral blood mononuclear cells of the healthy Dromedary camel (Camelus dromedarius) and viral IL-10 (vIL-10) from the skin scabs of the Dromedary camels infected with contagious ecthyma (a parapoxviral infection in the camels) were amplified by polymerase chain reaction, cloned and characterized. Sequence analysis revealed that the open reading frame (ORF) of dromedarian camel IL-10 is 537 bp in length, encoding 178 amino acid polypeptide while open reading frame of vIL-10 from camel is 561 bp, encoding 187 amino acid polypeptide. The Dromedary camel IL-10 exhibited 62.6% and 68.5% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from camel. Sequence analysis also revealed that the Dromedary camel IL-10 shared 99.4% and 98.3% identity at the nucleotide and amino acid level, respectively, with the Bactrian camel (Camelus bactrianus). But vIL-10 from camel shared 84.7% and 83.4% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from reindeer (Rangifer tarandus), which is a ruminant species belonging to the order Artiodactyla. The present study was conducted to evaluate the evolutionary origin of the camel parapoxvirus with parapoxviruses of cattle and sheep and the resultant sequence analysis revealed that camel parapoxvirus is closely related to cattle parapoxvirus than sheep parapoxvirus (Orf virus).

  20. SIAH-1 interacts with the Kaposi's sarcoma-associated herpesvirus-encoded ORF45 protein and promotes its ubiquitylation and proteasomal degradation.

    PubMed

    Abada, Rinat; Dreyfuss-Grossman, Tsofia; Herman-Bachinsky, Yifat; Geva, Haim; Masa, Shiri-Rivka; Sarid, Ronit

    2008-03-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection.

  1. SIAH-1 Interacts with the Kaposi's Sarcoma-Associated Herpesvirus-Encoded ORF45 Protein and Promotes Its Ubiquitylation and Proteasomal Degradation▿

    PubMed Central

    Abada, Rinat; Dreyfuss-Grossman, Tsofia; Herman-Bachinsky, Yifat; Geva, Haim; Masa, Shiri-Rivka; Sarid, Ronit

    2008-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection. PMID:18077711

  2. Characterization of a second open reading frame in genome segment 10 of bluetongue virus

    PubMed Central

    Stewart, Meredith; Hardy, Alexandra; Barry, Gerald; Pinto, Rute Maria; Caporale, Marco; Melzi, Eleonora; Hughes, Joseph; Taggart, Aislynn; Janowicz, Anna; Varela, Mariana

    2015-01-01

    Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF. PMID:26290332

  3. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  4. Distribution of ORF2 and ORF3 genotypes of porcine circovirus type 2 (PCV-2) in wild boars and domestic pigs in Germany.

    PubMed

    Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Reinacher, Manfred; Willems, Hermann

    2011-03-24

    Porcine circovirus 2 (PCV-2), the essential infectious agent in PCVD (porcine circovirus diseases) circulates at high rates among domestic pig and wild boar populations. Wild boars may be viremic and shed the virus with excretions and secretions, and thus serve as a reservoir for domestic pig PCV-2 infection. We hypothesize that PCV-2 strains circulating in wild boars and in domestic pigs are significantly different and thus, partially independent. To prove this hypothesis, the present study investigated by sequence analysis the distribution of ORF2 and ORF3 genotypes of the PCV-2 genome within wild boars (n=40) and domestic pigs (n=60) from overlapping greater areas of Germany. The genotypes were compared with PCV-2 sequences from the Genbank database. The dominating genotype in domestic pigs was PCV-2b (98.4% of infected pigs), while only 4.8% of them were infected with PCV-2a. The corresponding prevalences of PCV-2a and -2b genotypes in wild boars were 58% and 70%, respectively. When also ORF3 genotypes were taken into account, more than 50% of wild boar PCV-2 genotypes were rare among German and European domestic pigs. In conclusion, these data provide evidence for a certain independence of PCV-2 infections in both species and a low chance for domestic pigs to be infected with PCV-2 of wild boar origin. On the other hand, PCV-2 genotypes specific for domestic pigs are also common in wild boars, although at lower frequencies, suggesting the spread of domestic pig PCV-2 to the wild boar population.

  5. Complete nucleotide sequence and genome organization of a Cactus virus X strain from Hylocereus undatus (Cactaceae).

    PubMed

    Liou, M R; Chen, Y R; Liou, R F

    2004-05-01

    The complete nucleotide sequence of a strain of Cactus virus X (CVX-Hu) isolated from Hylocereus undatus (Cactaceae) has been determined. Excluding the poly(A) tail, the sequence is 6614 nucleotides in length and contains seven open reading frames (ORFs). The genome organization of CVX is similar to that of other potexviruses. ORF1 encodes the putative viral replicase with conserved methyltransferase, helicase, and polymerase motifs. Within ORF1, two other ORFs were located separately in the +2 reading frame, we call these ORF6 and ORF7. ORF2, 3, and 4, which form the "triple gene block" characteristic of the potexviruses, encode proteins with molecular mass of 25, 12, and 7 KDa, respectively. ORF5 encodes the coat protein with an estimated molecular mass of 24 KDa. Sequence analysis indicated that proteins encoded by ORF1-5 display certain degree of homology to the corresponding proteins of other potexviruses. Putative product of ORF6, however, shows no significant similarity to those of other potexviruses. Phylogenetic analyses based on the replicase (the methyltransferase, helicase, and polymerase domains) and coat protein demonstrated a closer relationship of CVX with Bamboo mosaic virus, Cassava common mosaic virus, Foxtail mosaic virus, Papaya mosaic virus, and Plantago asiatica mosaic virus.

  6. The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses

    PubMed Central

    Hull, R.; Sadler, J.; Longstaff, M.

    1986-01-01

    Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin. PMID:16453731

  7. Analyses of HTLV-1 sequences suggest interaction between ORF-I mutations and HAM/TSP outcome.

    PubMed

    Barreto, Fernanda Khouri; Khouri, Ricardo; Rego, Filipe Ferreira de Almeida; Santos, Luciane Amorim; Castro-Amarante, Maria Fernanda de; Bialuk, Izabela; Pise-Masison, Cynthia A; Galvão-Castro, Bernardo; Gessain, Antoine; Jacobson, Steven; Franchini, Genoveffa; Alcantara, Luiz Carlos

    2016-11-01

    The region known as pX in the 3' end of the human T-cell lymphotropic virus type 1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. HTLV-1 ORF-I produces the protein p12 and its cleavage product p8. The functions of these proteins have been linked to immune evasion and viral infectivity and persistence. It is known that the HTLV-1 infection does not necessarily imply the development of pathological processes and here we evaluated whether natural mutations in HTLV-1 ORF-I can influence the proviral load and clinical manifestation of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). For that, we performed molecular characterization, datamining and phylogenetic analysis with HTLV-1 ORF-I sequences from 156 patients with negative or positive diagnosis for HAM/TSP. Our analyses demonstrated that some mutations may be associated with the outcome of HAM/TSP (C39R, L40F, P45L, S69G and R88K) or with proviral load (P34L and F61L). We further examined the presence of mutations in motifs of HBZ and observed that P45L mutation is located within the HBZ nuclear localization signal and was found more frequently between patients with HAM/TSP and high proviral load. These results indicate that some natural mutations are located in functional domains of ORF-I and suggests a potential association between these mutations and the proviral loads and development of HAM/TSP. Therefore it is necessary to conduct functional studies aimed at evaluating the impact of these mutations on the virus persistence and immune evasion.

  8. E4orf6 Variants with Separate Abilities To Augment Adenovirus Replication and Direct Nuclear Localization of the E1B 55-Kilodalton Protein

    PubMed Central

    Orlando, Joseph S.; Ornelles, David A.

    2002-01-01

    The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic α-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic α-helix were analyzed. Two of the six arginine residues within the α-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic α-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection. PMID:11773420

  9. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo

    PubMed Central

    Liu, Jue; Chen, Isabelle; Du, Qingyun; Chua, Huikheng; Kwang, Jimmy

    2006-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome. We previously showed that a novel identified protein, ORF3, was not essential for PCV2 replication in cultured PK15 cells and played a major role in virus-induced apoptosis. To evaluate the role of the ORF3 protein in viral pathogenesis in vivo, we inoculated 8-week-old BALB/c mice that have been developed for PCV2 replication with ORF3-deficient mutant PCV2 (mPCV2). By 42 days postinoculation, all of the mice inoculated with the mPCV2, as well as with wild-type PCV2 (wPCV2), had seroconverted to PCV2 capsid antibody, and the mutant induced levels of PCV2 antibodies that were higher than those of the wPCV2. The PCV2 genomic copy numbers in serum were significantly higher (P < 0.05) in the wPCV2-inoculated mice than in mice inoculated with the mPCV2. Also, the wPCV2 caused microscopic lesions characterized by lymphocyte depletion with histiocytic infiltration of lymphoid organs, but the mutant virus failed to induce any obvious pathological lesions. In situ hybridization and immunohistochemical analyses also showed that larger amounts of viral DNA and antigens were detected in the lymph nodes of the wPCV2-inoculated than mPCV2-inoculated mice. Furthermore, animals of the wPCV2-inoculated group showed significant downshifts of CD8+ T-cell subsets of peripheral blood lymphocytes compared to the control mice (P < 0.05) at various time points postinoculation. Also, the proportions of the CD4+ and CD4+ CD8+ cells were significantly reduced in wPCV2-inoculated mice at some time points postinoculation. In contrast, there are some reductions in the proportions of these subsets in the mutant virus-inoculated mice, but the proportions do not decrease significantly. Taken together, these results demonstrate that the ORF3 protein is also dispensable for viral replication in vivo and that it plays an important role in viral pathogenesis. PMID

  10. Marek's Disease Viruses Lacking Either R-LORF10 or LORF4 Have Altered Virulence in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Marek’s disease virus (MDV) genome encodes about 110 open reading frames (ORFs). Many of these ORFs are annotated based purely on homology to other herpesvirus genes, thus, direct experiments are needed to verify the gene products, especially the hypothetical or MDV-specific ORFs, and character...

  11. Complete nucleotide sequence of rose yellow leaf virus, a new member of the family Tombusviridae.

    PubMed

    Mollov, Dimitre; Lockhart, Ben; Zlesak, David C

    2014-10-01

    The genome of the rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides long and to contain seven open reading frames (ORFs). ORF1 encodes a 27-kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode an 87-kDa (p87) protein that has amino acid similarity to the RNA-dependent RNA polymerase (RdRp) of members of the family Tombusviridae. ORFs 3 and 4 have no significant amino acid similarity to known functional viral ORFs. ORF5 encodes a 6-kDa (p6) protein that has similarity to movement proteins of members of the Tombusviridae. ORF5A has no conventional start codon and overlaps with p6. A putative +1 frameshift mechanism allows p6 translation to continue through the stop codon and results in a 12-kDa protein that has high homology to the carmovirus p13 movement protein. The 37-kDa protein encoded by ORF6 has amino acid sequence similarity to coat proteins (CP) of members of the Tombusviridae. ORF7 has no significant amino acid similarity to known viral ORFs. Phylogenetic analysis of the RdRp amino acid sequences grouped RYLV together with the unclassified Rosa rugosa leaf distortion virus (RrLDV), pelargonium line pattern virus (PLPV), and pelargonium chlorotic ring pattern virus (PCRPV) in a distinct subgroup of the family Tombusviridae.

  12. Udder orf infection and its role in ovine clinical mastitis caused by Pasteurella haemolytica.

    PubMed

    Burriel, A R

    1997-04-01

    During an experimental study of ovine subclinical mastitis caused by coagulase-negative staphylococci, an outbreak of contagious ecthyma occurred among ewes unvaccinated against parapox virus. The same group of ewes developed a high rate (43.7%) of clinical mastitis caused by Pasteurella haemolytica. The rate of clinical mastitis among ewes vaccinated against parapox virus was very low (3.7%) suggesting that the presence of orf in the unvaccinated ewes was contributing to the high rate of clinical mastitis. An examination of the iron, sodium, potassium and albumin concentration of milk collected from 16 unvaccinated and nine randomly selected vaccinated ewes before experimental infection with coagulase-negative staphylococci or their uninfected control mammary glands indicated significant differences in the iron (p < 0.0001) and sodium (p = 0.01) concentration. Increased iron concentration in the milk may have assisted in the development of udder infection caused by P. haemolytica as iron is easily utilised by this bacterium.

  13. Using the E4orf6-Based E3 Ubiquitin Ligase as a Tool To Analyze the Evolution of Adenoviruses

    PubMed Central

    Gilson, Timra; Ballmann, Mónika Z.; Papp, Tibor; Pénzes, Judit J.; Benkő, Mária; Harrach, Balázs; Branton, Philip E.

    2016-01-01

    ABSTRACT E4orf6 proteins from all human adenoviruses form Cullin-based ubiquitin ligase complexes that, in association with E1B55K, target cellular proteins for degradation. While most are assembled with Cul5, a few utilize Cul2. BC-box motifs enable all these E4orf6 proteins to assemble ligase complexes with Elongins B and C. We also identified a Cul2-box motif used for Cul2 selection in all Cul2-based complexes. With this information, we set out to determine if other adenoviruses also possess the ability to form the ligase complex and, if so, to predict their Cullin usage. Here we report that all adenoviruses known to encode an E4orf6-like protein (mastadenoviruses and atadenoviruses) maintain the potential to form the ligase complex. We could accurately predict Cullin usage for E4orf6 products of mastadenoviruses and all but one atadenovirus. Interestingly, in nonhuman primate adenoviruses, we found a clear segregation of Cullin binding, with Cul5 utilized by viruses infecting great apes and Cul2 by Old/New World monkey viruses, suggesting that a switch from Cul2 to Cul5 binding occurred during the period when great apes diverged from monkeys. Based on the analysis of Cullin selection, we also suggest that the majority of human adenoviruses, which exhibit a broader tropism for the eye and the respiratory tract, exhibit Cul5 specificity and resemble viruses infecting great apes, whereas those that infect the gastrointestinal tract may have originated from monkey viruses that share Cul2 specificity. Finally, aviadenoviruses also appear to contain E4orf6 genes that encode proteins with a conserved XCXC motif followed by, in most cases, a BC-box motif. IMPORTANCE Two early adenoviral proteins, E4orf6 and E1B55K, form a ubiquitin ligase complex with cellular proteins to ubiquitinate specific substrates, leading to their degradation by the proteasome. In studies with representatives of each human adenovirus species, we (and others) previously discovered that some

  14. Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins.

    PubMed

    Tsai, Chi-Wei; Redinbaugh, Margaret G; Willie, Kristen J; Reed, Sharon; Goodin, Michael; Hogenhout, Saskia A

    2005-05-01

    The genome of the nucleorhabdovirus maize fine streak virus (MFSV) consists of 13,782 nucleotides of nonsegmented, negative-sense, single-stranded RNA. The antigenomic strand consisted of seven open reading frames (ORFs), and transcripts of all ORFs were detected in infected plants. ORF1, ORF6, and ORF7 had significant similarities to the nucleocapsid protein (N), glycoprotein (G), and polymerase (L) genes of other rhabdoviruses, respectively, whereas the ORF2, ORF3, ORF4, and ORF5 proteins had no significant similarities. The N (ORF1), ORF4, and ORF5 proteins localized to nuclei, consistent with the presence of nuclear localization signals (NLSs) in these proteins. ORF5 likely encodes the matrix protein (M), based on its size, the position of its NLS, and the localization of fluorescent protein fusions to the nucleus. ORF2 probably encodes the phosphoprotein (P) because, like the P protein of Sonchus yellow net virus (SYNV), it was spread throughout the cell when expressed alone but was relocalized to a subnuclear locus when coexpressed with the MFSV N protein. Unexpectedly, coexpression of the MFSV N and P proteins, but not the orthologous proteins of SYNV, resulted in accumulations of both proteins in the nucleolus. The N and P protein relocalization was specific to cognate proteins of each virus. The subcellular localizations of the MFSV ORF3 and ORF4 proteins were distinct from that of the SYNV sc4 protein, suggesting different functions. To our knowledge, this is the first comparative study of the cellular localizations of plant rhabdoviral proteins. This study indicated that plant rhabdoviruses are diverse in genome sequence and viral protein interactions.

  15. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    -CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. PMID:26269185

  16. Genomic characterisation of taro bacilliform virus.

    PubMed

    Yang, I C; Hafner, G J; Dale, J L; Harding, R M

    2003-05-01

    Taro bacilliform virus (TaBV) has been classified as a putative badnavirus based on its non-enveloped, bacilliform virion morphology and transmission by mealybugs. The complete nucleotide sequence of a Papua New Guinea isolate of TaBV has now been determined and comprises 7458 bp. The genome contains four open reading frames (ORFs) on the plus-strand that potentially encode proteins of 17, 16, 214 and 13 kDa. The size and organisation of TaBV ORFs 1-3 is similar to that of most other badnaviruses, while the location of ORF 4 is similar to that of ORF 4 and ORF X of the atypical badnaviruses Citrus yellow mosaic virus and Cacao swollen shoot virus, respectively. The putative amino acid sequence of TaBV ORF 3 contained motifs that are conserved amongst badnavirus proteins including aspartic protease, reverse transcriptase (RT) and ribonuclease H (RNase H). The highly conserved putative plant tRNA(met)-binding site was also present in the 935 bp intergenic region of TaBV. Phylogenetic analysis using the amino acid sequence of ORF 3 showed that TaBV branched most closely to Dioscorea bacilliform virus. These results confirm that TaBV is a pararetrovirus of the genus Badnavirus, family Caulimoviridae.

  17. Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis.

    PubMed

    Lin, Chao-Nan; Su, Bi-Ling; Huang, Hui-Pi; Lee, Jih-Jong; Hsieh, Min-Wei; Chueh, Ling-Ling

    2009-06-01

    Feline coronavirus (FCoV) varies greatly from causing subclinical or mild enteric infections to fatal feline infectious peritonitis (FIP). The open reading frame (ORF) 7b of FCoV has been speculated to play a determining role in virulence as deletions were found to be associated with avirulent viruses. To further clarify the correlation between this gene and FIP, clinical samples from 20 cats that had succumbed to wet-type FIP and 20 clinically healthy FCoV-infected cats were analysed. The ORF7b from the peritoneal/pleural effusions of FIP cats and from the rectal swabs of healthy cats was amplified. Of the 40 FCoVs analysed, 32 were found to have an intact 7b gene whereas eight showed deletions of either three or 12 nucleotides. Surprisingly, among the eight viruses with deletions, three were from FIP diseased cats. These results show that deletions in the ORF7b gene are not constrained to low pathogenicity/enteric biotypes but also associated with pathogenicity/FIP biotypes of FCoV.

  18. The complete nucleotide sequence and genomic organization of a novel victorivirus with two non-overlapping ORFs, identified in the plant-pathogenic fungus Phomopsis vexans.

    PubMed

    Zhang, Ru Jia; Zhong, Jie; Shang, Hong Hong; Pan, Xian Ting; Zhu, Hong Jian; Gao, Bi Da

    2015-07-01

    In this study, a novel virus designated Phomopsis vexans RNA virus 1 (PvRV1) was identified in a strain of Phomopsis vexans. The complete genomic nucleotide sequence was determined and analyzed. Sequence analysis indicated that PvRV1 is closely related to viruses in the genus Victorivirus of the family Totiviridae. Two open reading frames (ORF1 and 2) were found in the PvRV1 sequence, and these showed significant similarity to the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), respectively, of members of the family Totiviridae. The two ORFs were spaced 98 nt apart, which is unique to PvRV1 and different from the overlapping arrangement in most victoriviruses. The expression strategies of the CP and RdRp are discussed based on in silico RNA secondary structure analysis.

  19. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment.

    PubMed

    Tian, Cai-Hong; Zhao, Jin-Fang; Xu, Yi-Peng; Xue, Jian; Zhang, Bao-Qin; Cui, Ying-Jun; Zhang, Min-Juan; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm(De)) and a repaired virus (vBm(Re)) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD(50) bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT(50) bioassay.

  20. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment

    SciTech Connect

    Tian Caihong; Zhao Jinfang; Xu Yipeng; Xue Jian; Zhang Baoqin; Cui Yingjun; Zhang Minjuan; Bao Yanyuan; Zhang Chuanxi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm{sup De}) and a repaired virus (vBm{sup Re}) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD{sub 50} bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT{sub 50} bioassay.

  1. C15orf48 — EDRN Public Portal

    Cancer.gov

    C15orf48 is expressed mainly in adult stomach, placenta, small intestine and colon, as well as in normal mucosa of esophagus. The gene was first identified in a study of human esophageal squamous cell carcinoma tissues. Levels of both the message and protein are reduced in carcinoma samples. Alternatively spliced transcript variants that encode the same protein have been identified.

  2. Beyond ORF: Student-Level Predictors of Reading Achievement

    ERIC Educational Resources Information Center

    Canto, Angela I.; Proctor, Briley E.

    2013-01-01

    This study explored student-level predictors of reading achievement among third grade regular education students. Predictors included student demographics (sex and socioeconomic status (SES), using free and reduced lunch as proxy for SES), direct observations of reading skills (oral reading fluency (ORF) and word decoding skill (nonsense word…

  3. The C9ORF72 repeat expansion disrupts nucleocytoplasmic transport

    PubMed Central

    Haeusler, Aaron R.; Grima, Jonathan C.; Machamer, James B.; Steinwald, Peter; Daley, Elizabeth L.; Miller, Sean J.; Cunningham, Kathleen M.; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A.; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L.; Ostrow, Lyle W.; Matunis, Michael J.; Wang, Jiou; Sattler, Rita

    2016-01-01

    A GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila ortholog of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9ORF72 ALS patient-derived induced pluripotent stem cells (iPSNs), and in C9ORF72 patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9ORF72 iPSNs, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD amenable to pharmacotherapeutic intervention. PMID:26308891

  4. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  5. The ubiquitous cellular transcriptional factor USF targets the varicella-zoster virus open reading frame 10 promoter and determines virulence in human skin xenografts in SCIDhu mice in vivo.

    PubMed

    Che, Xibing; Berarducci, Barbara; Sommer, Marvin; Ruyechan, William T; Arvin, Ann M

    2007-04-01

    Varicella-zoster virus (VZV) open reading frame 10 (ORF10) is a determinant of virulence in SCIDhu skin xenografts but not in human T cells in vivo. In this analysis of the regulation of ORF10 transcription, we have identified four ORF10-related transcripts, including a major 1.3-kb RNA spanning ORF10 only and three other read-through transcripts. Rapid-amplification-of-cDNA-ends experiments indicated that the 1.3-kb transcript of ORF10 has single initiation and termination sites. In transient expression assays, the ORF10 promoter was strongly stimulated by the major VZV transactivator, IE62. Deletion analyses revealed approximate boundaries for the full ORF10 promoter activity between -75 and -45 and between +5 and -8, relative to the ORF10 transcription start site. The recombinant virus POKA10-Deltapro, with the ORF10 promoter deletion, blocked transcription of ORF10 and also of ORF9A and ORF9 mRNAs, whereas expression of read-through ORF9A/9/10 and ORF9/10 transcripts was increased, compensating for the loss of the monocistronic mRNAs. The cellular factor USF bound specifically to its consensus site within the ORF10 promoter and was required for IE62 transactivation, whereas disrupting the predicted TATA boxes or Oct-1 binding elements had no effect. The USF binding site was disrupted in the recombinant virus, POKA10-proDeltaUSF, and no ORF10 protein was produced. Both ORF10 promoter mutants reduced VZV replication in SCIDhu skin xenografts. These observations provided further evidence of the contribution of the ORF10 protein to VZV pathogenesis in skin and demonstrated that VZV depends upon the cellular transcriptional factor USF to support its virulence in human skin in vivo.

  6. Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae viruses

    SciTech Connect

    B. Wiedenheft; K. Stedman; F. Roberto; D. Willits; A. K. Gleske; L. Zoeller; J. Snyder; T. Douglas; M. Young

    2004-02-01

    The complete genome sequences of two Sulfolobus spindle-shaped viruses (SSVs) from acidic hot springs in Kamchatka (Russia) and Yellowstone National Park (United States) have been determined. These nonlytic temperate viruses were isolated from hyperthermophilic Sulfolobus hosts, and both viruses share the spindleshaped morphology characteristic of the Fuselloviridae family. These two genomes, in combination with the previously determined SSV1 genome from Japan and the SSV2 genome from Iceland, have allowed us to carry out a phylogenetic comparison of these geographically distributed hyperthermal viruses. Each virus contains a circular double-stranded DNA genome of _15 kbp with approximately 34 open reading frames (ORFs). These Fusellovirus ORFs show little or no similarity to genes in the public databases. In contrast, 18 ORFs are common to all four isolates and may represent the minimal gene set defining this viral group. In general, ORFs on one half of the genome are colinear and highly conserved, while ORFs on the other half are not. One shared ORF among all four genomes is an integrase of the tyrosine recombinase family. All four viral genomes integrate into their host tRNA genes. The specific tRNA gene used for integration varies, and one genome integrates into multiple loci. Several unique ORFs are found in the genome of each isolate.

  7. Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro.

    PubMed Central

    Cohen, J I; Seidel, K

    1994-01-01

    Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV. Images PMID:7966575

  8. Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas

    PubMed Central

    Moreau, Pierrick; Faury, Nicole; Pepin, Jean-François; Segarra, Amélie; Webb, Stephen

    2012-01-01

    Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus. PMID:22419803

  9. Analysis of clinical ostreid herpesvirus 1 (Malacoherpesviridae) specimens by sequencing amplified fragments from three virus genome areas.

    PubMed

    Renault, Tristan; Moreau, Pierrick; Faury, Nicole; Pepin, Jean-François; Segarra, Amélie; Webb, Stephen

    2012-05-01

    Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 "specimens" collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus.

  10. Molecular variation of hop mosaic virus isolates.

    PubMed

    Poke, Fiona S; Crowle, Damian R; Whittock, Simon P; Wilson, Calum R

    2010-10-01

    Hop mosaic virus (HpMV), a member of the genus Carlavirus, is importance to hop production worldwide. We identified variation in nucleic and amino acid sequences among 23 HpMV isolates from Australia, the USA, the Czech Republic, South Africa and Japan using a 1,455-bp fragment covering the 3' end of the virus genome including ORFs 4, 5 and 6. Three clusters of two or more isolates were identified in phylogenies of the total nucleotide sequence and the coat protein (ORF5) amino acid sequence. Two of these clusters combined in analyses of ORF4 and ORF6 amino acid sequences. Isolates from within and outside of Australia were found in each cluster, indicating that sequence variation was not associated with geographic source. Monitoring of HpMV variants in the field and evaluation of the impact of variants on vector association, rate of spread, and hop yield and quality can now be undertaken.

  11. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and kelp fly virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the stru...

  12. Inactivation of C4orf26 in toothless placental mammals.

    PubMed

    Springer, Mark S; Starrett, James; Morin, Phillip A; Lanzetti, Agnese; Hayashi, Cheryl; Gatesy, John

    2016-02-01

    Previous studies have reported inactivated copies of six enamel-related genes (AMBN, AMEL, AMTN, ENAM, KLK4, MMP20) and one dentin-related gene (DSPP) in one or more toothless vertebrates and/or vertebrates with enamelless teeth, thereby providing evidence that these genes are enamel or tooth-specific with respect to their critical functions that are maintained by natural selection. Here, we employ available genome sequences for edentulous and enamelless mammals to evaluate the enamel specificity of four genes (WDR72, SLC24A4, FAM83H, C4orf26) that have been implicated in amelogenesis imperfecta, a condition in which proper enamel formation is abrogated during tooth development. Coding sequences for WDR72, SCL24A4, and FAM83H are intact in four edentulous taxa (Chinese pangolin, three baleen whales) and three taxa (aardvark, nine-banded armadillo, Hoffmann's two-toed sloth) with enamelless teeth, suggesting that these genes have critical functions beyond their involvement in tooth development. By contrast, genomic data for C4orf26 reveal inactivating mutations in pangolin and bowhead whale as well as evidence for deletion of this gene in two minke whale species. Hybridization capture of exonic regions and PCR screens provide evidence for inactivation of C4orf26 in eight additional baleen whale species. However, C4orf26 is intact in all three species with enamelless teeth that were surveyed, as well as in 95 additional mammalian species with enamel-capped teeth. Estimates of selection intensity suggest that dN/dS ratios on branches leading to taxa with enamelless teeth are similar to the dN/dS ratio on branches leading to taxa with enamel-capped teeth. Based on these results, we conclude that C4orf26 is tooth-specific, but not enamel-specific, with respect to its essential functions that are maintained by natural selection. A caveat is that an alternative splice site variant, which translates exon 3 in a different reading frame, is putatively functional in

  13. Roles for λ Orf and Escherichia Coli Reco, Recr and Recf in λ Recombination

    PubMed Central

    Sawitzke, J. A.; Stahl, F. W.

    1997-01-01

    Bacteriophage λ lacking its Red recombination functions requires either its own gene product, Orf, or the product of Escherichia coli's recO, recR and recF genes (RecORF) for efficient recombination in recBC sbcB sbcC mutant cells (the RecF pathway). Phage crosses under conditions of a partial block to DNA replication have revealed the following: (1) In the presence of Orf, RecF pathway recombination is similar to λ Red recombination; (2) Orf is necessary for focusing recombination toward the right end of the chromosome as λ is conventionally drawn; (3) RecORF-mediated RecF pathway recombination is not focused toward the right end of the chromosome, which may indicate that RecORF travels along the DNA; (4) both Orf- and RecORF-mediated RecF pathway recombination are stimulated by DNA replication; and (5) low level recombination in the simultaneous absence of Orf and RecORF may occur by a break-copy mechanism that is not initiated by a double strand break. Models for the roles of Orf and RecO, RecR and RecF in recombination are presented. PMID:9335578

  14. Solenopsis invicta virus 3: Mapping of Structural Proteins, Ribosomal Frameshifting, and Similarities to Acyrthosiphon pisum virus and Kelp fly virus

    PubMed Central

    Valles, Steven M.; Bell, Susanne; Firth, Andrew E.

    2014-01-01

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order. PMID:24686475

  15. Nucleotide sequence of shallot virus X RNA reveals a 5'-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3'-proximal cistrons.

    PubMed

    Kanyuka, K V; Vishnichenko, V K; Levay, K E; Kondrikov DYu; Ryabov, E V; Zavriev, S K

    1992-10-01

    The 8890 nucleotide RNA sequence of shallot virus X (ShVX), a new virus isolated from shallot, has been determined. The sequence contains six open reading frames (ORFs) which encode putative proteins (in the 5' to 3' direction) of M(r) 194528 (ORF1), 26333 (ORF2), 11245 (ORF3), 42209 (ORF4), 28486 (ORF5) and 14741 (ORF6). The ORF1 protein was found to be highly homologous to the putative potexvirus RNA replicases; ORF2, -3, -5 and -6 proteins also have analogues among the potex- and/or carlavirus-encoded proteins. ORF3 is followed by an AUG-lacking frame coding for an amino acid sequence homologous to that of the 7K to 8K proteins of the triple gene block of the above-mentioned viruses. The putative ORF4 protein has no reliable homology with proteins in the database. The results obtained testify that, except for the unique 42K protein gene, the ShVX genome combines a number of elements typical of both carla- and potexviruses.

  16. Synergy between cucumber mosaic virus and zucchini yellow mosaic virus on Cucurbitaceae hosts tested by real-time reverse transcription-polymerase chain reaction.

    PubMed

    Zeng, Rong; Liao, Qiansheng; Feng, Junli; Li, Dingjun; Chen, Jishuang

    2007-06-01

    Cucumber mosaic virus (CMV) and zucchini yellow mosaic virus (ZYMV) are two principal viruses infecting cucurbitaceous crops, and their synergy has been repeatedly observed. In our present work, a real-time reverse transcription-polymerase chain reaction procedure was established to study the accumulation kinetics of these two viruses in single and combined infections at the molecular level. The accumulations of open reading frames (ORFs) for 1a, 2a, 3a and coat protein (CP) of CMV and CP of ZYMV were tested. In the single infection, CMV-Fny ORFs accumulated to their maxima in cucumber or bottle gourd at 14 d post-inoculation (dpi), and gradually declined thereafter. ZYMV-SD CP ORF reached maximal accumulation at 14 and 28 dpi on cucumber and bottle gourd, respectively. However, when co-infected with CMV-Fny and ZYMV-SD, the maximal accumulation levels of all viral ORFs were delayed. CMV-Fny ORFs reached their maxima at 21 dpi on both hosts, and ZYMV-SDCP ORF reached maximal accumulation at 21 and 28 dpi on cucumber and bottle gourd, respectively. Generally, the accumulation levels of CMV-Fny ORFs in the co-infection were higher than those in the single infection, whereas the accumulation of ZYMV-SD CP ORF showed a reverse result.

  17. Novel Host-Related Virulence Factors Are Encoded by Squirrelpox Virus, the Main Causative Agent of Epidemic Disease in Red Squirrels in the UK

    PubMed Central

    Kjær, Karina Hansen; Wood, Ann R.; Hughes, Margaret; Martensen, Pia Møller; Radford, Alan D.; Hall, Neil; Chantrey, Julian

    2014-01-01

    Squirrelpox virus (SQPV) shows little evidence for morbidity or mortality in North American grey squirrels (Sciurus carolinensis), in which the virus is endemic. However, more recently the virus has emerged to cause epidemics with high mortality in Eurasian red squirrels (S. vulgaris) in Great Britain, which are now threatened. Here we report the genome sequence of SQPV. Comparison with other Poxviridae revealed a core set of poxvirus genes, the phylogeny of which showed SQPV to be in a new Chordopoxvirus subfamily between the Molluscipoxviruses and Parapoxviruses. A number of SQPV genes were related to virulence, including three major histocomaptibility class I homologs, and one CD47 homolog. In addition, a novel potential virulence factor showing homology to mammalian oligoadenylate synthetase (OAS) was identified. This family of proteins normally causes activation of an endoribonuclease (RNaseL) within infected cells. The putative function of this novel SQPV protein was predicted in silico. PMID:24983354

  18. Complete genome sequence of yacon necrotic mottle virus, a novel putative member of the genus Badnavirus.

    PubMed

    Lee, Ye-Ji; Kwak, Hae-Ryun; Lee, Young-Kee; Kim, Mi-Kyeong; Choi, Hong-Soo; Seo, Jang-Kyun

    2015-04-01

    The complete genome sequence of a previously undescribed virus isolated from a yacon plant exhibiting necrotic mottle, chlorosis, stunting, and leaf malformation symptoms in Gyeongju, Korea, was determined. The genome of this virus consists of one circular double-stranded DNA of 7661 bp in size. The genome contained four open reading frames (ORFs 1 to 4) on the plus strand that potentially encode proteins of 26, 32, 234, and 25 kDa. Protein BLAST analysis showed that ORF3, which is the largest ORF, has 45 % amino acid sequence identity (with 89 % coverage) to the ORF3 of fig badnavirus 1 (FBV-1), a recently identified badnavirus. Phylogenetic analysis provided further evidence that the virus identified in this study is probably a member of a new species in the genus Badnavirus. The name yacon necrotic mottle virus (YNMoV) is proposed for this new virus.

  19. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD.

    PubMed

    Liu, Elaine Y; Russ, Jenny; Wu, Kathryn; Neal, Donald; Suh, Eunran; McNally, Anna G; Irwin, David J; Van Deerlin, Vivianna M; Lee, Edward B

    2014-10-01

    Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.

  20. Choristoneura fumiferana granulovirus: sequence analysis and 5' characterization of ORF891.

    PubMed

    Bah, A; Lucarotti, C J; Arella, M; Guertin, C

    1999-01-01

    A gene located immediately upstream of the granulin gene of Choristoneura fumiferana (ChfuGV) granulovirus was identified, sequenced and named ORF891. The determined, putative open reading frame (ORF) of 891 bp encodes an estimated 34.6 kDa protein. The 5' end transcript of the gene was mapped and analysed. A putative promoter region organization of ChfuGV ORF891 contains a consensus late baculovirus promoter element, TAAG, and two putative early TATA boxes similar to the promoters of ORF909 of Cryptophlebia leucotreta granulovirus (ClGV). Sequence comparisons of ChfuGV ORF891 with ClGV ORF909 and Cydia pomonella granulovirus (CpGV) ORF124R showed respective homologies of 60.9 and 63.9% for nucleotides and 46.3% and 49.3% for amino acids. Homology of ChfuGV ORF891 with ME53 ORF of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) was 68.2% for nucleotides but a total lack of homology for amino acid sequences. Two zinc finger motifs are also associated with ChfuGV ORF891.

  1. Primate-specific ORF0 contributes to retrotransposon-mediated diversity.

    PubMed

    Denli, Ahmet M; Narvaiza, Iñigo; Kerman, Bilal E; Pena, Monique; Benner, Christopher; Marchetto, Maria C N; Diedrich, Jolene K; Aslanian, Aaron; Ma, Jiao; Moresco, James J; Moore, Lynne; Hunter, Tony; Saghatelian, Alan; Gage, Fred H

    2015-10-22

    LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.

  2. Hepatitis E virus genotype 3f sequences from pigs in Thailand, 2011-2012.

    PubMed

    Keawcharoen, Juthatip; Thongmee, Thanunrat; Panyathong, Raphee; Joiphaeng, Pichai; Tuanthap, Supansa; Oraveerakul, Kanisak; Theamboonlers, Apiradee; Poovorawan, Yong

    2013-04-01

    Phylogenetic analysis of partial ORF1 and ORF2 genes of Hepatitis E virus (HEV) strains from pigs in Thailand during 2011-2012 was performed. The result indicated that the current Thai strains belonged to the genotype 3 subgroup 3f, which were similar to the previous HEVs circulating in humans in Thailand.

  3. Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements

    PubMed Central

    2014-01-01

    Background Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. Results Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. Conclusions The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate. PMID:25093042

  4. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein.

    PubMed

    Nelson, Christopher A; Pekosz, Andrew; Lee, Chung A; Diamond, Michael S; Fremont, Daved H

    2005-01-01

    The open reading frame (ORF) 7a of the SARS-associated coronavirus (SARS-CoV) encodes a unique type I transmembrane protein of unknown function. We have determined the 1.8 A resolution crystal structure of the N-terminal ectodomain of orf7a, revealing a compact seven-stranded beta sandwich unexpectedly similar in fold and topology to members of the Ig superfamily. We also demonstrate that, in SARS-CoV- infected cells, the orf7a protein is expressed and retained intracellularly. Confocal microscopy studies using orf7a and orf7a/CD4 chimeras implicate the short cytoplasmic tail and transmembrane domain in trafficking of the protein within the endoplasmic reticulum and Golgi network. Taken together, our findings provide a structural and cellular framework in which to explore the role of orf7a in SARS-CoV pathogenesis.

  5. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    SciTech Connect

    Chen, Lei

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  6. In vivo RNA localization of I factor, a non-LTR retrotransposon, requires a cis-acting signal in ORF2 and ORF1 protein

    PubMed Central

    del Carmen Seleme, Maria; Disson, Olivier; Robin, Stéphanie; Brun, Christine; Teninges, Danielle; Bucheton, Alain

    2005-01-01

    According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobilization, here we analyzed in vivo the protein and RNA expression patterns of the I factor, a model NLR in Drosophila. We show that ORF1p and I factor RNA, specifically produced during transposition, are co-expressed and tightly co-localize with a specific pattern (Loc+) exclusively in the cytoplasm of germ cells permissive for retrotransposition. Using an ORF2 mutated I factor, we show that ORF2p plays no role in the Loc+ patterning. With deletion derivatives of an I factor we define an RNA localization signal required to display the Loc+ pattern. Finally, by complementation experiments we show that ORF1p is necessary for the efficient localization of I factor RNA. Our data suggest that ORF1p is involved in proper folding and stabilization of I factor RNA for efficient targeting, through Loc+ patterning, to the nuclear neighborhood where downstream steps of the retrotransposition process occur. PMID:15687386

  7. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  8. The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene.

    PubMed

    Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M

    1998-03-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.

  9. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking

    PubMed Central

    Farg, Manal A.; Sundaramoorthy, Vinod; Sultana, Jessica M.; Yang, Shu; Atkinson, Rachel A.K.; Levina, Vita; Halloran, Mark A.; Gleeson, Paul A.; Blair, Ian P.; Soo, Kai Y.; King, Anna E.; Atkin, Julie D.

    2014-01-01

    Intronic expansion of a hexanucleotide GGGGCC repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene is the major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. However, the cellular function of the C9ORF72 protein remains unknown. Here, we demonstrate that C9ORF72 regulates endosomal trafficking. C9ORF72 colocalized with Rab proteins implicated in autophagy and endocytic transport: Rab1, Rab5, Rab7 and Rab11 in neuronal cell lines, primary cortical neurons and human spinal cord motor neurons, consistent with previous predictions that C9ORF72 bears Rab guanine exchange factor activity. Consistent with this notion, C9ORF72 was present in the extracellular space and as cytoplasmic vesicles. Depletion of C9ORF72 using siRNA inhibited transport of Shiga toxin from the plasma membrane to Golgi apparatus, internalization of TrkB receptor and altered the ratio of autophagosome marker light chain 3 (LC3) II:LC3I, indicating that C9ORF72 regulates endocytosis and autophagy. C9ORF72 also colocalized with ubiquilin-2 and LC3-positive vesicles, and co-migrated with lysosome-stained vesicles in neuronal cell lines, providing further evidence that C9ORF72 regulates autophagy. Investigation of proteins interacting with C9ORF72 using mass spectrometry identified other proteins implicated in ALS; ubiquilin-2 and heterogeneous nuclear ribonucleoproteins, hnRNPA2/B1 and hnRNPA1, and actin. Treatment of cells overexpressing C9ORF72 with proteasome inhibitors induced the formation of stress granules positive for hnRNPA1 and hnRNPA2/B1. Immunohistochemistry of C9ORF72 ALS patient motor neurons revealed increased colocalization between C9ORF72 and Rab7 and Rab11 compared with controls, suggesting possible dysregulation of trafficking in patients bearing the C9ORF72 repeat expansion. Hence, this study identifies a role for C9ORF72 in Rab-mediated cellular trafficking. PMID:24549040

  10. A regulatory gene (ECO-orf4) required for ECO-0501 biosynthesis in Amycolatopsis orientalis.

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2014-02-01

    ECO-0501 is a novel linear polyene antibiotic, which was discovered from Amycolatopsis orientalis. Recent study of ECO-0501 biosynthesis pathway revealed the presence of regulatory gene: ECO-orf4. The A. orientalis ECO-orf4 gene from the ECO-0501 biosynthesis cluster was analyzed, and its deduced protein (ECO-orf4) was found to have amino acid sequence homology with large ATP-binding regulators of the LuxR (LAL) family regulators. Database comparison revealed two hypothetical domains, a LuxR-type helix-turn-helix (HTH) DNA binding motif near the C-terminal and an N-terminal nucleotide triphosphate (NTP) binding motif included. Deletion of the corresponding gene (ECO-orf4) resulted in complete loss of ECO-0501 production. Complementation by one copy of intact ECO-orf4 restored the polyene biosynthesis demonstrating that ECO-orf4 is required for ECO-0501 biosynthesis. The results of overexpression ECO-orf4 on ECO-0501 production indicated that it is a positive regulatory gene. Gene expression analysis by reverse transcription PCR of the ECO-0501 gene cluster showed that the transcription of ECO-orf4 correlates with that of genes involved in polyketide biosynthesis. These results demonstrated that ECO-orf4 is a pathway-specific positive regulatory gene that is essential for ECO-0501 biosynthesis.

  11. The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter.

    PubMed

    Hasegawa, A; Verver, J; Shimada, A; Saito, M; Goldbach, R; Van Kammen, A; Miki, K; Kameya-Iwaki, M; Hibi, T

    1989-12-11

    The complete nucleotide sequence of an infectious clone of soybean chlorotic mottle virus (SoyCMV) DNA was determined and compared with those of three other caulimoviruses, cauliflower mosaic virus (CaMV), carnation etched ring virus and figwort mosaic virus. The double-stranded DNA genome of SoyCMV (8,175 bp) contained nine open reading frames (ORFs) and one large intergenic region. The primer binding sites, gene organization and size of ORFs were similar to those of the other caulimoviruses, except for ORF I, which was split into ORF Ia and Ib. The amino acid sequences deduced from each ORF showed only short, highly homologous regions in several of the corresponding ORFs of the three other caulimoviruses. A promoter fragment of 378 bp in SoyCMV ORF III showed a strong expression activity, comparable to that of the CaMV 35S promoter, in tobacco mesophyll protoplasts as determined by a beta-glucuronidase assay using electrotransfection. The fragment contained CAAT and TATA boxes but no transcriptional enhancer signal as reported for the CaMV 35S promoter. Instead, it had sequences homologous to a part of the translational enhancer signal reported for the 5'-leader sequence of tobacco mosaic virus RNA.

  12. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease

    PubMed Central

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J. Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G.; Souza, Flávia O.; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo

    2016-01-01

    Papaya sticky disease, or “meleira”, is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2. PMID:27166626

  13. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease.

    PubMed

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G; Souza, Flávia O; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo; Fernandes, Patricia Machado Bueno

    2016-01-01

    Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.

  14. Production of Myxoma virus gateway entry and expression libraries and validation of viral protein expression.

    PubMed

    Smallwood, Sherin E; Rahman, Masmudur M; Werden, Steven J; Martino, Maria Fernanda; McFadden, Grant

    2011-05-01

    Invitrogen's Gateway technology is a recombination-based cloning method that allows for rapid transfer of numerous open reading frames (ORFs) into multiple plasmid vectors, making it useful for diverse high-throughput applications. Gateway technology has been utilized to create an ORF library for Myxoma virus (MYXV), a member of the Poxviridae family of DNA viruses. MYXV is the prototype virus for the genus Leporipoxvirus, and is pathogenic only in European rabbits. MYXV replicates exclusively in the host cell cytoplasm, and its genome encodes 171 ORFs. A number of these ORFs encode proteins that interfere with or modulate host defense mechanisms, particularly the inflammatory responses. Furthermore, MYXV is able to productively infect a variety of human cancer cell lines and is being developed as an oncolytic virus for treating human cancers. MYXV is therefore an excellent model for studying poxvirus biology, pathogenesis, and host tropism, and a good candidate for ORFeome development.

  15. Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer

    PubMed Central

    Škalamera, Dubravka; Dahmer, Mareike; Purdon, Amy S.; Wilson, Benjamin M.; Ranall, Max V.; Blumenthal, Antje; Gabrielli, Brian; Gonda, Thomas J.

    2012-01-01

    The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors. PMID:23251614

  16. Comparative analyses of the 9 glycoprotein genes found in wild-type and vaccine strains of varicella-zoster virus.

    PubMed

    Storlie, Johnathan; Maresova, Lucie; Jackson, Wallen; Grose, Charles

    2008-03-01

    The complete DNA sequences of wild-type and vaccine strains of varicella-zoster virus have been published and listed in GenBank. In this comparative genomic analysis, the sequences of the 9 glycoprotein open reading frames (ORFs) were compared. They included gE (ORF68), gI (ORF 67), gC (ORF14), gH (ORF37), gL (ORF60), gB (ORF31), gK (ORF5), gM (ORF50), and gN (ORF8 or ORF9A). After realignment on the basis of newer data, the corrected gB sequence was lengthened to include 931 residues. The data showed that there were glycoprotein polymorphisms that differentiated North American/European strains from Japanese strains-for example, an additional ATG codon in the gL of all Oka strains. Also, there were a small number of coding single-nucleotide polymorphisms present only in glycoproteins of vaccine strains. Because these changes were highly conserved, the structure of the glycoprotein was unlikely to be altered.

  17. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes.

    PubMed

    Yamamoto, Takenobu; Ali, Mir A; Liu, XueQiao; Cohen, Jeffrey I

    2014-03-01

    Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells.

  18. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2.

    PubMed

    Zhang, Li; Tian, Yabin; Wen, Zhiheng; Zhang, Feng; Qi, Ying; Huang, Weijin; Zhang, Heqiu; Wang, Youchun

    2016-12-01

    Although the biological and epidemiological features of hepatitis E virus (HEV) have been studied extensively in recent years, the mechanism by which HEV infects cells is still poorly understood. In this study, coimmunoprecipitation, pull-down, and ELISA were used to show that the HEV ORF2 protein interacts directly with the ectodomain of both ASGR1 and ASGR2. Susceptibility to HEV correlated positively with the expression level of surface asialoglycoprotein receptor (ASGPR) in cell lines. ASGPR-directed small interfering RNA (siRNA) in HEV-infected PLC/PRF/5 cells had no significant effect on HEV release, suggesting that ASGPR mainly regulates the viral binding and entry steps. Both the purified ASGPR ectodomain and anti-ASGPR antibodies disturbed the binding of HEV to PLC/PRF/5 cells. The classic ASGPR ligands asialofetuin, asialoganglioside, and fibronectin competitively inhibited the binding of HEV to hepatocytes in the presence of calcium. HeLa cell lines stably expressing ASGPR displayed increased HEV-binding capacity, whereas ASGPR-knockout PLC/PRF/5 cell lines had lower HEV-binding capacity. Thus, our study demonstrates that ASGPR is involved in and facilitates HEV infection by binding to ORF2. J. Med. Virol. 88:2186-2195, 2016. © 2016 Wiley Periodicals, Inc.

  19. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant, Solenopsis invicta

    SciTech Connect

    Valles, Steven M.; Hashimoto, Yoshifumi

    2009-06-05

    We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number (FJ528584)), comprised of 10,386 nucleotides, and polyadenylated at the 3' terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5' proximal ORF (ORF 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3' proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 +- 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.

  20. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype

    PubMed Central

    Rutherford, Nicola J.; Heckman, Michael G.; DeJesus-Hernandez, Mariely; Baker, Matt C.; Soto-Ortolaza, Alexandra I.; Rayaprolu, Sruti; Stewart, Heather; Finger, Elizabeth; Volkening, Kathryn; Seeley, William W.; Hatanpaa, Kimmo J.; Lomen-Hoerth, Catherine; Kertesz, Andrew; Bigio, Eileen H.; Lippa, Carol; Knopman, David S.; Kretzschmar, Hans A.; Neumann, Manuela; Caselli, Richard J.; White, Charles L.; Mackenzie, Ian R.; Petersen, Ronald C.; Strong, Michael J.; Miller, Bruce L.; Boeve, Bradley F.; Uitti, Ryan J.; Boylan, Kevin; Wszolek, Zbigniew K.; Graff-Radford, Neill R.; Dickson, Dennis W.; Ross, Owen A.; Rademakers, Rosa

    2012-01-01

    Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers. PMID:22840558

  1. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein

    PubMed Central

    Callahan, Kathryn E.; Hickman, Alison B.; Jones, Charles E.; Ghirlando, Rodolfo; Furano, Anthony V.

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference—the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  2. No common founder for C9orf72 expansion mutation in Sweden.

    PubMed

    Chiang, Huei-Hsin; Forsell, Charlotte; Lindström, Anna-Karin; Lilius, Lena; Thonberg, Håkan; Nennesmo, Inger; Graff, Caroline

    2017-02-01

    Hexanucleotide expansion mutations in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause for frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). SNP haplotype analyses have suggested that all C9orf72 expansion mutations originate from a common founder. However, not all C9orf72 expansion mutation carriers have the same haplotype. To investigate if the C9orf72 expansion mutation carriers in Sweden share a common founder, we have genotyped SNPs flanking the C9orf72 expansion mutation in cases with FTD, FTD-ALS or ALS to perform haplotype analysis. We have genotyped 57 SNPs in 232 cases of which 45 carried the C9orf72 expansion mutation. Two risk haplotypes consisting of 31 SNPs, spanning 131 kbp, were found to be significantly associated with the mutation. In summary, haplotype analysis on Swedish C9orf72 expansion mutation carriers indicates that the C9orf72 expansion mutation arose on at least two risk haplotypes.

  3. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish

    PubMed Central

    Chew, Guo-Liang; Pauli, Andrea; Schier, Alexander F.

    2016-01-01

    Upstream open reading frames (uORFs) are ubiquitous repressive genetic elements in vertebrate mRNAs. While much is known about the regulation of individual genes by their uORFs, the range of uORF-mediated translational repression in vertebrate genomes is largely unexplored. Moreover, it is unclear whether the repressive effects of uORFs are conserved across species. To address these questions, we analyse transcript sequences and ribosome profiling data from human, mouse and zebrafish. We find that uORFs are depleted near coding sequences (CDSes) and have initiation contexts that diminish their translation. Linear modelling reveals that sequence features at both uORFs and CDSes modulate the translation of CDSes. Moreover, the ratio of translation over 5′ leaders and CDSes is conserved between human and mouse, and correlates with the number of uORFs. These observations suggest that the prevalence of vertebrate uORFs may be explained by their conserved role in repressing CDS translation. PMID:27216465

  4. Phage Orf Family Recombinases: Conservation of Activities and Involvement of the Central Channel in DNA Binding

    PubMed Central

    Curtis, Fiona A.; Malay, Ali D.; Trotter, Alexander J.; Wilson, Lindsay A.; Barradell-Black, Michael M. H.; Bowers, Laura Y.; Reed, Patricia; Hillyar, Christopher R. T.; Yeo, Robert P.; Sanderson, John M.; Heddle, Jonathan G.; Sharples, Gary J.

    2014-01-01

    Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination. PMID:25083707

  5. A Pilot Study for Standardizing Curriculum-Based Measurement Oral Reading Fluency (CBM ORF) in Arabic

    ERIC Educational Resources Information Center

    Abu-Hamour, Bashir

    2014-01-01

    This study examined the psychometric proprieties of the Arabic version of the Curriculum-Based Measurement Oral Reading Fluency (CBM ORF) for Jordanian students. A sample of 200 students (six to eight years old) was recruited from four public primary schools in Jordan. Results indicated that the CBM ORF had adequate reliability and validity…

  6. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency

    PubMed Central

    Burkhardt, David H; Rouskin, Silvi; Zhang, Yan; Li, Gene-Wei; Weissman, Jonathan S; Gross, Carol A

    2017-01-01

    Bacterial mRNAs are organized into operons consisting of discrete open reading frames (ORFs) in a single polycistronic mRNA. Individual ORFs on the mRNA are differentially translated, with rates varying as much as 100-fold. The signals controlling differential translation are poorly understood. Our genome-wide mRNA secondary structure analysis indicated that operonic mRNAs are comprised of ORF-wide units of secondary structure that vary across ORF boundaries such that adjacent ORFs on the same mRNA molecule are structurally distinct. ORF translation rate is strongly correlated with its mRNA structure in vivo, and correlation persists, albeit in a reduced form, with its structure when translation is inhibited and with that of in vitro refolded mRNA. These data suggest that intrinsic ORF mRNA structure encodes a rough blueprint for translation efficiency. This structure is then amplified by translation, in a self-reinforcing loop, to provide the structure that ultimately specifies the translation of each ORF. DOI: http://dx.doi.org/10.7554/eLife.22037.001 PMID:28139975

  7. [Differentiation of geographic biovariants of smallpox virus by PCR].

    PubMed

    Babkin, I V; Babkina, I N

    2010-01-01

    Comparative analysis of amino acid and nucleotides sequences of ORFs located in extended segments of the terminal variable regions in variola virus genome detected a promising locus for viral genotyping according to the geographic origin. This is ORF O1L of VARV. The primers were calculated for synthesis of this ORF fragment by PCR, which makes it possible to distinguish South America-Western Africa genotype from other VARV strains. Subsequent RFLP analysis reliably differentiated Asian strains from African strains (except Western Africa isolates). This method has been tested using 16 VARV strains from various geographic regions. The developed approach is simple, fast and reliable.

  8. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response.

    PubMed

    Karuppannan, Anbu K; Qiang, Jia; Chang, C C; Kwang, Jimmy

    2013-11-04

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.

  9. [Serologic studies of domestic cats for potential human pathogenic virus infections from wild rodents].

    PubMed

    Nowotny, N

    1996-05-01

    For several viral infections a reservoir in wild rodents has been demonstrated. Some of the agents are known or suspected to be pathogenic for humans. Because improvements in hygiene have reduced direct human contact with rodents, domestic cats could be acting as active transmitters of these viruses from rodents to man. We selected 4 such pathogens--ortho- and parapox-, hanta- and encephalomyocarditis viruses--which, in different ways, may lead to serious human illness: Ortho- and parapoxvirus infections may cause localized pox lesions following direct skin contact. In general, the lesions heal without complications; in immunosuppressed or -deficient individuals, however, infection may generalize and take a dramatic course. Hantaviruses exist in various serotypes with different pathogenicity for human beings, varying from asymptomatic infection to highly fatal disease. In central and northern Europe the Puumala serotype is predominant causing influenza-like symptoms and renal dysfunction. Human infections arise from inhalation of aerosolized excreta of persistently infected rodents. Infections of man associated with encephalomyocarditis virus were demonstrated sporadically in cases of encephalitis and meningitis. In the present study, we investigated in 200 feline serum samples the prevalence of antibodies to ortho- and parapox-, hanta- and encephalomyocarditis virus. All serum samples were from cats that had been allowed to roam outside and to hunt. They were submitted from all parts of Austria for routine diagnosis in 1993. Four per cent of cats showed antibodies to orthopoxviruses with haemagglutination inhibition (HI) titres of 16-512; because of extensive cross-reactivity, positive samples reacted with all investigated orthopoxviruses (a feline orthopoxvirus recently isolated in Vienna, the reference strain of cowpox virus, Brighton, and vaccinia virus, strain IHD), only varying in titre. The specificity of the results was confirmed by virus neutralisation (VN

  10. Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum?

    PubMed

    Thormann, K; Dürre, P

    2001-11-01

    The gene of Orf5 (SolR) of Clostridium acetobutylicum DSM 792 was subcloned and overexpressed in Escherichia coli. The protein was purified with Ni-NTA agarose and used for DNA binding assays. No DNA binding of Orf5 to regions upstream of the sol operon from C. acetobutylicum was observed. Overexpression of Orf5 in C. acetobutylicum led to a change in the organism's pattern of glycosylated exoproteins. The Orf5 protein was localized in the cell membrane fraction and to a small extent in the supernatant medium. Based on these results Orf5 (SolR) appears not to act as a transcriptional repressor in C. acetobutylicum, but instead may be an enzyme involved in glycosylation or deglycosylation.

  11. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    PubMed

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  12. Hepatitis E Virus and Related Viruses in Animals.

    PubMed

    Thiry, D; Mauroy, A; Pavio, N; Purdy, M A; Rose, N; Thiry, E; de Oliveira-Filho, E F

    2017-02-01

    Hepatitis E is an acute human liver disease in healthy individuals which may eventually become chronic. It is caused by the hepatitis E virus (HEV) and can have a zoonotic origin. Nearly 57,000 people die yearly from hepatitis E-related conditions. The disease is endemic in both developing and developed countries with distinct epidemiologic profiles. In developing countries, the disease is associated with inadequate water treatment, while in developed countries, transmission is associated with animal contact and the ingestion of raw or uncooked meat, especially liver. All human HEV are grouped into at least four genotypes, while HEV or HEV-related viruses have been identified in an increasing number of domestic and wild animal species. Despite a high genetic diversity, only one single HEV serotype has been described to date for HEV genotypes 1-4. The discovery of new HEV or HEV-related viruses leads to a continuing increase in the number of genotypes. In addition, the genome organization of all these viruses is variable with overlapping open reading frames (ORF) and differences in the location of ORF3. In spite of the role of some domestic and wild animals as reservoir, the origin of HEV and HEV-related viruses in humans and animals is still unclear. This review discusses aspects of the detection, molecular virology, zoonotic transmission and origin of HEV and HEV-related viruses in the context of 'One Health' and establishes a link between the previous and the new taxonomy of this growing virus family.

  13. A loop-mediated isothermal amplification assay for rapid and sensitive detection of bovine papular stomatitis virus.

    PubMed

    Kurosaki, Yohei; Okada, Sayaka; Nakamae, Sayuri; Yasuda, Jiro

    2016-12-01

    Bovine papular stomatitis virus (BPSV) causes pustular cutaneous disease in cattle worldwide. This paper describes the development of a specific loop-mediated isothermal amplification (LAMP) assay to detect BPSV which did not cross-react with other parapoxviruses. To assess analytical sensitivity of this LAMP assay, DNA was extracted from serially diluted BPSV from which the infectious titer was determined by a novel assay based on calf kidney epithelial cells. The LAMP assay had equivalent analytical sensitivity to quantitative PCR, and could detect as few as 86 copies of viral DNA per reaction. These results suggest that the assay is a specific and sensitive technique to rapidly diagnose bovine papular stomatitis in domestic animals.

  14. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  15. The Apis mellifera filamentous virus genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  16. The role of the FTD-ALS associated C9orf72 expansion in suicide victims.

    PubMed

    Solje, Eino; Riipinen, Pirkko; Helisalmi, Seppo; Särkioja, Terttu; Laitinen, Marjo; Hiltunen, Mikko; Hakko, Helinä; Remes, Anne M

    Impulsive and aggressive traits are not only common features displayed by patients with behavioural variant frontotemporal dementia (bvFTD), they may well be the first clinical manifestations of the disease. In addition, suicidal behaviour has been postulated to be a symptom of bvFTD. A hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) is the major genetic cause for familial bvFTD. During recent years, several genetic factors predisposing to suicide have been identified, but there are no previous studies analysing the role of the C9orf72 expansion in suicides. In the present study, we aimed to analyse the prevalence of the C9orf72 expansion in unselected suicide victims. The prevalence of the C9orf72 expansion was analysed in a cohort of 109 Finnish victims of suicide (mean age at death 46.1 years; range 18-86 years). The C9orf72 expansion was analysed from the post mortem blood samples. Results showed that no abnormal length C9orf72 expansions were detected in the study cohort. In conclusion, even though suicidal behaviour may be encountered in bvFTD patients, the C9orf72 expansion is not a common genetic finding in unselected suicide victims.

  17. C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.

    PubMed

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.

  18. A novel biomarker C6orf106 promotes the malignant progression of breast cancer.

    PubMed

    Jiang, Guiyang; Zhang, Xiupeng; Zhang, Yong; Wang, Liang; Fan, Chuifeng; Xu, Hongtao; Miao, Yuan; Wang, Enhua

    2015-09-01

    C6orf106 (chromosome 6 open reading frame 106) is a recently discovered protein encoded by the 6th chromosome. Though many proteins encoded by chromosome 6 are reportedly related to cancer, schizophrenia, autoimmunity and many other diseases, the function of C6orf106 was not well demonstrated so far. As measured by immunohistochemical staining, C6orf106 was positive in normal breast duct myoepithelial cells (92.31 %, 72/78), but negative in normal breast duct glandular epithelial cells (3.85 %, 3/78). In breast ductal carcinoma in situ, C6orf106 showed weakly or moderately positive (77.97 %, 46/59), but it was significantly strongly positive in invasive ductal carcinoma (79.57 %, 148/186). The expression intensity of C6orf106 seemed increased significantly along with the malignancy of breast cancer (p < 0.001). Additionally, C6orf106 expression was significantly correlated with TNM stage (p = 0.001 and p = 0.004) and lymph node metastasis (p = 0.018 and p = 0.025) of the overall and the triple-negative breast cancer, respectively. Consistently, we found that the interference of C6orf106 was able to inhibit cell proliferation and invasion of two triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, accompanied by the decrease of cyclin A2, cyclin B1, c-myc, and N-cadherin and the increase of E-cadherin. Collectively, these results indicate that C6orf106 may promote tumor progression in the invasive breast cancer, particularly in triple-negative breast cancer, and C6orf106 might serve as a novel therapeutic target of breast cancer, especially for triple-negative breast cancer.

  19. Investigation, expression, and molecular modeling of ORF2, a metagenomic lipolytic enzyme.

    PubMed

    Garcia, Rosmeriana Afnis Marioto; Pereira, Mariana Rangel; Maester, Thaís Carvalho; de Macedo Lemos, Eliana Gertrudes

    2015-04-01

    One clone exhibiting lipolytic activity was selected among 30 positives from a metagenomic library of a microbe consortium specialized in petroleum hydrocarbon degradation. From this clone, a sublibrary was constructed and a metagenome contig was assembled and analyzed using the ORF Finder; thus, it was possible to identify a potential ORF that encodes a lipolytic enzyme, denoted ORF2. This ORF is composed of 1035-bp 345 amino acids and displayed 98 % identity with an alpha/beta hydrolase from Pseudomonas nitroreducens (accession number WP024765380.1). When analyzed against a metagenome database, ORF2 also showed 76 % of sequence identity with a hypothetical protein from a marine metagenome (accession number ECT55726.1). The ProtParam analyses indicated that the recombinant protein ORF2 has a molecular mass approximately 39 kDa, as expected from its amino acid sequence, and based on phylogenetic analysis and molecular modeling, it was possible to suggest that ORF2 is a new member from family V. This enzyme exhibits the catalytic triad and conserved motifs typical from this family, wherein the serine residue is located in the central position of the conserved motif GASMGG. The orf2 gene was cloned in the expression vector pET28a, and the recombinant protein was superexpressed in Escherichia coli BL21(DE3) cells. The lipolytic activity of protein bands presented in a SDS-PAGE gel was confirmed by zymogram analyses, indicating ORF2 activity. These discoveries raise the possibility of employing this protein in biotechnological applications, such as bioremediation.

  20. Insertional mutation of orfD of the DCW cluster of Streptococcus pneumoniae attenuates virulence.

    PubMed

    Palmen, R; Ogunniyi, A D; Berroy, P; Larpin, S; Paton, J C; Trombe, M C

    1999-12-01

    Mutational analysis of a 5.5 kb fragment of the genome Streptococcus pneumoniae led to the identification of a putative new virulence gene, designated orfD. Insertion mutagenesis of flanking genes on the fragment suggested that the corresponding gene products were required for in vitro growth. In contrast, insertion mutation of orfD did not alter in vitro growth or the transformability pattern of the mutated strain. However, it did reduce bacterial growth in mice and attenuated virulence in an intraperitoneal model of infection. orfD is flanked by orfC (63 codons) and ftsL (105 codons) and all three genes are upstream of pbpx. orfC showed no similarity with other known proteins. ftsL of S. pneumoniae exhibits minimal sequence similarity with ftsL of E. coli, but shares 16% identical residues with the ftsL homologue encoded by ylld of B. subtilis. Also, ftsL of S. pneumoniae has a predicted topology similar to that described for ftsL of E. coli. Putative promoters with an extended -10 box could be identified upstream of both orfC or orfD. The four open reading frames (including pbpx) are orientated in the same direction, and polycistronic transcription could theoretically start at either promoter. Interestingly, this region shows organizational and sequence homologies with genes controlling division and cell wall biosynthesis (DCW) in other bacteria. The attenuation of virulence in the orfD insertion mutant might be due to the loss of function of the orfD gene product or to an altered level of expression of downstream genes.

  1. Molecular organization of Leishmania RNA virus 1.

    PubMed Central

    Stuart, K D; Weeks, R; Guilbride, L; Myler, P J

    1992-01-01

    The complete 5284-nucleotide sequence of the double-stranded RNA genome of Leishmania RNA virus 1 (LRV1) was determined and contains three open reading frames (ORFs) on the plus (+) (mRNA) strand. The predicted amino acid sequence of ORF3 has motifs characteristic of viral RNA-dependent RNA polymerases. ORF2, which may encode the major viral coat protein, overlaps ORF3 by 71 nucleotides, suggesting a +1 translational frameshift to produce a gag-pol type of fusion protein. Two alternative models for the frameshift are presented. The 5' splice leader sequence of kinetoplastid mRNAs is not in LRV1 RNA. This suggests that the 450-base region at the 5' end of the LRV1 (+)-strand, which contains ORF1 and is highly conserved among viral strains, does not encode protein but has a role in initiation of translation and/or RNA stability. The similarity of LRV1 genomic organization, replication cycle, and RNA-dependent RNA polymerase sequence to those of the yeast virus ScV L-A suggests a common ancestral origin. The possibility that LRV1 affects pathogenesis in leishmaniasis is intriguing. Images PMID:1382295

  2. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality

    SciTech Connect

    Ramalho, T.O.; Figueira, A.R.; Sotero, A.J.; Wang, R.; Geraldino Duarte, P.S.; Farman, M.; Goodin, M.M.

    2014-09-15

    The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a member of the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an initially local lesion host was quantified. - Highlights: • We report genome sequence determination for Coffee ringspot virus (CoRSV). • CoRSV should be considered a member of the proposed Dichorhavirus genus. • We report temperature-dependent systemic infection of an initially local lesion host. • We report in planta protein and localization data for five CoRSV proteins. • In silico predictions of the CoRSV proteins were validated using in vivo assays.

  3. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations

    PubMed Central

    Rollinson, Sara; Thompson, Jennifer C.; Harris, Jennifer M.; Stopford, Cheryl L.; Richardson, Anna M. T.; Jones, Matthew; Gerhard, Alex; Davidson, Yvonne S.; Robinson, Andrew; Gibbons, Linda; Hu, Quan; DuPlessis, Daniel; Neary, David; Pickering-Brown, Stuart M.

    2012-01-01

    The identification of a hexanucleotide repeat expansion in the C9ORF72 gene as the cause of chromosome 9-linked frontotemporal dementia and motor neuron disease offers the opportunity for greater understanding of the relationship between these disorders and other clinical forms of frontotemporal lobar degeneration. In this study, we screened a cohort of 398 patients with frontotemporal dementia, progressive non-fluent aphasia, semantic dementia or mixture of these syndromes for mutations in the C9ORF72 gene. Motor neuron disease was present in 55 patients (14%). We identified 32 patients with C9ORF72 mutations, representing 8% of the cohort. The patients’ clinical phenotype at presentation varied: nine patients had frontotemporal dementia with motor neuron disease, 19 had frontotemporal dementia alone, one had mixed semantic dementia with frontal features and three had progressive non-fluent aphasia. There was, as expected, a significant association between C9ORF72 mutations and presence of motor neuron disease. Nevertheless, 46 patients, including 22 familial, had motor neuron disease but no mutation in C9ORF72. Thirty-eight per cent of the patients with C9ORF72 mutations presented with psychosis, with a further 28% exhibiting paranoid, deluded or irrational thinking, whereas <4% of non-mutation bearers presented similarly. The presence of psychosis dramatically increased the odds that patients carried the mutation. Mutation bearers showed a low incidence of motor stereotypies, and relatively high incidence of complex repetitive behaviours, largely linked to patients’ delusions. They also showed a lower incidence of acquired sweet food preference than patients without C9ORF72 mutations. Post-mortem pathology in five patients revealed transactive response DNA-binding protein 43 pathology, type A in one patient and type B in three. However, one patient had corticobasal degeneration pathology. The findings indicate that C9ORF72 mutations cause some but not all

  4. C9orf72 repeat expansions that cause frontotemporal dementia are detectable among patients with psychosis.

    PubMed

    Watson, Annie; Pribadi, Mochtar; Chowdari, Kodavali; Clifton, Sue; Joel Wood; Miller, Bruce L; Coppola, Giovanni; Nimgaonkar, Vishwajit

    2016-01-30

    A pathologic hexanucleotide repeat expansion in C9orf72 causes frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). Behavioral abnormalities can also occur among mutation carriers with FTD, but it is uncertain whether such mutations occur among persons with psychoses per se. Among participants in a genetic study of psychoses (N=739), two pairs of related individuals had C9orf72 expansions, of whom three were diagnosed with schizophrenia (SZ) / schizoaffective disorder (SZA), but their clinical features did not suggest dementia or ALS. A few patients with SZ/SZA carry C9orf72 repeat expansions; such individuals are highly likely to develop FTD/ALS.

  5. Regulation of the Abundance of Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2

    PubMed Central

    Chang, Tzu-Hsuan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-01-01

    The switch between latency and the lytic cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490–535) and PARS-II (aa 590–650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50. PMID:27698494

  6. Regulation of the Abundance of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2.

    PubMed

    Chang, Tzu-Hsuan; Wang, Shie-Shan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-10-01

    The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535) and PARS-II (aa 590-650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.

  7. 1-Deoxy-d-Xylulose 5-Phosphate Synthase, the Gene Product of Open Reading Frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus

    PubMed Central

    Hahn, Frederick M.; Eubanks, Lisa M.; Testa, Charles A.; Blagg, Brian S. J.; Baker, Jonathan A.; Poulter, C. Dale

    2001-01-01

    In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and d-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-d-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-d-xylulose 5-phosphate synthase A and B, containing a His6 tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-d-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-d-xylulose 5-phosphate synthase A and B: Kmpyruvate = 0.61 and 3.0 mM, Kmd-glyceraldehyde 3-phosphate = 150 and 120 μM, and Vmax = 1.9 and 1.4 μmol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-d-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11. PMID:11114895

  8. Tanay virus, a new species of virus isolated from mosquitoes in the Philippines.

    PubMed

    Nabeshima, Takeshi; Inoue, Shingo; Okamoto, Kenta; Posadas-Herrera, Guillermo; Yu, Fuxun; Uchida, Leo; Ichinose, Akitoyo; Sakaguchi, Miako; Sunahara, Toshihiko; Buerano, Corazon C; Tadena, Florencio P; Orbita, Ildefonso B; Natividad, Filipinas F; Morita, Kouichi

    2014-06-01

    In 2005, we isolated a new species of virus from mosquitoes in the Philippines. The virion was elliptical in shape and had a short single projection. The virus was named Tanay virus (TANAV) after the locality in which it was found. TANAV genomic RNA was a 9562 nt+poly-A positive strand, and polycistronic. The longest ORF contained putative RNA-dependent RNA polymerase (RdRP); however, conserved short motifs in the RdRP were permuted. TANAV was phylogenetically close to Negevirus, a recently proposed taxon of viruses isolated from haemophagic insects, and to some plant viruses, such as citrus leprosis virus C, hibiscus green spot virus and blueberry necrotic ring blotch virus. In this paper, we describe TANAV and the permuted structure of its RdRP, and discuss its phylogeny together with those of plant viruses and negevirus.

  9. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  10. Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader.

    PubMed

    Pooggin, M M; Hohn, T; Fütterer, J

    2000-06-09

    The pregenomic 35 S RNA of cauliflower mosaic virus (CaMV) belongs to the growing number of mRNAs known to have a complex leader sequence. The 612-nucleotide leader contains several short open reading frames (sORFs) and forms an extended hairpin structure. Downstream translation of 35 S RNA is nevertheless possible due to the ribosome shunt mechanism, by which ribosomes are directly transferred from a take-off site near the capped 5' end of the leader to a landing site near its 3' end. There they resume scanning and reach the first long open reading frame. We investigated in detail how the multiple sORFs influence ribosome migration either via shunting or linear scanning along the CaMV leader. The sORFs together constituted a major barrier for the linear ribosome migration, whereas the most 5'-proximal sORF, sORF A, in combination with sORFs B and C, played a positive role in translation downstream of the leader by diverting scanning ribosomes to the shunt route. A simplified, shunt-competent leader was constructed with the most part of the hairpin including all the sORFs except sORF A replaced by a scanning-inhibiting structure. In this leader as well as in the wild type leader, proper translation and termination of sORF A was required for efficient shunt and also for the level of shunt enhancement by a CaMV-encoded translation transactivator. sORF A could be replaced by heterologous sORFs, but a one-codon (start/stop) sORF was not functional. The results implicate that in CaMV, shunt-mediated translation requires reinitiation. The efficiency of the shunt process is influenced by translational properties of the sORF.

  11. Treatment of chronic stomatitis of cats by local paramunization with PIND-ORF.

    PubMed

    Mayr, B; Deininger, S; Büttner, M

    1991-02-01

    33 cats, suffering from chronic stomatitis, were treated with orally given paramunity inducer PIND-ORF (local paramunization). As a control 39 cats in the same practice were treated with other conventional methods. The reconvalescence rate (healing without rezidives) of experimental animals was 42%. From control animals only 13% reached this status. Oral paramunization with PIND-ORF is recommended as an alternative treatment for hitherto existing therapeutic measures against chronic stomatitis.

  12. C9orf72 repeat expansions are a rare genetic cause of parkinsonism

    PubMed Central

    Lesage, Suzanne; Le Ber, Isabelle; Condroyer, Christel; Broussolle, Emmanuel; Gabelle, Audrey; Thobois, Stéphane; Pasquier, Florence; Mondon, Karl; Dion, Patrick A.; Rochefort, Daniel; Rouleau, Guy A.; Dürr, Alexandra; Brice, Alexis

    2013-01-01

    The recently identified C9ORF72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. Since several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson’s disease or other forms of parkinsonism might carry pathogenic C9OFR72 expansions. Therefore, we looked for C9ORF72 repeat expansions in 1,446 parkinsonian unrelated patients consisted of 1,225 clinically diagnosed with Parkinson’s disease, 123 with progressive supranuclear palsy, 21 with corticobasal degeneration syndrome, 43 with Lewy body dementia and 25 with multiple system atrophy-parkinsonism. Of the 1,446 parkinsonian patients, five carried C9ORF72 expansions: three patients with typical Parkinson’s disease, one with corticobasal degeneration syndrome and another with progressive supranuclear palsy. This study shows that: i) although rare, C9ORF72 repeat expansions may be associated with clinically typical Parkinson’s disease, but also with other parkinsonism; ii) in several patients, parkinsonism was dopa-responsive and remained pure, without associated dementia, for more than 10 years; iii) interestingly, all C9ORF72 repeat expansion carriers had positive family histories of parkinsonism, degenerative dementias or amyotrophic lateral sclerosis. This study also provides the tools for identifying parkinsonian patients with C9ORF72 expansions, with important consequences for genetic counseling. PMID:23413259

  13. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies

    PubMed Central

    Hensman Moss, Davina J.; Poulter, Mark; Beck, Jon; Hehir, Jason; Polke, James M.; Campbell, Tracy; Adamson, Garry; Mudanohwo, Ese; McColgan, Peter; Haworth, Andrea; Wild, Edward J.; Sweeney, Mary G.; Houlden, Henry; Mead, Simon

    2014-01-01

    Objective: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. Methods: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. Results: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. Discussion: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data. PMID:24363131

  14. Bombyx mori nucleopolyhedrovirus ORF94, a novel late protein is identified to be a component of ODV structural protein.

    PubMed

    Liang, Guiting; Li, Guohui; Chen, Keping; Yao, Qin; Chen, Huiqing; Zhou, Yang

    2010-09-01

    Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluorescence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.

  15. Complete nucleotide sequence of the new potexvirus "Alstroemeria virus X". Brief report.

    PubMed

    Fuji, S; Shinoda, K; Ikeda, M; Furuya, H; Naito, H; Fukumoto, F

    2005-11-01

    A flexuous virus was isolated in Japan from an alstroemeria plant showing mosaic symptoms. The virus had a broad host range but had systemically latent infectivity in alstroemeria. The virus was assigned to the genus Potexvirus based on morphology and physical properties and on an analysis of the complete nucleotide sequence. The genomic RNA of the virus was 7,009 nucleotides in length, excluding the 3'-terminal poly (A) tail. It contained five open reading frames (ORFs), which was consistent with other members of the genus Potexvirus. Although nucleotide sequences of the ORFs differ from previously reported potexviruses, a phylogenetic analysis placed it phylogenetically close to Narcissus mosaic virus and Scallion virus X. Therefore, we propose that this virus should be designated as Alstroemeria virus X (AlsVX).

  16. Detection of rice tungro bacilliform virus gene products in vivo.

    PubMed

    Hay, J; Grieco, F; Druka, A; Pinner, M; Lee, S C; Hull, R

    1994-12-01

    To study the products of the open reading frames (ORFs) of rice tungro bacilliform virus in rice plants the sequences containing ORFs I (encoding a 24-kDa protein, P24) and IV (P46) and the protease and polymerase (reverse transcriptase+RNaseH) domains of ORF III were cloned into a pGEX expression vector. The proteins, which were C-terminal fusions to glutathione S-transferase, were expressed in Escherichia coli and antisera were raised against them which, together with an antiserum against virus particles, was used to probe blots of proteins from infected and uninoculated plants and from virus preparations. The P24 antiserum detected virus-specific proteins of 74, 60, and 52 kDa, which are much bigger than expected. These proteins were found in virus preparations and immunogold labeling suggested that they might be internal in the particles. Virus-specific proteins of 33, 37, 62, and > 150 kDa were revealed by antiserum to virus particles. The antiserum to the protease revealed proteins of 13.5, 37, and 68 kDa both in extracts from infected plants and in purified virus preparations. This antiserum decorated intact virus particles as did the particle antiserum. The polymerase domain antiserum reacted with products of 56, 65, and 68 kDa in extracts from infected plants but not in virus particles. The antiserum to the ORF IV product did not detect any bands in either infected plant extracts or virus preparations. The significance of these products is discussed.

  17. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  18. Repeat sequences from complex ds DNA viruses can be used as minisatellite probes for DNA fingerprinting.

    PubMed

    Crawford, A M; Buchanan, F C; Fraser, K M; Robinson, A J; Hill, D F

    1991-01-01

    In a search for new fingerprinting probes for use with sheep, repeat sequences derived from five poxviruses, an iridovirus and a baculovirus were screened against DNA from sheep pedigrees. Probes constructed from portions of the parapox viruses, orf virus and papular stomatitis virus and the baculovirus from the alfalfa looper, Autographa californica, nuclear polyhedrosis virus all gave fingerprint patterns. Probes from three other poxviruses and an iridovirus did not give useful banding patterns.

  19. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling

    PubMed Central

    Amick, Joseph; Roczniak-Ferguson, Agnes; Ferguson, Shawn M.

    2016-01-01

    Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia. However, beyond bioinformatics predictions that suggested structural similarity to folliculin, the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome-editing strategies to investigate C9orf72 interactions, subcellular localization, and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We also observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO, and double-KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 and impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) after depletion of either C9orf72 or SMCR8. Collectively these results identify strong physical and functional interactions between C9orf72 and SMCR8 and support a lysosomal site of action for this protein complex. PMID:27559131

  20. Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling

    PubMed Central

    Conchina, Karen; Chu, Justin; Nirujogi, Raja Sekhar; Brady, Nathan R.; Hamacher-Brady, Anne

    2016-01-01

    The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other’s protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases. PMID:27875531

  1. Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis

    SciTech Connect

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T.M.

    2010-12-07

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent Gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitro sugar, L-evernitrose, analogues of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically generated thymidine diphosphate (TDP)-L-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five-enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-L-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single-oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of {sup 18}O{sub 2} establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 {angstrom} resolution X-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-CoA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36.

  2. C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease

    PubMed Central

    Harms, Matthew; Benitez, Bruno; Cairns, Nigel; Cooper, Breanna; Cooper, Paul; Mayo, Kevin; Carrell, David; Faber, Kelley; Williamson, Jennifer; Bird, Tom; Diaz-Arrastia, Ramon; Foroud, Tatiana M.; Boeve, Bradley F.; Graff-Radford, Neill R.; Mayeux, Richard; Chakraverty, Sumitra; Goate, Alison M.; Cruchaga, Carlos

    2013-01-01

    Objective Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD). Design, setting and patients This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD. Main Outcome Measure We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers. Results Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions. Interpretation C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history. PMID:23588422

  3. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    PubMed

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.

  4. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae.

    PubMed

    Depierreux, Delphine; Vong, Minh; Nibert, Max L

    2016-06-02

    Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.

  5. A novel single-stranded RNA virus in Nesidiocoris tenuis.

    PubMed

    Xu, Pengjun; Song, Xueru; Yang, Xianming; Tang, Zhaoqi; Ren, Guangwei; Lu, Yanhui

    2017-04-01

    The complete genome sequence of a novel single-stranded RNA virus in Nesidiocoris tenuis was determined by RNA-seq and rapid amplification of cDNA ends (RACE) methodologies and was named N. tenuis virus 1. The genomic RNA was 3970 nucleotides (nt) in length and contained two putative open reading frames (ORFs). ORF1 encoded a polypeptide with 283 amino acids containing a viral (superfamily 1) RNA helicase (Hel) domain, and ORF2 encoded a polypeptide with 294 amino acids containing an RNA-dependent RNA polymerase (RdRP) domain. Phylogenetic analysis using the deduced amino acid sequences indicated that the N. tenuis virus 1 clustered with Blackford virus; however, the low bootstrap values and unique genomic structure suggested that the virus is a prototype of a new type of unclassified viruses. The prevalence of N. tenuis virus 1 infection in field populations of N. tenuis differed between three locations, with 28.32% of the 113 sampled individuals testing positive for the virus.

  6. Recent advances in Hepatitis E virus.

    PubMed

    Meng, X J

    2010-03-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, belongs to the family Hepeviridae. At least four major genotypes of HEV have been recognized: genotypes 1 and 2 are restricted to humans and associated with epidemics in developing countries, whereas genotypes 3 and 4 are zoonotic and infect humans and several other animals in both developing and industrialized countries. Besides humans, strains of HEV have been genetically identified from swine, chickens, sika deer, mongeese, and rabbits. The genome of HEV consists of three open reading frames (ORFs): ORF1 codes for nonstructural proteins, ORF2 codes for capsid protein, and ORF3 codes for a small multifunctional protein. The ORF2 and ORF3 proteins are translated from a single bicistronic mRNA and overlap each other but neither overlaps ORF1. The recent determination of the 3D crystal structure of the HEV capsid protein should facilitate the development of vaccines and antivirals. The identification and characterization of animal strains of HEV from pigs and chickens and the demonstrated ability of cross-species infection by swine HEV raise public health concerns for zoonosis. Accumulating evidence indicated that hepatitis E is a zoonotic disease and pigs and more likely other animal species are reservoirs for HEV. This article provides an overview of the recent advances in hepatitis E and its causative agent, including nomenclature and genomic organization, gene expression and functions, 3D structure of the virions, changing perspectives on higher mortality during pregnancy and chronic hepatitis E, animal reservoirs, zoonotic risk, food safety, and novel animal models.

  7. Nucleotide sequence of the bean strain of southern bean mosaic virus.

    PubMed

    Othman, Y; Hull, R

    1995-01-10

    The genome of the bean strain of southern bean mosaic virus (SBMV-B) comprises 4109 nucleotides and thus is slightly shorter than those of the two other sequenced sobemoviruses (southern bean mosaic virus, cowpea strain (SBMV-C) and rice yellow mottle virus (RYMV)). SBMV-B has an overall sequence similarity with SBMV-C of 55% and with RYMV of 45%. Three potential open reading frames (ORFs) were recognized in SBMV-B which were in similar positions in the genomes of SBMV-C and RYMV. However, there was no analog of SBMV-C and RYMV ORF 3. From a comparison of the predicted sequences of the ORFs of these three sobemoviruses and of the noncoding regions, it is suggested that the two SBMV strains differ from one another as much as they do from RYMV and that they should be considered as different viruses.

  8. Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83.

    PubMed

    Braunagel, S C; Guidry, P A; Rosas-Acosta, G; Engelking, L; Summers, M D

    2001-12-01

    orf101 is a late gene of Autographa californica nucleopolyhedrovirus (AcMNPV). It encodes a protein of 42 kDa which is a component of the nucleocapsid of budded virus (BV) and occlusion-derived virus (ODV). To reflect this viral localization, the product of orf101 was named BV/ODV-C42 (C42). C42 is predominantly detected within the infected-cell nucleus: at 24 h postinfection (p.i.), it is coincident with the virogenic stroma, but by 72 h p.i., the stroma is minimally labeled while C42 is more uniformly located throughout the nucleus. Yeast two-hybrid screens indicate that C42 is capable of directly interacting with the viral proteins p78/83 (1629K) and ODV-EC27 (orf144). These interactions were confirmed using blue native gels and Western blot analyses. At 28 h p.i., C42 and p78/83 are detected in two complexes: one at approximately 180 kDa and a high-molecular-mass complex (500 to 600 kDa) which also contains EC27.

  9. Detection in vivo of a new gene product (gene III) of cauliflower mosaic virus

    PubMed Central

    Xiong, C.; Lebeurier, G.; Hirth, L.

    1984-01-01

    Cauliflower mosaic virus DNA contains six major open reading frames (ORFs). As only the mRNA corresponding to the transcription of gene VI and its translation product have been isolated, the identification in infected plants of products corresponding to the five other putative genes remains to be established. The present paper reports the detection of an ORF III product by means of antibodies raised against an NH2-terminal synthetic peptide of 19 amino acids corresponding to a sequence predicted from the nucleotide sequence of ORF III. The detection of this gene product raises the question of the mechanism of its expression. Images PMID:16593524

  10. Psychosis and Hallucinations in FTD with C9ORF72 mutation: A detailed clinical cohort

    PubMed Central

    Kertesz, Andrew; Ang, Lee Cyn; Jesso, Sarah; MacKinley, Julia; Baker, Matt; Brown, Patricia; Shoesmith, Christen; Rademakers, Rosa; Finger, Elizabeth C.

    2014-01-01

    OBJECTIVE To describe in detail the presenting symptoms and clinical course of a cohort of patients with Frontotemporal dementia and the recently described C9ORF72 repeat expansion. BACKGROUND Recent discovery of the C9ORF72 repeat expansion linked to familial frontotemporal dementia and ALS has permitted retrospective evaluation of potential defining clinical characteristics that may distinguish C9ORF72 mutation carriers from other patients with FTD. Prior reports have identified a subset of patients with an increased incidence of psychosis, specifically delusions, though the detailed nature of these symptoms is not yet well described. METHODS We conducted a retrospective chart review of to report the detailed case histories of 7 patients with C9ORF72 mutations from a cohort of 61 patients with FTD. Results Detailed histories available from these patients reveal an increased incidence of psychosis, including visual and auditory hallucinations and delusions compared to sporadic FTD patients in our cohort. CONCLUSIONS This cohort confirms and adds symptom-related details to prior reports of increased incidence of psychotic phenomenon in FTD and ALS patients with C9ORF72 mutations, to enhance future clinical identification and diagnosis of patients presenting with these symptoms. PMID:24077574

  11. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD

    PubMed Central

    O'Rourke, Jacqueline G.; Bogdanik, Laurent; Muhammad, A.K.M.G.; Gendron, Tania F.; Kim, Kevin J.; Austin, Andrew; Cady, Janet; Liu, Elaine; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W.; Harms, Matthew B.; Petrucelli, Leonard; Lee, Edward B.; Lutz, Cathleen M.; Baloh, Robert H.

    2015-01-01

    Summary Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (~100-1000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically, and are not sufficient to drive neurodegeneration in mice at levels seen in patients. PMID:26637796

  12. Hemotin, a Regulator of Phagocytosis Encoded by a Small ORF and Conserved across Metazoans

    PubMed Central

    Pueyo, José I.; Amin, Unum; Evans, Iwan R.; Bishop, Sarah A.; Couso, Juan P.

    2016-01-01

    Translation of hundreds of small ORFs (smORFs) of less than 100 amino acids has recently been revealed in vertebrates and Drosophila. Some of these peptides have essential and conserved cellular functions. In Drosophila, we have predicted a particular smORF class encoding ~80 aa hydrophobic peptides, which may function in membranes and cell organelles. Here, we characterise hemotin, a gene encoding an 88aa transmembrane smORF peptide localised to early endosomes in Drosophila macrophages. hemotin regulates endosomal maturation during phagocytosis by repressing the cooperation of 14-3-3ζ with specific phosphatidylinositol (PI) enzymes. hemotin mutants accumulate undigested phagocytic material inside enlarged endo-lysosomes and as a result, hemotin mutants have reduced ability to fight bacteria, and hence, have severely reduced life span and resistance to infections. We identify Stannin, a peptide involved in organometallic toxicity, as the Hemotin functional homologue in vertebrates, showing that this novel regulator of phagocytic processing is widely conserved, emphasizing the significance of smORF peptides in cell biology and disease. PMID:27015288

  13. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.

    PubMed

    O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H

    2015-12-02

    Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.

  14. Immunodominant epitopes mapped by synthetic peptides on the capsid protein of avian hepatitis E virus are non-protective.

    PubMed

    Guo, Hailong; Zhou, E M; Sun, Z F; Meng, X J

    2008-03-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted antigenic domains by synthetic peptides. However, whether these epitopes are protective against avian HEV infection has not been investigated. In this study, groups of chickens were immunized with keyhole limpet hemocyanin (KLH)-conjugated peptides and recombinant avian HEV ORF2 antigen followed by challenge with avian HEV virus to assess the protective capacity of these peptides containing the epitopes. While avian HEV ORF2 protein showed complete protection against infection, viremia and fecal virus shedding were found in all peptide-immunized chickens. Using purified IgY from normal, anti-peptide, and anti-avian HEV ORF2 chicken sera, an in-vitro neutralization and in-vivo monitoring assay was performed to further evaluate the neutralizing ability of anti-peptide IgY. Results showed that none of the anti-peptide IgY can neutralize avian HEV in vitro, as viremia, fecal virus shedding, and seroconversion appeared similarly in chickens inoculated with avian HEV mixed with anti-peptide IgY and chickens inoculated with avian HEV mixed with normal IgY. As expected, chickens inoculated with the avian HEV and anti-avian HEV ORF2 IgY mixture did not show detectable avian HEV infection. Taken together, the results of this study demonstrated that immunodominant epitopes on avian HEV ORF2 protein identified by synthetic peptides are non-protective, suggesting protective neutralizing epitope on avian HEV ORF2 may not be linear as is human HEV.

  15. Human sealpox resulting from a seal bite: confirmation that sealpox virus is zoonotic.

    PubMed

    Clark, C; McIntyre, P G; Evans, A; McInnes, C J; Lewis-Jones, S

    2005-04-01

    The case of a marine mammal technician who sustained a seal-bite to the hand that produced a lesion clinically very similar to orf is described. Sequence analysis of the viral DNA amplified from the lesion by the polymerase chain reaction indicated that it was sealpox virus in origin. This is the first report providing unequivocal evidence that sealpox may be transmitted to humans and causes lesions very similar to orf.

  16. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  17. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination.

    PubMed

    Li, Chunhua; Li, Zhen; Zou, Yong; Wicht, Oliver; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2013-01-01

    Porcine epidemic diarrhea virus (PEDV) causes severe economic losses in the swine industry in China and other Asian countries. Infection usually leads to an acute, often lethal diarrhea in piglets. Despite the impact of the disease, no system is yet available to manipulate the viral genome which has severely hampered research on this virus until today. We have established a reverse genetics system for PEDV based on targeted RNA recombination that allows the modification of the 3'-end of the viral genome, which encodes the structural proteins and the ORF3 protein. Using this system, we deleted the ORF3 gene entirely from the viral genome and showed that the ORF3 protein is not essential for replication of the virus in vitro. In addition, we inserted heterologous genes (i.e. the GFP and Renilla luciferase genes) at two positions in the viral genome, either as an extra expression cassette or as a replacement for the ORF3 gene. We demonstrated the expression of both GFP and Renilla luciferase as well as the application of these viruses by establishing a convenient and rapid virus neutralization assay. The new PEDV reverse genetics system will enable functional studies of the structural proteins and the accessory ORF3 protein and will allow the rational design and development of next generation PEDV vaccines.

  18. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation

    PubMed Central

    De Luca, Chiara; Guadagni, Fiorella; Sinibaldi-Vallebona, Paola; Sentinelli, Steno; Gallucci, Michele; Hoffmann, Andreas; Schumann, Gerald G.; Spadafora, Corrado; Sciamanna, Ilaria

    2016-01-01

    LINE-1 (L1) retrotransposons are a source of endogenous reverse transcriptase (RT) activity, which is expressed as part of the L1-encoded ORF2 protein (L1-ORF2p). L1 elements are highly expressed in many cancer types, while being silenced in most differentiated somatic tissues. We previously found that RT inhibition reduces cell proliferation and promotes differentiation in neoplastic cells, indicating that high endogenous RT activity promotes cancer growth. Here we investigate the expression of L1-ORF2p in several human types of cancer. We have developed a highly specific monoclonal antibody (mAb chA1-L1) to study ORF2p expression and localization in human cancer cells and tissues. We uncover new evidence for high levels of L1-ORF2p in transformed cell lines and staged epithelial cancer tissues (colon, prostate, lung and breast) while no or only basal ORF2p expression was detected in non-transformed cells. An in-depth analysis of colon and prostate tissues shows ORF2p expression in preneoplastic stages, namely transitional mucosa and prostate intraepithelial neoplasia (PIN), respectively. Our results show that L1-ORF2p is overexpressed in tumor and in preneoplastic colon and prostate tissues; this latter finding suggests that ORF2p could be considered as a potential early diagnostic biomarker. PMID:26716650

  19. Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies.

    PubMed

    Kun-Rodrigues, Celia; Ross, Owen A; Orme, Tatiana; Shepherd, Claire; Parkkinen, Laura; Darwent, Lee; Hernandez, Dena; Ansorge, Olaf; Clark, Lorraine N; Honig, Lawrence S; Marder, Karen; Lemstra, Afina; Scheltens, Philippe; van der Flier, Wiesje; Louwersheimer, Eva; Holstege, Henne; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Holton, Janice; Compta, Yaroslau; Van Deerlin, Vivianna; Trojanowski, John Q; Serrano, Geidy E; Beach, Thomas G; Clarimon, Jordi; Lleó, Alberto; Morenas-Rodríguez, Estrella; Lesage, Suzanne; Galasko, Douglas; Masliah, Eliezer; Santana, Isabel; Diez, Monica; Pastor, Pau; Tienari, Pentti J; Myllykangas, Liisa; Oinas, Minna; Revesz, Tamas; Lees, Andrew; Boeve, Brad F; Petersen, Ronald C; Ferman, Tanis J; Escott-Price, Valentina; Graff-Radford, Neill; Cairns, Nigel J; Morris, John C; Stone, David J; Pickering-Brown, Stuart; Mann, David; Dickson, Dennis W; Halliday, Glenda M; Singleton, Andrew; Guerreiro, Rita; Bras, Jose

    2017-01-01

    C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB.

  20. Oral-facial-digital syndrome type VI: is C5orf42 really the major gene?

    PubMed

    Romani, Marta; Mancini, Francesca; Micalizzi, Alessia; Poretti, Andrea; Miccinilli, Elide; Accorsi, Patrizia; Avola, Emanuela; Bertini, Enrico; Borgatti, Renato; Romaniello, Romina; Ceylaner, Serdar; Coppola, Giangennaro; D'Arrigo, Stefano; Giordano, Lucio; Janecke, Andreas R; Lituania, Mario; Ludwig, Kathrin; Martorell, Loreto; Mazza, Tommaso; Odent, Sylvie; Pinelli, Lorenzo; Poo, Pilar; Santucci, Margherita; Signorini, Sabrina; Simonati, Alessandro; Spiegel, Ronen; Stanzial, Franco; Steinlin, Maja; Tabarki, Brahim; Wolf, Nicole I; Zibordi, Federica; Boltshauser, Eugen; Valente, Enza Maria

    2015-01-01

    Oral-facial-digital type VI syndrome (OFDVI) is a rare phenotype of Joubert syndrome (JS). Recently, C5orf42 was suggested as the major OFDVI gene, being mutated in 9 of 11 families (82 %). We sequenced C5orf42 in 313 JS probands and identified mutations in 28 (8.9 %), most with a phenotype of pure JS. Only 2 out of 17 OFDVI patients (11.7 %) were mutated. A comparison of mutated vs. non-mutated OFDVI patients showed that preaxial and mesoaxial polydactyly, hypothalamic hamartoma and other congenital defects may predict C5orf42 mutations, while tongue hamartomas are more common in negative patients.

  1. VIDA: a virus database system for the organization of animal virus genome open reading frames.

    PubMed

    Albà, M M; Lee, D; Pearl, F M; Shepherd, A J; Martin, N; Orengo, C A; Kellam, P

    2001-01-01

    VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/ VIDA.html.

  2. VIDA: a virus database system for the organization of animal virus genome open reading frames

    PubMed Central

    Albà, M. Mar; Lee, David; Pearl, Frances M. G.; Shepherd, Adrian J.; Martin, Nigel; Orengo, Christine A.; Kellam, Paul

    2001-01-01

    VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html. PMID:11125070

  3. Eimeria tenella: a novel dsRNA virus in E. tenella and its complete genome sequence analysis.

    PubMed

    Wu, Bin; Zhang, Xichen; Gong, Pengtao; Li, Mingying; Ding, He; Xin, Caiyan; Zhao, Na; Li, Jianhua

    2016-04-01

    Protozoa double-stranded (ds) RNA viruses have been described in Trichomonas, Giardia, and Leishmania. In this study, dsRNA and virus-like particles (approximately 30 nm in diameter) were discovered in Eimeria tenella sporulated oocysts. The complete genome of this novel dsRNA virus was sequenced using a three-step strategy. The sequencing results showed that the complete genome sequence was 6006 bp containing two open reading frames (ORFs) (2367 bp for ORF1 and 3216 bp for ORF2) with a five-nucleotide overlap (UGA/UG). The predicted ORF1 and ORF2 encoded a putative capsid protein of 788 amino acids (84.922 kDa) and a putative RNA-dependent RNA polymerase (RdRp) protein of 1071 amino acids (118.190 kDa). BLASTp analysis showed that the amino acid sequences for the E. tenella virus shared similarity with the E. brunetti RNA virus, with 29% homology in capsid proteins and 36% in RDRP proteins. The two untranslated regions were 349 bp (5' UTR) and 78 bp (3' UTR). The complete genome sequence of the E. tenella virus resembled characteristics of the Totiviridae family, indicating that this virus was a novel member of Totiviridae. Surprisingly, phylogenetic analysis showed that the E. tenella virus, E. brunetti RNA virus 1, and Mycoviruses were clustered into the genus Victorivirus and separated from the reported protozoa viruses, strongly suggesting a novel Eimeriaviruses subgenus. To the best of our knowledge, this is the first report for the complete genome sequence of the E. tenella virus. Using the nomenclature generally adopted for viruses, this new isolate was named E. tenella RNA virus 1. This study provides a foundation basis for further research on the biological characteristics of Eimeriaviruses.

  4. Rubus chlorotic mottle virus, a new sobemovirus infecting raspberry and bramble.

    PubMed

    McGavin, W J; Macfarlane, S A

    2009-01-01

    The complete nucleotide sequence of a new member of the unassigned genus Sobemovirus, isolated from raspberry and bramble plants in north east Scotland and given the name Rubus chlorotic mottle virus (RuCMV), was obtained. The virus has a single, positive-strand RNA genome of 3,983 nucleotides and, in common with other sobemoviruses, contains four open reading frames (ORFs) encoding, from 5' to 3', the P1 protein that is likely to be a suppressor of RNA silencing, ORF2a that has homology to serine-proteases, ORF2b that is the probable RNA dependent RNA polymerase, and ORF3 that is the coat protein. ORF2b protein is potentially expressed as a fusion with ORF2a protein by a -1 frameshift at the heptanucleotide sequence UUUAAAC. Phylogenetic analyses showed that RuCMV is a distinct virus not closely related to any of the other sequenced sobemoviruses. Based on the obtained sequence a full-length cDNA copy of RuCMV was cloned and in vitro transcripts derived from this clone were shown to be fully infectious.

  5. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers

    PubMed Central

    van Blitterswijk, Marka; Mullen, Bianca; Heckman, Michael G.; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Brown, Patricia H.; Murray, Melissa E.; Hsiung, Ging-Yuek R.; Stewart, Heather; Karydas, Anna M.; Finger, Elizabeth; Kertesz, Andrew; Bigio, Eileen H.; Weintraub, Sandra; Mesulam, Marsel; Hatanpaa, Kimmo J.; White, Charles L.; Neumann, Manuela; Strong, Michael J.; Beach, Thomas G.; Wszolek, Zbigniew K.; Lippa, Carol; Caselli, Richard; Petrucelli, Leonard; Josephs, Keith A.; Parisi, Joseph E.; Knopman, David S.; Petersen, Ronald C.; Mackenzie, Ian R.; Seeley, William W.; Grinberg, Lea T.; Miller, Bruce L.; Boylan, Kevin B.; Graff-Radford, Neill R.; Boeve, Bradley F.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated four genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1) and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 controls, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1 or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% versus 0% in controls, P=0.013), whereas the frequency in probands with FTD was identical to controls. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings. PMID:24866401

  6. Mutation of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease

    PubMed Central

    Sugiana, Canny; Pagliarini, David J.; McKenzie, Matthew; Kirby, Denise M.; Salemi, Renato; Abu-Amero, Khaled K.; Dahl, Hans-Henrik M.; Hutchison, Wendy M.; Vascotto, Katherine A.; Smith, Stacey M.; Newbold, Robert F.; Christodoulou, John; Calvo, Sarah; Mootha, Vamsi K.; Ryan, Michael T.; Thorburn, David R.

    2008-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease. PMID:18940309

  7. The N-terminus of vaccinia virus host range protein C7L is essential for function

    PubMed Central

    Terajima, Masanori; Urban, Stina L.; Leporati, Anita M.

    2012-01-01

    Vaccinia virus (VACV), a member of the Poxviridae family of large double-stranded DNA viruses, is being used as a smallpox vaccine as well as an expression vector for immunization against other infectious diseases and cancer. The host range of wild type VACV is very broad among mammalian cells. C7L is a host range gene identified in VACV and is well conserved in mammalian poxviruses except for parapoxviruses and molluscum contagiosum virus. The molecular mechanisms by which the C7L gene exerts host range function are not well understood. The C7L protein does not have any known conserved domains or show sequence similarity to cellular proteins or viral proteins other than the C7L homologues in mammalian poxviruses. We generated recombinant vaccinia viruses carrying deletion mutants of the C7L gene using NYVAC as a parental strain and found that the N-terminus is essential for host range function of C7L, which is consistent with a previous report that showed homology among C7L homologues are greater near the N-terminus than the C-terminus. PMID:23001690

  8. Complete Genome Sequence of the Shrimp White Spot Bacilliform Virus

    PubMed Central

    Yang, Feng; He, Jun; Lin, Xionghui; Li, Qin; Pan, Deng; Zhang, Xiaobo; Xu, Xun

    2001-01-01

    We report the first complete genome sequence of a marine invertebrate virus. White spot bacilliform virus (WSBV; or white spot syndrome virus) is a major shrimp pathogen with a high mortality rate and a wide host range. Its double-stranded circular DNA genome of 305,107 bp contains 181 open reading frames (ORFs). Nine homologous regions containing 47 repeated minifragments that include direct repeats, atypical inverted repeat sequences, and imperfect palindromes were identified. This is the largest animal virus that has been completely sequenced. Although WSBV is morphologically similar to insect baculovirus, the two viruses are not detectably related at the amino acid level. Rather, some WSBV genes are more homologous to eukaryotic genes than viral genes. In fact, sequence analysis indicates that WSBV differs from all known viruses, although a few genes display a weak homology to herpesvirus genes. Most of the ORFs encode proteins that bear no homology to any known proteins, either suggesting that WSBV represents a novel class of viruses or perhaps implying a significant evolutionary distance between marine and terrestrial viruses. The most unique feature of WSBV is the presence of an intact collagen gene, a gene encoding an extracellular matrix protein of animal cells that has never been found in any viruses. Determination of the genome of WSBV will facilitate a better understanding of the molecular mechanism underlying the pathogenesis of the WSBV virus and will also provide useful information concerning the evolution and divergence of marine and terrestrial animal viruses at the molecular level. PMID:11689662

  9. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  10. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix- associated PML bodies

    PubMed Central

    1995-01-01

    The PML protein was first identified as part of a fusion product with the retinoic acid receptor alpha (RAR alpha), resulting from the t(15;17) chromosomal translocation associated with acute promyelocytic leukemia (APL). It has been previously demonstrated that PML, which is tightly bound to the nuclear matrix, concentrates in discrete subnuclear compartments that are disorganized in APL cells due to the expression of the PML-RAR alpha hybrid. Here we report that adenovirus infection causes a drastic redistribution of PML from spherical nuclear bodies into fibrous structures. The product encoded by adenovirus E4- ORF3 is shown to be responsible for this reorganization and to colocalize with PML into these fibers. In addition, we demonstrate that E1A oncoproteins concentrate in the PML domains, both in infected and transiently transfected cells, and that this association requires the conserved amino acid motif (D)LXCXE, common to all viral oncoproteins that bind pRB or the related p107 and p130 proteins. The SV-40 large T antigen, another member of this oncoprotein family is also found in close association with the PML nuclear bodies. Taken together, the present data indicate that the subnuclear domains containing PML represent a preferential target for DNA tumor viruses, and therefore suggest a more general involvement of the PML nuclear bodies in oncogenic processes. PMID:7559785

  11. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    PubMed

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".

  12. Psittacine beak and feather disease virus nucleotide sequence analysis and its relationship to porcine circovirus, plant circoviruses, and chicken anaemia virus.

    PubMed

    Bassami, M R; Berryman, D; Wilcox, G E; Raidal, S R

    1998-09-30

    Cloning and sequencing of the circular, single-stranded DNA of one isolate of psittacine beak and feather disease virus (BFDV) demonstrate a genome composed of a circular molecule of 1993 nucleotide bases. An analysis of the assembled replicative form demonstrated seven open reading frames (ORFs) (three in the virion strand and four in the complementary strand), potentially encoding seven viral proteins of >8.7 kDa. High amino acid sequence similarity was demonstrated between a potential 33.3-kDa protein product of ORF1 of BFDV and the replicase-associated protein of porcine circovirus (PCV), subterranean clover stunt virus, and faba bean necrotic yellows virus. However, significant similarity in nucleotide or amino acid sequences was not present between BFDV and chicken anaemia virus. A potential stem-loop structure similar to that found in PCV and plant circoviruses was present in the putative encapsidated strand of the BFDV genome. At the top of this structure, a nonanucleotide motif (TAGTATTAC) similar to that of PCV, plant circoviruses, and geminiviruses also was recognised. Comparison of the deduced amino acid sequences of ORF2 of BFDV and PCV demonstrated 29.1% identity, and in both viruses, ORF2 is located on the complementary strand, beginning close to or within the hairpin stem. Our findings provide further evidence of a close relationship among BFDV, PCV, and plant circoviruses but not chicken anaemia virus.

  13. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    SciTech Connect

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-08-14

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  14. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    PubMed Central

    El-Shehawi, Ahmed M.; Fahmi, Abdelmeguid I.; Sayed, Samy M.; Elseehy, Mona M.

    2012-01-01

    orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS) that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482), amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc) (the outgroup species). Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes. PMID:24970134

  15. Genetic counseling for FTD/ALS caused by the C9ORF72 hexanucleotide expansion

    PubMed Central

    2012-01-01

    Frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) are related but distinct neurodegenerative diseases. The identification of a hexanucleotide repeat expansion in a noncoding region of the chromosome 9 open reading frame 72 (C9ORF72) gene as a common cause of FTD/ALS, familial FTD, and familial ALS marks the culmination of many years of investigation. This confirms the linkage of disease to chromosome 9 in large, multigenerational families with FTD and ALS, and it promotes deeper understanding of the diseases' shared molecular FTLD-TDP pathology. The discovery of the C9ORF72 repeat expansion has significant implications not only for familial FTD and ALS, but also for sporadic disease. Clinical and pathological correlates of the repeat expansion are being reported but remain to be refined, and a genetic test to detect the expansion has only recently become clinically available. Consequently, individuals and their families who are considering genetic testing for the C9ORF72 expansion should receive genetic counseling to discuss the risks, benefits, and limitations of testing. The following review aims to describe genetic counseling considerations for individuals at risk for a C9ORF72 repeat expansion. PMID:22808918

  16. Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration.

    PubMed

    Zhang, Qi; Acland, Gregory M; Wu, Wen X; Johnson, Jennifer L; Pearce-Kelling, Sue; Tulloch, Brian; Vervoort, Raf; Wright, Alan F; Aguirre, Gustavo D

    2002-05-01

    The canine disease, X-linked progressive retinal atrophy (XLPRA), is similar to human RP3, an X-linked form of retinitis pigmentosa, and maps to the same region in the X chromosome. Analysis of the physical map of the XLPRA and RP3 intervals shows a high degree of conservation in terms of genes and their order. We have found different mutations in exon ORF15 of the RPGR gene in two distinct mutant dog strains (XLPRA1, XLPRA2). Microdeletions resulting in a premature stop or a frameshift mutation result in very different retinal phenotypes, which are allele-specific and consistent for each mutation. The phenotype associated with the frameshift mutation in XLPRA2 is very severe and manifests during retinal development; the phenotype resulting from the XLPRA1 nonsense mutation is expressed only after normal photoreceptor morphogenesis. Splicing of RPGR mRNA transcripts in retina is complex, and either exon ORF15 or exon 19 can be a terminal exon. The retina-predominant transcript contains ORF15 as a terminal exon, and is expressed in normal and mutant retinas. The frameshift mutation dramatically alters the deduced amino acid sequence, and the protein aggregates in the endoplasmic reticulum of transfected cells. The cellular and molecular results in the two canine RPGR exon ORF15 mutations have implications for understanding the phenotypic variability found in human RP3 families that carry similar mutations.

  17. An upstream open reading frame modulates ebola virus polymerase translation and virus replication.

    PubMed

    Shabman, Reed S; Hoenen, Thomas; Groseth, Allison; Jabado, Omar; Binning, Jennifer M; Amarasinghe, Gaya K; Feldmann, Heinz; Basler, Christopher F

    2013-01-01

    Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a β-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target.

  18. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis.

    PubMed

    Ghosal, Gargi; Leung, Justin Wai-Chung; Nair, Binoj C; Fong, Ka-Wing; Chen, Junjie

    2012-10-05

    DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.

  19. The Interaction of the Gammaherpesvirus 68 orf73 Protein with Cellular BET Proteins Affects the Activation of Cell Cycle Promoters▿

    PubMed Central

    Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P.; Schulz, Thomas F.

    2009-01-01

    Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G1/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins. PMID:19244327

  20. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs.

    PubMed

    Yin, Shuang-Hui; Xiao, Chao-Ting; Gerber, Priscilla F; Beach, Nathan M; Meng, Xiang-Jin; Halbur, Patrick G; Opriessnig, Tanja

    2013-12-26

    Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.

  1. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    PubMed

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia

    2016-05-05

    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  2. A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance.

    PubMed

    Gelaye, Esayas; Mach, Lukas; Kolodziejek, Jolanta; Grabherr, Reingard; Loitsch, Angelika; Achenbach, Jenna E; Nowotny, Norbert; Diallo, Adama; Lamien, Charles Euloge

    2017-02-20

    Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus (SPPV) and lumpy skin disease virus (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) [genus Parapoxvirus]. The assay is based on high-resolution melting curve analysis (HRMCA) of PCR amplicons produced using genus specific primer pairs and dsDNA binding dye. Differences in fragment size and GC content were used as discriminating power. The assay generated three well separated melting regions for each genus and provided additional intra-genus genotyping allowing the differentiation of the eight poxviruses based on amplicon melting temperature. Out of 271 poxviral DNA samples tested: seven CPXV, 25 CMLV, 42 GTPV, 20 SPPV, 120 LSDV, 33 ORFV, 20 PCPV and two BPSV were detected; two samples presented co-infection with CMLV and PCPV. The assay provides a rapid, sensitive, specific and cost-effective method for the detection of pox diseases in a broad range of animal species and humans.

  3. A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance

    PubMed Central

    Gelaye, Esayas; Mach, Lukas; Kolodziejek, Jolanta; Grabherr, Reingard; Loitsch, Angelika; Achenbach, Jenna E.; Nowotny, Norbert; Diallo, Adama; Lamien, Charles Euloge

    2017-01-01

    Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus (SPPV) and lumpy skin disease virus (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) [genus Parapoxvirus]. The assay is based on high-resolution melting curve analysis (HRMCA) of PCR amplicons produced using genus specific primer pairs and dsDNA binding dye. Differences in fragment size and GC content were used as discriminating power. The assay generated three well separated melting regions for each genus and provided additional intra-genus genotyping allowing the differentiation of the eight poxviruses based on amplicon melting temperature. Out of 271 poxviral DNA samples tested: seven CPXV, 25 CMLV, 42 GTPV, 20 SPPV, 120 LSDV, 33 ORFV, 20 PCPV and two BPSV were detected; two samples presented co-infection with CMLV and PCPV. The assay provides a rapid, sensitive, specific and cost-effective method for the detection of pox diseases in a broad range of animal species and humans. PMID:28216667

  4. Complete genome sequence and analysis of blackcurrant leaf chlorosis associated virus, a new member of the genus Idaeovirus.

    PubMed

    James, Delano; Phelan, James

    2017-02-11

    Blackcurrant leaf chlorosis associated virus (BCLCaV) was isolated from symptomatic blackcurrants (Ribes nigrum cv. Baldwin). The virus has a genome organization similar to that of raspberry bushy dwarf virus (RBDV), the type member of the genus Idaeovirus. The RNA-1of this virus encodes the replicase complex (ORF1, Mr 197 kDa), while RNA-2 encodes a putative movement protein (ORF2a, Mr 38.8 kDa) and the putative coat protein (ORF2b, Mr 30 kDa). A concatenated form of BCLCaV RNA-2 was detected by next-generation sequencing and confirmed by RT-PCR. BCLCaV is a new member of the genus Idaeovirus.

  5. Characterization of Cestrum yellow leaf curling virus: a new member of the family Caulimoviridae.

    PubMed

    Stavolone, Livia; Ragozzino, Antonio; Hohn, Thomas

    2003-12-01

    Cestrum yellow leaf curling virus (CmYLCV) has been characterized as the aetiological agent of the Cestrum parqui mosaic disease. The virus genome was cloned and the clone was proven to be infectious to C. parqui. The presence of typical viroplasms in virus-infected plant tissue and the information obtained from the complete genomic sequence confirmed CmYLCV as a member of the Caulimoviridae family. All characteristic domains conserved in plant pararetroviruses were found in CmYLCV. Its genome is 8253 bp long and contains seven open reading frames (ORFs). Phylogenetic analysis of the relationships with other members of the Caulimoviridae revealed that CmYLCV is closely related to the Soybean chlorotic mottle virus (SbCMV)-like genus and particularly to SbCMV. However, in contrast to the other members of this genus, the primer-binding site is located in the intercistronic region following ORF Ib rather than within this ORF, and an ORF corresponding to ORF VII is missing.

  6. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice

    PubMed Central

    Atanasio, Amanda; Decman, Vilma; White, Derek; Ramos, Meg; Ikiz, Burcin; Lee, Hoi-Ching; Siao, Chia-Jen; Brydges, Susannah; LaRosa, Elizabeth; Bai, Yu; Fury, Wen; Burfeind, Patricia; Zamfirova, Ralica; Warshaw, Gregg; Orengo, Jamie; Oyejide, Adelekan; Fralish, Michael; Auerbach, Wojtek; Poueymirou, William; Freudenberg, Jan; Gong, Guochun; Zambrowicz, Brian; Valenzuela, David; Yancopoulos, George; Murphy, Andrew; Thurston, Gavin; Lai, Ka-Man Venus

    2016-01-01

    The expansion of a hexanucleotide (GGGGCC) repeat in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both the function of C9ORF72 and the mechanism by which the repeat expansion drives neuropathology are unknown. To examine whether C9ORF72 haploinsufficiency induces neurological disease, we created a C9orf72-deficient mouse line. Null mice developed a robust immune phenotype characterized by myeloid expansion, T cell activation, and increased plasma cells. Mice also presented with elevated autoantibodies and evidence of immune-mediated glomerulonephropathy. Collectively, our data suggest that C9orf72 regulates immune homeostasis and an autoimmune response reminiscent of systemic lupus erythematosus (SLE) occurs in its absence. We further imply that haploinsufficiency is unlikely to be the causative factor in C9ALS/FTD pathology. PMID:26979938

  7. Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids

    PubMed Central

    Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative

  8. Donkey orchid symptomless virus: a viral 'platypus' from Australian terrestrial orchids.

    PubMed

    Wylie, Stephen J; Li, Hua; Jones, Michael G K

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with 'potexvirus-like' replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative

  9. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations

    PubMed Central

    van Blitterswijk, Marka; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Ghidoni, Roberta; Benussi, Luisa; Finger, Elizabeth; Hsiung, Ging-Yuek R.; Kelley, Brendan J.; Murray, Melissa E.; Rutherford, Nicola J.; Brown, Patricia E.; Ravenscroft, Thomas; Mullen, Bianca; Ash, Peter E.A.; Bieniek, Kevin F.; Hatanpaa, Kimmo J.; Karydas, Anna; Wood, Elisabeth McCarty; Coppola, Giovanni; Bigio, Eileen H.; Lippa, Carol; Strong, Michael J.; Beach, Thomas G.; Knopman, David S.; Huey, Edward D.; Mesulam, Marsel; Bird, Thomas; White, Charles L.; Kertesz, Andrew; Geschwind, Dan H.; Van Deerlin, Vivianna M.; Petersen, Ronald C.; Binetti, Giuliano; Miller, Bruce L.; Petrucelli, Leonard; Wszolek, Zbigniew K.; Boylan, Kevin B.; Graff-Radford, Neill R.; Mackenzie, Ian R.; Boeve, Bradley F.; Dickson, Dennis W.

    2013-01-01

    Objective: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases. Methods: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology. Results: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations. Conclusions: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members. PMID:24027057

  10. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    PubMed Central

    2009-01-01

    Background The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCNΔ1b) mRNA. But nothing is known about their respective ability to translate the MYCN protein. Methods Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCNΔ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Results Both are translated, but higher levels of protein were seen with MYCNΔ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCNΔ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCNΔ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCNΔ1b mRNA. Conclusions Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction. PMID:20017904

  11. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.

    PubMed

    Kroutter, Emily N; Belancio, Victoria P; Wagstaff, Bradley J; Roy-Engel, Astrid M

    2009-04-01

    Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners-such as the retropseudogenes, SVA, and the SINE, Alu-are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the "pol II Alu transcript" behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.

  12. Novel hepatitis E like virus found in Swedish moose.

    PubMed

    Lin, Jay; Norder, Heléne; Uhlhorn, Henrik; Belák, Sándor; Widén, Frederik

    2014-03-01

    A novel virus was detected in a sample collected from a Swedish moose (Alces alces). The virus was suggested as a member of the Hepeviridae family, although it was found to be highly divergent from the known four genotypes (gt1-4) of hepatitis E virus (HEV). Moose are regularly hunted for consumption in the whole of Scandinavia. Thus, the finding of this virus may be important from several aspects: (a) as a new diverged HEV in a new animal species, and (b) potential unexplored HEV transmission pathways for human infections. Considering these aspects, we have started the molecular characterization of this virus. A 5.1 kb amplicon was sequenced, and corresponded to the partial ORF1, followed by complete ORF2, ORF3 and poly(A) sequence. In comparison with existing HEVs, the moose HEV genome showed a general nucleotide sequence similarity of 37-63% and an extensively divergent putative ORF3 sequence. The junction region between the ORFs was also highly divergent; however, two putative secondary stem-loop structures were retained when compared to gt1-4, but with altered structural appearance. In the phylogenetic analysis, the moose HEV deviated and formed its own branch between the gt1-4 and other divergent animal HEVs. The characterization of this highly divergent genome provides important information regarding the diversity of HEV infecting various mammalian species. However, further studies are needed to investigate its prevalence in the moose populations and possibly in other host species, including the risk for human infection.

  13. Atypical parkinsonism in C9orf72 expansions: a case report and systematic review of 45 cases from the literature.

    PubMed

    Wilke, Carlo; Pomper, Jörn K; Biskup, Saskia; Puskás, Cornelia; Berg, Daniela; Synofzik, Matthis

    2016-03-01

    While C9orf72 repeat expansions usually present with frontotemporal dementia (FTD) and/or amyotrophic lateral sclerosis (ALS), an increasing number of reports suggests that the primary phenotype of C9orf72 patients may also include movement disorders. We here provide the first systematic clinical characterisation of C9orf72-associated parkinsonism. We report a C9orf72 expansion carrier presenting with a clinical syndrome of progressive supranuclear palsy (PSP), pronounced mesencephalic atrophy on MRI and PSP-characteristic electrooculography findings. Moreover, we systematically review all previous reports on C9orf72 patients with parkinsonian features. Review of 28 reports revealed 45 C9orf72-positive patients with hypokinesia, rigidity and/or resting tremor. C9orf72-associated parkinsonism predominantly consisted in a hypokinetic-rigid syndrome without resting tremor (61%), with both asymmetric (59%) and symmetric (41%) distributions. Additional features included upper motor neuron signs (60%), lower motor neuron signs (36%), cognitive dysfunction (85%), behaviour and/or personality change (55%) and psychiatric symptoms (29%). Vertical supranuclear gaze palsy was reported in three further cases and cerebellar dysfunction in four cases. Family history frequently yielded evidence of ALS (31%) and FTD (21%). Atypical parkinsonism is a recurrent phenotypic manifestation of C9orf72 expansions. It occurs as part of a broad spectrum of C9orf72-related multi-system neurodegeneration, which can include basal ganglia, mesencephalic and cerebellar dysfunction. C9orf72 genotyping should be considered in those patients with atypical parkinsonism who present with a family history of ALS or FTD, upper or lower motor neuron signs and/or cognitive dysfunction with pronounced frontotemporal impairment.

  14. Cell polarity proteins: common targets for tumorigenic human viruses

    PubMed Central

    Javier, RT

    2012-01-01

    Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein. PMID:19029943

  15. A universal polymerase chain reaction for the detection of psittacine beak and feather disease virus.

    PubMed

    Ypelaar, I; Bassami, M R; Wilcox, G E; Raidal, S R

    1999-08-16

    A universal PCR assay was designed that consistently detected psittacine beak and feather disease virus (BFDV) in psittacine birds affected with psittacine beak and feather disease (PBFD) from different geographic regions across Australia. Primers within open reading frame 1 (ORF1) of the BFDV genome consistently amplified a 717 bp product from blood and/or feathers of 32 birds with PBFD lesions. The PCR did not amplify a product from the feathers or blood from 7 clinically normal psittacine birds. Primers based on regions outside of ORF1 did not consistently produce a PCR product, suggesting there was some genomic variation outside ORF1. The amplified ORF1 PCR products of 10 BFDV isolates, from different psittacine species and from various regions around Australia, were cloned and comparative DNA sequence analysis demonstrated 88-99% of the ORF1 fragments. The derived amino acid sequences of the amplified ORF1 fragments demonstrated similar identity between all 10 isolates. Within ORF1, there was complete conservation of the putative nucleotide binding site and marked conservation of 2 other motifs previously identified as essential components of the replication-associated proteins of other circoviruses and geminiviruses.

  16. A variant of Rubus yellow net virus with altered genomic organization.

    PubMed

    Diaz-Lara, Alfredo; Mosier, Nola J; Keller, Karen E; Martin, Robert R

    2015-02-01

    Rubus yellow net virus (RYNV) is a member of the genus Badnavirus (family: Caulimoviridae). RYNV infects Rubus species causing chlorosis of the tissue along the leaf veins, giving an unevenly distributed netted symptom in some cultivars of red and black raspberry. Recently, a strain of RYNV was sequenced from a Rubus idaeus plant in Alberta, Canada, exhibiting such symptoms. The viral genome contained seven open reading frames (ORFs) with five of them in the sense-strand, including a large polyprotein. Here we describe a graft-transmissible strain of RYNV from Europe infecting cultivar 'Baumforth's Seedling A' (named RYNV-BS), which was sequenced using rolling circle amplification, enzymatic digestion, cloning and primer walking, and it was resequenced at a 5X coverage. This sequence was then compared with the RYNV-Ca genome and significant differences were observed. Genomic analysis identified differences in the arrangement of coding regions, promoter elements, and presence of motifs. The genomic organization of RYNV-BS consisted of five ORFs (four ORFs in the sense-strand and one ORF in the antisense-strand). ORFs 1, 2, and 3 showed a high degree of homology to RYNV-Ca, while ORFs 4 and 6 of RYNV-BS were quite distinct. Also, the predicted ORFs 5 and 7 in the RYNV-Ca were absent in the RYNV-BS sequence. These differences may account for the lack of aphid transmissibility of RYNV-BS.

  17. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus.

    PubMed

    Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W

    1989-05-01

    DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit.

  18. Requirement of UAP56, URH49, RBM15, and OTT3 in the expression of Kaposi sarcoma-associated herpesvirus ORF57

    SciTech Connect

    Majerciak, Vladimir; Deng, Merlyn; Zheng Zhiming

    2010-11-25

    Transport of mRNA from the nucleus to the cytoplasm is mediated by cellular RNA export factors. In this report, we examined how RNA export factors UAP56 and URH49, and RNA export cofactors RBM15 and OTT3, function in modulating KSHV ORF57 expression. We found that knockdown of each factor by RNAi led to decreased ORF57 expression. Specifically, reduced expression of either UAP56 or RBM15 led to nuclear export deficiency of ORF57 RNA. In the context of the KSHV genome, the near absence of UAP56 or RBM15 reduced the expression of both ORF57 and ORF59 (an RNA target of ORF57), but not ORF50. Collectively, our data indicate that the expression of KSHV ORF57 is regulated by cellular RNA export factors and cofactors at the posttranscriptional level.

  19. Type II thioesterase gene (ECO-orf27) from Amycolatopsis orientalis influences production of the polyketide antibiotic, ECO-0501 (LW01).

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2012-11-01

    ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.

  20. Immunohistochemistry for the diagnosis of hepatitis E virus infection.

    PubMed

    Gupta, P; Jagya, N; Pabhu, S B; Durgapal, H; Acharya, S K; Panda, S K

    2012-02-01

    Hepatitis E virus (HEV) is an emerging pathogen and the most common cause of acute viral hepatitis all over the world. We describe here an immunohistochemical method for the detection of HEV antigens (pORF2 and pORF3) in formalin-fixed, paraffin-embedded liver tissues using monoclonal antibodies raised against two of the virus proteins (pORF2 and pORF3). We analysed their specificity and sensitivity in comparison with serology and nucleic acid detection in cases of acute liver failure (ALF). We used this test on 30 liver biopsies collected post-mortem from the patients of ALF caused by HEV infection. These cases were selected on the basis of positive results for enzyme immunoassay (IgM anti-HEV). Of the 30 cases taken from the archives of the Department of Pathology, the antibodies successfully stained all. However, only 25 serum samples (83.3%) of these were positive for HEV RNA. Fifteen controls used (Five noninfected liver tissues, five HBV- and five hepatitis C virus-infected liver tissues) were all negative. The immunohistochemical assay described here may prove a valuable tool for the detection of HEV infection in biopsy, autopsy and explant liver tissues and can serve as a link along with other available tests to delineate the extent of HEV-associated problem worldwide.

  1. A novel block of plant virus movement genes.

    PubMed

    Lazareva, Ekaterina A; Lezzhov, Alexander A; Komarova, Tatiana V; Morozov, Sergey Y; Heinlein, Manfred; Solovyev, Andrey G

    2016-04-26

    Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive-stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell-to-cell movement of transport-deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a 'binary movement block' (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)-BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP-BMB1 was directed to cell wall-adjacent elongated bodies at the cell periphery, to cell wall-embedded punctate structures co-localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell-to-cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule-based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene-coded transport system.

  2. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-10-26

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region.

  3. Complete genome sequence of a proposed new tymovirus, tomato blistering mosaic virus.

    PubMed

    Nicolini, Cícero; Inoue-Nagata, Alice Kazuko; Nagata, Tatsuya

    2015-02-01

    In a previous work, a distinct tymovirus infecting tomato plants in Brazil was reported and tentatively named tomato blistering mosaic virus (ToBMV). In this study, the complete genome sequence of ToBMV was determined and shown to have a size of 6277 nucleotides and three ORFs: ORF 1 encodes the replication-complex polyprotein, ORF 2 the movement protein, and ORF 3 the coat protein. The cleavage sites of the replication-complex polyprotein (GS/LP and VAG/QSP) of ToBMV were predicted by alignment analysis of amino acid sequences of other tymoviruses. In the phylogenetic tree, ToBMV clustered with the tymoviruses that infect solanaceous hosts.

  4. RFHVMn ORF73 is structurally related to the KSHV ORF73 latency-associated nuclear antigen (LANA) and is expressed in retroperitoneal fibromatosis (RF) tumor cells

    SciTech Connect

    Burnside, Kellie L.; Ryan, Jonathan T.; Bielefeldt-Ohmann, Helle; Gregory Bruce, A.; Thouless, Margaret E.; Tsai, Che-Chung; Rose, Timothy M. . E-mail: trose@u.washington.edu

    2006-10-10

    Retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), was first identified in retroperitoneal fibromatosis (RF) tumor lesions of macaques with simian AIDS. We cloned and sequenced the ORF73 latency-associated nuclear antigen (LANA) of RFHVMn from the pig-tailed macaque. RFHVMn LANA is structurally analogous to KSHV ORF73 LANA and contains an N-terminal serine-proline-rich region, a large internal glutamic acidic-rich repeat region and a conserved C-terminal domain. RFHVMn LANA reacts with monoclonal antibodies specific for a glutamic acid-proline dipeptide motif and a glutamic acid-glutamine-rich motif in the KSHV LANA repeat region. Immunohistochemical and immunofluorescence analysis revealed that RFHVMn LANA is a nuclear antigen which is highly expressed in RF spindloid tumor cells. These data suggest that RFHV LANA is an ortholog of KSHV LANA and will function similarly to maintain viral latency and play a role in tumorigenicity in macaques.

  5. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy

    PubMed Central

    Yang, Mei; Liang, Chen; Swaminathan, Kunchithapadam; Herrlinger, Stephanie; Lai, Fan; Shiekhattar, Ramin; Chen, Jian-Fu

    2016-01-01

    The intronic GGGGCC hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) is a prevalent genetic abnormality identified in both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) is a protein with unclear functions. We report that C9ORF72 is a component of a multiprotein complex containing SMCR8, WDR41, and ATG101 (an important regulator of autophagy). The C9ORF72 complex displays guanosine triphosphatase (GTPase) activity and acts as a guanosine diphosphate–guanosine 5′-triphosphate (GDP-GTP) exchange factor (GEF) for RAB39B. We created Smcr8 knockout mice and found that Smcr8 mutant cells exhibit impaired autophagy induction, which is similarly observed in C9orf72 knockdown cells. Mechanistically, SMCR8/C9ORF72 interacts with the key autophagy initiation ULK1 complex and regulates expression and activity of ULK1. The complex has an additional role in regulating later stages of autophagy. Whereas autophagic flux is enhanced in C9orf72 knockdown cells, depletion of Smcr8 results in a reduced flux with an abnormal expression of lysosomal enzymes. Thus, C9ORF72 and SMCR8 have similar functions in modulating autophagy induction by regulating ULK1 and play distinct roles in regulating autophagic flux. PMID:27617292

  6. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of recombinant human C1ORF123 protein.

    PubMed

    Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong

    2016-03-01

    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.

  7. Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations.

    PubMed

    Snowden, Julie S; Adams, Jennifer; Harris, Jennifer; Thompson, Jennifer C; Rollinson, Sara; Richardson, Anna; Jones, Matthew; Neary, David; Mann, David M; Pickering-Brown, Stuart

    2015-01-01

    Our objective was to compare the clinical and pathological characteristics of frontotemporal dementia patients with MAPT, GRN and C9orf72 gene mutations. We carried out a cross-sectional comparative study of 74 gene-positive patients (15 MAPT, 17 GRN and 42 C9orf72). Thirty had post mortem pathological data permitting clinico-pathological correlation. MAPT patients were younger than other groups, and showed more frequent behavioural disinhibition, repetitive and stereotyped behaviours, semantic impairment and temporal predominance of atrophy. GRN patients were older at death and more likely to present with non-fluent aphasia. C9orf72 patients alone showed a co-occurrence of ALS. They showed more psychotic symptoms and irrational behaviour, yet were more often reported clinically as socially appropriate and warm. They showed less dietary change than other groups. C9orf72 patients with and without ALS differed only in frequency of psychosis. Greater clinical overlap was observed between GRN and C9orf72 compared to MAPT cases. MAPT cases had tau and GRN and C9orf72, with one exception, TDP-43 pathology. Non-fluent aphasia was linked to TDP subtype A in both GRN and C9orf72 cases and ALS with subtype B. In conclusion, the findings reinforce clinical heterogeneity in FTD and strengthen evidence that genotype influences clinical presentation. Clinical features may inform targeted genetic testing.

  8. Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene.

    PubMed

    Ogihara, Y; Kurihara, Y; Futami, K; Tsuji, K; Murai, K

    1999-12-01

    An alloplasmic wheat line with the cytoplasm of Aegilops crassa expresses photoperiod-sensitive cytoplasmic male sterility (PCMS). Southern- and Northern-hybridization analyses showed that this line contains alterations in both the gene structure and transcription patterns of the mitochondrial gene orf25. In this study, the nucleotide sequence around the orf25 gene of Ae. crassa (CR-orf25) and common wheat (AE-orf25) was determined, and we found that the upstream region of CR-orf25 had been replaced by that of rps7 of common wheat (AE-rps7) through recombination. A novel open reading frame (orf48) is present upstream of CR-orf25. In these three genes, transcription was initiated from the consensus promoter motif of plant mitochondrial genes located in the upstream regions. Processing enzymes in Ae. crassa and common wheat cleave the respective precursor mRNAs, namely CR-orf25 and AE-rps7, at sites similar to that of the premature mitochondrial 26S rRNA. In contrast, the precursor mRNA is not effectively processed at the target sequence of CR-orf25 in the alloplasmic wheat line. Because major transcripts of the euplasmic CR-orf25 and AE-rps7 genes would result in a truncated orf48 product, one possibility is that the orf48 protein might disturb mitochondrial function at a specific stage and hence affect the expression of the PCMS trait.

  9. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing

    PubMed Central

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan

    2014-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3–RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. PMID:25234929

  10. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing.

    PubMed

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan; Zheng, Zhi-Ming

    2014-11-01

    Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3-RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing.

  11. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion

    PubMed Central

    Brettschneider, Johannes; Van Deerlin, Vivianna M.; Robinson, John L.; Kwong, Linda; Lee, Edward B.; Ali, Yousuf O.; Safren, Nathaniel; Monteiro, Mervyn J.; Toledo, Jon B.; Elman, Lauren; McCluskey, Leo; Irwin, David J.; Grossman, Murray; Molina-Porcel, Laura; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2012-01-01

    C9OF72-hexanucleotide repeat expansions and ubiquilin-2 (UBQLN2) mutations are recently identified genetic markers in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We investigate the relationship between C9ORF72 expansions and the clinical phenotype and neuropathology of ALS and FTLD. Genetic analysis and immunohistochemistry (1HC) were performed on autopsy-confirmed ALS (N = 75), FTLD-TDP (N = 30), AD (N = 14), and controls (N = 11). IHC for neurodegenerative disease pathology consisted of C9ORF72, UBQLN, p62, and TDP-43. A C9ORF72 expansion was identified in 19.4 % of ALS and 31 % of FTLD-TDP cases. ALS cases with C9ORF72 expansions frequently showed a bulbar onset of disease (57 %) and more rapid disease progression to death compared to non-expansion cases. Staining with C9ORF72 antibodies did not yield specific pathology. UBQLN pathology showed a highly distinct pattern in ALS and FTLD-TDP cases with the C9ORF72 expansion, with UBQLN-positive cytoplasmic inclusions in the cerebellar granular layer and extensive UBQLN-positive aggregates and dystrophic neurites in the hippocampal molecular layer and CA regions. These UBQLN pathologies were sufficiently unique to allow correct prediction of cases that were later confirmed to have C9ORF72 expansions by genetic analysis. UBQLN pathology partially co-localized with p62, and to a minor extent with TDP-43 positive dystrophic neurites and spinal cord skein-like inclusions. Our data indicate a pathophysiological link between C9ORF72 expansions and UBQLN proteins in ALS and FTLD-TDP that is associated with a highly characteristic pattern of UBQLN pathology. Our study indicates that this pathology is associated with alterations in clinical phenotype, and suggests that the presence of C9ORF72 repeat expansions may indicate a worse prognosis in ALS. PMID:22426854

  12. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  13. Deep sequencing reveals the complete genome and evidence for transcriptional activity of the first virus-like sequences identified in Aristotelia chilensis (Maqui Berry).

    PubMed

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F; Alzate, Juan F; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-04-03

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%-73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.

  14. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry)

    PubMed Central

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-01-01

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242

  15. Inhibition of Bim enhances replication of varicella-zoster virus and delays plaque formation in virus-infected cells.

    PubMed

    Liu, Xueqiao; Cohen, Jeffrey I

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.

  16. Farmyard pox: parapox virus infection in man.

    PubMed

    Shelley, W B; Shelley, E D

    1983-06-01

    Inasmuch as orf, milker's nodules and bovine papular stomatitis pox are clinically identical in man and are induced by currently indistinguishable parapox viruses, we propose a new generic term 'farmyard pox' for these diseases. This affords the clinician a diagnosis based on a common set of clinical and electron microscopic findings rather than one based on an uncertain or even misleading history. A case in point is reported in which the history failed to reveal a specific animal source of the virus, but electron microscopy confirmed the presence of parapox infection.

  17. Expression of antibodies using single open reading frame (sORF) vector design

    PubMed Central

    Gion, Wendy R.; Davis-Taber, Rachel A.; Regier, Dean A.; Fung, Emma; Medina, Limary; Santora, Ling C.; Bose, Sahana; Ivanov, Alexander V.; Perilli-Palmer, Barbara A.; Chumsae, Chris M.; Matuck, Joseph G.; Kunes, Yune Z.; Carson, Gerald R.

    2013-01-01

    Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed. PMID:23774760

  18. An amyloid-like cascade hypothesis for C9orf72 ALS/FTD.

    PubMed

    Edbauer, Dieter; Haass, Christian

    2016-02-01

    Expansion of a GGGGCC repeat in C9orf72 causes amyotrophic lateral sclerosis, frontotemporal dementia, or a combination of both. Bidirectional repeat transcripts sequester RNA-binding proteins into nuclear RNA foci. The repeat is translated into dipeptide repeat (DPR) proteins that are crucial for repeat-induced toxicity. DPRs inhibit the proteasome and sequester other proteins. These changes are accompanied by widespread brain atrophy and subclinical cognitive impairment before disease onset. Both repeat RNA and DPRs impair nucleocytoplasmic transport and promote TDP-43 mislocalization and aggregation. Thus, repeat RNA and DPRs may gradually trigger TDP-43 pathology and subsequent region-specific neurodegeneration in a cascade similar to amyloid-β peptide in Alzheimer's disease. The key components of the C9orf72 cascade are promising therapeutic targets in different disease stages.

  19. Neuroimaging features in C9orf72 and TARDBP double mutation with FTD phenotype.

    PubMed

    Origone, Paola; Accardo, Jennifer; Verdiani, Simonetta; Lamp, Merit; Arnaldi, Dario; Bellone, Emilia; Picco, Agnese; Morbelli, Silvia; Mandich, Paola; Nobili, Flavio

    2015-01-01

    Increasing evidence has shown that morphological and functional neuroimaging may help to understand the pathophysiological mechanisms leading to behavioral disturbances in patients with genetic or sporadic frontotemporal dementia (FTD). The C9orf72 expansion was found in association with the N267S TARDBP mutation in two siblings with behavioral-variant FTD (bvFTD). In one of them with very mild dementia, MRI showed symmetric atrophy of temporal, inferolateral and orbital frontal cortex, while [18F]FDG-PET disclosed more extended hypometabolism in dorsolateral and inferolateral frontal cortex, anterior cingulate, and caudate nucleus. Hypometabolism in right lateral and orbital frontal cortex was confirmed also in comparison with a group of sporadic bvFTD patients. These findings appear as the neuroimaging hallmark of double C9orf72 and TARDBP gene mutation with a bvFTD phenotype.

  20. Transcription Interference and ORF Nature Strongly Affect Promoter Strength in a Reconstituted Metabolic Pathway

    PubMed Central

    Carquet, Marie; Pompon, Denis; Truan, Gilles

    2015-01-01

    Fine tuning of individual enzyme expression level is necessary to alleviate metabolic imbalances in synthetic heterologous pathways. A known approach consists of choosing a suitable combination of promoters, based on their characterized strengths in model conditions. We questioned whether each step of a multiple-gene synthetic pathway could be independently tunable at the transcription level. Three open reading frames, coding for enzymes involved in a synthetic pathway, were combinatorially associated to different promoters on an episomal plasmid in Saccharomyces cerevisiae. We quantified the mRNA levels of the three genes in each strain of our generated combinatorial metabolic library. Our results evidenced that the ORF nature, position, and orientation induce strong discrepancies between the previously reported promoters’ strengths and the observed ones. We conclude that, in the context of metabolic reconstruction, the strength of usual promoters can be dramatically affected by many factors. Among them, transcriptional interference and ORF nature seem to be predominant. PMID:25767795

  1. The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD.

    PubMed

    Suzuki, Naoki; Maroof, Asif M; Merkle, Florian T; Koszka, Kathryn; Intoh, Atsushi; Armstrong, Ian; Moccia, Rob; Davis-Dusenbery, Brandi N; Eggan, Kevin

    2013-12-01

    Using transgenic mice harboring a targeted LacZ insertion, we studied the expression pattern of the C9ORF72 mouse ortholog (3110043O21Rik). Unlike most genes that are mutated in amyotrophic lateral sclerosis (ALS), which are ubiquitously expressed, the C9ORF72 ortholog was most highly transcribed in the neuronal populations that are sensitive to degeneration in ALS and frontotemporal dementia. Thus, our results provide a potential explanation for the cell type specificity of neuronal degeneration caused by C9ORF72 mutations.

  2. A stable RNA virus-based vector for citrus trees

    SciTech Connect

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-11-10

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.

  3. Expression strategy of densonucleosis virus from the German cockroach, Blattella germanica.

    PubMed

    Kapelinskaya, Tatiana V; Martynova, Elena U; Schal, Coby; Mukha, Dmitry V

    2011-11-01

    Blattella germanica densovirus (BgDNV) is an autonomous parvovirus that infects the German cockroach. BgDNV possesses three mRNAs for NS proteins, two of which are splice variants of the unspliced transcript. The unspliced variant encodes open reading frame 5 (ORF5) (NS3), while NSspl1 encodes ORF3 (NS1) and ORF4 (NS2) and NSspl2 encodes the C-proximal half of NS1. BgDNV possesses three VP transcripts, one of which (VP) is unspliced, while the other two (VPspl1 and VPspl2) are generated by alternative splicing. The unspliced VP transcript contains both ORF1 and ORF2, while in VPspl1, ORF1 and ORF2 are joined in frame. The transcription of NS genes begins at an earlier stage of the virus life cycle than the transcription of VP genes. NS and VP transcripts overlap by 48 nucleotides (nt). BgDNV is characterized by two additional NS transcripts overlapping by more than 1,650 nt with VP-coding transcripts. Four different bands (97, 85, 80, and 57 kDa) corresponding to three BgDNV capsid proteins were detected on SDS-PAGE. Mass spectrometry analysis showed that the amino acid composition of the 85-kDa and 80-kDa proteins is the same. Moreover, both of these proteins are ubiquitinated. The BgDNV PLA(2) domain, which is critical for cellular uptake of the virus, is located in ORF2 and is present only in VP1. In contrast to all of the parvoviruses studied in this respect, VP2 has a unique N terminus that is not contained within VP1 and VP3. In situ recognition with NS1- and VP-specific antibodies revealed an uneven pattern of NS1 expression resembling a halo within the nuclear membrane.

  4. Atypical, slowly progressive behavioral variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion

    PubMed Central

    Khan, Baber K.; Yokoyama, Jennifer S.; Takada, Leonel T.; Sha, Sharon J.; Rutherford, Nicola. J.; Fong, Jamie C.; Karydas, Anna; Wu, Teresa; Ketelle, Robin; Baker, Matt C.; Hernandez, Mariely-Dejesus; Coppola, Giovanni; Geschwind, Daniel H.; Rademakers, Rosa; Lee, Suzee E.; Rosen, Howard J.; Rabinovici, Gil D.; Seeley, William; Rankin, Katherine P.; Boxer, Adam L.; Miller, Bruce L.

    2012-01-01

    Background Some patients meeting behavioral variant frontotemporal dementia (bvFTD) diagnostic criteria progress slowly and plateau at mild symptom severity. Such patients have mild neuropsychological and functional impairments, lack characteristic bvFTD brain atrophy, and have thus been referred to as bvFTD “phenocopies” or slowly progressive (bvFTD-SP). The few patients with bvFTD-SP that have been studied at autopsy have found no evidence of FTD pathology, suggesting that bvFTD-SP is neuropathologically distinct from other forms of FTD. Here, we describe two patients with bvFTD-SP with chromosome 9 open reading frame 72 (C9ORF72) hexanucleotide expansions. Methods Three hundred and eighty-four patients with FTD clinical spectrum and Alzheimer’s disease diagnoses were screened for C9ORF72 expansion. Two bvFTD-SP mutation carriers were identified. Neuropsychological and functional data, as well as brain atrophy patterns assessed using voxel-based morphometry (VBM), were compared with 44 patients with sporadic bvFTD and 85 healthy controls. Results Both patients were age 48 at baseline and met possible bvFTD criteria. In the first patient, VBM revealed thalamic and posterior insula atrophy. Over seven years, his neuropsychological performance and brain atrophy remained stable. In the second patient, VBM revealed cortical atrophy with subtle frontal and insular volume loss. Over two years, her neuropsychological and functional scores as well as brain atrophy remained stable. Conclusions C9ORF72 mutations can present with a bvFTD-SP phenotype. Some bvFTD-SP patients may have neurodegenerative pathology, and C9ORF72 mutations should be considered in patients with bvFTD-SP and a family history of dementia or motor neuron disease. PMID:22399793

  5. Surgical treatment of farmyard pox. Orf, milker's nodules, bovine papular stomatitis pox.

    PubMed

    Shelley, W B; Shelley, E D

    1983-02-01

    Superficial epidermal surgical removal of localized bullous lesions of viral origin is recommended. An example is presented in which the patient had what we have termed "farmyard pox." This is our generic label for the clinically indistinguishable parapox viral infections acquired from farm animals, which include orf, milker's nodules, and the pox of bovine papular stomatitis. The surgery is simple and rapid, and completely removes the lesions. This eliminates the possibility of enlargement and contagion, and also promotes rapid healing.

  6. Heartland Virus

    MedlinePlus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  7. C9orf72 expansion as a possible genetic cause of Huntington disease phenocopy syndrome.

    PubMed

    Kostić, Vladimir S; Dobričić, Valerija; Stanković, Iva; Ralić, Vesna; Stefanova, Elka

    2014-10-01

    Huntington disease (HD), the most common inherited cause of chorea, is an autosomal dominant disorder, caused by an expanded trinucleotide CAG repeat (>39) in the HTT gene on chromosome 4p16.3. Among patients diagnosed as HD solely on clinical grounds, a certain number was negative on genetic testing for HD. Therefore, HD-like disorders comprised a number of genetic causes of chorea, that may be indistinguishable from HD (e.g. HD phenocopy syndrome). Recent data suggested that the C9orf72 expansion may be the most common genetic cause of HD phenocopy presentations. In continuation with this observation, we analyzed a small cohort of 39 patients with HD phenocopy syndrome and detected the C9orf72 expansion in one female patient (2.6%) with two-year lasting mild generalized chorea and severe oro-bucco-lingual dyskinesia, who complained on forgetfullness (neuropsychological testing revealed dysexecutive syndrome with preserved episodic memory and recognition), unexplainable fears and increased appetite. Our results confirmed a possible role of the C9orf72 expansion in the genetic background of HD phenocopy syndrome.

  8. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases.

    PubMed

    Riboldi, Giulietta; Zanetta, Chiara; Ranieri, Michela; Nizzardo, Monica; Simone, Chiara; Magri, Francesca; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-12-01

    Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of "toxic" RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon.

  9. C9orf72 repeat expansions are restricted to the ALS-FTD spectrum.

    PubMed

    Ticozzi, Nicola; Tiloca, Cinzia; Calini, Daniela; Gagliardi, Stella; Altieri, Alessandra; Colombrita, Claudia; Cereda, Cristina; Ratti, Antonia; Pezzoli, Gianni; Borroni, Barbara; Goldwurm, Stefano; Padovani, Alessandro; Silani, Vincenzo

    2014-04-01

    Expansion of a GGGGCC repeat (RE) in the C9orf72 gene has been recently reported as the main genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Given the growing evidence of genetic and clinicopathologic overlap among ALS, FTD, and other neurodegenerative diseases, we investigated the occurrence of RE in a subset of 9 patients with ALS-plus syndromes, including Parkinson's disease (PD), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy. We identified RE in 2 ALS-plus individuals (22.2%) displaying PSP and CBS features. On the basis of this finding, we extended our analysis to a cohort composed of 190 PD, 103 CBS, 107 PSP, and 177 Alzheimer's disease cases. We did not identify any RE in these patients, indicating that C9orf72 is in all probability not involved in the pathogenesis of these disorders. However, the high frequency of C9orf72 RE in patients with ALS-plus syndromes suggests that, similar to ALS-FTD patients, individuals with combined motor neuron and extrapyramidal features should be screened for RE, independent of their family history.

  10. C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population

    PubMed Central

    Sabatelli, Mario; Conforti, Francesca Luisa; Zollino, Marcella; Mora, Gabriele; Monsurrò, Maria Rosaria; Volanti, Paolo; Marinou, Kalliopi; Salvi, Fabrizio; Corbo, Massimo; Giannini, Fabio; Battistini, Stefania; Penco, Silvana; Lunetta, Christian; Quattrone, Aldo; Gambardella, Antonio; Logroscino, Giancarlo; Simone, Isabella; Bartolomei, Ilaria; Pisano, Fabrizio; Tedeschi, Gioacchino; Conte, Amelia; Spataro, Rossella; La Bella, Vincenzo; Caponnetto, Claudia; Mancardi, Gianluigi; Mandich, Paola; Sola, Patrizia; Mandrioli, Jessica; Renton, Alan E.; Majounie, Elisa; Abramzon, Yevgeniya; Marrosu, Francesco; Marrosu, Maria Giovanna; Murru, Maria Rita; Sotgiu, Maria Alessandra; Pugliatti, Maura; Rodolico, Carmelo; Moglia, Cristina; Calvo, Andrea; Ossola, Irene; Brunetti, Maura; Traynor, Bryan J.; Borghero, Giuseppe; Restagno, Gabriella; Chiò, Adriano

    2012-01-01

    It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (familial ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1,757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1,523 from mainland Italy. Sixty (3.7%) of 1,624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally-matched control samples (1,238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived one year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucloetide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the commonest mutation in Italy and the second more common in Sardinia. PMID:22418734

  11. Discovery of protein interactions using parallel analysis of translated ORFs (PLATO).

    PubMed

    Larman, H Benjamin; Liang, Anthony C; Elledge, Stephen J; Zhu, Jian

    2014-01-01

    Parallel analysis of translated open reading frames (ORFs) (PLATO) can be used for the unbiased discovery of interactions between full-length proteins encoded by a library of 'prey' ORFs and surface-immobilized 'bait' antibodies, polypeptides or small-molecular-weight compounds. PLATO uses ribosome display (RD) to link ORF-derived mRNA molecules to the proteins they encode, and recovered mRNA from affinity enrichment is subjected to analysis using massively parallel DNA sequencing. Compared with alternative in vitro methods, PLATO provides several advantages including library size and cost. A unique advantage of PLATO is that an alternative reverse transcription-quantitative PCR (RT-qPCR) protocol can be used to test binding of specific, individual proteins. To illustrate a typical experimental workflow, we demonstrate PLATO for the identification of the immune target of serum antibodies from patients with inclusion body myositis (IBM). Beginning with an ORFeome library in an RD vector, the protocol can produce samples for deep sequencing or RT-qPCR within 4 d.

  12. Potential control of human immunodeficiency virus type 1 asp expression by alternative splicing in the upstream untranslated region.

    PubMed

    Barbagallo, Michael S; Birch, Katherine E; Deacon, Nicholas J; Mosse, Jennifer A

    2012-07-01

    The negative-sense asp open reading frame (ORF) positioned opposite to the human immunodeficiency virus type 1 (HIV-1) env gene encodes the 189 amino acid, membrane-associated ASP protein. Negative-sense transcription, regulated by long terminal repeat sequences, has been observed early in HIV-1 infection in vitro. All subtypes of HIV-1 were scanned to detect the negative-sense asp ORF and to identify potential regulatory sequences. A series of highly conserved upstream short open reading frames (sORFs) was identified. This potential control region from HIV-1(NL4-3), containing six sORFs, was cloned upstream of the reporter gene EGFP. Expression by transfection of HEK293 cells indicated that the introduction of this sORF region inhibits EGFP reporter expression; analysis of transcripts revealed no significant changes in levels of EGFP mRNA. Reverse transcriptase-polymerase chain reaction analysis (RT-PCR) further demonstrated that the upstream sORF region undergoes alternative splicing in vitro. The most abundant product is spliced to remove sORFs I to V, leaving only the in-frame sORF VI upstream of asp. Sequence analysis revealed the presence of typical splice donor- and acceptor-site motifs. Mutation of the highly conserved splice donor and acceptor sites modulates, but does not fully relieve, inhibition of EGFP production. The strong conservation of asp and its sORFs across all HIV-1 subtypes suggests that the asp gene product may have a role in the pathogenesis of HIV-1. Alternative splicing of the upstream sORF region provides a potential mechanism for controlling expression of the asp gene.

  13. Opium poppy mosaic virus, a new umbravirus isolated from Papaver somniferum in New Zealand.

    PubMed

    Tang, Joe; Lebas, Bénédicte; Liefting, Lia; Veerakone, Stella; Wei, Ting; Ward, Lisa

    2016-01-01

    A novel virus, tentatively named "opium poppy mosaic virus" (OPMV), was isolated from Papaver somniferum (opium poppy) with leaf mosaic and mottling symptoms in Auckland, New Zealand, in 2006. The virus was mechanically transmitted to herbaceous plants of several species, in which it induced local and/or systemic symptoms. No virus particles were observed by electron microscopy in the diseased P. somniferum or any of the symptomatic herbaceous plants. The complete genomic sequence of 4230 nucleotides contains four open reading frames (ORF) and is most closely related (59.3 %) to tobacco bushy top virus, a member of the genus Umbravirus. These data suggest that OPMV is a new umbravirus.

  14. Characterization by Small RNA Sequencing of Taro Bacilliform CH Virus (TaBCHV), a Novel Badnavirus

    PubMed Central

    Kazmi, Syeda Amber; Yang, Zuokun; Hong, Ni; Wang, Guoping; Wang, Yanfen

    2015-01-01

    RNA silencing is an antiviral immunity that regulates gene expression through the production of small RNAs (sRNAs). In this study, deep sequencing of small RNAs was used to identify viruses infecting two taro plants. Blast searching identified five and nine contigs assembled from small RNAs of samples T1 and T2 matched onto the genome sequences of badnaviruses in the family Caulimoviridae. Complete genome sequences of two isolates of the badnavirus determined by sequence specific amplification comprised of 7,641 nucleotides and shared overall nucleotide similarities of 44.1%‒55.8% with other badnaviruses. Six open reading frames (ORFs) were identified on the plus strand, showed amino acid similarities ranging from 59.8% (ORF3) to 10.2% (ORF6) to the corresponding proteins encoded by other badnaviruses. Phylogenetic analysis also supports that the virus is a new member in the genus Badnavirus. The virus is tentatively named as Taro bacilliform CH virus (TaBCHV), and it is the second badnavirus infecting taro plants, following Taro bacilliform virus (TaBV). In addition, analyzes of viral derived small RNAs (vsRNAs) from TaBCHV showed that almost equivalent number of vsRNAs were generated from both strands and the most abundant vsRNAs were 21 nt, with uracil bias at 5' terminal. Furthermore, TaBCHV vsRNAs were asymmetrically distributed on its entire circular genome at both orientations with the hotspots mainly generated in the ORF5 region. PMID:26207896

  15. Characterization by Small RNA Sequencing of Taro Bacilliform CH Virus (TaBCHV), a Novel Badnavirus.

    PubMed

    Kazmi, Syeda Amber; Yang, Zuokun; Hong, Ni; Wang, Guoping; Wang, Yanfen

    2015-01-01

    RNA silencing is an antiviral immunity that regulates gene expression through the production of small RNAs (sRNAs). In this study, deep sequencing of small RNAs was used to identify viruses infecting two taro plants. Blast searching identified five and nine contigs assembled from small RNAs of samples T1 and T2 matched onto the genome sequences of badnaviruses in the family Caulimoviridae. Complete genome sequences of two isolates of the badnavirus determined by sequence specific amplification comprised of 7,641 nucleotides and shared overall nucleotide similarities of 44.1%‒55.8% with other badnaviruses. Six open reading frames (ORFs) were identified on the plus strand, showed amino acid similarities ranging from 59.8% (ORF3) to 10.2% (ORF6) to the corresponding proteins encoded by other badnaviruses. Phylogenetic analysis also supports that the virus is a new member in the genus Badnavirus. The virus is tentatively named as Taro bacilliform CH virus (TaBCHV), and it is the second badnavirus infecting taro plants, following Taro bacilliform virus (TaBV). In addition, analyzes of viral derived small RNAs (vsRNAs) from TaBCHV showed that almost equivalent number of vsRNAs were generated from both strands and the most abundant vsRNAs were 21 nt, with uracil bias at 5' terminal. Furthermore, TaBCHV vsRNAs were asymmetrically distributed on its entire circular genome at both orientations with the hotspots mainly generated in the ORF5 region.

  16. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    PubMed

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication.

  17. Cysteine Usage in Sulfolobus Spindle-Shaped Virus 1 And Extension to Hyperthermophilic Viruses in General

    SciTech Connect

    Menon, S.K.; Maaty, W.S.; Corn, G.J.; Kwok, S.C.; Eilers, B.J.; Kraft, P.; Gillitzer, E.; Young, M.J.; Bothner, B.; Lawrence, C.M.

    2009-05-26

    Fuselloviridae are ubiquitous crenarchaeal viruses found in high-temperature acidic hot springs worldwide. The type virus, Sulfolobus spindle-shaped virus 1 (SSV1), has a double-stranded DNA genome that contains 34 open reading frames (ORFs). Fuselloviral genomes show little similarity to other organisms, generally precluding functional predictions. However, tertiary protein structure can provide insight into protein function. We have thus undertaken a systematic investigation of the SSV1 proteome and report here on the F112 gene product. Biochemical, proteomic and structural studies reveal a monomeric intracellular protein that adopts a winged helix DNA binding fold. Notably, the structure contains an intrachain disulfide bond, prompting analysis of cysteine usage in this and other hyperthermophilic viral genomes. The analysis supports a general abundance of disulfide bonds in the intracellular proteins of hyperthermophilic viruses, and reveals decreased cysteine content in the membrane proteins of hyperthermophilic viruses infecting Sulfolobales. The evolutionary implications of the SSV1 distribution are discussed.

  18. Hepatitis E virus: animal reservoirs and zoonotic risk.

    PubMed

    Meng, X J

    2010-01-27

    Hepatitis E virus (HEV) is a small, non-enveloped, single-strand, positive-sense RNA virus of approximately 7.2kb in size. HEV is classified in the family Hepeviridae consisting of four recognized major genotypes that infect humans and other animals. Genotypes 1 and 2 HEV are restricted to humans and often associated with large outbreaks and epidemics in developing countries with poor sanitation conditions, whereas genotypes 3 and 4 HEV infect humans, pigs and other animal species and are responsible for sporadic cases of hepatitis E in both developing and industrialized countries. The avian HEV associated with Hepatitis-Splenomegaly syndrome in chickens is genetically and antigenically related to mammalian HEV, and likely represents a new genus in the family. There exist three open reading frames in HEV genome: ORF1 encodes non-structural proteins, ORF2 encodes the capsid protein, and the ORF3 encodes a small phosphoprotein. ORF2 and ORF3 are translated from a single bicistronic mRNA, and overlap each other but neither overlaps ORF1. Due to the lack of an efficient cell culture system and a practical animal model for HEV, the mechanisms of HEV replication and pathogenesis are poorly understood. The recent identification and characterization of animal strains of HEV from pigs and chickens and the demonstrated ability of cross-species infection by these animal strains raise potential public health concerns for zoonotic HEV transmission. It has been shown that the genotypes 3 and 4 HEV strains from pigs can infect humans, and vice versa. Accumulating evidence indicated that hepatitis E is a zoonotic disease, and swine and perhaps other animal species are reservoirs for HEV. A vaccine against HEV is not yet available.

  19. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia

    PubMed Central

    van Blitterswijk, Marka; Mullen, Bianca; Nicholson, Alexandra M.; Bieniek, Kevin F.; Heckman, Michael G.; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Finch, NiCole A.; Brown, Patricia H.; Murray, Melissa E.; Hsiung, Ging-Yuek R.; Stewart, Heather; Karydas, Anna M.; Finger, Elizabeth; Kertesz, Andrew; Bigio, Eileen H.; Weintraub, Sandra; Mesulam, Marsel; Hatanpaa, Kimmo J.; White, Charles L.; Strong, Michael J.; Beach, Thomas G.; Wszolek, Zbigniew K.; Lippa, Carol; Caselli, Richard; Petrucelli, Leonard; Josephs, Keith A.; Parisi, Joseph E.; Knopman, David S.; Petersen, Ronald C.; Mackenzie, Ian R.; Seeley, William W.; Grinberg, Lea T.; Miller, Bruce L.; Boylan, Kevin B.; Graff-Radford, Neill R.; Boeve, Bradley F.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions (with or without motor neuron disease [MND]; cohort 2), and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls (11.9% versus 19.1%, odds ratio (OR): 0.57, p=0.014; same direction as carriers of GRN mutations). The strongest evidence was provided by FTD patients (OR: 0.33, p=0.009) followed by FTD/MND patients (OR: 0.38, p=0.017), whereas no significant difference was observed in MND patients (OR: 0.85, p=0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR: 0.77, p=0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR: 0.26, p<0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations, and might be relevant for prognostic testing, and as a promising

  20. OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains

    PubMed Central

    2010-01-01

    Background Computational modeling and analysis of metabolic networks has been successful in metabolic engineering of microbial strains for valuable biochemical production. Limitations of currently available computational methods for metabolic engineering are that they are often based on reaction deletions rather than gene deletions and do not consider the regulatory networks that control metabolism. Due to the presence of multi-functional enzymes and isozymes, computational designs based on reaction deletions can sometimes result in strategies that are genetically complicated or infeasible. Additionally, strains might not be able to grow initially due to regulatory restrictions. To overcome these limitations, we have developed a new approach (OptORF) for identifying metabolic engineering strategies based on gene deletion and overexpression. Results Here we propose an effective method to systematically integrate transcriptional regulatory networks and metabolic networks. This allows for the formulation of linear optimization problems that search for metabolic and/or regulatory perturbations that couple biomass and biochemical production, thus proposing adaptive evolutionary strain designs. Using genome-scale models of Escherichia coli, we have implemented the OptORF algorithm (which considers gene deletions and transcriptional regulation) and compared its metabolic engineering strategies for ethanol production to those found using OptKnock (which considers reaction deletions). Our results found that the reaction-based strategies often require more gene deletions to remove the identified reactions (2 more genes than reactions), and result in lethal growth phenotypes when transcriptional regulation is considered (162 out of 200 cases). Finally, we present metabolic engineering strategies for producing ethanol and higher alcohols (e.g. isobutanol) in E. coli using our OptORF approach. We have found common genetic modifications such as deletion of pgi and overexpression

  1. Nucleotide sequence of RNA2 of Lettuce big-vein virus and evidence for a possible transcription termination/initiation strategy similar to that of rhabdoviruses.

    PubMed

    Sasaya, Takahide; Kusaba, Shinnosuke; Ishikawa, Koichi; Koganezawa, Hiroki

    2004-09-01

    Lettuce big-vein virus (LBVV) is the type species of the genus Varicosavirus and is a two-segmented negative-sense single-stranded RNA virus. The larger LBVV genome segment (RNA1) consists of 6797 nt and encodes an L polymerase that resembles that of rhabdoviruses. Here, the nucleotide sequence of the second LBVV genome segment (RNA2) is reported. LBVV RNA2 consisted of 6081 nt and contained antisense information for five major ORFs: ORF1 (nt 210-1403 on the viral RNA), ORF2 (nt 1493-2494), ORF3 (nt 2617-3489), ORF4 (nt 3843-4337) and ORF5 (nt 4530-5636), which had coding capacities of 44, 36, 32, 19 and 41 kDa, respectively. The gene at the 3' end of the viral RNA encoded a coat protein, while the other four genes encoded proteins of unknown functions. The 3'-terminal 11 nt of LBVV RNA2 were identical to those of LBVV RNA1, and the 5'-terminal regions of LBVV RNA1 and RNA2 contained a long common nucleotide stretch of about 100 nt. Northern blot analysis using probes specific to the individual ORFs revealed that LBVV transcribes monocistronic RNAs. Analysis of the terminal sequences, and primer extension and RNase H digestion analysis of LBVV mRNAs, suggested that LBVV utilizes a transcription termination/initiation strategy comparable with that of rhabdoviruses.

  2. Characterization of the orf31-petG gene cluster from the plastid genome of Populus deltoides.

    PubMed

    Naithani, S; Trivedi, P K; Sane, P V

    1997-10-01

    The orf31-petG gene cluster is located approximately 1.2 kb away from the psbEFLJ operon in the chloroplast genome of Populus deltoides. The orf31 (ycf7) encodes an unidentified polypeptide while the petG gene encodes subunit V of an important component, cytochrome b6/f complex, involved in photosynthetic electron transport. We have determined the nucleotide sequence of the orf31-petG gene cluster from the plastid genome of a tree, Populus deltoides. Our sequence analysis suggests that these genes possess high homology with the published sequences of these genes from other plants. Northern analysis suggests development dependent transcription of the orf31-petG cluster in leaves.

  3. The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway

    PubMed Central

    Mui, Melissa Z.; Zhou, Yiwang; Blanchette, Paola; Chughtai, Naila; Knight, Jennifer F.; Gruosso, Tina; Papadakis, Andreas I.; Huang, Sidong; Park, Morag; Gingras, Anne-Claude

    2015-01-01

    ABSTRACT When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2AB55 phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2AB55 subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2AB55 and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been

  4. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease#

    PubMed Central

    Burberry, Aaron; Suzuki, Naoki; Wang, Jin-Yuan; Moccia, Rob; Mordes, Daniel A.; Stewart, Morag; Suzuki-Uematsu, Satomi; Ghosh, Sulagna; Singh, Ajay; Merkle, Florian T.; Koszka, Kathryn; Li, Quan-Zhen; Zon, Leonard; Rossi, Derrick J.; Trowbridge, Jennifer J.; Notarangelo, Luigi D.; Eggan, Kevin

    2016-01-01

    C9ORF72 mutations are found in a significant fraction of patients suffering from amyotrophic lateral sclerosis and frontotemporal dementia, yet the function of the C9ORF72 gene product remains poorly understood. Here, we show that mice harboring loss-of-function mutations in the ortholog of C9ORF72 develop splenomegaly, neutrophilia, thrombocytopenia, increased expression of inflammatory cytokines, and severe autoimmunity, ultimately leading to a high mortality rate. Transplantation of mutant bone marrow into wildtype recipients was sufficient to recapitulate the phenotypes observed in the mutant animals, including autoimmunity and premature mortality. Reciprocally, transplantation of wildtype marrow into mutant mice improved their phenotype. We conclude that C9ORF72 serves an important function within the hematopoietic system to restrict inflammation and the development of autoimmunity. PMID:27412785

  5. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  6. Determination and comparative analysis of the small RNA genomic sequences of California encephalitis, Jamestown Canyon, Jerry Slough, Melao, Keystone and Trivittatus viruses (Bunyaviridae, genus Bunyavirus, California serogroup).

    PubMed

    Bowen, M D; Jackson, A O; Bruns, T D; Hacker, D L; Hardy, J L

    1995-03-01

    The nucleotide sequences of the small (S) genomic RNAs of six California (CAL) serogroup bunyaviruses (Bunyaviridae: genus Bunyavirus) were determined. The S RNAs of two California encephalitis virus strains, two Jamestown Canyon virus strains, Jerry Slough virus, Melao virus, Keystone virus and Trivittatus virus contained the overlapping nucleocapsid (N) and non-structural (NSs) protein open reading frames (ORFs) as described previously for the S RNAs of other CAL serogroup viruses. All N protein ORFs were 708 nucleotides in length and encoded a putative 235 amino acid gene product. The NSs ORFs were found to be of two lengths, 279 and 294 nucleotides, which potentially encode 92 and 97 amino acid proteins, respectively. The complementary termini and a purine-rich sequence in the 3' non-coding region (genome-complementary sense) were highly conserved amongst CAL serogroup bunyavirus S RNAs. Phylogenetic analyses of N ORF sequences indicate that the CAL serogroup bunyaviruses can be divided into three monophyletic lineages corresponding to three of the complexes previously derived by serological classification. The truncated version of the NSs protein, which is found in five CAL serogroup bunyaviruses, appears to have arisen twice during virus evolution.

  7. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS.

    PubMed

    Jovičić, Ana; Mertens, Jerome; Boeynaems, Steven; Bogaert, Elke; Chai, Noori; Yamada, Shizuka B; Paul, Joseph W; Sun, Shuying; Herdy, Joseph R; Bieri, Gregor; Kramer, Nicholas J; Gage, Fred H; Van Den Bosch, Ludo; Robberecht, Wim; Gitler, Aaron D

    2015-09-01

    C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, including karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.

  8. Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study.

    PubMed

    Muthukumaran, Rajagopalan; Sangeetha, Balasubramanian; Amutha, Ramaswamy

    2015-07-01

    The protein ORF1p, encoded by the LINE-1 retrotransposon, is responsible for the packaging and transposition of its RNA transcript and is reported to be involved in various genetic disorders. The three domains of ORF1p co-ordinate together to facilitate the transposition, and the mechanism of nucleic acid binding is not yet clear. The C-terminal domain of ORF1p adopts a lifted, twisted or rested state, which is regulated by several inter- and intra-domain interactions that are explored in this study. The residues, Glu147, Asp151, Lys154, Arg261 and Tyr282, are majorly involved in mediating the functional dynamics of ORF1p by forming H-bonds and π-interactions. The importance of these residues was elucidated by performing molecular dynamics simulations on both native as well as mutated ORF1p. The Q147A-D151A-K154A mutant expressed unique dynamics featuring the lifting motion of the CTD core alone, while the R261A mutant resulted in the oscillatory motion of CTD. In both cases, the CTDs were held in place by Tyr282 and in its absence, the structural stability of CTDs in the trimeric unit was significantly affected. Additional interactions responsible for stabilizing the trimeric ORF1p to express its native dynamics were extracted in this study. The central role of Tyr282 in maintaining the functional state of ORF1p to facilitate nucleic acid binding and formation of ribonucleoprotein complex is well highlighted. The knowledge gained from this study forms the basis for understanding the nucleic acid binding mechanism of ORF1p, which could further provide additional support in exploring various genetic disorders.

  9. Involvement of Conserved Amino Acids in the C-Terminal Region of LINE-1 ORF2p in Retrotransposition.

    PubMed

    Christian, Claiborne M; Sokolowski, Mark; deHaro, Dawn; Kines, Kristine J; Belancio, Victoria P

    2017-03-01

    Long interspersed element 1 (L1) is the only currently active autonomous retroelement in the human genome. Along with the parasitic SVA and short interspersed element Alu, L1 is the source of DNA damage induced by retrotransposition: a copy-and-paste process that has the potential to disrupt gene function and cause human disease. The retrotransposition process is dependent upon the ORF2 protein (ORF2p). However, it is unknown whether most of the protein is important for retrotransposition. In particular, other than the Cys motif, the C terminus of the protein has not been intensely examined in the context of retrotransposition. Using evolutionary analysis and the Alu retrotransposition assay, we sought to identify additional amino acids in the C terminus important for retrotransposition. Here, we demonstrate that Gal4-tagged and untagged C-terminally truncated ORF2p fragments possess residual potential to drive Alu retrotransposition. Using sight-directed mutagenesis we identify that while the Y1180 amino acid is important for ORF2p- and L1-driven Alu retrotransposition, a mutation at this position improves L1 retrotransposition. Even though the mechanism of the contribution of Y1180 to Alu and L1 mobilization remains unknown, experimental evidence rules out its direct involvement in the ability of the ORF2p reverse transcriptase to generate complementary DNA. Additionally, our data support that ORF2p amino acids 1180 and 1250-1262 may be involved in the reported ORF1p-mediated increase in ORF2p-driven Alu retrotransposition.

  10. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  11. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses.

    PubMed

    Kuno, G; Chang, G-J J

    2007-01-01

    Many members of the genus Flavivirus are the agents of important diseases of humans, livestock, and wildlife. Currently, no complete genome sequence is available for the three African viruses, Bagaza, Zika, and Kedougou viruses, each representing a distinct virus subgroup according to the latest virus classification. In this study, we obtained a complete genome sequence of each of those three viruses and characterized the open reading frames (ORFs) with respect to gene sizes, cleavage sites, potential glycosylation sites, distribution of cysteine residues, and unique motifs. The sequences of the three viruses were then scanned across the entire length of the ORF against available sequences of other African flaviviruses and selected reference viruses for genetic relatedness. The data collectively indicated that Kedougou virus was close to dengue viruses but nonetheless distinct, while Bagaza virus shared genetic relatedness with West Nile virus in several genomic regions. In the non-coding regions, it was found that a particular organizational pattern of conserved sequences in the 3' terminal region generally correlated with the current virus grouping.

  12. Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality.

    PubMed

    Park, Arnold; Yun, Tatyana; Hill, Terence E; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Freiberg, Alexander N; Lee, Benhur

    2016-04-01

    Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.

  13. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  14. C9orf72’s Interaction with Rab GTPases—Modulation of Membrane Traffic and Autophagy

    PubMed Central

    Tang, Bor L.

    2016-01-01

    Hexanucleotide repeat expansion in an intron of Chromosome 9 open reading frame 72 (C9orf72) is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). While functional haploinsufficiency of C9orf72 resulting from the mutation may play a role in ALS/FTD, the actual cellular role of the protein has been unclear. Recent findings have now shown that C9orf72 physically and functionally interacts with multiple members of the Rab small GTPases family, consequently exerting important influences on cellular membrane traffic and the process of autophagy. Loss of C9orf72 impairs endocytosis in neuronal cell lines, and attenuated autophagosome formation. Interestingly, C9orf72 could influence autophagy both as part of a Guanine nucleotide exchange factor (GEF) complex, or as a Rab effector that facilitates transport of the Unc-51-like Autophagy Activating Kinase 1 (Ulk1) autophagy initiation complex. The cellular function of C9orf72 is discussed in the light of these recent findings. PMID:27774051

  15. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.

    PubMed

    Kozjak-Pavlovic, Vera; Prell, Florian; Thiede, Bernd; Götz, Monika; Wosiek, Dominik; Ott, Christine; Rudel, Thomas

    2014-02-20

    Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60kDa and 150kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1).

  16. C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in bc1 Complex Assembly and Supercomplex Stabilization

    PubMed Central

    Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos

    2015-01-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. PMID:25605331

  17. Constructional apraxia in frontotemporal dementia associated with the C9orf72 mutation: broadening the clinical and neuropsychological phenotype.

    PubMed

    Floris, Gianluca; Borghero, Giuseppe; Cannas, Antonino; Di Stefano, Francesca; Ruiu, Elisa; Murru, Maria R; Corongiu, Daniela; Cuccu, Stefania; Tranquilli, Stefania; Sardu, Claudia; Marrosu, Maria G; Chiò, Adriano; Marrosu, Francesco

    2015-03-01

    In our study we analysed clinical and neuropsychological data in a cohort of 57 Sardinian patients with FTD (55 apparently unrelated and two belonging to the same family), who underwent genetic screening for the C9orf72 mutation. Eight out of 56 patients were found positive for the C9orf72 mutation representing 14% of the entire cohort and 31.6% of the familial cases (6/19). C9orf72 mutated patients differed from the other FTD cases of the cohort for a younger age of onset, higher frequency of familial history for FTD and higher prevalence of delusional psychotic symptoms and hallucinations. In the neuropsychological assessment, C9orf72 mutated patients differed from non-mutated for the high frequency of visuospatial dysfunction regarding constructional apraxia (p = 0.02). In conclusion, our study confirms that Sardinian FTD patients have peculiar genetic characteristics and that C9orf72 mutated patients have a distinctive clinical and neuropsychological profile that could help differentiate them from other FTD patients. In our cohort we found that constructional apraxia, rarely reported in FTD, can properly discriminate between C9orf72 mutated and non-mutated patients and contribute to broaden the neuropsychological profile in frontotemporal dementia associated with this mutation.

  18. Identification of essential and non-essential genes in Ambystoma tigrinum virus.

    PubMed

    Aron, Mariah M; Allen, Alexander G; Kromer, Mathew; Galvez, Hector; Vigil, Brianna; Jancovich, James K

    2016-06-02

    Members of the genus Ranavirus (family Iridoviridae) are large double-stranded (ds) DNA viruses that are found world-wide infecting fish, amphibian and reptile ectothermic hosts. Ranavirus genomes range from 105 to 155kbp in length and they are predicted to encode around 90-125 genes. Currently, our knowledge of the function of ∼50% of these genes is known or inferred based on homology to orthologous genes characterized in other systems; however, the function of the remaining open reading frames (ORFS) is unknown. Therefore, in order to begin to uncover the function of unknown ORFs in ranaviruses we developed a standardized approach to generate a recombination cassette for any ORF in Ambystoma tigrinum virus (ATV). Our standardized approach quickly and efficiently assembles recombination cassettes and recombinant ATV. We have used this approach to identify two essential, one semi-essential and two non-essential genes in ATV.

  19. Analysis of the genetic information of a DNA segment of a new virus from silkworm.

    PubMed

    Bando, H; Hayakawa, T; Asano, S; Sahara, K; Nakagaki, M; Iizuka, T

    1995-01-01

    In 1983, a parvo-like virus (Yamanashi isolate) was newly isolated from silkworm. However, unlike parvovirus, two DNA molecules (VD1 and 2) were always extracted from purified virions. To investigate the structure and organization of the virus genomes, we determined the complete nucleotide sequence of VD2. The sequence consisted of 6031 nucleotides (nts) and contained a large open reading frame (ORF1) with 3513 nts. A smaller open reading frame (ORF2) with 702 nts was found in the complementary sequence. Computer analysis revealed that both ORFs did not code for the major structural proteins (VP1, 2, 3, and 4). These results suggest that VD2 has not enough information to produce progeny virions by itself. Further, the structural importance of the terminal sequence (CTS) common to both VD1 and VD2 was also predicted by a computer analysis.

  20. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus).

    PubMed

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-05-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% identical in ORF5. These sequence comparisons and previously studied biological properties indicate that PeVYV is a distinctly different virus and belongs to a new species of the genus Polerovirus.

  1. White spot syndrome virus (WSSV) genome stability maintained over six passages through three different penaeid shrimp species.

    PubMed

    Sindhupriya, M; Saravanan, P; Otta, S K; Amarnath, C Bala; Arulraj, R; Bhuvaneswari, T; Praveena, P Ezhil; Jithendran, K P; Ponniah, A G

    2014-08-21

    White spot syndrome virus (WSSV) replicates rapidly, can be extremely pathogenic and is a common cause of mass mortality in cultured shrimp. Variable number tandem repeat (VNTR) sequences present in the open reading frame (ORF)94, ORF125 and ORF75 regions of the WSSV genome have been used widely as genetic markers in epidemiological studies. However, reports that VNTRs might evolve rapidly following even a single transmission through penaeid shrimp or other crustacean hosts have created confusion as to how VNTR data is interpreted. To examine VNTR stability again, 2 WSSV strains (PmTN4RU and LvAP11RU) with differing ORF94 tandem repeat numbers and slight differences in apparent virulence were passaged sequentially 6 times through black tiger shrimp Penaeus monodon, Indian white shrimp Feneropenaeus indicus or Pacific white leg shrimp Litopenaeus vannamei. PCR analyses to genotype the ORF94, ORF125 and ORF75 VNTRs did not identify any differences from either of the 2 parental WSSV strains after multiple passages through any of the shrimp species. These data were confirmed by sequence analysis and indicate that the stability of the genome regions containing these VNTRs is quite high at least for the WSSV strains, hosts and number of passages examined and that the VNTR sequences thus represent useful genetic markers for studying WSSV epidemiology.

  2. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system.

    PubMed

    Kobayashi, Tominari; Takahashi, Masaharu; Tanggis; Mulyanto; Jirintai, Suljid; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2016-07-01

    Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.

  3. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS.

    PubMed

    Bury, Joanna J; Highley, J Robin; Cooper-Knock, Johnathan; Goodall, Emily F; Higginbottom, Adrian; McDermott, Christopher J; Ince, Paul G; Shaw, Pamela J; Kirby, Janine

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration.

  4. Bovine papular stomatitis virus (BPSV) infections in Korean native cattle.

    PubMed

    Oem, Jae-Ku; Lee, Eun-Yong; Lee, Kyoung-Ki; Kim, Seong-Hee; Lee, Myoung-Heon; Hyun, Bang-Hun

    2013-01-01

    An outbreak of a disease with parapox-like symptoms was reported in South Korea in April 2012. Three of 45 Korean native cattle, age 20-24 months, were affected. Parapoxviruses were detected and identified by electron microscopy and polymerase chain reaction (PCR). To determine the genetic characteristics of the Korean strains, the sequence of the major envelope protein (B2L) was determined and compared with published reference sequences. Phylogenetic analysis revealed that the parapoxvirus strains were closely related to not only isolates from Japan, but also isolates from Germany, Sudan and the United states. This is the first report on an outbreak and the molecular characterization of BPSV in Korea.

  5. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD

    PubMed Central

    Freibaum, Brian D.; Taylor, J. Paul

    2017-01-01

    Expansion of a hexanucleotide (GGGGCC) repeat in the gene chromosome 9 open reading frame 72 (C9ORF72) is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Three non-exclusive mechanisms have been proposed to contribute to the pathology initiated by this genetic insult. First, it was suggested that decreased expression of the C9orf72 protein product may contribute to disease. Second, the recognition that C9ORF72-related disease is associated with accumulation of GGGGCC repeat-containing RNA in nuclear foci led to the suggestion that toxic gain of RNA function, perhaps related to sequestration of RNA-binding proteins, might be an important driver of disease. Third, it was subsequently appreciated that GGGGCC repeat-containing RNA undergoes unconventional translation to produce unnatural dipeptide repeat (DPR) proteins that accumulate in patient brain early in disease. DPRs translated from all six reading frames in either the sense or antisense direction of the hexanucleotide repeat result in the expression of five DPRs: glycine–alanine (GA), glycine–arginine (GR), proline–alanine (PA), proline–arginine (PR) and glycine–proline (GP; GP is generated from both the sense and antisense reading frames). However, the relative contribution of each DPR to disease pathogenesis remains unclear. Here, we review evidence for the contribution of each specific DPR to pathogenesis and examine the probable mechanisms through which these DPRs induce neurodegeneration. We also consider the association of the toxic DPRs with impaired RNA metabolism and alterations to the liquid-like state of non-membrane-bound organelles. PMID:28243191

  6. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport.

    PubMed

    Freibaum, Brian D; Lu, Yubing; Lopez-Gonzalez, Rodrigo; Kim, Nam Chul; Almeida, Sandra; Lee, Kyung-Ha; Badders, Nisha; Valentine, Marc; Miller, Bruce L; Wong, Philip C; Petrucelli, Leonard; Kim, Hong Joo; Gao, Fen-Biao; Taylor, J Paul

    2015-09-03

    The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.

  7. Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homology ICP27.

    PubMed Central

    Perera, L P; Kaushal, S; Kinchington, P R; Mosca, J D; Hayward, G S; Straus, S E

    1994-01-01

    Varicella-zoster virus is the etiological agent of chickenpox and zoster in humans and belongs to the Alphaherpesvirinae subfamily within the family Herpesviridae. Much of the current understanding of gene regulation in alphaherpesviruses has been derived from studies of the prototype herpes simplex virus (HSV). In HSV, two virus-encoded, trans-regulatory proteins, ICP4 and ICP27, are essential for the replicative cycle of the virus. ICP4 is important in modulating HSV genes of all three kinetic classes, whereas the trans-regulatory effects of ICP27 are primarily associated with the expression of late genes. Recent evidence indicates that the trans-regulatory effects of ICP27 involve posttranscriptional processing of target gene transcripts (R. M. Sandri-Golding and G. E. Mendoza, Genes Dev. 6:848-863, 1992). The ICP27 homolog in varicella-zoster virus is a 452-amino-acid polypeptide encoded by the open reading frame 4 (ORF4) gene. Contrary to what is found with ICP27, we show that the ORF4 polypeptide is a transcriptional activator of diverse target promoters and has a critical requirement for the presence of upstream elements within these promoters to mediate its transcriptional effects. Evidence is also presented to implicate a critical role for the cysteine-rich, C-terminal region of the ORF4 polypeptide in its trans-regulatory functions. Specifically, by oligonucleotide-directed site-specific mutagenesis, we demonstrate that of 10 cysteine residues in the ORF4 polypeptide, only C-421 and C-426 are essential for transactivator function and suggest that these cysteine residues may participate in critical protein-protein interactions rather than protein-nucleic acid interactions to mediate ORF4 inducibility. Images PMID:8139031

  8. Molecular characterisation and phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus.

    PubMed

    Olivier, Violaine; Blanchard, Philippe; Chaouch, Soraya; Lallemand, Perrine; Schurr, Frank; Celle, Olivier; Dubois, Eric; Tordo, Noël; Thiéry, Richard; Houlgatte, Rémi; Ribière, Magali

    2008-03-01

    The complete sequences of the two major RNAs of Chronic bee paralysis virus (CBPV) have been determined. RNA 1 (3674nt long) and RNA 2 (2305nt long) are positive single-stranded RNAs that are capped but not polyadenylated. The 3' ends of both RNAs are unreactive to polymerisation or ligation even in denaturing conditions, a feature already observed in alphanodavirus RNAs. The three previously described smaller RNAs [Overton, H.A., Buck, K.W., Bailey, L., et al., 1982. Relationships between the RNA components of Chronic bee-paralysis virus and those of chronic bee-paralysis virus associate. J. Gen. Virol. 63, 171-179], were not detected in this study, supporting the hypothesis that they would correspond to the three RNAs of the Chronic bee paralysis satellite virus (CBPSV). RNA 1 and RNA 2 encoded three and four overlapping open reading frames (ORFs), respectively. The amino acid sequences deduced from the ORF 3 on RNA 1 shared the conserved motifs of the RNA-dependent RNA polymerase (RdRp) sequence and presented similarities with members of the Nodaviridae and Tombusviridae families. However, no similarities were found between the other CBPV deduced amino acid sequences and sequences in the NCBI databases, suggesting that CBPV is the prototype of a new family of positive single-stranded RNA viruses.

  9. Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype.

    PubMed

    Floeter, Mary Kay; Bageac, Devin; Danielian, Laura E; Braun, Laura E; Traynor, Bryan J; Kwan, Justin Y

    2016-01-01

    Expansion mutations in the C9orf72 gene may cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or mixtures of the two clinical phenotypes. Different imaging findings have been described for C9orf72-associated diseases in comparison with sporadic patients with the same phenotypes, but it is uncertain whether different phenotypes have a common genotype-associated imaging signature. To address this question, 27 unrelated C9orf72 expansion mutation carriers (C9 +) with varied phenotypes, 28 age-matched healthy controls and 22 patients with sporadic ALS (sALS) underwent 3T MRI scanning and clinical phenotyping. Measures of brain volumes and cortical thickness were extracted from T1 images. Compared to healthy controls and sALS patients, symptomatic C9 + subjects had greater ventricular volume loss and thalamic atrophy for age, with diffuse, patchy cortical thinning. Asymptomatic carriers did not differ from controls. C9 + ALS and ALS-FTD patients had less thinning of the motor cortex than sALS patients, but more thinning in extramotor regions, particularly in frontal and temporal lobes. C9 + ALS patients differed from sporadic ALS patients in the thickness of the superior frontal gyrus and lateral orbitofrontal cortex. Thickness of the precentral gyrus was weakly correlated with the revised ALS functional rating scale. Thickness of many cortical regions, including several frontal and temporal regions, was moderately correlated with letter fluency scores. Letter fluency scores were weakly correlated with ventricular and thalamic volume. To better understand how imaging findings are related to disease progression, nineteen C9 + subjects and 23 healthy controls were scanned approximately 6 months later. Ventricular volume increased in C9 + patients with FTD and ALS-FTD phenotypes and remained stable in asymptomatic C9 + subjects. We conclude that diffuse atrophy is a common underlying feature of disease associated with C9orf72 mutations

  10. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway.

    PubMed

    Sullivan, Peter M; Zhou, Xiaolai; Robins, Adam M; Paushter, Daniel H; Kim, Dongsung; Smolka, Marcus B; Hu, Fenghua

    2016-05-18

    Hexanucleotide repeat expansion in the C9orf72 gene is a leading cause of frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS). Reduced expression of C9orf72 has been proposed as a possible disease mechanism. However, the cellular function of C9orf72 remains to be characterized. Here we report the identification of two binding partners of C9orf72: SMCR8 and WDR41. We show that WDR41 interacts with the C9orf72/SMCR8 heterodimer and WDR41 is tightly associated with the Golgi complex. We further demonstrate that C9orf72/SMCR8/WDR41 associates with the FIP200/Ulk1 complex, which is essential for autophagy initiation. C9orf72 deficient mice, generated using the CRISPR/Cas9 system, show severe inflammation in multiple organs, including lymph node, spleen and liver. Lymph node enlargement and severe splenomegaly are accompanied with macrophage infiltration. Increased levels of autophagy and lysosomal proteins and autophagy defects were detected in both the spleen and liver of C9orf72 deficient mice, supporting an in vivo role of C9orf72 in regulating the autophagy/lysosome pathway. In summary, our study elucidates potential physiological functions of C9orf72 and disease mechanisms of ALS/FTLD.

  11. Proteolytic processing of Porcine Reproductive and Respiratory Syndrome Virus nsp2 replicase protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One critical step in porcine reproductive and respiratory syndrome virus (PRRSV) replication is the proteolytic processing of the ORF1 polyprotein (replicase). The replicase polyprotein is generally believed to be processed to generate at least 12 smaller nonstructural proteins (nsps) involved in r...

  12. Lolium latent virus (Alphaflexiviridae) coat proteins: expression and functions in infected plant tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lolium latent virus (LoLV, Lolavirus, Alphaflexiviridae) viral genome is encapsidated by two carboxy-coterminal coat protein (CP) variants (about 28 and 33 kDa), in equimolar proportion. The CP ORF contains two 5'-proximal AUGs, encoding Met 1 and Met 49, respectively promoting translation of th...

  13. Southern Tomato Virus: The Link between the Families Totiviridae and Partitiviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dsRNA virus with a genome of 3.5 kb was isolated from field and greenhouse-grown tomato plants of different cultivars and geographic locations in North America. Cloning and sequencing of the viral genome showed the presence of two partially overlapping open reading frames (ORFs) and a genomic orga...

  14. Distribution, genetic diversity and recombination analysis of Citrus tristeza virus of India

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus tristeza virus (CTV) isolates representing all the citrus growing geographical zones of India were analyzed for sequence of the 5'ORF1a fragments of the partial LProI domain and for the coat protein (CP) gene. The sequences were compared with previously reported Indian and CTV genotypes from...

  15. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  16. Gene repertoire of amoeba-associated giant viruses.

    PubMed

    Colson, Philippe; Raoult, Didier

    2010-01-01

    Acanthamoeba polyphaga mimivirus, Marseillevirus, and Sputnik, a virophage, are intra-amoebal viruses that have been isolated from water collected in cooling towers. They have provided fascinating data and have raised exciting questions about viruses definition and evolution. Mimivirus and Marseillevirus have been classified in the nucleo-cytoplasmic large DNA viruses (NCLDVs) class. Their genomes are the largest and fifth largest viral genomes sequenced so far. The gene repertoire of these amoeba-associated viruses can be divided into four groups: the core genome, genes acquired by lateral gene transfer, duplicated genes, and ORFans. Open reading frames (ORFs) that have homologs in the NCLDVs core gene set represent 2.9 and 6.1% of the Mimivirus and Marseillevirus gene contents, respectively. A substantial proportion of the Mimivirus, Marseillevirus and Sputnik ORFs exhibit sequence similarities to homologs found in bacteria, archaea, eukaryotes or viruses. The large amount of chimeric genes in these viral genomes might have resulted from acquisitions by lateral gene transfers, implicating sympatric bacteria and viruses with an intra-amoebal lifestyle. In addition, lineage-specific gene expansion may have played a major role in the genome shaping. Altogether, the data so far accumulated on amoeba-associated giant viruses are a powerful incentive to isolate and study additional strains to gain better understanding of their pangenome.

  17. Genetic Variability of Myxoma Virus Genomes.

    PubMed

    Braun, Christoph; Thürmer, Andrea; Daniel, Rolf; Schultz, Anne-Kathrin; Bulla, Ingo; Schirrmeier, Horst; Mayer, Dietmar; Neubert, Andreas; Czerny, Claus-Peter

    2017-02-15

    Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA.

  18. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains.

    PubMed

    Wang, Jichun; Höper, Dirk; Beer, Martin; Osterrieder, Nikolaus

    2011-09-01

    We here report the complete genome sequence of the duck enteritis virus (DEV) wild-type strain 2085, an avian herpesvirus (GenBank ID: JF999965). The nucleotide sequence was derived from the 2085 genome cloned as an infectious bacterial artificial chromosome (BAC) clone. The DEV 2085 genome is 160,649-bp in length and encodes 78 predicted open reading frames (ORFs), a number identical to that identified for the attenuated DEV VAC strain (GenBank ID: EU082088.2). Comparison of the genome sequences DEV 2085 and VAC with partial sequences of the virulent CHv strain and the attenuated strain Clone-03 was carried out to identify nucleotide or amino acid polymorphisms that potentially contribute to DEV virulence. No amino acid changes were identified in 24 of the 78 ORFs, a result indicating high conservation in DEV independently of strain origin or virulence. In addition, 39 ORFs contain non-synonymous nucleotide substitutions, while 15 ORFs had nucleotide insertions or deletions, frame-shift mutations and/or non-synonymous nucleotide substitutions with an effect on ORF initiation or termination. In 7 of the 15 ORFs with high and 27 of the 39 ORFs with low variability, polymorphisms were exclusively found in DEV 2085, a finding that likely is a result of a different origin of 2085 (Europe) or VAC, Clone-03 and CHv (Eastern Asia). Five ORFs (UL2, UL12, US10, UL47 and UL41) with polymorphisms were identical between the virulent DEV 2085 and CHv but different from VAC or Clone-03. They, individually or in combination, may therefore represent DEV virulence factors. Our comparative analysis of four DEV sequences provides a comprehensive overview of DEV genome structure and identifies ORFs that are changed during serial virus passage.

  19. Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission

    PubMed Central

    Yang, Xin; Huang, Jilei; Liu, Chuanhe; Chen, Biao; Zhang, Tong; Zhou, Guohui

    2017-01-01

    A new rice viral disease exhibiting distinct symptoms—yellow stripes, mosaic and twisted tips on leaves—was found in China. Electron microscopy of infected leaf cells revealed the presence of bacilliform virions and electron-translucent granular-fibrillar viroplasm in the cytoplasm. The enveloped viral particles were 300 to 375 nm long and 45 to 55 nm wide. The leafhopper Recilia dorsalis was able to transmit the virus to rice seedlings, which subsequently exhibited symptoms similar to those observed in fields. The complete genome of the virus was obtained by small-RNA deep sequencing and reverse transcription-PCR product sequencing. The anti-genome contains seven open reading frames (ORFs). The deduced amino acids of ORF1, ORF5, and ORF7 are, respectively, homologous to the nucleocapsid protein (N), glycoprotein (G), and large polymerase protein (L) of known rhabdoviruses. The predicted product of ORF2 is identified as a phosphoprotein (P) based on its multiple potential phosphorylation sites and 12.6 to 21.0% amino acid (aa) identities with the P proteins of plant rhabdoviruses. The product of ORF4 is presumed to be the viral matrix (M) protein for it shares 10.3 to 14.3% aa identities with those of other rhabdoviruses. The above five products were confirmed as the viral structural proteins by SDS-PAGE and aa sequencing analyses of purified virus preparation. ORF3 and ORF6 are considered to encode two nonstructural proteins with unknown functions. Phylogenetic analysis based on protein N, G, and L amino acid sequences indicated that the isolated virus, which we have tentatively named Rice stripe mosaic virus (RSMV), is a new species in the genus Cytorhabdovirus. To our knowledge, RSMV is the only cytorhabdovirus naturally infecting rice and the first reported leafhopper-transmitted cytorhabdovirus. Our surveys of rice fields indicate that RSMV occurs frequently in Guangdong Province, China. Although the disease incidence is low at present, it might become

  20. Evolution of quasispecies diversity for porcine reproductive and respiratory syndrome virus under antibody selective pressure.

    PubMed

    Zhao, Peng; Ma, ChengTai; Dong, Xuan; Cui, ZhiZhong

    2012-09-01

    To study the quasispecies diversity of porcine reproductive and respiratory syndrome virus (PRRSV), open reading frame 5 (ORF5) of strain SD0612 was amplified and cloned. Sixty clones of ORF5 were sequenced and analyzed with DNAStar software. Nucleic acid sequence homology was 97.7%-100%, with 78 mutations observed. Among these 60 clones, the sequences of 17 clones were identical and recognized as the dominant quasispecies of strain SD0612. Evolution of SD0612 quasispecies diversity under antibody selective pressure was also studied. SD0612 was passed continuously in the Marc-145 cell line over 40 passages in 6 independent lineages. SD0612 antiserum was not added to lineage A, B, and C cultures; however, antiserum was added to culture medium for lineages D, E, and F. PRRSV ORF5 was then amplified, cloned, and sequenced from each of the 6 lineages, designated as A40-F40. F40 was further passed in Marc-145 cells using 6 independent lineages with or without F40 antiserum for another 40 passages. ORF5 from the 6 newly-derived virus lineages, which we designated as a40-f40, were amplified, cloned and sequenced. The proportion of dominant quasispecies increased with passage number in cell cultures supplemented with antibodies, but decreased when antibodies were lacking. Our work has demonstrated a diversity of quasispecies for ORF5 in PRRSV SD0612. Antibody selective pressure was able to significantly influence quasispecies diversity and promote a dominant quasispecies that was able to evade immune reactions.

  1. ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGGCC expansion.

    PubMed

    Chiò, Adriano; Mora, Gabriele; Sabatelli, Mario; Caponnetto, Claudia; Lunetta, Christian; Traynor, Bryan J; Johnson, Janel O; Nalls, Mike A; Calvo, Andrea; Moglia, Cristina; Borghero, Giuseppe; Trojsi, Francesca; La Bella, Vincenzo; Volanti, Paolo; Simone, Isabella; Salvi, Fabrizio; Logullo, Francesco O; Riva, Nilo; Carrera, Paola; Giannini, Fabio; Mandrioli, Jessica; Tanel, Raffaella; Capasso, Margherita; Tremolizzo, Lucio; Battistini, Stefania; Murru, Maria Rita; Origone, Paola; Zollino, Marcella; Penco, Silvana; Mazzini, Letizia; D'Alfonso, Sandra; Restagno, Gabriella; Brunetti, Maura; Barberis, Marco; Conforti, Francesca L

    2016-03-01

    There are indications that both familial amyotrophic lateral sclerosis (ALS) and sporadic ALS phenotype and prognosis are partly regulated by genetic and environmental factors, supporting the theory that ALS is a multifactorial disease. The aim of this article was to assess the role of ATXN2 intermediate length repeats in a large series of Italian and Sardinian ALS patients and controls carrying a pathogenetic C9ORF72 GGGGCC hexanucleotide repeat. A total of 1972 ALS cases were identified through the database of the Italian ALS Genetic consortium, a collaborative effort including 18 ALS centers throughout Italy. The study population included: (1) 276 Italian and 57 Sardinian ALS cases who carried the C9ORF72 expansion; (2) 1340 Italian and 299 Sardinian ALS cases not carrying the C9ORF72 expansion. A total of healthy 1043 controls were also assessed. Most Italian and Sardinian cases and controls were homozygous for 22/22 or 23/23 repeats or heterozygous for 22/23 repeats of the ATXN2 gene. ATXN2 intermediate length repeats alleles (≥28) were detected in 3 (0.6%) Italian ALS cases carrying the C9ORF72 expansion, in none of the Sardinian ALS cases carrying the expansion, in 60 (4.3%) Italian cases not carrying the expansion, and in 6 (2.0%) Sardinian ALS cases without C9ORF72 expansion. Intermediate length repeat alleles were found in 12 (1.5%) Italian controls and 1 (0.84%) Sardinian controls. Therefore, ALS patients with C9ORF72 expansion showed a lower frequency of ATXN2 polyQ intermediate length repeats than both controls (Italian cases, p = 0.137; Sardinian cases, p = 0.0001) and ALS patients without C9ORF72 expansion (Italian cases, p = 0.005; Sardinian cases, p = 0.178). In our large study on Italian and Sardinian ALS patients with C9ORF72 GGGGCC hexanucleotide repeat expansion, compared to age-, gender- and ethnic-matched controls, ATXN2 polyQ intermediate length does not represent a modifier of ALS risk, differently from non-C9ORF72 mutated patients.

  2. Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women.

    PubMed

    Luo, Lianmei; Xia, Weibo; Nie, Min; Sun, Yue; Jiang, Yan; Zhao, Jing; He, Shuli; Xu, Ling

    2014-05-01

    The estrogen receptor 1 (ESR1) and Chromosome 6 Open Reading Frame 97 (C6orf97) gene polymorphisms were earlier reported to be associated with osteoporosis in the European cohort. The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNP) with bone mineral density (BMD), fracture, vertebral fracture, bone turnover or 25-hydroxyvitamin D [25(OH)D] in 1,753 randomly selected postmenopausal women in China. Vertebral fracture, BMD of lumbar spine (2-4), femoral neck and total hip were measured respectively. Serum N-terminal procollagen of type 1 collagen (P1NP), β-isomerized type I collagen C-telopeptide breakdown products (β-CTX) and 25(OH)D3 were also determined. Binary logistic regression revealed significant associations between fracture risk with rs1999805 (P=0.041, OR 1.633, 95%CI 1.020-2.616) and rs6929137 (P=0.005, OR 1.932, 95%CI 1.226-3.045) in recessive model. Significant association was also observed between vertebral fracture risk and rs1038304 (P=0.039, OR 0.549, 95%CI 0.311-0.969) in recessive model. Liner regression analyses showed that only the CC group of rs4870044 was significantly associated with total hip in dominant model (P=0.034). Our findings suggest that ESR1 and C6orf97 gene polymorphism is associated with fracture and vertebral fracture risk in Chinese postmenopausal women.

  3. Searching for Grendel: origin and global spread of the C9ORF72 repeat expansion

    PubMed Central

    Pliner, Hannah A.; Mann, David M.; Traynor, Bryan J.

    2015-01-01

    Recent advances are uncovering more and more of the genetic architecture underlying amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative condition that affects ~6,000 Americans annually. Chief among these was the discovery that a large repeat expansion in the C9ORF72 gene is responsible for an unprecedented portion of familial and sporadic ALS cases. Much has been published on how this expansion disrupts neuronal homeostasis and how gene-based therapy might be an effective treatment in the future. Nevertheless, it is instructive to look back at the origins of this important mutation. In this opinion piece, we attempt to answer three key questions concerning C9ORF72. First, how many times did the expansion occur throughout human history? Second, how old is the expansion? And finally and perhaps most importantly, how did the expansion spread throughout Europe? We speculate that the expansion occurred only once in the past, that this event took place in the Finnish population and that the Vikings and their descendants were responsible for disseminating this mutation throughout the rest of the continent. PMID:24496499

  4. ESRRA-C11orf20 Is a Recurrent Gene Fusion in Serous Ovarian Carcinoma

    PubMed Central

    Green, Ann E.; Nielsen, Julie S.; Nelson, Brad H.; Drescher, Charles W.; Brown, Patrick O.

    2011-01-01

    Every year, ovarian cancer kills approximately 14,000 women in the United States and more than 140,000 women worldwide. Most of these deaths are caused by tumors of the serous histological type, which is rarely diagnosed before it has disseminated. By deep paired-end sequencing of mRNA from serous ovarian cancers, followed by deep sequencing of the corresponding genomic region, we identified a recurrent fusion transcript. The fusion transcript joins the 5′ exons of ESRRA, encoding a ligand-independent member of the nuclear-hormone receptor superfamily, to the 3′ exons of C11orf20, a conserved but uncharacterized gene located immediately upstream of ESRRA in the reference genome. To estimate the prevalence of the fusion, we tested 67 cases of serous ovarian cancer by RT-PCR and sequencing and confirmed its presence in 10 of these. Targeted resequencing of the corresponding genomic region from two fusion-positive tumor samples identified a nearly clonal chromosomal rearrangement positioning ESRRA upstream of C11orf20 in one tumor, and evidence of local copy number variation in the ESRRA locus in the second tumor. We hypothesize that the recurrent novel fusion transcript may play a role in pathogenesis of a substantial fraction of serous ovarian cancers and could provide a molecular marker for detection of the cancer. Gene fusions involving adjacent or nearby genes can readily escape detection but may play important roles in the development and progression of cancer. PMID:21949640

  5. Exome sequencing identifies KIAA1377 and C5orf42 as susceptibility genes for monomelic amyotrophy.

    PubMed

    Lim, Young-Min; Koh, Insong; Park, Young-Mi; Kim, Jae-Jung; Kim, Dae-Seong; Kim, Hyo-Jin; Baik, Kyu-Heum; Choi, Hye-Yeon; Yang, Gap-Seok; Also-Rallo, Eva; Tizzano, Eduardo F; Gamez, Josep; Park, Kiejung; Yoo, Han-Wook; Lee, Jong-Keuk; Kim, Kwang-Kuk

    2012-05-01

    Precise topographic localization, predominance in males mostly of Asian origin, and existence of some familial cases suggest a genetic background for monomelic amyotrophy. To identify susceptibility genes for monomelic amyotrophy, we performed whole-exome sequencing of four unrelated patients with monomelic amyotrophy and detected a total of 45 novel nonsynonymous single-nucleotide polymorphisms as unique variants to monomelic amyotrophy compared to control exomes. Genetic association analysis showed significant association with monomelic amyotrophy in the Gly668Ser variant of the KIAA1377 gene (odds ratio=4.62, P-value=0.0040) and the Pro1794Leu variant of the C5orf42 gene (odds ratio=4.63, P-value=0.0040). Moreover, the combination of two variants increased the risk of monomelic amyotrophy (P=1.4×10(-5), OR=61.69, 95% confidence interval=9.62-394.94, in case of combination of two heterozygotes). These data suggest that KIAA1377 and C5orf42 synergistically play a role as susceptibility genes for monomelic amyotrophy.

  6. Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs.

    PubMed

    Hu, Jiaxin; Rigo, Frank; Prakash, Thazha P; Corey, David R

    2017-04-01

    Mutations within the chromosome 9 open reading frame 72 (c9orf72) gene are associated with both familial amyotrophic lateral sclerosis and frontotemporal dementia. The mutation leads to an expanded GGGGCC hexanucleotide repeat within the first intron of c9orf72 and an expanded CCCCGG repeat within a corresponding antisense transcript. Both the mutant intronic and antisense RNAs have been implicated in disease. We have previously reported that duplex RNAs complementary to the repeats can recognize disease-causing RNA and block detection of nuclear foci formed by the mutant transcripts. Here, we test the hypothesis that inhibition can also be achieved by single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are single-stranded antisense oligonucleotides (ASOs) that function through RNAi interference (RNAi) to silence gene expression. ss-siRNAs can block the expanded repeats within both intronic RNA and the antisense transcripts. Inhibition is more potent than by analogous duplex RNAs. Our data suggest that the potent effects on foci are caused by a combination of mechanisms including RNAi and direct binding of the ss-siRNA to the target transcripts. These findings reinforce the suggestion that ss-siRNAs combine the favorable properties of duplex RNA and single-stranded ASOs.

  7. The Orphan C2orf40 Gene is a Neuroimmune Factor in Alzheimer’s Disease

    PubMed Central

    Podvin, Sonia; Miller, Miles C.; Rossi, Ryan; Chukwueke, Jasmine; Donahue, John E.; Johanson, Conrad E.; Baird, Andrew; Stopa, Edward G.

    2016-01-01

    Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer’s disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8–10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD. PMID:27990492

  8. Distinct C9orf72-Associated Dipeptide Repeat Structures Correlate with Neuronal Toxicity

    PubMed Central

    Krans, Amy; Sawaya, Michael R.; Paulson, Henry L.; Todd, Peter K.; Barmada, Sami J.; Ivanova, Magdalena I.

    2016-01-01

    Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs. To address this question, we synthesized dipeptide units corresponding to the three sense-strand RAN translation products, analyzed their structures by circular dichroism, electron microscopy and dye binding assays, and assessed their relative toxicity when applied to primary cortical neurons. Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 dipeptides. Doubling peptide length had little effect on the structure of GR or GP peptides, but (GA)6 peptides formed β-sheet rich aggregates that bound thioflavin T and Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 dipeptides increased their β-sheet content and enhanced their toxicity when applied to neurons. We also observed that the relative toxicity of each tested dipeptide was proportional to peptide internalization. Our results demonstrate that different C9orf72-related dipeptides exhibit distinct structural properties that correlate with their relative toxicity. PMID:27776165

  9. Transcriptome profiling of the cysticercus stage of the laboratory model Taenia crassiceps, strain ORF.

    PubMed

    García-Montoya, Gisela M; Mesa-Arango, Jairo A; Isaza-Agudelo, Juan P; Agudelo-Lopez, Sonia P; Cabarcas, Felipe; Barrera, Luis F; Alzate, Juan F

    2016-02-01

    Neurocysticercosis (NC) is a serious public health problem mainly in developing countries. NC caused by the cysticercus stage from cestode Taenia solium is considered by the WHO and ITFDE as a potentially eradicable disease. Definitive diagnosis of NC is challenging because of the unspecific clinical manifestations such as the non-definitive evidence presented by neuroimaging (in most cases) and the lack of definitive serological test. Taenia crassiceps (ORF strain) is a cestode closely related to T. solium and it has frequently been used as a source of antigens for immunodiagnostics. A murine model to study host immune response to infection has also been established by using T. crassiceps. Despite the extensive use of T. crassiceps for research, molecular information for this cestode is scarce in public databases. With the aim of providing more extensive information on T. crassiceps biology, an RNA-seq experiment and subsequent bioinformatic transcriptome processing of this cestode parasite mRNA in its cysticercus stage were carried out. A total of 227,082 read/ESTs were sequenced using the 454-GS FLX Titanium technology and assembled into 10,787 contigs. This transcriptome dataset represents new and valuable molecular information of the cestode T. crassiceps (ORF). This information will substantially improve public information and will help to achieve a better understanding of the biology of T. crassiceps and to identify target proteins for serodiagnosis and vaccination.

  10. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics.

    PubMed

    Boeynaems, Steven; Bogaert, Elke; Kovacs, Denes; Konijnenberg, Albert; Timmerman, Evy; Volkov, Alex; Guharoy, Mainak; De Decker, Mathias; Jaspers, Tom; Ryan, Veronica H; Janke, Abigail M; Baatsen, Pieter; Vercruysse, Thomas; Kolaitis, Regina-Maria; Daelemans, Dirk; Taylor, J Paul; Kedersha, Nancy; Anderson, Paul; Impens, Francis; Sobott, Frank; Schymkowitz, Joost; Rousseau, Frederic; Fawzi, Nicolas L; Robberecht, Wim; Van Damme, Philip; Tompa, Peter; Van Den Bosch, Ludo

    2017-03-16

    Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD.

  11. Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone.

    PubMed

    Jengarn, Juggragarn; Wongthida, Phonphimon; Wanasen, Nanchaya; Frantz, Phanramphoei Namprachan; Wanitchang, Asawin; Jongkaewwattana, Anan

    2015-08-01

    Porcine epidemic diarrhoea virus (PEDV) causes acute diarrhoea and dehydration in swine of all ages, with significant mortality in neonatal pigs. The recent rise of PEDV outbreaks in Asia and North America warrants an urgent search for effective vaccines. However, PEDV vaccine research has been hampered by difficulties in isolating and propagating the virus in mammalian cells, thereby complicating the recovery of infectious PEDV using a full-length infectious clone. Here, we engineered VeroE6 cells to stably express porcine aminopeptidase N (pAPN) and used them as a platform to obtain a high-growth variant of PEDV, termed PEDVAVCT12. Subsequently, the full-length cDNA clone was constructed by assembling contiguous cDNA fragments encompassing the complete genome of PEDVAVCT12 in a bacterial artificial chromosome. Infectious PEDV could be recovered, and the rescued virus displayed phenotypic properties identical to the parental virus. Interestingly, we found that PEDVAVCT12 contained a C-terminal deletion of the spike gene, resulting in disruption of the ORF3 start codon. When a functional ORF3 gene was restored, the recombinant virus could not be rescued, suggesting that ORF3 could suppress PEDV replication in vitro. In addition, a high-growth and genetically stable recombinant PEDV expressing a foreign protein could be rescued by replacing the ORF3 gene with the mCherry gene. Together, the results of this study provide a means to generate genetically defined PEDV as a promising vaccine candidate.

  12. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs.

    PubMed

    Tian, Debin; Ni, Yan-Yan; Zhou, Lei; Opriessnig, Tanja; Cao, Dianjun; Piñeyro, Pablo; Yugo, Danielle M; Overend, Christopher; Cao, Qian; Lynn Heffron, C; Halbur, Patrick G; Pearce, Douglas S; Calvert, Jay G; Meng, Xiang-Jin

    2015-11-01

    The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection.

  13. High frequency of hepatitis E virus infection in swine from South Brazil and close similarity to human HEV isolates.

    PubMed

    Passos-Castilho, Ana Maria; Granato, Celso Francisco Hernandes

    2017-01-03

    Hepatitis E virus is responsible for acute and chronic liver infections worldwide. Swine hepatitis E virus has been isolated in Brazil, and a probable zoonotic transmission has been described, although data are still scarce. The aim of this study was to investigate the frequency of hepatitis E virus infection in pigs from a small-scale farm in the rural area of Paraná State, South Brazil. Fecal samples were collected from 170 pigs and screened for hepatitis E virus RNA using a duplex real-time RT-PCR targeting a highly conserved 70nt long sequence within overlapping parts of ORF2 and ORF3 as well as a 113nt sequence of ORF2. Positive samples with high viral loads were subjected to direct sequencing and phylogenetic analysis. hepatitis E virus RNA was detected in 34 (20.0%) of the 170 pigs following positive results in at least one set of screening real-time RT-PCR primers and probes. The swine hepatitis E virus strains clustered with the genotype hepatitis E virus-3b reference sequences in the phylogenetic analysis and showed close similarity to human hepatitis E virus isolates previously reported in Brazil.

  14. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  15. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells

    PubMed Central

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-01-01

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs. PMID:28345668

  16. Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division

    PubMed Central

    Theis, Mirko; Slabicki, Mikolaj; Junqueira, Magno; Paszkowski-Rogacz, Maciej; Sontheimer, Jana; Kittler, Ralf; Heninger, Anne-Kristine; Glatter, Timo; Kruusmaa, Kristi; Poser, Ina; Hyman, Anthony A; Pisabarro, M Teresa; Gstaiger, Matthias; Aebersold, Rudolf; Shevchenko, Andrej; Buchholz, Frank

    2009-01-01

    Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses. PMID:19387489

  17. Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division.

    PubMed

    Theis, Mirko; Slabicki, Mikolaj; Junqueira, Magno; Paszkowski-Rogacz, Maciej; Sontheimer, Jana; Kittler, Ralf; Heninger, Anne-Kristine; Glatter, Timo; Kruusmaa, Kristi; Poser, Ina; Hyman, Anthony A; Pisabarro, M Teresa; Gstaiger, Matthias; Aebersold, Rudolf; Shevchenko, Andrej; Buchholz, Frank

    2009-05-20

    Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.

  18. The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells.

    PubMed

    Li, S; Szymborski, A; Miron, M-J; Marcellus, R; Binda, O; Lavoie, J N; Branton, P E

    2009-01-22

    The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G(2)/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.

  19. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

    PubMed

    Donnelly, Christopher J; Zhang, Ping-Wu; Pham, Jacqueline T; Haeusler, Aaron R; Heusler, Aaron R; Mistry, Nipun A; Vidensky, Svetlana; Daley, Elizabeth L; Poth, Erin M; Hoover, Benjamin; Fines, Daniel M; Maragakis, Nicholas; Tienari, Pentti J; Petrucelli, Leonard; Traynor, Bryan J; Wang, Jiou; Rigo, Frank; Bennett, C Frank; Blackshaw, Seth; Sattler, Rita; Rothstein, Jeffrey D

    2013-10-16

    A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.

  20. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells.

    PubMed

    Bauer, Peter O

    2016-01-26

    A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), together referred to as c9FTD/ALS. It has been suggested that a loss of C9orf72 protein expression, the formation of toxic RNA foci and dipeptide-repeat proteins contribute to C9orf72-related diseases. Interestingly, it has been shown that trimethylation of histones and methylation of CpG islands near the repeat expansion may play a role in the pathogenesis c9FTD/ALS. Recently, methylation of expanded repeat itself has been reported. To further elucidate the mechanisms underlying these diseases, the influence of epigenetic modification in the repeat expansion on its pathogenic effect was assessed. Here, a reduced formation of toxic RNA foci and dipeptide-repeat proteins upon methylation of the GGGGCC repeat in a cellular model of c9FTD/ALS is shown. Additionally, a novel methylcytosine-capture DNA hybridization immunoassay for semi-quantitative detection of the repeat methylation levels is presented, potentially usable for methylation analysis in patients carrying C9orf72 repeat expansion carriers as a diagnostic tool. Presented results suggest that increased level of pathogenic GGGGCC expansion methylation may be sufficient to alleviate the molecular pathology of the C9orf72-related diseases.

  1. C9ORF72 hexanucleotide repeat expansions are a frequent cause of Huntington disease phenocopies in the Greek population.

    PubMed

    Koutsis, Georgios; Karadima, Georgia; Kartanou, Chrisoula; Kladi, Athina; Panas, Marios

    2015-01-01

    An expanded hexanucleotide repeat in C9ORF72 has been identified as the most common genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia in many populations, including the Greek. Recently, C9ORF72 expansions were reported as the most common genetic cause of Huntington disease (HD) phenocopies in a UK population. In the present study, we screened a selected cohort of 40 Greek patients with HD phenocopies for C9ORF72 hexanucleotide repeat expansions using repeat-primed polymerase chain reaction. We identified 2 patients (5%) with pathologic expansions. The first patient had chorea, behavioral-psychiatric disturbance, cognitive impairment, and a positive family history, fulfilling the strictest criteria for HD phenocopy. The second patient was sporadic and had parkinsonism, behavioral-psychiatric disturbance, and cognitive impairment, corresponding to a broader definition of HD phenocopy. These findings identify C9ORF72 expansions as a frequent cause of HD phenocopies in the Greek population, confirming recent findings in other populations and supporting proposed diagnostic testing for C9ORF72 expansions in patients with HD-like syndromes.

  2. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells.

    PubMed

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-03-27

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs.

  3. Identification of B-cell epitopes in the capsid protein of avian hepatitis E virus (avian HEV) that are common to human and swine HEVs or unique to avian HEV.

    PubMed

    Guo, H; Zhou, E-M; Sun, Z F; Meng, X-J; Halbur, P G

    2006-01-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens from the USA that had hepatitis-splenomegaly (HS) syndrome. The complete genomic sequence of avian HEV shares about 50 % nucleotide sequence identity with those of human and swine HEVs. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, but the B-cell epitopes in the avian HEV ORF2 protein have not been identified. Nine synthetic peptides from the predicted four antigenic domains of the avian HEV ORF2 protein were synthesized and corresponding rabbit anti-peptide antisera were generated. Using recombinant ORF2 proteins, convalescent pig and chicken antisera, peptides and anti-peptide rabbit sera, at least one epitope at the C terminus of domain II (possibly between aa 477-492) that is unique to avian HEV, one epitope in domain I (aa 389-410) that is common to avian, human and swine HEVs, and one or more epitopes in domain IV (aa 583-600) that are shared between avian and human HEVs were identified. Despite the sequence difference in ORF2 proteins between avian and mammalian HEVs and similar ORF2 sequence between human and swine HEV ORF2 proteins, rabbit antiserum against peptide 6 (aa 389-399) recognized only human HEV ORF2 protein, suggesting complexity of the ORF2 antigenicity. The identification of these B-cell epitopes in avian HEV ORF2 protein may be useful for vaccine design and may lead to future development of immunoassays for differential diagnosis of avian, swine and human HEV infections.

  4. Modulation of TIP60 by Human Papilloma Virus in Breast Cancer

    DTIC Science & Technology

    2012-09-01

    implicated. At least six human viruses are linked with cancers, namely Epstein- Barr virus (EBV), Hepatitis B Virus (HBV), Hepatitis C virus (HCV...It is worth noting that besides HPV E6 and adenovirus E1B55K+E4orf6, some other viral proteins are known to interact with Tip60: pUL27 of CMV , Tat...Tris-HCl pH-8, 150mM NaCl, 5mM EDTA, 0.5%NP40, 1mM dithiothreitol, 20mM NaF and protease inhibitor mix ( Sigma )) and then subsequently sonicated

  5. New isolates of carnation Italian ringspot virus differ from the original one by having replication-associated proteins with a typical tombusvirus-like N-terminus and by inducing peroxisome- rather than mitochondrion-derived multivesicular bodies.

    PubMed

    Koenig, Renate; Lesemann, Dietrich-Eckhardt; Pfeilstetter, Ernst

    2009-01-01

    Five new isolates of carnation Italian ringspot virus (CIRV) from cherry trees, Gypsophila and surface water differ from the original carnation isolate (CIRV-car) and also from Pelargonium necrotic spot virus (PelNSV) by having an ORF 1/ORF1-RT with a typical tombusvirus-like 5'end and by inducing the formation of peroxisome- rather than mitochondrion-derived multivesicular bodies (MVBs). This supports with natural isolates earlier conclusions reached by others with artificially produced hybrid viruses that the 5'end of ORF 1 determines from which organelle the MBVs will be derived. CIRV-car might have resulted from a natural recombination event with genome elements of a PelNSV-like virus.

  6. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach

    PubMed Central

    Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max

    2016-01-01

    Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744

  7. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach.

    PubMed

    Abd-Alla, Adly M M; Kariithi, Henry M; Cousserans, François; Parker, Nicolas J; İnce, İkbal Agah; Scully, Erin D; Boeren, Sjef; Geib, Scott M; Mekonnen, Solomon; Vlak, Just M; Parker, Andrew G; Vreysen, Marc J B; Bergoin, Max

    2016-04-01

    Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies.

  8. The restricted IgG1 antibody response to maedi visna virus is seen following infection but not following immunization with recombinant gag protein.

    PubMed

    Bird, P; Reyburn, H T; Blacklaws, B A; Allen, D; Nettleton, P; Yirrell, D L; Watt, N; Sargan, D; McConnell, I

    1995-11-01

    Maedi-visna (MVV) is a retrovirus of the subfamily lentivirinae which includes HIV, simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV). Infection of its natural host, the sheep, does not cause overt immunodeficiency, but rather a chronic inflammatory disease. However, subtle immunological changes following infection have been reported including a sheep IgG1 subclass-restricted MVV-neutralizing antibody. Here we demonstrate by Western blotting that there is no IgG2 serum antibody response to any MVV antigen after MVV infection, in contrast to infection with the parapox virus Orf, when serum IgG2 anti-Orf antibody is readily detected. By ELISA, the IgG1 antibody titres to Orf are higher than to MVV, but the minimum MVV serum antibody IgG1/IgG2 ratio is significantly raised compared with that for Orf virus antibody in the same sheep, indicating that the IgG2 defect in MVV infection cannot be accounted for by differences in the sensitivity of the Orf and MVV ELISA. Serum IgG2 anti-MVV gag p. 25 can be detected in both normal and MVV-infected sheep following immunization with purified recombinant MVV gag p 25 protein in Freund's complete adjuvant. The failure to make an IgG2 MVV-specific antibody indicates that immunological dysfunction can arise with macrophage tropic lentiviruses, and it may aid viral persistence.

  9. The restricted IgG1 antibody response to maedi visna virus is seen following infection but not following immunization with recombinant gag protein.

    PubMed Central

    Bird, P; Reyburn, H T; Blacklaws, B A; Allen, D; Nettleton, P; Yirrell, D L; Watt, N; Sargan, D; McConnell, I

    1995-01-01

    Maedi-visna (MVV) is a retrovirus of the subfamily lentivirinae which includes HIV, simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV). Infection of its natural host, the sheep, does not cause overt immunodeficiency, but rather a chronic inflammatory disease. However, subtle immunological changes following infection have been reported including a sheep IgG1 subclass-restricted MVV-neutralizing antibody. Here we demonstrate by Western blotting that there is no IgG2 serum antibody response to any MVV antigen after MVV infection, in contrast to infection with the parapox virus Orf, when serum IgG2 anti-Orf antibody is readily detected. By ELISA, the IgG1 antibody titres to Orf are higher than to MVV, but the minimum MVV serum antibody IgG1/IgG2 ratio is significantly raised compared with that for Orf virus antibody in the same sheep, indicating that the IgG2 defect in MVV infection cannot be accounted for by differences in the sensitivity of the Orf and MVV ELISA. Serum IgG2 anti-MVV gag p. 25 can be detected in both normal and MVV-infected sheep following immunization with purified recombinant MVV gag p 25 protein in Freund's complete adjuvant. The failure to make an IgG2 MVV-specific antibody indicates that immunological dysfunction can arise with macrophage tropic lentiviruses, and it may aid viral persistence. Images Fig. 1 Fig. 4 PMID:7586678

  10. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    PubMed

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  11. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses

    PubMed Central

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-01-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle. PMID:26884161

  12. Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome.

    PubMed Central

    Salamitou, S; Lemaire, M; Fujino, T; Ohayon, H; Gounon, P; Béguin, P; Aubert, J P

    1994-01-01

    The ORF3 gene of Clostridium thermocellum encodes a polypeptide (ORF3p) which contains a receptor domain for the docking sequence borne by the catalytic subunits of the cellulosome and a triplicated domain related to some bacterial cell surface proteins. It was thus surmised that ORF3p is a surface protein. In this study, this hypothesis was confirmed. Subcellular fractionation, Western blotting (immunoblotting), and electron microscopy of immunocytochemically labeled cells indicated that ORF3p produced by C. thermocellum was located in the outer surface layer of the bacterium. This layer appeared to consist of a soft matrix shedding off particulate fragments. Nonsedimenting ORF3p derived from sonicated cells was associated with high-molecular-mass fractions (> 20 MDa), probably corresponding to fragments of the outer cell layer. The same high-molecular-mass fractions also contained the cellulosomal marker CipA. Contrary to CipA, however, ORF3p was not associated with 2- to 4-MDa fractions corresponding to individual cellulosomes, and a significant fraction of ORF3p failed to bind to cellulose. It is proposed that ORF3 and ORF3p be renamed olpA and OlpA, respectively (for outer layer protein). Images PMID:8188584

  13. Identification and characterization of upstream open reading frames (uORF) in the 5' untranslated regions (UTR) of genes in Saccharomyces cerevisiae.

    PubMed

    Zhang, Zhihong; Dietrich, Fred S

    2005-08-01

    We have taken advantage of recently sequenced hemiascomycete fungal genomes to computationally identify additional genes potentially regulated by upstream open reading frames (uORFs). Our approach is based on the observation that the structure, including the uORFs, of the post-transcriptionally uORF regulated Saccharomyces cerevisiae genes GCN4 and CPA1 is conserved in related species. Thirty-eight candidate genes for which uORFs were found in multiple species were identified and tested. We determined by 5' RACE that 15 of these 38 genes are transcribed. Most of these 15 genes have only a single uORF in their 5' UTR, and the length of these uORFs range from 3 to 24 codons. We cloned seven full-length UTR sequences into a luciferase (LUC) reporter system. Luciferase activity and mRNA level were compared between the wild-type UTR construct and a construct where the uORF start codon was mutated. The translational efficiency index (TEI) of each construct was calculated to test the possible regulatory function on translational level. We hypothesize that uORFs in the UTR of RPC11, TPK1, FOL1, WSC3, and MKK1 may have translational regulatory roles while uORFs in the 5' UTR of ECM7 and IMD4 have little effect on translation under the conditions tested.

  14. Analysis by live imaging of effects of the adenovirus E4orf4 protein on passage through mitosis of H1299 tumor cells.

    PubMed

    Sriskandarajah, Neera; Blanchette, Paola; Kucharski, Thomas J; Teodoro, Jose G; Branton, Philip E

    2015-04-01

    The adenovirus E4orf4 protein expressed at high levels kills cancer cells but not normal human primary cells. Previous studies suggested that disruption of processes that regulate mitosis may underlie E4orf4 toxicity. Here we have used live imaging to show that E4orf4 induces a slowed defective transit through mitosis, exhibiting a delay or often failure in cytokinesis that may account for an accumulation of G1 tetraploids in the population of dying E4orf4-expressing cells.

  15. The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses

    PubMed Central

    Lauber, Chris; Goeman, Jelle J.; Parquet, Maria del Carmen; Thi Nga, Phan; Snijder, Eric J.; Morita, Kouichi; Gorbalenya, Alexander E.

    2013-01-01

    The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the

  16. Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome.

    PubMed

    Upton, C; DeLange, A M; McFadden, G

    1987-09-01

    Shope fibroma virus (SFV), a tumorigenic poxvirus, has a 160-kb linear double-stranded DNA genome and possesses terminal inverted repeats (TIRs) of 12.4 kb. The DNA sequence of the terminal 5.5 kb of the viral genome is presented and together with previously published sequences completes the entire sequence of the SFV TIR. The terminal 400-bp region contains no major open reading frames (ORFs) but does possess five related imperfect palindromes. The remaining 5.1 kb of the sequence contains seven tightly clustered and tandemly oriented ORFs, four larger than 100 amino acids in length (T1, T2, T4, and T5) and three smaller ORFs (T3A, T3B, and T3C). All are transcribed toward the viral hairpin and almost all possess the consensus sequence TTTTTNT near their 3' ends which has been implicated for the transcription termination of vaccinia virus early genes. Searches of the published DNA database revealed no sequences with significant homology with this region of the SFV genome but when the protein database was searched with the translation products of ORFs T1-T5 it was found that the N-terminus of the putative T4 polypeptide is closely related to the signal sequence of the hemagglutinin precursor from influenza A virus, suggesting that the T4 polypeptide may be secreted from SFV-infected cells. Examination of other SFV ORFs shows that T1 and T2 also possess signal-like hydrophobic amino acid stretches close to their N-termini. The protein database search also revealed that the putative T2 protein has significant homology to the insulin family of polypeptides. In terms of sequence repetitions, seven tandemly repeated copies of the hexanucleotide ATTGTT and three flanking regions of dyad symmetry were detected, all in ORF T3C. A search for palindromic sequences also revealed two clusters, one in ORF T3A/B and a second in ORF T2. ORF T2 harbors five short sequence domains, each of which consists of a 6-bp short palindrome and a 10- to 18-bp larger palindrome. The

  17. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    PubMed Central

    Gallagher, Michael D.; Suh, Eunran; Grossman, Murray; Elman, Lauren; McCluskey, Leo; Van Swieten, John C.; Al-Sarraj, Safa; Neumann, Manuela; Gelpi, Ellen; Ghetti, Bernardino; Rohrer, Jonathan D.; Halliday, Glenda; Van Broeckhoven, Christine; Seilhean, Danielle; Shaw, Pamela J.; Frosch, Matthew P.; Trojanowski, John Q.; Lee, Virginia M.Y.; Van Deerlin, Vivianna; Chen-Plotkin, Alice S.

    2014-01-01

    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA binding protein of 43kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n=14), with the major allele correlated with later age at death (p=0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n=75), again finding that the major allele associates with later age at death (p=0.016), as well as later age at onset (p=0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease. PMID:24442578

  18. Replacement of the C6ORF66 assembly factor (NDUFAF4) restores complex I activity in patient cells.

    PubMed

    Marcus, Dana; Lichtenstein, Michal; Saada, Ann; Lorberboum-Galski, Haya

    2013-07-24

    Disorders of the oxidative phosphorylation (OXPHOS) system frequently result in a severe multisystem disease with the consequence of early childhood death. Among these disorders, isolated complex I deficiency is the most frequently diagnosed, accounting for one-third of all cases of respiratory chain deficiency. We chose to focus on complex I deficiency, caused by mutation in the assembly factor chromosome 6, open reading frame 66 (C6ORF66; NADH dehydrogenase [ubiquinone] complex I assembly factor 4 [NDUFAF4]) protein. We used the approach of cell- and organelle-directed protein/enzyme replacement therapy, with the transactivator of transcription (TAT) peptide as the moiety delivery system. This step will enable us to deliver the wild-type assembly factor C6ORF66 into patient cells and their mitochondria, leading to the proper assembly and function of complex I and, as a result, to a functional OXPHOS system. We designed and constructed the TAT-ORF fusion protein by gene fusion techniques, expressed the protein in an Escherichia coli expression system and highly purified it. Our results indicate that TAT-ORF enters patients' cells and their mitochondria rapidly and efficiently. TAT-ORF is biologically active and led to an increase in complex I activity. TAT-ORF also increased the number of patient cells and improved the activity of their mitochondria. Moreover, we observed an increase in ATP production, a decrease in the content of mitochondria and a decrease in the level of reactive oxygen species. Our results suggest that this approach of protein replacement therapy for the treatment of mitochondrial disorders is a promising one.

  19. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure

    PubMed Central

    Le Nouën, Cyril; McCarty, Thomas; Brown, Michael; Smith, Melissa Laird; Lleras, Roberto; Dolan, Michael A.; Mehedi, Masfique; Yang, Lijuan; Luongo, Cindy; Liang, Bo; Munir, Shirin; DiNapoli, Joshua M.; Mueller, Steffen; Wimmer, Eckard; Collins, Peter L.; Buchholz, Ursula J.

    2017-01-01

    Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates. PMID:28049853

  20. Phylogenetic lineage of Tobacco leaf curl virus in Korea and estimation of recombination events implicated in their sequence variation.

    PubMed

    Park, Jungan; Lee, Hyejung; Kim, Mi-Kyung; Kwak, Hae-Ryun; Auh, Chung-Kyoon; Lee, Kyeong-Yeoll; Kim, Sunghan; Choi, Hong-Soo; Lee, Sukchan

    2011-08-01

    New strains of Tobacco leaf curl virus (TbLCV) were isolated from tomato plants in four different local communities of Korea, and hence were designated TbLCV-Kr. Phylogenetic analysis of the sequences of the whole genome and of individual ORFs of these viruses indicated that they are closely related to the Tobacco leaf curl Japan virus (TbLCJV) cluster, which includes Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and TbLCJV isolates. Four putative recombination events were recognized within these virus sequences, suggesting that the sequence variations observed in these viruses may be attributable to intraspecific and interspecific recombination events involving some TbLCV-Kr isolates, Papaya leaf curl virus (PaLCV), and a local isolate of Tomato yellow leaf curl virus (TYLCV).

  1. Selection pressure on the hepatitis B virus pre-S/S and P open reading frames in Tongan subjects with a chronic hepatitis B virus infection.

    PubMed

    Abbott, William G H; Tsai, Peter; Ross, Howard A; 'Ofanoa, Malakai; Trevarton, Alexander J; Hornell, John; Munn, Stephen R; Gane, Edward J

    2012-11-01

    Identification of the full repertoire of hepatitis B virus (HBV) peptides that are presented to CD8+ T cells by common HLA class I alleles will be useful for designing immunotherapies for chronic hepatitis B. One hundred and seventy five cloned sequences containing the pre-S/S and P open reading frames (ORF) of the HBV were obtained from serum HBV-DNA of HBeAg-positive (n=4) and HBeAg-negative (inactive healthy carriers (IHC), n=16) Tongan subjects with an inactive chronic HBV infection. In addition, 34 and 32 sequences were obtained 5.2±1.4 (mean±SD) years apart from eight subjects. PAML was used to identify codons in the pre-S/S and P ORFs that were under positive selection pressure (ω>1). The number of non-synonymous substitutions in these codons was compared in IHC who were homozygous for either HLA-B∗4001 (n=9) or HLA-B*5602 (n=7), and who were either positive (n=6) or negative (n=10) for HLA-A*02. 34 codons in the pre-S/S and 11 codons in the P ORFs were under positive selection pressure. There was a higher number of non-synonymous substitutions in these codons in HBeAg-negative versus HBeAg-positive subjects in the P (p=0.02) but not the pre-S/S (p=0.64) ORF. There was no association between any HLA class I allele and non-synonymous substitutions in these codons. There was no increase in positive selection pressure on the pre-S/S and P ORFs with time. In conclusion, we could not find HLA class I-restricted selection pressure on any pre-S/S or P ORF amino acid; raising the possibility that peptide-based immunotherapies for chronic hepatitis B may not require peptides from these ORFs.

  2. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs.

    PubMed Central

    Smith, H A; Swaney, S L; Parks, T D; Wernsman, E A; Dougherty, W G

    1994-01-01

    Haploid leaf tissue of tobacco cultivars K326 and K149 was transformed with several transgenes containing cDNA of the potato virus Y (PVY) coat protein (CP) open reading frame (ORF). The various transgenes containing the PVY CP ORF sequence produced (1) the expected mRNA and CP product, (2) an mRNA rendered untranslatable by introduction of a stop codon immediately after the initiation codon, or (3) an antisense RNA that was untranslatable as a result of the incorrect orientation of the PVY CP ORF behind the transcriptional promoter. Homozygous doubled haploid (DH) (diploid) plants were generated, and selfed progeny from these plants were examined. Resistance was virus specific, functioning only against PVY. An inverse correlation between transgene-derived PVY transcript steady state levels and resistance was generally noted with lines expressing the untranslatable sense version of the PVY CP ORF. A collection of DH lines, derived from a single transformation event of a common haploid plant and isogenic for the PVY transgenes expressing untranslatable sense RNA, displayed different levels of PVY resistance. Lines with actively transcribed, methylated transgene sequences had low steady state levels of transgene transcript and a virus-resistant phenotype. These results are discussed within the context of sense suppression in plants. PMID:7994177

  3. TC1 (C8orf4) is upregulated by cellular stress and mediates heat shock response.

    PubMed

    Park, Juhee; Jung, Yusun; Kim, Jungtae; Kim, Ka-Young; Ahn, Sang-Gun; Song, Kyuyoung; Lee, Inchul

    2007-08-24

    TC1 (C8orf4) is associated with aggressive behavior and poor survival in cancer. We have recently reported that it is a target gene of NF-kappaB and regulates the Wnt/beta-catenin pathway. Here, we show that TC1 is upregulated by various cellular stresses and mediates heat shock response. Heat shock and other cellular stresses including H2O2, 12-O-tetradecanoylphorbol 13-acetate (TPA), lipopolysaccharide (LPS), and UV enhance TC1 transcription in HeLa, KATO-III, HEK293T, and HK cells. TC1 protein then moves into the nuclei independently of NF-kappaB activation. TC1 upregulates heat shock proteins, and TC1-knockdown inhibits stress-induced downstream regulation significantly. Heat shock factor 1(HSF1) and TC1 upregulate each other, suggesting a potential positive feedback in the heat shock response regulation. Our data suggest that TC1 is a novel heat shock response regulator.

  4. C21orf57 is a human homologue of bacterial YbeY proteins.

    PubMed

    Ghosal, Anubrata; Köhrer, Caroline; Babu, Vignesh M P; Yamanaka, Kinrin; Davies, Bryan W; Jacob, Asha I; Ferullo, Daniel J; Gruber, Charley C; Vercruysse, Maarten; Walker, Graham C

    2017-03-11

    The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.

  5. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    PubMed

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately.

  6. Deep Sequencing Analysis of Apple Infecting Viruses in Korea

    PubMed Central

    Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun

    2016-01-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time. PMID:27721694

  7. Deep Sequencing Analysis of Apple Infecting Viruses in Korea.

    PubMed

    Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun

    2016-10-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.

  8. Complete genome sequence and evolution analysis of Eimeria stiedai RNA virus 1, a novel member of the family Totiviridae.

    PubMed

    Xin, Caiyan; Wu, Bin; Li, Jianhua; Gong, Pengtao; Yang, Ju; Li, He; Cai, Xuepeng; Zhang, Xichen

    2016-12-01

    Eimeria stiedai (E. stiedai) is a coccidian that infects the liver of the domestic rabbit and may cause severe hepatic coccidiosis. Virus-like particles in E. stiedai were discovered by Revets et al. However, the complete genome sequence of the E. stiedai virus has yet to be determined. A novel virus was isolated from E. stiedai in the present study. The complete genome sequence of the E. stiedai virus was 6219 bp in length and contained two open reading frames (ORFs) with a tetranucleotide overlap (AUGA). ORF1 (2400 bp) encoded a putative coat protein of 799 amino acids (86.471 kDa) that exhibited a high level of amino acid sequence similarity to that of Eimeria tenella (E. tenella) RNA virus 1 (EtRV1; 43 % identity, NC_026140), whereas ORF2 (3303 bp) encoded a putative RNA-dependent RNA polymerase (RdRp) of 1100 amino acids (118.850 kDa) that exhibited a high level of amino acid sequence similarity to that of the E. tenella RNA virus 1 (EtRV1; 51 % identity, NC_026140). Phylogenetic analysis revealed that the E. stiedai virus was a new member of the family Totiviridae. The sequence data provided sufficient information for classification of eimeriaviruses.

  9. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway.

    PubMed

    Gao, S J; Boshoff, C; Jayachandra, S; Weiss, R A; Chang, Y; Moore, P S

    1997-10-16

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus linked to the development of Kaposi's sarcoma and a rare B cell lymphoma, primary effusion lymphoma. The KSHV gene ORF K9 encodes vIRF which is a protein with low but significant homology to members of the interferon (IFN) regulatory factor (IRF) family responsible for regulating intracellular interferon signal transduction (Moore PS, Boshoff C, Weiss RA and Chang Y. (1996). Science, 274, 1739-1744). vIRF inhibits IFN-beta signal transduction as measured using an IFN-responsive ISG54 reporter construct co-transfected with ORF K9 into HeLa and 293 cells. vIRF also suppresses genes under IFN regulatory control as shown by inhibition of the IFN-beta inducibility of p21WAF1/CIP1, however, no direct DNA-binding or protein-protein interactions characteristic for IRF repressor proteins were identified. Stable transfectant NIH3T3 clones expressing vIRF grew in soft agar and at low serum concentrations, lost contact inhibition and formed tumors after injection into nude mice indicating that vIRF has the properties of a viral oncogene. Since vIRF is primarily expressed in KSHV-infected B cells, not KS spindle cells, this study suggests that vIRF is a transforming oncogene active in B cell neoplasias that may provide a unique immune escape mechanism for infected cells. This data is consistent with tumor suppressor pathways serving a dual function as host cell antiviral pathways.

  10. The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome

    PubMed Central

    Lan, Matthews; Mojsilovic-Petrovic, Jelena; Choi, Won Hoon; Safren, Nathaniel; Barmada, Sami

    2017-01-01

    Abstract An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ∼7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte feeder layer. We find that PR20 kills motor neurons with an LD50 of 2 µM, but in contrast to the effects of other ALS-causing mutant proteins (i.e., SOD or TDP43), PR20 does not evoke the biochemical signature of mitochondrial dysfunction, ER stress, or mTORC down-regulation. PR20 does result in a time-dependent build-up of ubiquitylated substrates, and this is associated with a reduction of flux through both autophagic and proteasomal degradation pathways. GR20, however, does not have these effects. The effects of PR20 on the proteasome are likely to be direct because (1) PR20 physically associates with proteasomes in biochemical assays, and (2) PR20 inhibits the degradation of a ubiquitylated test substrate when presented to purified proteasomes. Application of a proteasomal activator (IU1) blocks the toxic effects of PR20 on motor neuron survival. This work suggests that proteasomal activators have therapeutic potential in individuals with C9ORF72 HRE. PMID:28197542

  11. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population.

    PubMed

    Srour, Myriam; Schwartzentruber, Jeremy; Hamdan, Fadi F; Ospina, Luis H; Patry, Lysanne; Labuda, Damian; Massicotte, Christine; Dobrzeniecka, Sylvia; Capo-Chichi, José-Mario; Papillon-Cavanagh, Simon; Samuels, Mark E; Boycott, Kym M; Shevell, Michael I; Laframboise, Rachel; Désilets, Valérie; Maranda, Bruno; Rouleau, Guy A; Majewski, Jacek; Michaud, Jacques L

    2012-04-06

    Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.

  12. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    PubMed

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease.

  13. The Kaposi's Sarcoma-Associated Herpesvirus ORF34 Protein Binds to HIF-1α and Causes Its Degradation via the Proteasome Pathway

    PubMed Central

    Kousoulas, Konstantin G.

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi's sarcoma (KS) and two other lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). Kaposi's sarcoma is a highly vascular tumor, and recently both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α were detected in KS samples, indicating a role of HIFs in the KSHV life cycle. Previously, we showed that ORF34, a lytic gene of unassigned function, was activated by hypoxia and that ORF34 transcription was upregulated by both HIFs (M. Haque, D. A. Davis, V. Wang, I. Widmer, and R. Yarchoan, J Virol. 77:6761–6768, 2003). In the present study, we show that coexpression of ORF34 with HIF-1αm (degradation-resistant HIF-1α) caused substantial reduction in HIF-1α-dependent transcription, as evidenced by reporter assays. Two-way immunoprecipitation experiments revealed that ORF34 physically interacted with HIF-1αm in transient expression experiments. Deletion analysis revealed that three different ORF34 domains interacted with the amino-terminal domain of HIF-1α. Also, purified HIF-1α and ORF34 proteins interacted with each other. The observed transcriptional inhibition of HIF-1α-dependent promoters was attributed to degradation of HIF-1α after binding with ORF34, since the overall amount of wild-type HIF-1α but not the degradation-resistant one (HIF-1αm) was reduced in the presence of ORF34. Moreover, ORF34 caused degradation of HIF-1α in a dose-dependent manner. Inhibition of the ubiquitin-dependent pathway by the chemical proteasome inhibitor MG132 prevented HIF-1α degradation in the presence of ORF34. These results show that ORF34 binds to HIF-1α, leading to its degradation via the proteasome-dependent pathway. PMID:23221556

  14. Genomic sequence of infectious hypodermal and hematopoietic necrosis virus (IHHNV) KLV-2010-01 originating from the first Korean outbreak in cultured Litopenaeus vannamei.

    PubMed

    Kim, J H; Kim, H K; Nguyen, V G; Park, B K; Choresca, C H; Shin, S P; Han, J E; Jun, J W; Park, S C

    2012-02-01

    Due to the need to track and monitor genetic diversity, the genome of the infectious hypodermal and hematopoietic necrosis virus (IHHNV) strain KLV-2010-01 in cultured Litopenaeus vannamei shrimp that originated from the first Korean outbreak in 2010 was sequenced and analyzed. The genome, with a length of 3914 nucleotides, was sequenced from the Korean IHHNV. The genome encoded three large and overlapping open reading frames: ORF1 (NS-1) of 2001 bp, ORF2 (NS-2) of 1092 bp and ORF3 (capsid protein) of 990 bp. The overall organization, size and predicted amino acid sequence of the three ORFs in Korean IHHNV were highly similar to those of members of the infectious IHHNV group, and the most closely related strains were IHHNVs described from Ecuador and Hawaii. Additionally, phylogenetic analysis showed that the Korean IHHNV was clustered with lineage III in the infectious IHHNV group and was most similar to IHHNV isolates from Ecuador, China and Taiwan.

  15. Genome Sequencing of the Behavior Manipulating Virus LbFV Reveals a Possible New Virus Family

    PubMed Central

    Lepetit, David; Gillet, Benjamin; Hughes, Sandrine; Kraaijeveld, Ken

    2016-01-01

    Parasites are sometimes able to manipulate the behavior of their hosts. However, the molecular cues underlying this phenomenon are poorly documented. We previously reported that the parasitoid wasp Leptopilina boulardi which develops from Drosophila larvae is often infected by an inherited DNA virus. In addition to being maternally transmitted, the virus benefits from horizontal transmission in superparasitized larvae (Drosophila that have been parasitized several times). Interestingly, the virus forces infected females to lay eggs in already parasitized larvae, thus increasing the chance of being horizontally transmitted. In a first step towards the identification of virus genes responsible for the behavioral manipulation, we present here the genome sequence of the virus, called LbFV. The sequencing revealed that its genome contains an homologous repeat sequence (hrs) found in eight regions in the genome. The presence of this hrs may explain the genomic plasticity that we observed for this genome. The genome of LbFV encodes 108 ORFs, most of them having no homologs in public databases. The virus is however related to Hytrosaviridae, although distantly. LbFV may thus represent a member of a new virus family. Several genes of LbFV were captured from eukaryotes, including two anti-apoptotic genes. More surprisingly, we found that LbFV captured from an ancestral wasp a protein with a Jumonji domain. This gene was afterwards duplicated in the virus genome. We hypothesized that this gene may be involved in manipulating the expression of wasp genes, and possibly in manipulating its behavior. PMID:28173110

  16. An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eriophyid mite-transmitted, multipartite, negative-sense plant RNA