Science.gov

Sample records for parapoxvirus orf virus

  1. A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV).

    PubMed

    Rohde, Joerg; Schirrmeier, Horst; Granzow, Harald; Rziha, Hanns-Joachim

    2011-11-15

    This report describes the generation of a new recombinant Orf virus (ORFV; Parapoxvirus) expressing the major capsid protein VP1 (VP60) of the calicivirus, rabbit hemorrhagic disease virus (RHDV). Authentic expression of VP1 could be demonstrated in cells infected with the recombinant D1701-V-VP1 without the need for production of infectious ORFV progeny. Notably, infected cells also released empty calicivirus-like particles (VLPs). Challenge experiments showed that even a single immunization with ≥10(5) PFU of D1701-V-VP1 protected rabbits against lethal RHDV infection. ELISA tests indicated that the protective immunity mediated by D1701-V-VP1 did not strictly depend on the presence of detectable RHDV-specific serum antibodies. The induction of interleukin-2 found only in the sera of rabbits immunized with the D1701-V-VP1, but not in sera of rabbits immunized with the inactivated commercial vaccine RIKA-VACC, might indicate also some involvement of T-cells in protection. Collectively, this work adds another example of the successful use of the ORFV vector system for the generation of a recombinant vaccine, and demonstrates its potential as an alternative vaccine to protect rabbits against RHDV infection.

  2. A New Rabies Vaccine Based on a Recombinant Orf Virus (Parapoxvirus) Expressing the Rabies Virus Glycoprotein

    PubMed Central

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier

    2013-01-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (107 PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals. PMID:23175365

  3. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein.

    PubMed

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier; Rziha, Hanns-Joachim

    2013-02-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals.

  4. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus) genome

    PubMed Central

    2012-01-01

    Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus) was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration of B2 may provide the

  5. Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep

    PubMed Central

    Fleming, Stephen B.; McCaughan, Catherine; Lateef, Zabeen; Dunn, Amy; Wise, Lyn M.; Real, Nicola C.; Mercer, Andrew A.

    2017-01-01

    Orf virus (ORFV) is the type species of the Parapoxvirus genus of the family Poxviridae and infects sheep and goats, often around the mouth, resulting in acute pustular skin lesions. ORFV encodes several secreted immunomodulators including a broad-spectrum chemokine binding protein (CBP). Chemokines are a large family of secreted chemotactic proteins that activate and regulate inflammation induced leukocyte recruitment to sites of infection. In this study we investigated the role of CBP in vivo in the context of ORFV infection of sheep. The CBP gene was deleted from ORFV strain NZ7 and infections of sheep used to investigate the effect of CBP on pathogenesis. Animals were either infected with the wild type (wt) virus, CBP-knockout virus or revertant strains. Sheep were infected by scarification on the wool-less area of the hind legs at various doses of virus. The deletion of the CBP gene severely attenuated the virus, as only few papules formed when animals were infected with the CBP-knock-out virus at the highest dose (107 p.f.u). In contrast, large pustular lesions formed on almost all animals infected with the wt and revertant strains at 107 p.f.u. The lesions for the CBP-knock-out virus resolved approximately 5–6 days p.i, at a dose of 107 pfu whereas in animals infected with the wt and revertants at this dose, lesions began to resolve at approximately 10 days p.i. Few pustules developed at the lowest dose of 103 p.f.u. for all viruses. Immunohistochemistry of biopsy skin-tissue from pustules showed that the CBP-knockout virus replicated in all animals at the highest dose and was localized to the skin epithelium while haematoxylin and eosin staining showed histological features of the CBP-knockout virus typical of the parent virus with acanthosis, elongated rete ridges and orthokeratotic hyperkeratosis. MHC-II immunohistochemistry analysis for monocytes and dendritic cells showed greater staining within the papillary dermis of the CBP-knock-out virus compared

  6. Parapoxvirus papillomatosis in the muskoxen (Ovibos moschatus): genetical differences between the virus causing new outbreak in a vaccinated herd, the vaccine virus and a local orf virus.

    PubMed

    Moens, U; Wold, I; Mathiesen, S D; Jørgensen, T; Sørensen, D; Traavik, T

    1990-01-01

    Since 1981 a domesticated muskoxen herd had been successfully vaccinated against papillomatosis with homogenated, glutaraldehyde inactivated papilloma tissue. In the fall of 1985 a new clinical outbreak of disease occurred, affecting previously infected as well as vaccinated animals. The purification of parapox virions directly from papilloma tissue and orf scabs collected in a local sheep farm was followed by restriction endonuclease analysis of viral DNA. The morphological identity of purified virus was controlled by electron microscopy. Comparison of restriction endonuclease digests (10 different enzymes) by gel electrophoresis demonstrated that the muskoxen parapoxvirus from the new outbreak 1985 differed considerably from the 2 other isolates (muskoxen 1981 and local orf). The latter viruses demonstrated a high degree of homology, but differences were evident after digestion with the enzyme EcoRI. During metrizamide gradient purification minor bands containing morphologically intact virions were isolated in addition to the major fractions. The restriction enzyme digests indicated that the virions of the minor bands differed from those in the major bands.

  7. New Orf Virus (Parapoxvirus) Recombinant Expressing H5 Hemagglutinin Protects Mice against H5N1 and H1N1 Influenza A Virus

    PubMed Central

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV. PMID:24376753

  8. First molecular characterization of a Turkish orf virus strain from a human based on a partial B2L sequence.

    PubMed

    Karakas, Ahmet; Oguzoglu, Tuba Cigdem; Coskun, Omer; Artuk, Cumhur; Mert, Gurkan; Gul, Hanefi Cem; Sener, Kenan; Özkul, Aykut

    2013-05-01

    Cases of orf virus infection in human in Turkey have been reported for many years. Scab material from a man was found positive by PCR using pan-parapox-specific primers for parapoxvirus infection. The amplicon was purified and sequenced. The present study provides for the first time a phylogenetic analysis of parapoxviruses from Turkey. The partial B2L gene sequence of a Turkish orf virus from a human presented here may be useful for characterization of parapoxvirus infections in Turkey based on the phylogenetic analysis studies.

  9. Orf virus encodes a homolog of the vaccinia virus interferon-resistance gene E3L.

    PubMed

    McInnes, C J; Wood, A R; Mercer, A A

    1998-01-01

    A homolog of the vaccinia virus (VAC) interferon resistance gene E3L has been discovered in orf virus strain NZ-2, a parapoxvirus that infects sheep, goats and humans. The gene is located 20 kb from the left terminus of the orf virus genome and is transcribed towards this terminus. RNase protection studies have been used to define the limits of the gene and Northern analysis revealed that it is expressed early in infection. The predicted amino acid sequence of the orf virus protein shares 31% identity (57% similarity) with the VAC E3L protein. Four of the six residues identified as being essential to dsRNA binding in the vaccinia virus protein are conserved in the orf virus protein whilst the other two amino acid changes are conservative substitutions. The orf virus gene has been sequenced in two other orf virus strains which vary markedly in their ability to produce experimental lesions in vivo. Their predicted protein sequences vary by less than 3% from the NZ-2 protein. The recombinant orf virus protein, expressed as a fusion protein in E. coli, bound double-stranded (ds)RNA but not dsDNA, single-stranded (ss)DNA or ssRNA . This is the first demonstration of a VAC E3L-like gene encoded by a parapoxvirus.

  10. Genetic characterization of orf virus associated with an outbreak of severe orf in goats at a farm in Lusaka, Zambia (2015).

    PubMed

    Simulundu, Edgar; Mtine, Nandi; Kapalamula, Thoko F; Kajihara, Masahiro; Qiu, Yongjin; Ngoma, James; Zulu, Victor; Kwenda, Geoffrey; Chisanga, Chrispin; Phiri, Isaac K; Takada, Ayato; Mweene, Aaron S

    2017-04-04

    Orf or contagious ecthyma is a neglected and economically important zoonotic disease caused by a dermatotropic parapoxvirus that commonly affects domestic small ruminants. Although orf is globally distributed, there is a paucity of information on the disease in many African countries. Here, a suspected severe outbreak of orf in goats at a farm in Lusaka was investigated. Orf virus (ORFV) infection was confirmed by PCR amplification of viral DNA (RNA polymerase, B2L and virus interferon-resistance genes) in clinical samples. Some detected genes were sequenced and phylogenetically analyzed. This is the first report on molecular characterization of ORFV in goats in Zambia.

  11. Isolation and partial characterization of a parapoxvirus isolated from a skin lesion of a Weddell seal.

    PubMed

    Tryland, M; Klein, J; Nordøy, E S; Blix, A S

    2005-03-01

    A solitary skin lesion was found on the neck of a Weddell seal (Leptonychotes weddellii), chemically immobilized in Queen Maud Land (70 degrees 09'S, 05 degrees 22'E) Antarctica 2001. The lesion was elevated and 3cm in diameter, consisting of partly fresh and partly necrotic tissue, and proliferative papilloma-like structures were seen. Electron microscopy on a biopsy from the lesion revealed typical parapoxvirus particles. Polymerase chain reaction (PCR; B2L gene) generated amplicons of approximately 594 base pairs, comparable to Orf-virus, the prototype parapoxvirus. A comparison of these B2L PCR amplicon DNA sequences with corresponding sequences from other parapoxviruses, showed that the Weddell seal virus resembled isolates from grey seal (Halichoerus grypus) and harbour seal (Phoca vitulina) more than parapoxvirus from red deer (Cervus elaphus), sheep, cattle and Japanese serows (Capricornis crispus). It is thus concluded that the Weddell seal parapoxvirus belong to the tentative seal parapoxvirus species. Since parapox and orthopoxviruses may cause similar clinical diseases, we suggest that the term sealpox should be restricted to the clinical disease, whereas seal parapoxvirus should be used when caused by a parapoxvirus, rather than the general term "sealpox virus". This is the first verified case of parapoxvirus infection in a Weddell seal, and also the first report of any such infections in the Antarctic.

  12. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    PubMed Central

    Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.

    2015-01-01

    Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056

  13. Suppression of influenza virus infection by the orf virus isolated in Taiwan

    PubMed Central

    LIN, Fong-Yuan; TSENG, Yeu-Yang; CHAN, Kun-Wei; KUO, Shu-Ting; YANG, Cheng-Hsiung; WANG, Chi-Young; TAKASU, Masaki; HSU, Wei-Li; WONG, Min-Liang

    2015-01-01

    Orf virus (ORFV), a member of parapoxvirus, is an enveloped virus with genome of double-stranded DNA. ORFV causes contagious pustular dermatitis or contagious ecthyma in sheep and goats worldwide. In general, detection of viral DNA and observing ORFV virion in tissues of afflicted animals are two methods commonly used for diagnosis of orf infection; however, isolation of the ORFV in cell culture using virus-containing tissue as inoculum is known to be difficult. In this work, the ORFV (Hoping strain) isolated in central Taiwan was successfully grown in cell culture. We further examined the biochemical characteristic of our isolate, including viral genotyping, viral mRNA and protein expression. By electron microscopy, one unique form of viral particle from ORFV infected cellular lysate was demonstrated in the negative-stained field. Moreover, immunomodulating and anti-influenza virus properties of this ORFV were investigated. ORFV stimulated human monocytes (THP-1) secreting proinflammatory cytokines IL-8 and TNF-α. And, pre-treatment of ORFV-infected cell medium prevents A549 cells from subsequent type A influenza virus (IAV) infection. Similarly, mice infected with ORFV via both intramuscular and subcutaneous routes at two days prior to IAV infection significantly decreased the replication of IAV. In summary, the results of a current study indicated our Hoping strain harbors the immune modulator property; with such a bio-adjuvanticity, we further proved that pre-exposure of ORFV protects animals from subsequent IAV infection. PMID:25855509

  14. Pathology and preliminary characterization of a parapoxvirus isolated from a California sea lion (Zalophus californianus).

    PubMed

    Nollens, Hendrik H; Jacobson, Elliott R; Gulland, Frances M D; Beusse, Diedrich O; Bossart, Gregory D; Hernandez, Jorge A; Klein, Paul A; Condit, Richard C

    2006-01-01

    Cutaneous pox-like lesions are a common complication in the rehabilitation of pinnipeds. However, the exact identity, taxonomy, and host range of pinniped parapoxviruses remain unknown. During a poxvirus outbreak in May 2003 in California sea lions (Zalophus californianus) at a marine mammal rehabilitation facility, multiple raised, firm, 1-3-cm skin nodules from the head, neck, and thorax of one sea lion weanling pup that spontaneously died were collected. Histologically, the nodules were characterized by inflammation and necrosis of the dermis and epidermis, acanthosis, and ballooning degeneration of the stratum spinosum. Large, coalescing eosinophilic cytoplasmic inclusions were observed in the ballooned cells. A parapoxvirus (sea lion poxvirus 1, SLPV-1) was isolated on early passage California sea lion kidney cells inoculated with a tissue homogenate of a skin nodule. The morphology of the virions on electron microscopy was consistent with that of parapoxviruses. Partial sequencing of the genomic region encoding the putative major virion envelope antigen p42K confirmed the assignment of the sea lion poxvirus to the genus Parapoxvirus. Although SLPV-1 is most closely related to the poxvirus of harbor seals of the European North Sea, it is significantly different from orf virus, bovine papular stomatitis virus, pseudocowpox virus and the parapoxvirus of New Zealand red deer.

  15. Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (Herpes suid 1).

    PubMed

    Dory, Daniel; Fischer, Timo; Béven, Véronique; Cariolet, Roland; Rziha, Hanns-Joachim; Jestin, André

    2006-09-11

    The present study demonstrates the protective potential of a novel prime-boost vaccination strategy of pigs against lethal Pseudorabies virus (PRV; Herpes suid 1) infection. Animals were primed with Sindbis virus-derived plasmids that express viral glycoproteins gC and gD (gC- and gD-pSIN) and subsequently booster immunized with Orf virus (ORFV; Parapoxvirus) recombinants expressing gC and gD (D1701-VrVgC and -VrVgD). The prime-boost vaccination induced strong humoral and cellular-like PRV-specific immune responses. All prime-boost vaccinated pigs survived the lethal challenge infection without PRV-specific clinical symptoms and presented excellent body weight loss attenuation. Most notably, nasal shedding of challenge virus was reduced by more than about 3log(10), clearly reducing the risk of infection of non-immunized pigs.

  16. Isolation and characterization of orf viruses from Korean black goats.

    PubMed

    Oem, Jae-Ku; Chung, Joon-Yee; Kim, Yong-Joo; Lee, Kyoung-Ki; Kim, Seong-Hee; Jung, Byeong-Yeal; Hyun, Bang-Hun

    2013-01-01

    Five cases of orf virus infection in Korean black goats were diagnosed in our laboratory between 2010 and 2011. One orf virus (ORF/2011) was isolated from an ovine testis cell line (OA3.Ts) for use as a vaccine candidate. Sequences of the major envelope protein and orf virus interferon resistance genes were determined and compared with published reference sequences. Phylogenetic analyses revealed that orf viruses from Korean black goats were most closely related to an isolate (ORF/09/Korea) from dairy goats in Korea. This result indicates that the orf viruses might have been introduced from dairy goats into the Korean black goat population.

  17. An Investigation of a Cluster of Parapoxvirus Cases in Missouri, Feb-May 2006: Epidemiologic, Clinical and Molecular Aspects.

    PubMed

    Lederman, Edith R; Tao, Min; Reynolds, Mary G; Li, Yu; Zhao, Hui; Smith, Scott K; Sitler, Lisa; Haberling, Dana L; Davidson, Whitni; Hutson, Christina; Emerson, Ginny; Schnurr, David; Regnery, Russell; Zhu, Bao-Ping; Pue, Howard; Damon, Inger K

    2013-02-28

    In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC), two of which were initially diagnosed as cutaneous anthrax. This investigation was conducted to determine the level of recognition of zoonotic parapoxvirus infections and prevention measures, the degree to which veterinarians may be consulted on human infections and what forces were behind this perceived increase in reported infections. Interviews were conducted and clinical and environmental sampling was performed. Swab and scab specimens were analyzed by real-time polymerase chain reaction (PCR), whereas serum specimens were evaluated for parapoxvirus antibodies. Three case patients were found to have fed ill juvenile animals without using gloves. Forty-six percent of veterinarians reported having been consulted regarding suspected human orf infections. Orf virus DNA was detected from five of 25 asymptomatic sheep. Analysis of extracellular envelope gene sequences indicated that sheep and goat isolates clustered in a species-preferential fashion. Parapoxvirus infections are common in Missouri ruminants and their handlers. Infected persons often do not seek medical care; some may seek advice from veterinarians rather than physicians. The initial perception of increased incidence in Missouri may have arisen from a reporting artifact stemming from heightened concern about anthrax. Asymptomatic parapoxvirus infections in livestock may be common and further investigation warranted.

  18. Specific qPCR assays for the detection of orf virus, pseudocowpox virus and bovine papular stomatitis virus.

    PubMed

    Zhao, Hui; Wilkins, Kimberly; Damon, Inger K; Li, Yu

    2013-12-01

    The genus Parapoxvirus (PAPV) is comprised traditionally of orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV), which cause infections of ruminants and their handlers in the U.S. and worldwide. Unlike orthopoxvirus infections, which can cause systemic or localized infections, PAPV infections present normally as benign, self-limited and localized skin lesions; infections do not confer lifelong immunity. In recent years, related potentially to enhanced awareness and the availability of diagnostic methods, there has been an observed increase in reported cases of PAPV in animals and humans. This study describes TaqMan based real-time PCR assays for both generic and specific detection of PAPV species for surveillance and outbreak investigations. These assays target highly conserved PAPV RNA polymerase gene sequences and are capable of detecting three known species of PAPVs (ORFV, PCPV, and BPSV). The assays were evaluated using a panel of PAPV DNA derived from human infections or animal specimen remainders. The sensitivities of all four assays were determined using droplet digital PCR; fewer than 10 copies of clinical PAPV DNA can be detected consistently. These assays provide a reliable and sensitive method for rapid confirmation and characterization PAPV infections with varying clinical presentations.

  19. Infection with Possible Novel Parapoxvirus in Horse, Finland, 2013

    PubMed Central

    Hautaniemi, Maria; Syrjä, Pernilla; Knuuttila, Anna; Putkuri, Niina; Coulter, Lesley; McInnes, Colin J.; Vapalahti, Olli; Huovilainen, Anita; Kinnunen, Paula M.

    2016-01-01

    A horse in Finland exhibited generalized granulomatous inflammation and severe proliferative dermatitis. After euthanization, we detected poxvirus DNA from a skin lesion sample. The virus sequence grouped with parapoxviruses, closely resembling a novel poxvirus detected in humans in the United States after horse contact. Our findings indicate horses may be a reservoir for zoonotic parapoxvirus. PMID:27315302

  20. ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic

    PubMed Central

    Rintoul, Julia L; Lemay, Chantal G; Tai, Lee-Hwa; Stanford, Marianne M; Falls, Theresa J; de Souza, Christiano T; Bridle, Byram W; Daneshmand, Manijeh; Ohashi, Pamela S; Wan, Yonghong; Lichty, Brian D; Mercer, Andrew A; Auer, Rebecca C; Atkins, Harold L; Bell, John C

    2012-01-01

    Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent Th-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer. PMID:22273579

  1. Immune responses of patients to orf virus infection.

    PubMed

    Yirrell, D L; Vestey, J P; Norval, M

    1994-04-01

    Orf is a disease of sheep and goats which is caused by a parapox virus. It can be transmitted to humans, and is considered an occupational hazard by those handling sheep. In this paper we present the first report of both cell-mediated and humoral immune responses to naturally acquired orf virus infection in humans. Lymphoproliferative responses of peripheral blood mononuclear cells of patients to an orf virus antigen were vigorous soon after infection, but rapidly declined. Orf virus antibody levels, detected by ELISA, were shown to rise during infection. Western blot analysis confirmed this, and demonstrated that the antibody produced in response to the infection was directed against the 40-kDa viral surface tubule protein. Where direct comparisons were possible, the immune response of humans to orf virus infection was similar to that previously reported for sheep. Evidence was obtained suggesting that prior exposure to vaccinia virus (smallpox vaccination) provided no protection from subsequent orf virus infection. In addition, orf virus infection did not enhance immune responses to vaccinia virus antigens.

  2. Detection and phylogenetic analysis of Orf virus from sheep in Brazil: a case report

    PubMed Central

    Abrahão, Jônatas S; Campos, Rafael K; Trindade, Giliane S; Guedes, Maria IM; Lobato, Zélia IP; Mazur, Carlos; Ferreira, Paulo CP; Bonjardim, Cláudio A; Kroon, Erna G

    2009-01-01

    Background Orf virus (ORFV), the prototype of the genus Parapoxvirus (PPV), is the etiological agent of contagious ecthyma, a severe exanthematic dermatitis that afflicts domestic and wild small ruminants. Although South American ORFV outbreaks have occurred and diagnosed there are no South American PPV major membrane glycoprotein B2L gene nucleotide sequences available. Case presentation an outbreak of ovine contagious ecthyma in Midwest Brazil was investigated. The diagnosis was based on clinical examinations and molecular biology techniques. The molecular characterization of the virus was done using PCR amplification, cloning and DNA sequencing of the B2L gene. The phylogenetic analysis demonstrated a high degree of identity with ORFV strains, and the isolate was closest to the ORFV-India 82/04 isolate. Another Brazilian ORFV isolate, NE1, was sequenced for comparative analysis and also showed a high degree of identity with an Asian ORFV strain. Conclusion Distinct ORFV strains are circulating in Brazil. This is the first report on the phylogenetic analysis of an ORFV in South America. PMID:19413907

  3. Functional characterization of recombinant major envelope protein (rB2L) of orf virus.

    PubMed

    Yogisharadhya, Revanaiah; Kumar, Amit; Ramappa, Raghavendra; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Shivachandra, Sathish Bhadravati

    2017-04-01

    Orf, or contagious ecthyma, a highly contagious transboundary disease of sheep and goats, is caused by a double-stranded DNA virus (ORFV) belonging to the genus Parapoxvirus of the family Poxviridae. The ORFV genome encodes the major envelope proteins B2L and F1L, which have been found to be highly immunogenic and have multiple functional characteristics. In order to investigate the functional properties of the B2L protein, in this study, the B2L gene of ORFV strain 59/05, encoding recombinant mature B2L (aa 1M-D334), was produced as a fusion protein in Escherichia coli. The functional characteristics of purified rB2L fusion protein (~60 kDa) were evaluated in vivo and in vitro, showing that this protein had lipase and immunomodulatory activities. Immunization trials involving laboratory animals (mice, rabbits and guinea pigs) using either constant or graded doses of rB2L fusion protein with or without adjuvants (FCA, alum) as well as co-administration with candidate rErns-Ag protein of classical swine fever virus (CSFV) indicated that the rB2L protein is immunogenic and has immunomodulatory properties. This study shows the potential utility of the rB2L protein as a safe and novel adjuvant in veterinary vaccine formulations.

  4. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin.

    PubMed

    Bennett, Jared R; Lateef, Zabeen; Fleming, Stephen B; Mercer, Andrew A; Wise, Lyn M

    2016-02-02

    Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Phylogenetic analysis of Croatian orf viruses isolated from sheep and goats

    PubMed Central

    2010-01-01

    Background The Orf virus (ORFV) is the prototype of the parapoxvirus genus and it primarily causes contagious ecthyma in goats, sheep, and other ruminants worldwide. In this paper, we described the sequence and phylogenetic analysis of the B2L gene of ORFV from two natural outbreaks: i) in autochthonous Croatian Cres-breed sheep and ii) on small family goat farm. Results Sequence and phylogenetic analyses of the ORFV B2L gene showed that the Cro-Cres-12446/09 and Cro-Goat-11727/10 were not clustered together. Cro-Cres-12446/09 shared the highest similarity with ORFV NZ2 from New Zealand, and Ena from Japan; Cro-Goat-11727/10 was closest to the HuB from China and Taiping and Hoping from Taiwan. Conclusion Distinct ORFV strains are circulating in Croatia. Although ORFV infections are found ubiquitously wherever sheep and goats are farmed in Croatia, this is the first information on genetic relatedness of any Croatian ORFV with other isolates around the world. PMID:21073725

  6. Parapoxvirus infections of red deer, Italy.

    PubMed

    Scagliarini, Alessandra; Vaccari, Francesca; Turrini, Filippo; Bianchi, Alessandro; Cordioli, Paolo; Lavazza, Antonio

    2011-04-01

    To characterize parapoxviruses causing severe disease in wild ruminants in Stelvio Park, Italy, we sequenced and compared the DNA of several isolates. Results demonstrated that the red deer isolates are closely related to the parapox of red deer in New Zealand virus.

  7. Parapoxvirus Infections of Red Deer, Italy

    PubMed Central

    Vaccari, Francesca; Turrini, Filippo; Bianchi, Alessandro; Cordioli, Paolo; Lavazza, Antonio

    2011-01-01

    To characterize parapoxviruses causing severe disease in wild ruminants in Stelvio Park, Italy, we sequenced and compared the DNA of several isolates. Results demonstrated that the red deer isolates are closely related to the parapox of red deer in New Zealand virus. PMID:21470460

  8. An Investigation of a Cluster of Parapoxvirus Cases in Missouri, Feb–May 2006: Epidemiologic, Clinical and Molecular Aspects

    PubMed Central

    Lederman, Edith R.; Tao, Min; Reynolds, Mary G.; Li, Yu; Zhao, Hui; Smith, Scott K.; Sitler, Lisa; Haberling, Dana L.; Davidson, Whitni; Hutson, Christina; Emerson, Ginny; Schnurr, David; Regnery, Russell; Zhu, Bao-Ping; Pue, Howard; Damon, Inger K.

    2013-01-01

    Simple Summary In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC). We conducted surveys of herders and veterinarians, performed animal and environmental sampling and obtained sera from potential case-patients. We determined that, in general, infected persons may seek advice from veterinarians rather than physicians, thereby giving physicians less clinical experience. The initial perception of increased incidence in Missouri was likely due to reporting bias due to misdiagnosis and increased awareness due to recent publications. Basic personal protective measures are not being routinely utilized. Asymptomatic parapoxvirus infections in livestock may be common and warrants further investigation. Abstract In the spring of 2006, four human cases of parapoxvirus infections in Missouri residents were reported to the Centers for Disease Control and Prevention (CDC), two of which were initially diagnosed as cutaneous anthrax. This investigation was conducted to determine the level of recognition of zoonotic parapoxvirus infections and prevention measures, the degree to which veterinarians may be consulted on human infections and what forces were behind this perceived increase in reported infections. Interviews were conducted and clinical and environmental sampling was performed. Swab and scab specimens were analyzed by real-time polymerase chain reaction (PCR), whereas serum specimens were evaluated for parapoxvirus antibodies. Three case patients were found to have fed ill juvenile animals without using gloves. Forty-six percent of veterinarians reported having been consulted regarding suspected human orf infections. Orf virus DNA was detected from five of 25 asymptomatic sheep. Analysis of extracellular envelope gene sequences indicated that sheep and goat isolates clustered in a species-preferential fashion. Parapoxvirus infections are common in Missouri ruminants

  9. Isolation and phylogenetic analysis of orf virus from the sheep herd outbreak in northeast China

    PubMed Central

    2012-01-01

    Background Orf is a zoonotic and epitheliotrophic contagious disease that mainly affects sheep, goats, wild ruminants, and humans with a worldwide distribution. To date, there is little information on the characterization of ORFV strains that are endemic in Mainland China. In addition, the relationship between the severity of disease and the molecular profile of ORFV strains has not been fully elucidated. Results From the recent outbreak of a sheep herd in Nongan, northeast of China, the novel orf virus (ORFV) strain NA1/11 was successfully isolated. Western blot analysis indicated that the NA1/11 strain cross reacts with monoclonal antibody A3 and infected sheep ORFV antiserum. The purified virions revealed the typical ovoid shape when observed by atomic force microscopy. To determine the genetic characteristics of the NA1/11 strain, the sequences of ORFV011 (B2L), ORFV059 (F1L), ORFV109, ORFV110 and ORFv132 (VEGF) genes were amplified and compared with reference parapoxvirus strains. Non-metric multidimensional scaling (nMDS) was performed to analyze the nucleotide similarities between different ORFV strains. Conclusions Phylogenetic analysis based on ORFV 011 nucleotide sequences showed that the NA1/11strain was closely related to Xinjiang and Gansu strains. ORFV110 and ORFV132 genes are highly variable. The results revealed that precise phylogenetic analysis might provide evidence for genetic variation and movement of circulating ORFV strains in Northeast China. In addition, nMDS analysis showed that geographic isolation and animal host are likely major factors resulting in genetic differences between ORFV strains. PMID:23174032

  10. A viral infection of the hand commonly seen after the feast of sacrifice: human orf (orf of the hand).

    PubMed

    Uzel, M; Sasmaz, S; Bakaris, S; Cetinus, E; Bilgic, E; Karaoguz, A; Ozkul, A; Arican, O

    2005-08-01

    Orf of the hand is an uncommon zoonotic infection caused by a dermotropic DNA virus that belongs to the Parapoxvirus genus of the family Poxviridae. It is transmitted to humans through contact with infected sheep and goats and is reported as an occupational disease. We report nine cases of human orf seen in the hands of individuals, who were not occupationally exposed, after the feast of sacrifice in Turkey. Three cases were teachers and six out of the nine were housewives. We observed musculoskeletal complications and misdiagnoses. It is important to consider human orf in the differential diagnosis of hand lesions to prevent overtreatment and complications.

  11. Molecular characterization of Brazilian isolates of orf virus.

    PubMed

    Mazur, C; Ferreira, I I; Rangel Filho, F B; Galler, R

    2000-05-11

    Outbreaks of an epidermic disease suggesting parapox virus infections have been observed in all major herds of sheep and goats from different geographical areas of Brazil. Clinical samples (dried scabs) were collected and orf virus was isolated and characterized by electron microscopy in previous work. In order to characterize these viruses at the molecular level, a modified methodology for genomic DNA extraction directly from scabs was used and such DNA was used to derive the restriction enzyme digestion patterns for clinical samples from three distinct geographic origins. Pulsed field gel electrophoresis was used to separate restriction enzyme DNA fragments and heterogeneity among isolates from different geographic areas could be observed on stained gels. The HindIII-G DNA fragment from orf-A virus genome was cloned and hybridized to DNA of other orf virus isolates. Further heterogeneity was confirmed by these hybridizations.

  12. Parapoxvirus (PPV) of red deer reveals subclinical infection and confirms a unique species.

    PubMed

    Friederichs, Schirin; Krebs, Stefan; Blum, Helmut; Lang, Heike; Büttner, Mathias

    2015-06-01

    Parapoxvirus (PPV) infections are of worldwide importance, particularly in sheep and goat herds. Owing to the zoonotic potential of all PPV species, they are a permanent threat to human health as well. The virus is also known to affect wildlife, as reported for pinnipeds, red deer and several other wild ruminants. PPVs found in red deer have been claimed as a unique species according to certain genomic features. So far infection of wildlife has been recognized because of clinical manifestation such as inflammation, stomatitis or typical pox-like lesions in the skin or mucous membranes. Here we report the use of targeted molecular diagnostics for the presence of PPV genomes in tonsil swabs of apparently healthy red deer in the Bavarian Alps. Out of 1764 swabs, 0.79 % tested positive for PPV genome presence. From one sample, PPV was successfully isolated in cell culture. This virus became the subject of complete genome characterization using next generation sequencing and various subsidiary PCR protocols. Strikingly, about a quarter of all ORFs were found to be larger than the corresponding ORFs in the reference PPV genome sequences used for comparison. To our knowledge this is the first genome-wide analysis that confirms red deer PPV as a unique species within the genus Parapoxvirus in Europe. Persistence of PPV in Alpine red deer indicates a source for virus transmission to susceptible livestock and hunters. The findings provide a further example of wildlife animals playing an important role as an inconspicuous reservoir of zoonotic diseases.

  13. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  14. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  15. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  16. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  17. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  18. OH1 from Orf Virus: A New Tyrosine Phosphatase that Displays Distinct Structural Features and Triple Substrate Specificity.

    PubMed

    Segovia, Danilo; Haouz, Ahmed; Porley, Darío; Olivero, Natalia; Martínez, Mariano; Mariadassou, Mahendra; Berois, Mabel; André-Leroux, Gwenaëlle; Villarino, Andrea

    2017-09-01

    Viral tyrosine phosphatases such as VH1 from Vaccinia and Variola virus are recognized as important effectors of host-pathogen interactions. While proteins sharing sequence to VH1 have been identified in other viruses, their structural and functional characterization is not known. In this work, we determined the crystal structure of the VH1 homolog in the Orf virus, herein named OH1. Similarly to Variola and Vaccinia VH1, the structure of OH1 shows a dimer with the typical dual-specificity phosphatase fold. In contrast to VH1, the OH1 dimer is covalently stabilized by a disulfide bond involving residue Cys15 in the N-terminal helix alpha-1 of both monomers, and Cys15 is a conserved residue within the Parapoxvirus genus. The in vitro functional characterization confirms that OH1 is a dual-specificity phosphatase and reveals its ability to dephosphorylate phosphatidylinositol 3,5-bisphosphate, a new activity potentially relevant in phosphoinositide recycling during virion maturation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The immune and inflammatory response to orf virus.

    PubMed

    Haig, D M; McInnes, C; Deane, D; Reid, H; Mercer, A

    1997-06-01

    Orf virus is a zoonotic, epitheliotropic DNA parapox virus that principally infects sheep and goats. The fact that the virus can repeatedly reinfect sheep has provoked an interest in the underlying cellular, virological and molecular mechanisms for its apparent escape from the host protective immune response. The local immune and inflammatory response in skin and the cell phenotype and cytokine response in lymph analysed around a single lymph node are characteristic of an anti-viral response. An unusual feature is the dense accumulation of MHC Class II+ dendritic cells in the skin lesion. The function of these cells is not known. Orf virus virulence genes and activities have been identified that may interfere with the development of the host protective immune and inflammatory response.

  20. The whole genomic analysis of orf virus strain HN3/12 isolated from Henan province, central China.

    PubMed

    Chen, Huiqin; Li, Wei; Kuang, Zhenzhan; Chen, Daxiang; Liao, Xiaoqing; Li, Ming; Luo, Shuhong; Hao, Wenbo

    2017-08-18

    The Orf virus (ORFV) is the causative agent of orf, a globally-occurring, acute, pustular, contagious disease affecting sheep, goats and humans with a worldwide distribution. Currently, the genomic analysis of four ORFV strains from the Fujian province in southern China and a NA1/11 strain isolated from the Jilin province in northeast China have been reported. However, little is known about the genomic information of ORFV strains from central China. From a recent outbreak in a sheep herd in the Henan province of central China, a novel ORFV strain (HN3/12) was isolated and cultured in ovine fetal turbinate (OFTu) cells. The strain was identified as HN3/12 and verified by PCR based on the DNA sequences of 011 and 059 genes. The whole genomic sequence of this isolate was determined by Next Generation Sequencing technology. To determine the genetic characteristics of the HN3/12 strain, phylogenetic analysis of the 011 and 059 genes and amino acid sequence alignment of the HN3/12 strain were performed and compared with reference parapoxvirus strains. The HN3/12 genome is 136,643 bp in length, contains 63.67% G + C and encodes 132 putative genes. Phylogenetic analysis of the 011 and 059 nucleotide sequences showed that this viral strain was similar to the NA1/11 isolate. The homology analysis indicates that HN3/12 has 93% to 98% identity with published ORFV strains at amino acid level. When open reading frames (ORFs) were aligned among the HN3/12 and four Fujian ORFV strains, most of them have identities greater than 90% and only a few less than 60%. The availability of the whole genomic sequence of HN3/12 aids in our understanding of, and provides new insights into, the genetic diversity of ORFV.

  1. Construction and testing of orfA +/- FIV reporter viruses.

    PubMed

    Fadel, Hind J; Saenz, Dyana T; Poeschla, Eric M

    2012-01-01

    Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.

  2. Crystallization and preliminary X-ray analysis of the chemokine-binding protein from orf virus (Poxviridae)

    PubMed Central

    Couñago, Rafael Miguez; Fleming, Stephen B.; Mercer, Andrew A.; Krause, Kurt L.

    2010-01-01

    The parapoxvirus orf virus (ORFV) encodes a chemokine-binding protein (CBP) that functions to downregulate the host’s immune response at the site of infection by blocking the chemokine-induced recruitment of immune cells. In order to shed light on the structural determinants of CBP–chemokine binding, ORFV CBP was crystallized as part of an ongoing structure–function study on this protein. ORFV CBP crystals were obtained by the sitting-drop vapour-diffusion technique using ammonium citrate as a precipitant. The crystal quality was greatly improved through the addition of small-molecule additives to the crystallization mother liquor. ORFV CBP crystals diffracted X-rays to 2.50 Å resolution and belonged to the hexagonal space group P6122 or its enantiomorph P6522, with unit-cell parameters a = b = 75.62, c = 282.49 Å, α = 90, β = 90, γ = 120°. PMID:20606282

  3. Human Orf virus infection from household exposures - United States, 2009-2011.

    PubMed

    2012-04-13

    Orf, also known as contagious ecthyma, is a zoonotic infection caused by a dermatotropic parapoxvirus that commonly infects sheep and goats; it is transmitted to humans through contact with an infected animal or fomites. In humans, orf manifests as an ulcerative skin lesion sometimes resembling bacterial infection or neoplasm. Human infection typically is associated with occupational animal contact and has been reported in children after visiting petting zoos and livestock fairs. Cases lacking these exposure histories might be misdiagnosed, leading to unnecessary treatment of orf lesions, which do not usually require any specific treatment. This report describes four cases of human orf associated with household meat processing or animal slaughter, highlighting the importance of nontraditional risk factors. Orf should be included in the differential diagnosis of patients with clinically compatible skin lesions and a history of household meat processing or animal slaughter. Persons and communities with these exposure risks also should receive counseling regarding the use of nonpermeable gloves and hand hygiene to prevent infection.

  4. Antiviral Activity of HPMPC (Cidofovir) Against ORF Virus Infected Lambs

    PubMed Central

    Scagliarini, A.; McInnes, C.J.; Gallina, L.; Dal, Pozzo F.; Scagliarini, L.; Snoeck, R.; Prosperi, S.; Sales, J.; Gilray, J.A.; Nettleton, P.F.

    2007-01-01

    (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPC, cidofovir, CDV, Vistide®) is an acyclic nucleoside analogue with a potent and selective activity against a broad spectrum of DNA viruses including the poxviruses. In this study we present the results of different treatment regimens in lambs experimentally infected with orf virus with different cidofovir formulations prepared in Beeler basis and Unguentum M. Our results show that choice of excipient, concentration of cidofovir and treatment regimen were all important to the clinical outcome of the therapy. Whilst one particular regimen appeared to exacerbate the lesion, treatment with 1% w/v cidofovir cream, prepared in Beeler Basis, for 4 consecutive days did result in milder lesions that resolved more quickly than untreated lesions. Furthermore the scabs of the treated animals contained significantly lower amounts of viable virus meaning there should be less contamination of the environment with virus than would normally occur. PMID:17049627

  5. Parapoxvirus infection in harbor seals (Phoca vitulina) from the German North Sea.

    PubMed

    Müller, G; Gröters, S; Siebert, U; Rosenberger, T; Driver, J; König, M; Becher, P; Hetzel, U; Baumgärtner, W

    2003-07-01

    In the summer of 2000, proliferative lesions of the skin and oral mucosa were observed in 26 young harbor seals (Phoca vitulina) from a rehabilitation center in Schleswig-Holstein, Germany. Verrucose, roundish nodules, approximately 1-2 cm in diameter, were presented in the oral cavity, especially on the tongue. Some animals developed similarly sized spherical dermal elevations with ulceration on flippers, chest, neck, and perineum. Necropsy of one animal showed multifocal, verrucose nodules in the oral cavity and a mild tonsillitis. Histologically, the nodules were characterized by ballooning degeneration of the outer parts of the spiny layer and stratum granulosum, with large eosinophilic cytoplasmic inclusions and a perivascular to interstitial lymphohistiocytic infiltration accompanied by fibroblastic proliferation and neovascularization. Negative staining of mucosal tissue homogenates demonstrated parapoxvirus-like particles. The presence of parapoxvirus was confirmed by polymerase chain reaction, using primers specific for parapoxvirus of ungulates. By in situ hybridization, using a parapox-specific, digoxigenin-labeled DNA probe, abundant parapoxvirus DNA-positive epithelial cells were detected in the stratum granulosum and the outer parts of the spiny layer. There was no parapoxvirus-positive signal in the adjacent submucosa. Although DNA analysis revealed that the causative agent can clearly be distinct from terrestrial parapoxviruses, lesions resembled parapoxvirus infections in other terrestrial species, and the pattern of virus DNA distribution indicated a direct effect of the virus on keratinocytes. In contrast, changes in the corium may be considered an indirect response mediated by the virus or the immune system.

  6. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2.

    PubMed

    Tyagi, Shweta; Korkaya, Hasan; Zafrullah, Mohammad; Jameel, Shahid; Lal, Sunil K

    2002-06-21

    Hepatitis E virus (HEV) is a human RNA virus containing three open reading frames. Of these, ORF1 encodes the viral nonstructural polyprotein; ORF2 encodes the major capsid protein, which exists in a glycosylated and non-glycosylated form; and ORF3 codes for a phosphoprotein of undefined function. Using fluorescence-based colocalization, yeast two-hybrid experiments, transiently transfected COS-1 cell co-immunoprecipitation, and cell-free coupled transcription-translation techniques, we have shown that the ORF3 protein interacts with the ORF2 protein. The domains involved in this ORF2-ORF3 association have been identified and mapped. Our deletion analysis showed that a 25-amino acid region (residues 57-81) of the ORF3 protein is required for this interaction. Using a Mexican HEV isolate, site-directed mutagenesis of ORF3, and a phosphatase digestion assay, we showed that the ORF2-ORF3 interaction is dependent upon the phosphorylation at Ser(80) of ORF3. Finally, using COS-1 cell immunoprecipitation experiments, we found that the phosphorylated ORF3 protein preferentially interacts with the non-glycosylated ORF2 protein. These findings were confirmed using tunicamycin inhibition, point mutants, and deletion mutants expressing only non-glycosylated ORF2. ORF3 maps in the structural region of the HEV genome and now interacts with the major capsid protein, ORF2, in a post-translational modification-dependent manner. Such an interaction of ORF2 with ORF3 suggests a possible well regulated role for ORF3 in HEV structural assembly.

  7. ORF33 and ORF38 of Kaposi's Sarcoma-Associated Herpesvirus Interact and Are Required for Optimal Production of Infectious Progeny Viruses

    PubMed Central

    Wu, Jian-jun; Avey, Denis; Li, Wenwei; Gillen, Joseph; Fu, Bishi; Miley, Wendell; Whitby, Denise

    2015-01-01

    ABSTRACT We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918–4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion

  8. Mutational Analysis of the Repeated Open Reading Frames, ORFs 63 and 70 and ORFs 64 and 69, of Varicella-Zoster Virus

    PubMed Central

    Sommer, Marvin H.; Zagha, Edward; Serrano, Oscar K.; Ku, Chia Chi; Zerboni, Leigh; Baiker, Armin; Santos, Richard; Spengler, Mary; Lynch, Jennifer; Grose, Charles; Ruyechan, William; Hay, John; Arvin, Ann M.

    2001-01-01

    Varicella-zoster virus (VZV) open reading frame 63 (ORF63), located between nucleotides 110581 and 111417 in the internal repeat region, encodes a nuclear phosphoprotein which is homologous to herpes simplex virus type 1 (HSV-1) ICP22 and is duplicated in the terminal repeat region as ORF70 (nucleotides 118480 to 119316). We evaluated the role of ORFs 63 and 70 in VZV replication, using recombinant VZV cosmids and PCR-based mutagenesis to make single and dual deletions of these ORFs. VZV was recovered within 8 to 10 days when cosmids with single deletions were transfected into melanoma cells along with the three intact VZV cosmids. In contrast, VZV was not detected in transfections carried out with a dual deletion cosmid. Infectious virus was recovered when ORF63 was cloned into a nonnative AvrII site in this cosmid, confirming that failure to generate virus was due to the dual ORF63/70 deletion and that replication required at least one gene copy. This requirement may be related to our observation that ORF63 interacts directly with ORF62, the major immediate-early transactivating protein of VZV. ORF64 is located within the inverted repeat region between nucleotides 111565 and 112107; it has some homology to the HSV-1 Us10 gene and is duplicated as ORF69 (nucleotides 117790 to 118332). ORF64 and ORF69 were deleted individually or simultaneously using the VZV cosmid system. Single deletions of ORF64 or ORF69 yielded viral plaques with the same kinetics and morphology as viruses generated with the parental cosmids. The dual deletion of ORF64 and ORF69 was associated with an abnormal plaque phenotype characterized by very large, multinucleated syncytia. Finally, all of the deletion mutants that yielded recombinants retained infectivity for human T cells in vitro and replicated efficiently in human skin in the SCIDhu mouse model of VZV pathogenesis. PMID:11483768

  9. Phylogenetic analysis and characterization of Korean orf virus from dairy goats: case report.

    PubMed

    Oem, Jae-Ku; Roh, In-Soon; Lee, Kyung-Hyun; Lee, Kyoung-Ki; Kim, Hye-Ryoung; Jean, Young-Hwa; Lee, O-Soo

    2009-10-16

    An outbreak of orf virus infection in dairy goats in Korea was investigated. Suspected samples of the skin and lip of affected goats were sent to the laboratory for more exact diagnosis. Orf virus was detected by electron microscopy and viral DNA was identified by PCR. To reveal the genetic characteristics of the Korean strain (ORF/09/Korea), the sequences of the major envelope protein (B2L) and orf virus interferon resistance (VIR) genes were determined and then compared with published reference sequences. Phylogenetic analysis revealed that the ORF/09/Korea strain was closest to the isolates (Taiping) from Taiwan. This is believed to be the first report on the molecular characterization of orf virus in Korea.

  10. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    PubMed

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  11. Orf Virus 002 Protein Targets Ovine Protein S100A4 and Inhibits NF-κB Signaling

    PubMed Central

    Chen, Daxiang; Zheng, Zewei; Xiao, Bin; Li, Wei; Long, Mingjian; Chen, Huiqin; Li, Ming; Rock, Daniel L.; Hao, Wenbo; Luo, Shuhong

    2016-01-01

    Orf virus (ORFV), a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-κB-p65 at Ser276 and also to disrupt the binding of NF-κB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4), prolyl endopeptidase-like (PREPL) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8) were found to interact with ORFV002 based on the yeast two-hybrid (Y2H) assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu). GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP) transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting that ovine S100A4 participates in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation. PMID:27679610

  12. Seroepidemiology of parapoxvirus infections in captive and free-ranging California sea lions Zalophus californianus.

    PubMed

    Nollens, Hendrik H; Gulland, Frances M D; Hernandez, Jorge A; Condit, Richard C; Klein, Paul A; Walsh, Michael T; Jacobson, Elliott R

    2006-04-06

    Cutaneous nodular lesions caused by parapoxvirus infections are commonly observed in stranded pinnipeds following their arrival at rehabilitation facilities. An indirect enzyme-linked immunosorbent assay (ELISA) was developed and validated to determine exposure to parapoxviruses in California sea lions Zalophus californianus in captivity and in the wild. The diagnostic performance of this assay was evaluated using receiver-operating characteristic analysis. At a selected cut-off value, the calculated sensitivity was 100% (95% CI = 86 to 100%) and the specificity was 100% (95% CI = 87 to 100%). Analysis of sera collected from 26 affected sea lions during various stages of the disease revealed anti-parapoxvirus antibodies in all affected sea lions prior to the development of cutaneous pox lesions. This indicated that previous exposure to a parapoxvirus does not confer protection against clinical disease. In at least 7 cases, exposure to the virus occurred during hospitalization. Analysis of paired sera from 74 unaffected sea lions indicated subclinical infections in at least 3 animals. Finally, the prevalence of anti-parapoxviral antibodies in 761 free-ranging California sea lions captured and tested was 91% (95% CI = 89 to 93%). This indicated that infection with a parapoxvirus is a common occurrence in the wild and that the release of captive sea lions infected with parapoxvirus into the wild should not increase the risk of a parapoxvirus outbreak in free-ranging sea lions.

  13. Hepatitis E Virus Lifecycle and Identification of 3 Forms of the ORF2 Capsid Protein.

    PubMed

    Montpellier, Claire; Wychowski, Czeslaw; Sayed, Ibrahim M; Meunier, Jean-Christophe; Saliou, Jean-Michel; Ankavay, Maliki; Bull, Anne; Pillez, André; Abravanel, Florence; Helle, François; Brochot, Etienne; Drobecq, Hervé; Farhat, Rayan; Aliouat-Denis, Cécile-Marie; Haddad, Juliano G; Izopet, Jacques; Meuleman, Philip; Goffard, Anne; Dubuisson, Jean; Cocquerel, Laurence

    2017-09-25

    Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. Approximately 2 billion people live in areas endemic for HEV and are at risk of infection. The HEV genome encodes 3 proteins, including the ORF2 capsid protein. Detailed analyses of the HEV lifecycle has been hampered by the lack of an efficient viral culture system. We performed studies with gt3 HEV cell culture-produced particles (HEVcc) and patient blood and stool samples. Samples were fractionated on iodixanol gradients and cushions. Infectivity assays were performed in vitro and in human liver chimeric mice. Proteins were analyzed by biochemical and proteomic approaches. Infectious particles were analyzed by transmission electron microscopy. HEV antigen levels were measured with the Wantaï ELISA. We developed an efficient cell culture system and isolated HEV particles that were infectious in vitro and in vivo. Using transmission electron microscopy, we defined the ultrastructure of HEVcc and particles from patient sera and stool samples. We also identified the precise sequence of the infectious particle-associated ORF2 capsid protein. In cultured cells and in samples from patients, HEV produced 3 forms of the ORF2 capsid protein: infectious/intracellular ORF2 (ORF2i), glycosylated ORF2 (ORF2g), and cleaved ORF2 (ORF2c). The ORF2i protein associated with infectious particles, whereas the ORF2g and ORF2c proteins were massively secreted glycoproteins not associated with infectious particles. ORF2g and ORF2c were the most abundant antigens detected in sera from patients. We developed a cell culture system and characterized HEV particles; we identified 3 ORF2 capsid proteins (ORF2i, ORF2g, and ORFc). These findings will advance our understanding of the HEV lifecycle and improve diagnosis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Identification and characterization of the orf virus type I topoisomerase.

    PubMed

    Klemperer, N; Lyttle, D J; Tauzin, D; Traktman, P; Robinson, A J

    1995-01-10

    Vaccinia virus (VV) and Shope fibroma virus (SFV), representatives of the orthopox and leporipox genera, respectively, encode type I DNA topoisomerases. Here we report that the 957-nt F4R open reading frame of orf virus (OV), a representative of the parapox genus, is predicted to encode a 318-aa protein with extensive homology to these enzymes. The deduced amino acid sequence of F4R has 54.7 and 50.6% identity with the VV and SFV enzymes, respectively. One hundred forty amino acids are predicted to be conserved in all three proteins. The F4R protein was expressed in Escherichia coli under the control of an inducible T7 promoter, partially purified, and shown to be a bona fide type I topoisomerase. Like the VV enzyme, the OV enzyme relaxed negatively supercoiled DNA in the absence of divalent cations or ATP and formed a transient covalent intermediate with cleaved DNA that could be visualized by SDS-PAGE. Both the noncovalent and covalent protein/DNA complexes could be detected in an electrophoretic mobility shift assay. The initial PCR used to prepare expression constructs yielded a mutant allele of the OV topoisomerase with a G-A transition at nt 677 that was predicted to replace a highly conserved Tyr residue with a Cys. This allele directed the expression of an enzyme which retained noncovalent DNA binding activity but was severely impaired in DNA cleavage and relaxation. Incubation of pUC19 DNA with the wild-type OV or VV enzyme yielded an indistinguishable set of DNA cleavage fragments, although the relative abundance of the fragments differed for the two enzymes. Using a duplex oligonucleotide substrate containing the consensus site for the VV enzyme, we demonstrated that the OV enzyme also cleaved efficiently immediately downstream of the sequence CCCTT.

  15. ORF9p Phosphorylation by ORF47p Is Crucial for the Formation and Egress of Varicella-Zoster Virus Viral Particles

    PubMed Central

    Riva, Laura; Thiry, Marc; Bontems, Sebastien; Joris, Aline; Piette, Jacques; Lebrun, Marielle

    2013-01-01

    The role of the tegument during the herpesvirus lytic cycle is still not clearly established, particularly at the late phase of infection, when the newly produced viral particles need to be fully assembled before being released from the infected cell. The varicella-zoster virus (VZV) protein coded by open reading frame (ORF) 9 (ORF9p) is an essential tegument protein, and, even though its mRNA is the most expressed during the productive infection, little is known about its functions. Using a GalK positive/negative selection technique, we modified a bacterial artificial chromosome (BAC) containing the complete VZV genome to create viruses expressing mutant versions of ORF9p. We showed that ORF9p is hyperphosphorylated during the infection, especially through its interaction with the viral Ser/Thr kinase ORF47p; we identified a consensus site within ORF9p recognized by ORF47p and demonstrated its importance for ORF9p phosphorylation. Strikingly, an ultrastructural analysis revealed that the mutation of this consensus site (glutamate 85 to arginine) strongly affects viral assembly and release, reproducing the ORF47 kinase-dead VZV phenotype. It also slightly diminishes the infectivity toward immature dendritic cells. Taken together, our results identify ORF9p as a new viral substrate of ORF47p and suggest a determinant role of this phosphorylation for viral infectivity, especially during the process of viral particle formation and egress. PMID:23269791

  16. Mapping regions of the cauliflower mosaic virus ORF III product required for infectivity.

    PubMed

    Jacquot, E; Geldreich, A; Keller, M; Yot, P

    1998-03-15

    The open reading frame (ORF) III product (PIII) of the pararetrovirus cauliflower mosaic virus (CaMV) has nucleic acid-binding properties in vitro, but its biological role is not yet determined. ORF III is closely linked to ORF II and overlaps ORF IV out of frame in the CaMV genome. A new CaMV-derived vector (Ca delta) devoid of ORF III and containing unique restriction sites between ORFs II and IV was designed. Introduction of the wild-type CaMV ORF III into Ca delta results in a clone (Ca3) infectious in turnip plants. Truncated or point-mutated versions of ORF III were then inserted into Ca delta and tested in vivo. Inoculation of the different mutants into turnip revealed that the four C-terminal amino acid residues of PIII are dispensable for infectivity as well as an internal domain (amino acids 61 to 80). Taken together the results show that PIII possesses a functional two-domain organization. Moreover, the CaMV PIII function(s) cannot be replaced either by the PIII protein of another caulimovirus, the figwort mosaic virus, or by the P2 protein of the cacao swollen shoot badnavirus, a member of the second plant pararetrovirus group.

  17. Isolation and molecular characterization of Orf virus from natural outbreaks in goats of Assam.

    PubMed

    Bora, Mousumi; Bora, Durlav Prasad; Barman, Nagendra Nath; Borah, Biswajyoti; Bora, Padma Lochan; Talukdar, Archana; Tamuly, Shantanu

    2015-06-01

    Outbreaks of contagious ecthyma (caused by a Parapox virus) in goats were investigated in 6 districts of Assam, a north eastern state of India. Diagnosis of the disease was carried out employing both standard virological as well as molecular methods. Four representative isolates from different places were selected for phylogenetic analysis. The major envelop protein (B2L) of Orf virus was targeted for molecular analysis. The sequencing and phylogenetic analysis of the selected sequences at nucleotide level revealed that the Orf virus isolates were closely related to each other (97.6-100 %) and showed highest similarity to the Orf virus isolate 82/04 (98.4 %), reported from Shahjahanpur, India. The data will provide an insight in transmission of the virus from northern to North eastern part of the country.

  18. The Kaposi's-sarcoma-associated herpesvirus orf35 gene product is required for efficient lytic virus reactivation.

    PubMed

    Bergson, Shir; Itzhak, Inbal; Wasserman, Talya; Gelgor, Anastasia; Kalt, Inna; Sarid, Ronit

    2016-12-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated in the etiology of several human malignancies. KSHV open reading frame (orf) 35 encodes a conserved gammaherpesvirus protein with an, as yet, unknown function. Employing the bacterial artificial chromosome (BAC) system, we generated a recombinant viral clone that fails to express ORF35 (BAC16-ORF35-stop) but preserves intact adjacent and overlapping reading frames. Using this construct, we studied the role of this previously uncharacterized gene product during lytic reactivation of KSHV. Upon lytic reactivation, the ORF35-stop recombinant virus displayed significantly reduced lytic viral gene expression, viral DNA replication, and progeny virus production as compared to control wild-type virus. Exogenous expression of ORF35-Flag reversed the effects of ORF35 deficiency. These results demonstrate that ORF35 is important for efficient lytic virus reactivation.

  19. Phylogenetic correlation of Greek and Italian orf virus isolates based on VIR gene.

    PubMed

    Kottaridi, Christine; Nomikou, Kyriaki; Teodori, Liana; Savini, Giovanni; Lelli, Rossella; Markoulatos, Panayotis; Mangana, Olga

    2006-09-10

    Thirteen orf virus isolates obtained during the time period between 1995 and 2004 from crusted scab lesions of nine sheep and four goats from different geographical areas of Greece and Italy with suspected contagious ecthyma infection were analyzed. DNA of all isolates was successfully amplified by PCR with the primers 045F-045R and identified them as parapox virus. Partial DNA sequence of orf virus interferon resistant (VIR) gene, phylogenetic analysis of the available isolates and amino acid comparison of the interferon resistance protein encoded by this genomic region was carried out. According to the results of the present report a precise characterisation of the genomic region studied might provide evidence for the genetic variation and movement of the circulating orf virus strains.

  20. ORF virus infection in children: clinical characteristics, transmission, diagnostic methods, and future therapeutics.

    PubMed

    Lederman, Edith R; Austin, Connie; Trevino, Ingrid; Reynolds, Mary G; Swanson, Holly; Cherry, Bryan; Ragsdale, Jennifer; Dunn, John; Meidl, Susan; Zhao, Hui; Li, Yu; Pue, Howard; Damon, Inger K

    2007-08-01

    Orf virus leads to self-limited, subacute cutaneous infections in children who have occupational or recreational contact with infected small ruminants. Breaches in the integument and contact with animals recently vaccinated for orf may be important risk factors in transmission. Common childhood behaviors are likely important factors in the provocation of significant contact (ie, bites) or in unusual lesion location (eg, facial lesions). Clinician recognition is important in distinguishing orf infection from life-threatening cutaneous zoonoses. Recently developed molecular techniques provide diagnostic precision and newer topical therapeutics may hasten healing.

  1. Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability.

    PubMed

    Sun, Lichang; Zhou, Yan; Liu, Runxia; Li, Yanhua; Gao, Fei; Wang, Xiaomin; Fan, Hongjie; Yuan, Shishan; Wei, Zuzhang; Tong, Guangzhi

    2015-02-02

    ORF5a protein was recently identified as a novel structural protein in porcine reproductive and respiratory syndrome virus (PRRSV). The ORF5a protein possesses two cysteines at positions 29 and 30 that are highly conserved among type 2 PRRSV. In this study, the significance of the ORF5a protein cysteine residues on virus replication was determined based on a type 2 PRRSV cDNA clone (pAJXM). Each cysteine was substituted by serine or glycine and the mutations were introduced into pAJXM. We found that the replacement of cysteine to glycine at position 30 was lethal for virus viability, but all serine mutant clones produced infectious progeny viruses. This data indicated that cysteine residues in the ORF5a protein were not essential for replication of type 2 PRRSV. The bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were used to study ORF5a protein interacted with other enveloped proteins. These results showed that ORF5a protein interacted non-covalently with itself and interacted with GP4 and 2b protein. The replacement of cysteine to glycine at position 30 affected the ORF5a protein interacted non-covalently with itself, which may account for the lethal phenotype of mutants carrying substitution of cysteine to glycine at position 30.

  2. Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 proteins in protection.

    PubMed

    Plana Duran, J; Climent, I; Sarraseca, J; Urniza, A; Cortés, E; Vela, C; Casal, J I

    1997-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a new arterivirus that has spread rapidly all around the world in the last few years. The genomic region containing open reading frames (ORFs) 2 to 7 of PRRSV Spanish isolate Olot/91 was cloned and sequenced. The genomic sequence shared 95% identity with Lelystad and Tübingen isolates and between 61-64% with the ORF7 region of the American isolates. ORFs 2 to 7 were inserted into recombinant baculoviruses downstream of the polyhedrin promoter. Only ORFs 2, 3 5 and 7 were expressed in insect cells as detected by PRRS-specific pig antisera. To analyze the immunogenicity of these proteins and their ability to confer protection, Sf9 cells infected with recombinant baculoviruses expressing ORFs 3, 5 and 7 gene products were used to immunize pregnant sows, either individually or in combination. The results obtained indicate that ORFs 3 and 5 gene products could be major candidates for the development of a vaccine against PRRS since they conferred 68.4 and 50% protection, respectively, as evaluated by the number of piglets born alive and healthy at the time of weaning. In addition, piglets born to sows immunized with ORFs 3 and 5 proteins were seronegative to PRRSV after weaning, indicating absence of viral replication. ORF7 is the most immunogenic protein of PRRSV, but the antibodies induced in sows are non-protective and may even interfere with protection.

  3. Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein

    PubMed Central

    Sehgal, Deepak; Thomas, Saijo; Chakraborty, Mahua; Jameel, Shahid

    2006-01-01

    Background The ORF1 of hepatitis E virus (HEV) encodes a nonstructural polyprotein of ~186 kDa that has putative domains for four enzymes: a methyltransferase, a papain-like cysteine protease, a RNA helicase and a RNA dependent RNA polymerase. In the absence of a culture system for HEV, the ORF1 expressed using bacterial and mammalian expression systems has shown an ~186 kDa protein, but no processing of the polyprotein has been observed. Based on these observations, it was proposed that the ORF1 polyprotein does not undergo processing into functional units. We have studied ORF1 polyprotein expression and processing through a baculovirus expression vector system because of the high level expression and post-translational modification abilities of this system. Results The baculovirus expressed ORF1 polyprotein was processed into smaller fragments that could be detected using antibodies directed against tags engineered at both ends. Processing of this ~192 kDa tagged ORF1 polyprotein and accumulation of lower molecular weight species took place in a time-dependent manner. This processing was inhibited by E-64d, a cell-permeable cysteine protease inhibitor. MALDI-TOF analysis of a 35 kDa processed fragment revealed 9 peptide sequences that matched the HEV methyltransferase (MeT), the first putative domain of the ORF1 polyprotein. Antibodies to the MeT region also revealed an ORF1 processing pattern identical to that observed for the N-terminal tag. Conclusion When expressed through baculovirus, the ORF1 polyprotein of HEV was processed into smaller proteins that correlated with their proposed functional domains. Though the involvement of non-cysteine protease(s) could not be be ruled out, this processing mainly depended upon a cysteine protease. PMID:16725054

  4. Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines.

    PubMed Central

    Tompkins, Daniel M; Sainsbury, A W; Nettleton, P; Buxton, D; Gurnell, J

    2002-01-01

    The disease implications of novel pathogens need to be considered when investigating the ecological impact of species translocations on native fauna. Traditional explanations based on competition or predation may often not be the whole story. Evidence suggests that an emerging infectious disease, caused by a parapoxvirus, may be a significant component of the impact that the introduced grey squirrel has had on UK red squirrel populations. Here we validate the potential role of parapoxvirus by proving that the virus is highly pathogenic in the red squirrel while having no detectable effect on grey squirrel health. PMID:11886647

  5. Sheep-to-Human Transmission of Orf Virus during Eid al-Adha Religious Practices, France

    PubMed Central

    Fossati, Christelle; Salez, Nicolas; Cohen-Bacrie, Stephan; Ninove, Laetitia; Michel, Fabrice; Aboukais, Samer; Buttner, Mathias; Zandotti, Christine; de Lamballerie, Xavier; Charrel, Remi N.

    2013-01-01

    Five persons in France were infected with Orf virus after skin wounds were exposed to infected sheep tissues during Eid al-Adha, the Muslim Feast of Sacrifice. Infections were confirmed by electron microscopy, PCR, and sequence analysis. Prevention and control of this underdiagnosed disease can be achieved by educating physicians, slaughterhouse workers, and persons participating in Eid al-Adha. PMID:23260031

  6. Identification, phylogenetic evolutionary analysis of GDQY orf virus isolated from Qingyuan City, Guangdong Province, southern China.

    PubMed

    Duan, Chaohui; Liao, Meiying; Wang, Han; Luo, Xiaohong; Shao, Jing; Xu, Ying; Li, Wei; Hao, Wenbo; Luo, Shuhong

    2015-01-25

    Infection with the orf virus (ORFV) leads to contagious ecthyma, also called contagious pustular dermatitis, which usually affects sheep, goats and other small ruminants. It has a great distribution throughout the world and has also been reported to infect humans. Though many strains have been isolated from differing parts of mainland China, rarely has any strain been reported from the southern provinces of China. We studied a case of orf virus infection that occurred at Qingyuan City, Guangdong Province in southern China. An orf virus strain, GDQY, was successfully isolated and identified through cell culture techniques and transmission electron microscopy. Complete genes of ORFV011, ORFV059, ORFV106 and ORFV107 were amplified for the sequence analysis based on their nucleotide or amino acid level. In order to discuss the genetic variation, precise sequences were used to compare to other reference strains isolated from different districts or countries. Phylogenetic trees based on those strains were built up and evolutionary distances were calculated based on the alignment of their complete sequences. The typical structure of the orf virus was observed in cell-culture suspensions inoculated with GDQY, and the full-length of four genes was amplified and sequenced. Phylogenetic analysis indicated that GDQY is homologous to FJ-DS and CQ/WZ on ORFV011 nucleotides. ORFV059 may be more variable than ORFV011 based on the comparison between GDQY and other isolates. Genetic studies of ORFV106 and 107 are reported for the first time in the presented study.

  7. The Attenuated Genotype of Varicella-Zoster Virus Includes an ORF0 Transitional Stop Codon Mutation

    PubMed Central

    Peters, Geoffrey A.; Tyler, Shaun D.; Carpenter, John E.; Jackson, Wallen; Mori, Yasuko; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is the first of the human herpesviruses to be attenuated and subsequently approved as a live vaccine to prevent varicella and herpes zoster. Both the attenuated VZV vaccine, called vaccine Oka or vOka, and the parental strain pOka have been completely sequenced. Yet the specific determinants of attenuation are uncertain. The open reading frame (ORF) with the most single nucleotide polymorphisms (SNPs), ORF62, encodes the regulatory protein IE62, but IE62 studies have failed to define a specific SNP associated with attenuation. We have completed next-generation sequencing of the VZV Ellen genome, a strain known to be highly attenuated by its very limited replication in human skin xenografts in the SCID mouse model of VZV pathogenesis. A comparative analysis of the Ellen sequence with all other complete VZV sequences was extremely informative. In particular, an unexpected finding was a stop codon mutation in Ellen ORF0 (herpes simplex virus UL56 homolog) identical to one found in vOka, combined with the absence of polymorphisms in most Ellen ORFs that were known to be mutated in vOka. The mutated ORF0 protein was also imaged in both two dimensions and three dimensions by confocal microscopy. The probability of two VZV strains not connected by a recent common ancestor having an identical ORF0 SNP by chance would be 1 × 10−8, in other words, extremely unlikely. Taken together, these bioinformatics analyses strongly suggest that the stop codon ORF0 SNP is one of the determinants of the attenuation genotype of live VZV vaccines. PMID:22837206

  8. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    SciTech Connect

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-02-20

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.

  9. Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication.

    PubMed Central

    Luciw, P A; Cheng-Mayer, C; Levy, J A

    1987-01-01

    Mutations were made by recombinant DNA techniques in an infectious molecular clone of the human immunodeficiency virus San Francisco isolate 2 (HIVSF2) [formerly the prototype isolate of the acquired immunodeficiency syndrome-associated retrovirus (ARV-2)]. The effect of these changes on the replicative and cytopathologic properties of the virus was studied by transfecting modified virus clones into cultured human cells. Mutations in the gag, pol, env, and tat regions precluded virus replication and cytopathology in lymphoid cells. A mutation in orf-A dramatically reduced but did not abolish virus replication. Mutant viruses with deletions in the orf-B region were highly cytopathic and replicated to approximately 5-fold higher levels than wild-type virus. They also produced approximately 5-fold more viral DNA in infected lymphoid cells than did wild-type virus. Thus, the orf-B region may function to down-regulate virus replication. This mutational analysis of the HIVSF2 genome is a means of assessing genes regulating viral replication and cytopathology. Images PMID:2434956

  10. The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator.

    PubMed

    Cilloniz, Cristian; Jackson, Wallen; Grose, Charles; Czechowski, Donna; Hay, John; Ruyechan, William T

    2007-01-01

    The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.

  11. Varicella-Zoster Virus Proteins in Skin Lesions: Implications for a Novel Role of ORF29p in Chickenpox

    PubMed Central

    Annunziato, Paula W.; Lungu, Octavian; Panagiotidis, Christos; Zhang, Jing H.; Silvers, David N.; Gershon, Anne A.; Silverstein, Saul J.

    2000-01-01

    Skin biopsy samples from varicella-zoster virus (VZV)-infected patients examined by immunohistochemistry demonstrated VZV replication in nonepithelial cell types. ORF29p, a nonstructural nuclear protein, was found in nerves of two of six patients with chickenpox. In tissue culture, ORF29p was secreted by VZV-infected fibroblasts. Extracellular ORF29p can be taken up through endocytosis by human neurons, implying a novel role for this protein in pathogenesis. PMID:10644373

  12. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein.

    PubMed

    Paliwal, Daizy; Panda, Subrat Kumar; Kapur, Neeraj; Varma, Satya Pavan Kumar; Durgapal, Hemlata

    2014-08-01

    Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function. © 2014 The Authors.

  13. ORF43 of Maize rayado fino virus is dispensable for systemic infection of maize and transmission by leafhoppers

    USDA-ARS?s Scientific Manuscript database

    Maize rayado fino virus (MRFV) possesses an open reading frame (ORF) encoding a protein with predicted mass of 43 kDa (ORF43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to eithe...

  14. Characterization of antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian hepatitis E virus.

    PubMed

    Zhao, Qin; Sun, Ya-ni; Hu, Shou-bin; Wang, Xin-jie; Xiao, Yi-hong; Hsu, Walter H; Xiao, Shu-qi; Wang, Cheng-bao; Mu, Yang; Hiscox, Julian A; Zhou, En-Min

    2013-12-27

    Avian hepatitis E virus (HEV) is an emerging virus associated with the big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens and subclinical infections by the virus are also common. The complete genome of avian HEV contains three open-reading frames (ORFs) in which ORF2 protein is part of virus particles and thus contains primary epitopes. Antigenic epitopes of avian HEV ORF2 protein have been described but those associated with the ORF3 have not. To analyze the antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian HEV (CaHEV), we generated a series of antigens comprised of the complete ORF3 and also five truncated overlapping ORF3 peptides. The antibodies used in this study were mouse antisera and monoclonal antibodies against ORF3, positive chicken sera from Specific Pathogen Free chickens experimentally infected with CaHEV and clinical chicken sera. Using these antigens and antibodies, we identified three antigenic domains at amino acids (aa) 1-28, 55-74 and 75-88 in which aa 75-88 was a dominant domain. The dominant domain contained at least two major epitopes since field chickens infected with avian HEV produced antibodies against the domain and epitopes. These results provide useful information for future development of immunoassays for the diagnosis of avian HEV infection.

  15. Genetic diversity of ORF 4-6 of type 1 porcine reproductive and respiratory syndrome virus in naturally infected pigs.

    PubMed

    Lee, Dong-Uk; Yoo, Sung J; Kwon, Taeyong; Je, Sang H; Shin, Jeong Y; Byun, Jeong J; Kim, Myung H; Lyoo, Young S

    2017-02-01

    Genotype 1 porcine reproductive and respiratory syndrome virus (PRRSV) has been highly prevalent throughout Korea since the virus was first detected in 2005. However, genetic analyses of genotype 1 PRRSV in Korea have been limited to ORF5 and/or ORF7. In the present study, we determined 10 representative sequence covering ORF4 to ORF6 and each individual ORFs of genotype 1 PRRSV in Korea, and performed molecular analyses. The most variable gene among the individual ORFs of field strains was ORF4, and this gene exhibited only 74.5-87.3% sequence homology compared with strains reported elsewhere. However, the strains showed analogous sequence arrangements with each other. In the phylogenetic analysis, the sequences of Korean field strains formed a distinct cluster with some Austrian and German strains compared to genotype 1 PRRSV strains available in GenBank. In the amino acid analysis, the putative antigenic region of GP4 was highly variable, whereas the predicted epitope regions of ORF5 and ORF6 were relatively conserved. The hydropathy plots of GP4 showed a highly variable pattern in the antigenic region. The non-synonymous and synonymous substitution analysis suggested that ORF4 presumably had more immunogenic pressure compare with the other ORFs. According to these findings, genotype 1 PRRSV in Korea has been diversified and indigenized in Korea, and these strains might have multifarious immunological and genetic properties. This study provides novel insights into genotype 1 PRRSV in a geographically remote area and contributes to the information for further research on the evolution of type 1 PRRSV in the Korean peninsula.

  16. Genetic diversity of fusion gene (ORF 117), an analogue of vaccinia virus A27L gene of capripox virus isolates.

    PubMed

    Dashprakash, M; Venkatesan, Gnanavel; Ramakrishnan, Muthannan Andavar; Muthuchelvan, Dhanavelu; Sankar, Muthu; Pandey, Awadh Bihari; Mondal, Bimelendu

    2015-04-01

    The fusion gene (ORF 117) sequences of twelve (n = 12) capripox virus isolates namely sheeppox (SPPV) and goatpox (GTPV) viruses from India were demonstrated for their genetic and phylogenetic relationship among them. All the isolates were confirmed for their identity by routine PCR before targeting ORF 117 gene for sequence analysis. The designed primers specifically amplified ORF 117 gene as 447 bp fragment from total genomic DNA extracted from all the isolates. Sequence analysis revealed a significant percentage of identity among GTPV, SPPV and between them at both nucleotide and amino acid levels. The topology of the phylogenetic tree revealed that three distinct clusters corresponding to SPPV, GTPV and lumpy skin disease virus was formed. However, SPPV Pune/08 and SPPV Roumanian Fanar isolates were clustered into GTPV group as these two isolates showed a 100 and 99.3 % identity with GTPV isolates of India at nt and aa levels, respectively. Protein secondary structure and 3D view was predicted and found that it has high antigenic index and surface probability with low hydrophobicity, and it can be targeted for expression and its evaluation to explore its diagnostic potential in epidemiological investigation in future.

  17. [Fusion proteins encoded by orf 129L of ectromelia and orf A30L of smallpox viruses cross-react with neutralizing monoclonal antibodies].

    PubMed

    razumov, I A; Gileva, I P; Vasil'eva, M A; Nepomniashchikh, T S; Mishina, M N; Belanov, E F; Kochneva, G V; Konovalov, E E; Shchelkunov, S N; Loktev, V B

    2005-01-01

    Open reading frame (orf) 129L of ectromelia (EV) and orf A30L of smallpox viruses (SPV) encoding fusion proteins were cloned and expressed in E. coli cells. The recombinant polypeptides (prA30L H pr129L) were purified from cell lysates by Ni-NTA chromatography. Recombinant polypeptides were able to form trimers in buffered saline and they destroyed under treatment with SDS and 2-mercaptoethanol. Reactivity of prA30L, pr129L and orthopoxvirus proteins was analyzed by ELISA and Western blotting with panel of 22 monoclonal antibodies (MAbs) against orthopoxviruses (19 against EV, 2 MAbs against vaccinia virus and 1 Mabs against cowpox virus). This data allowed us to conclude that there are 12 EV-specific epitopes of pr129L and EV fusion proteins, ten orthopox-specific epitopes of EV, VV, CPV fusion proteins, from them 9 orthopox-specific epitopes of prA30L and SPV fusion proteins. Five Mabs, which cross-reacted with orthopox-specific epitopes, were able to neutralize the VV on Vero cells and from them two MAbs has neutralizing activity against smallpox virus. Our findings demonstrate that 129L fusion protein have EV-specific epitopes, that EV 129L and SPV A30L fusion proteins have a several orthopox-specific epitopes to induce a neutralizing antibodies against human pathogenic orthopoxviruses.

  18. ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells.

    PubMed

    Jiang, Hai-Fei; Wang, Wei; Jiang, Xuan; Zeng, Wen-Bo; Shen, Zhang-Zhou; Song, Yi-Ge; Yang, Hong; Liu, Xi-Juan; Dong, Xiao; Zhou, Jing; Sun, Jin-Yan; Yu, Fei-Long; Guo, Lin; Cheng, Tong; Rayner, Simon; Zhao, Fei; Zhu, Hua; Luo, Min-Hua

    2017-06-15

    Although a varicella-zoster virus (VZV) vaccine has been used for many years, the neuropathy caused by VZV infection is still a major health concern. Open reading frame 7 (ORF7) of VZV has been recognized as a neurotropic gene in vivo, but its neurovirulent role remains unclear. In the present study, we investigated the effect of ORF7 deletion on VZV replication cycle at virus entry, genome replication, gene expression, capsid assembly and cytoplasmic envelopment, and transcellular transmission in differentiated neural progenitor cells (dNPCs) and neuroblastoma SH-SY5Y (dSY5Y) cells. Our results demonstrate that the ORF7 protein is a component of the tegument layer of VZV virions. Deleting ORF7 did not affect viral entry, viral genome replication, or the expression of typical viral genes but clearly impacted cytoplasmic envelopment of VZV capsids, resulting in a dramatic increase of envelope-defective particles and a decrease in intact virions. The defect was more severe in differentiated neuronal cells of dNPCs and dSY5Y. ORF7 deletion also impaired transmission of ORF7-deficient virus among the neuronal cells. These results indicate that ORF7 is required for cytoplasmic envelopment of VZV capsids, virus transmission among neuronal cells, and probably the neuropathy induced by VZV infection.IMPORTANCE The neurological damage caused by varicella-zoster virus (VZV) reactivation is commonly manifested as clinical problems. Thus, identifying viral neurovirulent genes and characterizing their functions are important for relieving VZV related neurological complications. ORF7 has been previously identified as a potential neurotropic gene, but its involvement in VZV replication is unclear. In this study, we found that ORF7 is required for VZV cytoplasmic envelopment in differentiated neuronal cells, and the envelopment deficiency caused by ORF7 deletion results in poor dissemination of VZV among neuronal cells. These findings imply that ORF7 plays a role in neuropathy

  19. Intracellular localization of varicella-zoster virus ORF39 protein and its functional relationship to glycoprotein K

    SciTech Connect

    Govero, Jennifer; Hall, Susan; Heineman, Thomas C. . E-mail: heinemtc@slu.edu

    2007-02-20

    Varicella-zoster virus (VZV) encodes two multiply inserted membrane proteins, open reading frame (ORF) 39 protein (ORF39p) and glycoprotein K (gK). The HSV-1 homologs of these proteins are believed to act in conjunction with each other during viral egress and cell-cell fusion, and they directly influence each other's intracellular trafficking. However, ORF39p and VZV gK have received very limited study largely due to difficulties in producing antibodies to these highly hydrophobic proteins. To overcome this obstacle, we introduced epitope tags into both ORF39p and gK and examined their intracellular distributions in transfected and infected cells. Our data demonstrate that both ORF39p and gK accumulate predominately in the ER of cultured cells when expressed in the absence of other VZV proteins or when coexpressed in isolation from other VZV proteins. Therefore, the transport of VZV ORF39p and gK does not exhibit the functional interdependence seen in their HSV-1 homologs. However, during infection, the primary distributions of ORF39p and gK shift from the ER to the Golgi, and they are also found in the plasma membrane indicating that their intracellular trafficking during infection depends on other VZV-encoded proteins. During infection, ORF39p and gK tightly colocalize with VZV envelope glycoproteins B, E and H; however, the coexpression of ORF39p or gK with other individual viral glycoproteins is insufficient to alter the transport of either ORF39p or gK.

  20. Early secretory pathway localization and lack of processing for hepatitis E virus replication protein pORF1.

    PubMed

    Perttilä, Julia; Spuul, Pirjo; Ahola, Tero

    2013-04-01

    Hepatitis E virus (HEV) is a positive-strand RNA virus and a major causative agent of acute sporadic and epidemic hepatitis. HEV replication protein is encoded by ORF1 and contains the predicted domains of methyltransferase (MT), protease, macro domain, helicase (HEL) and polymerase (POL). In this study, the full-length protein pORF1 (1693 aa) and six truncated variants were expressed by in vitro translation and in human HeLa and hepatic Huh-7 cells by using several vector systems. The proteins were visualized by three specific antisera directed against the MT, HEL and POL domains. In vitro translation of full-length pORF1 yielded smaller quantities of two fragments. However, these fragments were not observed after pORF1 expression and pulse-chase studies in human cells, and their production was not dependent on the predicted protease domain in pORF1. The weight of evidence supports the proposition that pORF1 is not subjected to specific proteolytic processing, which is unusual among animal positive-strand RNA viruses but common for plant viruses. pORF1 was membrane associated in cells and localized to a perinuclear region, where it partially overlapped with localization of the endoplasmic reticulum (ER) marker BAP31 and was closely interspersed with staining of the ER-Golgi intermediate compartment marker protein ERGIC-53. Co-localization with BAP31 was enhanced by treatment with brefeldin A. Therefore, HEV may utilize modified early secretory pathway membranes for replication.

  1. Genotype analysis of ORF 62 identifies varicella-zoster virus infections caused by a vaccine strain in children.

    PubMed

    Kwak, Byung Ok; Lee, Hoan Jong; Kang, Hyun Mi; Oh, Chi Eun; Choi, Eun Hwa

    2017-02-15

    This study was performed to differentiate vaccine-type strains from wild-type strains and determine the genotype of varicella-zoster virus (VZV) in 51 Korean children. A sequencing analysis of ORF 62 identified two cases of herpes zoster caused by the vaccine-type virus, without a previous history of varicella, 22 months and 5 months after VZV vaccination. The wild-type strain was identified in the remaining children. A genotype analysis of ORF 22 amino acids revealed genotype J in all children except one. Genotype E was identified in an infant with varicella imported from Egypt.

  2. Walleye dermal sarcoma virus Orf B functions through receptor for activated C kinase (RACK1) and protein kinase C

    SciTech Connect

    Daniels, Candelaria C.; Rovnak, Joel; Quackenbush, Sandra L.

    2008-06-05

    Walleye dermal sarcoma virus is a complex retrovirus that is associated with walleye dermal sarcomas that are seasonal in nature. Fall developing tumors contain low levels of spliced accessory gene transcripts A and B, suggesting a role for the encoded proteins, Orf A and Orf B, in oncogenesis. In explanted tumor cells the 35 kDa Orf B accessory protein is localized to the cell periphery in structures similar to focal adhesions and along actin stress fibers. Similar localization was observed in mammalian cells. The cellular protein, receptor for activated C kinase 1 (RACK1), bound Orf B in yeast two-hybrid assays and in cell culture. Sequence analysis of walleye RACK1 demonstrated high conservation to other known RACK1 sequences. RACK1 binds to activated protein kinase C (PKC). Orf B associates with PKC{alpha}, which is constitutively activated and localized at the membrane. Activated PKC promoted cell survival, proliferation, and increased cell viability in Orf B-expressing cells.

  3. Replacement of the Hepatitis E Virus ORF3 Protein PxxP Motif with Heterologous Late Domain Motifs Affects Virus Release Via Interaction with TSG101

    PubMed Central

    Kenney, Scott P.; Wentworth, Jacquelyn; Heffron, Connie L.; Meng, Xiang-Jin

    2015-01-01

    The ORF3 protein of hepatitis E virus (HEV) contains a “PSAP” amino acid late domain motif, which allows for interaction with the endosomal sorting complexes required for transport (ESCRT) pathway aiding virion release. Late domain motifs are interchangeable with other viral late domain motifs in several enveloped viruses, however, it remains unknown whether HEV shares this functional interchangeability and what implications this might have on viral replication. In this study, by substituting heterologous late domain motifs (PPPY, YPDL, and PSAA) for the HEV ORF3 late domain (PSAP), we demonstrated that deviation from the PSAP motif reduces virus release as measured by viral RNA in culture media. Virus release could not be restored by insertion of a heterologous late domain motif or by supplying wild-type ORF3 in trans, suggesting that the HEV PSAP motif is required for viral exit which cannot be bypassed by the use of alternative heterologous late domains. PMID:26457367

  4. Functional Analysis of the Short Isoform of Orf Virus Protein OV20.0

    PubMed Central

    Tseng, Yeu-Yang; Lin, Fong-Yuan; Cheng, Sun-Fang; Chulakasian, Songkhla; Chou, Chia-Chi; Liu, Ya-Fen; Chang, Wei-Shan; Wong, Min-Liang

    2015-01-01

    ABSTRACT Orf virus (ORFV) OV20.0L is an ortholog of vaccinia virus (VACV) gene E3L. The function of VACV E3 protein as a virulence factor is well studied, but OV20.0 has received less attention. Here we show that like VACV E3L, OV20.0L encodes two proteins, a full-length protein and a shorter form (sh20). The shorter sh20 is an N-terminally truncated OV20.0 isoform generated when a downstream AUG codon is used for initiating translation. These isoforms differed in cellular localization, with full-length OV20.0 and sh20 found throughout the cell and predominantly in the cytoplasm, respectively. Nonetheless, both OV20.0 isoforms were able to bind double-stranded RNA (dsRNA)-activated protein kinase (PKR) and dsRNA. Moreover, both isoforms strongly inhibited PKR activation as shown by decreased phosphorylation of the translation initiation factor eIF2α subunit and protection of Sindbis virus infection against the activity of interferon (IFN). In spite of this apparent conservation of function in vitro, a recombinant ORFV that was able to express only the sh20 isoform was attenuated in a mouse model. IMPORTANCE The OV20.0 protein of orf virus (ORFV) has two isoforms and contributes to virulence, but the roles of the two forms are not known. This study shows that the shorter isoform (sh20) arises due to use of a downstream initiation codon and is amino-terminally truncated. The sh20 form also differs in expression kinetics and cellular localization from full-length OV20.0. Similar to the full-length isoform, sh20 is able to bind dsRNA and PKR, inactivate PKR, and thus act as an antagonist of the interferon response in vitro. In vivo, however, wild-type OV20.0 could not be replaced with sh20 alone without a loss of virulence, suggesting that the functions of the isoforms are not simply redundant. PMID:25694596

  5. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  6. Designing, Construction and Expression of a Recombinant Fusion Protein Comprising the Hepatitis E Virus ORF2 and Rotavirus NSP4 in the Baculovirus Expression System

    PubMed Central

    Makvandi, Manoochehr; Teimoori, Ali; Neisi, Niloofar; Samarbafzadeh, Alireza

    2016-01-01

    Background The hepatitis E virus (HEV) accounts for hepatitis E infection with relatively high mortality rate in pregnant women that can lead to fulminant hepatitis. The baculovirus expression system (BES) has the capability to produce high-level recombinant proteins and could be useful for vaccine designing. Objectives The aim of this study was designing a recombinant hepatitis E virus ORF2 and Rotavirus NSP4 (ORF2-NSP4) and to evaluating construction these recombinant proteins in the BES. Methods The truncated ORF2 gene (112-607) and truncated ORF2-NSP4 were subcloned in pFastBac1 plasmid, separately, followed by digestion and confirmed by digestion and sequencing. Then the products were transformed into Escherichia coli DH5α and retransformed in DH10Bac competent cells. Finally the white colonies containing Bacmid DNA subjected to PCR for confirming transformation. Bacmid DNA containing HEV truncated ORF2 and HEV truncated ORF2-NSP4 genes were transfected into SF9 cells using BES. The expressed proteins in the cell lysate were evaluated by SDS-PAGE and determined by the western blot assay. Results The lengths of subcloned genes, truncated ORF2 and truncated ORF2-NSP4 were 1500 and 2000bp, respectively. After retransforming in DH10Bac, the size of PCR products were 300 bp in Bacmid DNA without recombination while it was 4300 and 3800 bp in Bacmid truncated ORF2-NSP4 and Bacmid truncated ORF2 PCR products. The analysis of protein expression by SDS-PAGE and immunoblotting revealed the presence of 56 KDa for truncated ORF2 and 74.5 KDa for truncated ORF2-NSP4 proteins. Conclusions The results of the present study showed that the baculovirus expression system (SF9 cells) was able to express truncated ORF2 and truncated ORF2-NSP4 proteins as a potential candidate vaccine. PMID:28138375

  7. Varicella-Zoster Virus ORF12 Protein Triggers Phosphorylation of ERK1/2 and Inhibits Apoptosis

    PubMed Central

    Liu, XueQiao; Li, Qingxue; Dowdell, Kennichi; Fischer, Elizabeth R.

    2012-01-01

    Mitogen-activated protein kinases (MAPKs) are a family of serine-threonine protein kinases involved in many cellular processes, including cell proliferation, differentiation, inflammation, and cell death. Activation of several MAPKs, including extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), results in stimulation of activator protein 1 (AP-1), which promotes gene transcription. Previous studies have demonstrated that varicella-zoster virus (VZV) infection activates ERK1/2, p38, and JNK to promote viral replication, but the underlying mechanism(s) is unclear. To identify viral proteins responsible for the activation of MAPK, we used a proteomic approach to screen viral proteins for AP-1 promoter activation by an AP-1–luciferase reporter assay. We found that VZV ORF12 protein, located in the tegument of virions, enhances AP-1 reporter activity. This effect of ORF12 protein was markedly inhibited by a MAPK/ERK kinase 1 and 2 (MEK1/2) inhibitor (U0126), partially blocked by a p38 inhibitor (SB202190), but not inhibited by a JNK inhibitor (SP600125). Expression of VZV ORF12 protein in cells resulted in phosphorylation of ERK1/2 and p38 but not JNK. Infection of cells with a VZV ORF12 deletion mutant resulted in reduced levels of phosphorylated ERK1/2 (p-ERK1/2) compared to infection with wild-type VZV. Furthermore, deletion of ORF12 rendered VZV-infected cells more susceptible to staurosporine-induced apoptosis. In conclusion, VZV ORF12 protein activates the AP-1 pathway by selectively triggering the phosphorylation of ERK1/2 and p38. Cells infected with a VZV ORF12 deletion mutant have reduced levels of p-ERK1/2 and are more susceptible to apoptosis than cells infected with wild-type VZV. PMID:22238304

  8. A Case of Orf Disease Complicated with Erythema Multiforme and Bullous Pemphigoid-Like Eruptions

    PubMed Central

    Alian, Shahriar; Ahangarkani, Fatemeh; Arabsheybani, Sara

    2015-01-01

    Parapoxvirus infection in sheep and goats is usually referred to as contagious pustular dermatitis/ecthyma, or orf, and the corresponding human infection is referred to as orf. In humans, after a brief incubation period of 3 to 5 days, lesions begin as pruritic erythematous macules and then rise to form papules, often with a target appearance. Lesions become nodular or vesicular, and orf lesions often ulcerate after 14 to 21 days. Erythema multiforme and bullous pemphigoid have been associated with parapoxvirus infections and they are rare complications of orf disease. In this case report, we presented a 36-year-old woman with history of contact with sheep, developing a typical orf lesion that is complicated with erythema multiforme and bullous pemphigoid-like eruptions. PMID:26294986

  9. A Case of Orf Disease Complicated with Erythema Multiforme and Bullous Pemphigoid-Like Eruptions.

    PubMed

    Alian, Shahriar; Ahangarkani, Fatemeh; Arabsheybani, Sara

    2015-01-01

    Parapoxvirus infection in sheep and goats is usually referred to as contagious pustular dermatitis/ecthyma, or orf, and the corresponding human infection is referred to as orf. In humans, after a brief incubation period of 3 to 5 days, lesions begin as pruritic erythematous macules and then rise to form papules, often with a target appearance. Lesions become nodular or vesicular, and orf lesions often ulcerate after 14 to 21 days. Erythema multiforme and bullous pemphigoid have been associated with parapoxvirus infections and they are rare complications of orf disease. In this case report, we presented a 36-year-old woman with history of contact with sheep, developing a typical orf lesion that is complicated with erythema multiforme and bullous pemphigoid-like eruptions.

  10. Enhancement of Interferon Induction by ORF3 Product of Hepatitis E Virus

    PubMed Central

    Nan, Yuchen; Ma, Zexu; Wang, Rong; Yu, Ying; Kannan, Harilakshmi; Fredericksen, Brenda

    2014-01-01

    ABSTRACT Hepatitis E virus (HEV) causes both the endemic and epidemic spread of acute hepatitis in many parts of the world. HEV open reading frame 3 (ORF3) encodes a 13-kDa multifunctional protein (vp13) that is essential for HEV infection of animals. The exact role of vp13 in HEV infection remains unclear. In this study, vp13 was found to enhance interferon (IFN) production induced by poly(I · C), a synthetic analog of double-stranded RNA. Poly(I · C) treatment induced a higher level of IFN-β mRNA in HeLa cells stably expressing vp13 than in control cells. Using a luciferase reporter construct driven by the IFN-β promoter, we demonstrated that vp13 enhanced retinoic acid-inducible gene I (RIG-I)-dependent luciferase expression. This enhancement was found to be due to both an increased level of RIG-I protein and its activation. The levels of both endogenous and exogenous RIG-I were increased by vp13 by extension of the half-life of RIG-I. Additionally, vp13 interacts with the RIG-I N-terminal domain and enhances its K63-linked ubiquitination, which is essential for RIG-I activation. Analysis of vp13 deletion constructs suggested that the C-terminal domain of vp13 was essential for the enhancement of RIG-I signaling. In HEV-infected hepatoma cells, wild-type HEV led to a higher level of RIG-I and more poly(I · C)-induced IFN-β expression than did ORF3-null mutants. Analysis of vp13 from four HEV genotypes showed that vp13 from genotype I and III strains boosted RIG-I signaling, while vp13 from genotype II and IV strains had a minimal effect. These results indicate that vp13 enhances RIG-I signaling, which may play a role in HEV invasion. IMPORTANCE Hepatitis E virus (HEV) is a significant pathogen causing hepatitis in many parts of the world, yet it is understudied compared with other viral hepatitis pathogens. Here we found that the HEV open reading frame 3 product, vp13, enhances interferon induction stimulated by a synthetic analog of double-stranded RNA

  11. Sequence diversity on four ORFs of citrus tristeza virus correlates with pathogenicity

    PubMed Central

    Herrera-Isidrón, Lisset; Ochoa-Sánchez, Juan Carlos; Rivera-Bustamante, Rafael; Martínez-Soriano, Juan Pablo

    2009-01-01

    The molecular characterization of isolates of citrus tristeza virus (CTV) from eight locations in Mexico was undertaken by analyzing five regions located at the opposite ends of the virus genome. Two regions have been previously used to study CTV variability (coat protein and p23), while the other three correspond to other genomic segments (p349-B, p349-C and p13). Our comparative nucleotide analyses included CTV sequences from different geographical origins already deposited in the GenBank databases. The largest nucleotide differences were located in two fragments located at the 5' end of the genome (p349-B and p349-C). Phylogenetic analyses on those five regions showed that the degree of nucleotide divergence among strains tended to correlate with their pathogenicity. Two main groups were defined: mild, with almost no noticeable effects on the indicator plants and severe, with drastic symptoms. Mild isolates clustered together in every analyzed ORF sharing a genetic distance below 0.022, in contrast with the severe isolates, which showed a more disperse distribution and a genetic distance of 0.276. Analyses of the p349-B and p349-C regions evidenced two lineages within the severe group: severe common subgroup (most of severe isolates) and severe divergent subgroup (T36-like isolates). This study represents the first attempt to analyze the genetic variability of CTV in Mexico by constructing phylogenetic trees based on new genomic regions that use group-specific nucleotide and amino acid sequences. These results may be useful to implement specific assays for strain discrimination. Moreover, it would be an excellent reference for the CTV situation in México to face the recent arrival of brown citrus aphid. PMID:19642988

  12. Sequence diversity on four ORFs of citrus tristeza virus correlates with pathogenicity.

    PubMed

    Herrera-Isidrón, Lisset; Ochoa-Sánchez, Juan Carlos; Rivera-Bustamante, Rafael; Martínez-Soriano, Juan Pablo

    2009-07-30

    The molecular characterization of isolates of citrus tristeza virus (CTV) from eight locations in Mexico was undertaken by analyzing five regions located at the opposite ends of the virus genome. Two regions have been previously used to study CTV variability (coat protein and p23), while the other three correspond to other genomic segments (p349-B, p349-C and p13). Our comparative nucleotide analyses included CTV sequences from different geographical origins already deposited in the GenBank databases. The largest nucleotide differences were located in two fragments located at the 5' end of the genome (p349-B and p349-C). Phylogenetic analyses on those five regions showed that the degree of nucleotide divergence among strains tended to correlate with their pathogenicity. Two main groups were defined: mild, with almost no noticeable effects on the indicator plants and severe, with drastic symptoms. Mild isolates clustered together in every analyzed ORF sharing a genetic distance below 0.022, in contrast with the severe isolates, which showed a more disperse distribution and a genetic distance of 0.276. Analyses of the p349-B and p349-C regions evidenced two lineages within the severe group: severe common subgroup (most of severe isolates) and severe divergent subgroup (T36-like isolates). This study represents the first attempt to analyze the genetic variability of CTV in Mexico by constructing phylogenetic trees based on new genomic regions that use group-specific nucleotide and amino acid sequences. These results may be useful to implement specific assays for strain discrimination. Moreover, it would be an excellent reference for the CTV situation in México to face the recent arrival of brown citrus aphid.

  13. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Purifying selection in porcine reproductive and respiratory syndrome virus ORF5a protein influences variation in envelope glycoprotein 5 glycosylation.

    PubMed

    Robinson, Sally R; Abrahante, Juan E; Johnson, Craig R; Murtaugh, Michael P

    2013-12-01

    Porcine reproductive and respiratory syndrome virus ORF5a protein is encoded in an alternate open reading frame upstream of the major envelope glycoprotein (GP5) in subgenomic mRNA5. Bioinformatic analysis of 3466 type 2 PRRSV sequences showed that the two proteins have co-evolved through a fine balance of purifying codon usage to maintain a conserved RQ-rich motif in ORF5a protein, while eliciting a variable N-linked glycosylation motif in the alternative GP5 reading frame. Conservation of the ORF5a protein RQ-motif also explains an anomalous uracil desert in GP5 hypervariable glycosylation region. The N-terminus of the mature GP5 protein was confirmed to start with amino acid 32, the hypervariable region of the ectodomain. Since GP5 glycosylation variability is assumed to result from immunological selection against neutralizing antibodies, these findings show that an alternative possibility unrelated to immunological selection not only exists, but provides a foundation for investigating previously unsuspected aspects of PRRSV biology. Understanding functional consequences of subtle nucleotide sequence modifications in the region responsible for critical function in ORF5a protein and GP5 glycosylation is essential for rational design of new vaccines against PRRS. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    PubMed

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  16. Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Wang, Guangxiang; Zhang, Yuen; Shang, Youjun; Zhang, Zhidong

    2015-12-02

    Orf virus (ORFV) is the causative agent of Orf (also known as contagious ecthyma or contagious papular dermatitis), a severe infectious skin disease in goats, sheep and other ruminants. The rapid detection of ORFV is of great importance in disease control and highly needed. A isothermal molecular diagnostic approach, termed recombinase polymerase amplification (RPA), is considered as an novel and rapid alternative techonology to PCR assay. In the present study, a novel fluorescent probe based on RPA assay (ORFV exo RPA assay) was developed. The developed ORFV exo RPA assay was capable of as low as 100 copies of ORFV DNA /reaction and was highly specific, with no cross-reaction with closely related viruses (capripox virus, foot-and-mouth disease virus or peste des petits ruminants virus). Further assessment with clinical samples showed that the developed ORFV exo RPA assay has good correlation with qPCR assays for detection of ORFV. These results suggest that the developed ORFV exo RPA assay is suitable for rapid detection of ORFV.

  17. A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

    PubMed

    Gillen, Joseph; Li, Wenwei; Liang, Qiming; Avey, Denis; Wu, Jianjun; Wu, Fayi; Myoung, JinJong; Zhu, Fanxiu

    2015-05-01

    The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all

  18. A Survey of the Interactome of Kaposi's Sarcoma-Associated Herpesvirus ORF45 Revealed Its Binding to Viral ORF33 and Cellular USP7, Resulting in Stabilization of ORF33 That Is Required for Production of Progeny Viruses

    PubMed Central

    Gillen, Joseph; Li, Wenwei; Liang, Qiming; Avey, Denis; Wu, Jianjun; Wu, Fayi; Myoung, JinJong

    2015-01-01

    ABSTRACT The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies

  19. [Expression and subcellular localization of the ORF4 gene of barley yellow dwarf virus GAV strain in baculovirus-insect cell expression system].

    PubMed

    Xia, Zong-Liang; Wang, Mei-Ping; Liu, Quan-Jun; Wang, Dao-Wen

    2007-11-01

    According to published nucleotide sequences, ORF4 gene of barley yellow dwarf virus GAV (BYDV-GAV) was synthesized by reverse transcription-polymerase chain reaction (RT-PCR). The BYDV-GAV ORF4 gene was expressed in baculovirus -insect cell expression system efficiently, and western bolt analysis confirmed its expression product. Confocal laser scanning microscopy showed that GFP: ORF4 fusion protein was associated with the nuclear envelope of insect cells. By expressing the N- and C-terminal regions of ORF4-encoding product (P4) in insect cells combined with structure prediction, it was found that the N-terminal region of P4 containing four a-helices is required for targeting P4 to the nuclear envelope. These results provide a base for biological function of ORF4 gene during systemic infection of BYDV-GAV in host plants further.

  20. Heparan Sulfate Proteoglycans Are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection▿ †

    PubMed Central

    Kalia, Manjula; Chandra, Vivek; Rahman, Sheikh Abdul; Sehgal, Deepak; Jameel, Shahid

    2009-01-01

    The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an ∼56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors. PMID:19812150

  1. Quantification of Maize Fine Streak Virus Genomic and Positive-sense RNAs in Infected Maize Reveals High Level Accumulation of ORF 3 and 4 MFSV Transcripts

    USDA-ARS?s Scientific Manuscript database

    Quantification of Maize fine streak virus genomic and positive-sense RNAs in infected maize reveals high level accumulation of ORF 3 and 4 MFSV transcripts. We improved methods to analyze RNA produced by Maize fine streak virus (MVSF) within infected maize tissue using real-time RT-qPCR. We designe...

  2. Establishment of an on-site diagnostic procedure for detection of orf virus from oral lesions of Japanese serows (Capricornis crispus) by loop-mediated isothermal amplification

    PubMed Central

    INOSHIMA, Yasuo; TAKASU, Masaki; ISHIGURO, Naotaka

    2016-01-01

    Orf virus infection has been prevalent continuously in the population of wild Japanese serows (Capricornis crispus), goat-like grazing cloven-hoofed mammal species that live mainly in mountainous areas of Japan. Currently, definitive diagnosis of infection requires time-consuming laboratory work. To diagnose rapidly on-site, we developed a field-friendly procedure for the detection of orf virus from oral cavity lesions. DNA was extracted from goat saliva spiked with orf virus as a proxy for Japanese serows by a commercial kit without the use of electricity, and the quality of the extracted DNA was evaluated by conventional polymerase chain reaction (PCR). Extracted DNA was amenable to DNA amplification, the same as when extracted in a laboratory. Next, to find optimal conditions for DNA amplification by loop-mediated isothermal amplification (LAMP), Bst and Csa DNA polymerases and 3 colorimetric indicators for visual diagnosis, hydroxy naphthol blue (HNB), malachite green and D-QUICK, were compared using a portable cordless incubator. The combination of Bst or Csa DNA polymerase with HNB was found to be easiest for visual diagnosis by the naked eye, and viral DNA was successfully amplified from all orf virus strains used. These results suggest that the procedure established here can work completely on-site and can be useful for definitive diagnosis and differentiation of orf virus infection in Japanese serows in remote mountainous areas. PMID:27628591

  3. Development of a SYBR Green I real-time PCR for the detection of the orf virus.

    PubMed

    Wang, Yong; Yang, Kankan; Bai, Caixia; Yin, Dongdong; Li, Gang; Qi, Kezong; Wang, Guijun; Li, Yongdong

    2017-12-01

    Orf is a non-systemic, ubiquitous disease of sheep and goats caused by the orf virus (ORFV). ORFV occasionally causes cutaneous lesions in humans in contact with infected animals. In the present study, a real-time PCR method was established for detection of ORFV using the fluorescent chimeric dye SYBR Green I. Specific primers were designed to target a highly conserved region of the ORFV B2L gene. This method was able to detect a minimum of 20 copies of ORFV genomic DNA. The results showed no cross-reactions with other common DNA viruses. The time required for the test was approximately 1.5 h. Clinical test samples showed that this method was faster and had a higher sensitivity than traditional PCR. In conclusion, this novel, real-time PCR-based assay provides a rapid, sensitive, and specific method for ORFV detection. This test provides improved technical support for studies regarding the clinical diagnosis and epidemiology of ORFV.

  4. The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site

    PubMed Central

    Randall, Glenn; Lagunoff, Michael; Roizman, Bernard

    1997-01-01

    The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase–ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection. PMID:9294219

  5. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles.

    PubMed

    Schaecher, Scott R; Mackenzie, Jason M; Pekosz, Andrew

    2007-01-01

    Coronavirus replication is facilitated by a number of highly conserved viral proteins. The viruses also encode accessory genes, which are virus group specific and believed to play roles in virus replication and pathogenesis in vivo. Of the eight putative accessory proteins encoded by the severe acute respiratory distress syndrome associated coronavirus (SARS-CoV), only two-open reading frame 3a (ORF3a) and ORF7a-have been identified in virus-infected cells to date. The ORF7b protein is a putative viral accessory protein encoded on subgenomic (sg) RNA 7. The ORF7b initiation codon overlaps the ORF7a stop codon in a -1 shifted ORF. We demonstrate that the ORF7b protein is expressed in virus-infected cell lysates and from a cDNA encoding the gene 7 coding region, indicating that the sgRNA7 is bicistronic. The translation of ORF7b appears to be mediated by ribosome leaky scanning, and the protein has biochemical properties consistent with that of an integral membrane protein. ORF7b localizes to the Golgi compartment and is incorporated into SARS-CoV particles. We therefore conclude that the ORF7b protein is not only an accessory protein but a structural component of the SARS-CoV virion.

  6. Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins.

    PubMed

    Olsen, Christel M; Markussen, Turhan; Thiede, Bernd; Rimstad, Espen

    2016-02-18

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus infecting salmonid fish. The virus is adapted to low temperature and has a replication optimum between 10-15 °C. In this study the subcellular localization and protein interactions for the protein encoded by the largest open reading frame of gene segment 8 (s8ORF2) were investigated. In ISAV infected cells the s8ORF2 protein was found mainly in the cytosol but a minor fraction of cells expressed the protein in the nucleus as well. Green fluorescent protein-tagged s8ORF2 did not leak out of the cell when the plasma membrane was permeabilized, suggesting interactions with intracellular structural components. The s8ORF2 protein exists both as monomer and homodimer, and co-immunoprecipitation experiments strongly suggests it binds to the ISAV fusion-, nucleo- and matrix proteins. Two versions of s8ORF2 were detected with apparent molecular weights of 24-26 and 35 kDa in lysates of infected cells. The 35 kDa type is an early viral protein while the smaller version appears during the later phases of infection. The 24-26 kDa type was also the predominant form in viral particles. The s8ORF2 protein has previously been shown to bind RNA and interfere with interferon induction and signaling. Here we found that a fraction of the s8ORF2 protein pool in infected cells is likely to be conjugated to the interferon stimulated gene 15 (ISG15) and ubiquitin. Furthermore, several endogenous proteins pulled down by the s8ORF2 protein were identified by liquid chromatography mass spectrometry (LC-MS).

  7. Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins

    PubMed Central

    Olsen, Christel M.; Markussen, Turhan; Thiede, Bernd; Rimstad, Espen

    2016-01-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus infecting salmonid fish. The virus is adapted to low temperature and has a replication optimum between 10–15 °C. In this study the subcellular localization and protein interactions for the protein encoded by the largest open reading frame of gene segment 8 (s8ORF2) were investigated. In ISAV infected cells the s8ORF2 protein was found mainly in the cytosol but a minor fraction of cells expressed the protein in the nucleus as well. Green fluorescent protein-tagged s8ORF2 did not leak out of the cell when the plasma membrane was permeabilized, suggesting interactions with intracellular structural components. The s8ORF2 protein exists both as monomer and homodimer, and co-immunoprecipitation experiments strongly suggests it binds to the ISAV fusion-, nucleo- and matrix proteins. Two versions of s8ORF2 were detected with apparent molecular weights of 24–26 and 35 kDa in lysates of infected cells. The 35 kDa type is an early viral protein while the smaller version appears during the later phases of infection. The 24–26 kDa type was also the predominant form in viral particles. The s8ORF2 protein has previously been shown to bind RNA and interfere with interferon induction and signaling. Here we found that a fraction of the s8ORF2 protein pool in infected cells is likely to be conjugated to the interferon stimulated gene 15 (ISG15) and ubiquitin. Furthermore, several endogenous proteins pulled down by the s8ORF2 protein were identified by liquid chromatography mass spectrometry (LC-MS). PMID:26901217

  8. Avian hepatitis E virus identified in Russian chicken flocks exhibits high genetic divergence based on the ORF2 capsid gene.

    PubMed

    Sprygin, A V; Nikonova, Z B; Zinyakov, N G

    2012-10-01

    A total of 79 liver samples from clinically sick and asymptomatic chickens were tested for avian hepatitis E virus (aHEV). Samples were received from 19 farms, five of which tested positive with primers targeting the ORF2 capsid gene. The phylogenetic analysis of a 242-base-pair fragment demonstrated that the Russian aHEV isolates share between 78.2 and 96.2% over the fragment sequenced, whereas the nucleotide sequence identities between the Russian isolates and the other representatives from GeneBank varied from 76.3 to 96.2%. The homology between the studied hepatitis E viruses and swine hepatitis E virus varied between 46.9 to 48.1%. The most divergent isolate aHEV16050 showed homology of 82.6% as compared with the strains in the dendrogram. The three positive hepatitis E virus samples (aHEV16279, aHEV16050 and aHEV18196) did not cluster with the European genotype 3 as expected due to the close location of Russia to Europe, nor did they with the other two genotypes, separating to a distinct branch. The aHEV16211 grouped together with European and Chinese isolates, and the aHEV18198 with Canadian ones.

  9. Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism

    PubMed Central

    Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencső, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-01-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log10 titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV. PMID:22438554

  10. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    PubMed

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  11. The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1.

    PubMed

    Selb, Regina; Derntl, Christian; Klein, Reinhard; Alte, Beatrix; Hofbauer, Christoph; Kaufmann, Martin; Beraha, Judith; Schöner, Léa; Witte, Angela

    2017-05-01

    In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadiiIMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus

  12. Perianal orf.

    PubMed

    Kennedy, C T; Lyell, A

    1984-07-01

    The parapox viral infection orf is usually diagnosed without difficulty when the lesions have the characteristic morphology and there is an appropriate history of contact with sheep. Two cases of orf in a perineal location in young children are presented to illustrate modification of the physical signs by flexural occluded sites. Electron microscopy of scrapings from the lesions established the diagnosis.

  13. Crystal structure of ATV(ORF273), a new fold for a thermo- and acido-stable protein from the Acidianus two-tailed virus.

    PubMed

    Felisberto-Rodrigues, Catarina; Blangy, Stéphanie; Goulet, Adeline; Vestergaard, Gisle; Cambillau, Christian; Garrett, Roger A; Ortiz-Lombardía, Miguel

    2012-01-01

    Acidianus two-tailed virus (ATV) infects crenarchaea of the genus Acidianus living in terrestrial thermal springs at extremely high temperatures and low pH. ATV is a member of the Bicaudaviridae virus family and undergoes extra-cellular development of two tails, a process that is unique in the viral world. To understand this intriguing phenomenon, we have undertaken structural studies of ATV virion proteins and here we present the crystal structure of one of these proteins, ATV(ORF273). ATV(ORF273) forms tetramers in solution and a molecular envelope is provided for the tetramer, computed from small-angle X-ray scattering (SAXS) data. The crystal structure has properties typical of hyperthermostable proteins, including a relatively high number of salt bridges. However, the protein also exhibits flexible loops and surface pockets. Remarkably, ATV(ORF273) displays a new α + β protein fold, consistent with the absence of homologues of this protein in public sequence databases.

  14. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice.

    PubMed

    Gao, Shenyang; Li, Dandan; Liu, Ying; Zha, Enhui; Zhou, Tiezhong; Yue, Xiqing

    2015-01-01

    Hepatitis E virus (HEV) as a recognized zoonotic pathogen has posed global burden on public health, which is exacerbated by lack of efficient vaccine. In this study, we constructed a recombinant (inaQ-ORF2 gene fusion) Lactococcus lactis (L. lactis) strain NZ3900 that expresses and displays the hepatitis E virus antigen ORF2 utilizing an ice uncleation protein-based anchor system. After oral vaccination of BALB/c mice, significantly higher levels of ORF2-specific mucosal IgA and serum IgG were detected and cellular immunity was also induced. These findings further support that L. lactis-based HEV antigen vaccines could be used for human and animal protection against infection.

  15. Overexpression of Cyclin A Inhibits Augmentation of Recombinant Adeno-Associated Virus Transduction by the Adenovirus E4orf6 Protein

    PubMed Central

    Grifman, Mirta; Chen, Nancie N.; Gao, Guang-ping; Cathomen, Toni; Wilson, James M.; Weitzman, Matthew D.

    1999-01-01

    The 34-kDa product of adenovirus E4 region open reading frame 6 (E4orf6) dramatically enhances transduction by recombinant adeno-associated virus vectors (rAAV). This is achieved by promoting the conversion of incoming single-stranded viral genomes into transcriptionally competent duplex molecules. The molecular mechanism for enhancing second-strand synthesis is not fully understood. In this study, we analyzed the cellular consequences of E4orf6 expression and the requirements for efficient rAAV transduction mediated by E4orf6. Expression of E4orf6 in 293 cells led to an inhibition of cell cycle progression and an accumulation of cells in S phase. This was preceded by specific degradation of cyclin A and p53, while the levels of other proteins involved in cell cycle control remained unchanged. In addition, the kinase activity of cdc2 was inhibited. We further showed that p53 expression is not necessary or inhibitory for augmentation of rAAV transduction by E4orf6. However, overexpression of cyclin A inhibited E4orf6-mediated enhancement of rAAV transduction. A cyclin A mutant incapable of recruiting protein substrates for cdk2 was unable to inhibit E4orf6-mediated augmentation. In addition, we created an E4orf6 mutant that is selectively defective in rAAV augmentation of transduction. Based on these findings, we suggest that cyclin A degradation represents a viral mechanism to disrupt cell cycle progression, resulting in enhanced viral transduction. Understanding the cellular pathways used during transduction will increase the utility of rAAV vectors in a wide range of gene therapy applications. PMID:10559315

  16. Recombinant subunit ORF2.1 antigen and induction of antibody against immunodominant epitopes in the hepatitis E virus capsid protein.

    PubMed

    Li, F; Riddell, M A; Seow, H F; Takeda, N; Miyamura, T; Anderson, D A

    2000-04-01

    A recombinant subunit antigen (ORF2.1), representing the carboxy-terminal 267 amino acids of the 660-amino-acid hepatitis E virus (HEV) capsid protein, was expressed in Escherichia coli and used for the immunisation of rats. Purified antigen formulated with either Aluminium Hydroxide Gel Adjuvant (Alum) or Titermax gave high and equivalent levels of antibody after three doses. Responses to two doses of 15, 75, or 150 microg antigen, formulated with Alum and given at 0 and 4 weeks, were also equivalent by 17 weeks after immunisation. Rats initially developed antibody to a wide range of linear epitopes in the ORF2.1 region, but by 27 weeks the predominant response detected by Western immunoblotting was restricted to the conformational epitope unique to ORF2.1 [Li et al. (1997) Journal of Medical Virology 52:289-300], a pattern that was also observed when comparing acute-phase patient serum samples with serum samples from convalescing patients. Antibody from immunised rats blocked the majority of patients' serum reactivity in enzyme-linked immunosorbent assay against both ORF2.1 (57-92% inhibition) and virus-like particles of HEV produced using the baculovirus system (74-97% inhibition). Together, these results suggest that the ORF2.1 subunit vaccine induces an antibody response against immunodominant, conformational epitopes in the viral capsid, which largely mimics that seen in convalescent patients, who are presumed to be immune to HEV infection.

  17. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins.

    PubMed

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, C T; Surjit, Milan

    2016-04-26

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66(th),67(th) isoleucine and 101(st),102(nd) leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV.

  18. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  19. Identification and phylogenetic analysis of contagious ecthyma virus from camels (Camelus dromedarius) in Iran.

    PubMed

    Oryan, Ahmad; Mosadeghhesari, Mahboobe; Zibaee, Saeed; Mohammadi, Ali

    2017-03-24

    Contagious ecthyma is a highly contagious disease affecting domestic and wild ruminants such as sheep, goats and camels. The identification and characterisation of a parapoxvirus (PPV) infecting camels is described here. The virus was detected in dromedary camels (Camelus dromedarius) from Kerman and Shiraz in Iran. PPV-specific amplification by polymerase chain reaction (PCR) further confirmed that the disease was associated with PPV infection. Phylogenetic analysis of ORF011 (B2L) gene sequences showed 99.79% and 82.13% similarity of the PPV identified in this study with the Jodhpur isolate and the bovine papular stomatitis virus (BPSV) isolates (CE41), respectively. Moreover, phylogenetic analysis of the ORF045 gene indicated that the Shiraz sample was in all probability closely related to VR634 and to F00.120R and PCPV776. In conclusion, the results suggest that camel PPV (CPPV) is a likely cause of contagious ecthyma in dromedary camels in Iran.

  20. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound.

    PubMed

    Chen, Nanhua; Trible, Benjamin R; Kerrigan, Maureen A; Tian, Kegong; Rowland, Raymond R R

    2016-06-01

    Genetic variation in both structural and nonstructural genes is a key factor in the capacity of porcine reproductive and respiratory syndrome virus (PRRSV) to evade host defenses and maintain within animals, farms and metapopulations. However, the exact mechanisms by which genetic variation contribute to immune evasion remain unclear. In a study to understand the role of host genetics in disease resistance, a population of pigs were experimentally infected with a type 2 PRRSV isolate. Four pigs that showed virus rebound at 42days post-infection (dpi) were analyzed by 454 sequencing to characterize the rebound quasispecies. Deep sequencing of variable regions in nsp1, nsp2, ORF3 and ORF5 showed the largest number of nucleotide substitutions at day 28 compared to days 4 and 42 post-infection. Differences were also found in genetic variations when comparing tonsil versus serum. The results of dN/dS ratios showed that the same regions evolved under negative selection. However, eight amino acid sites were identified as possessing significant levels of positive selection, including A27V and N32S substitutions in the GP5 ectodomain region. These changes may alter GP5 peptide signal sequence processing and N-glycosylation, respectively. The results indicate that the greatest genetic diversity occurs during the transition between acute and rebound stages of infection, and the introduction of mutations that may result in a gain of fitness provides a potential mechanism for persistence. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication

    PubMed Central

    Ichiyama, Koji; Lee, Ching Hua; Eyo, Zhi Wen; Ebina, Hirotaka; Takahashi, Hirotaka; Takahashi, Chikako; Tan, Beng Hui; Hishiki, Takayuki; Ohba, Kenji; Matsuyama, Toshifumi; Koyanagi, Yoshio; Tan, Yee-Joo; Sawasaki, Tatsuya; Chu, Justin Jang Hann; Vasudevan, Subhash G.; Sano, Kouichi; Yamamoto, Naoki

    2016-01-01

    Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells. PMID:26735137

  2. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication.

    PubMed

    Suzuki, Youichi; Chin, Wei-Xin; Han, Qi'En; Ichiyama, Koji; Lee, Ching Hua; Eyo, Zhi Wen; Ebina, Hirotaka; Takahashi, Hirotaka; Takahashi, Chikako; Tan, Beng Hui; Hishiki, Takayuki; Ohba, Kenji; Matsuyama, Toshifumi; Koyanagi, Yoshio; Tan, Yee-Joo; Sawasaki, Tatsuya; Chu, Justin Jang Hann; Vasudevan, Subhash G; Sano, Kouichi; Yamamoto, Naoki

    2016-01-01

    Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.

  3. Adenovirus E4-ORF3 Targets PIAS3 and Together with E1B-55K Remodels SUMO Interactions in the Nucleus and at Virus Genome Replication Domains.

    PubMed

    Higginbotham, Jennifer M; O'Shea, Clodagh C

    2015-10-01

    Adenovirus E4-ORF3 and E1B-55K converge in subverting critical overlapping cellular pathways to facilitate virus replication. Here, we show that E1B-55K and E4-ORF3 induce sumoylation and the assembly of SUMO2/3 viral genome replication domains. Using a conjugation-deficient SUMO2 construct, we demonstrate that SUMO2/3 is recruited to E2A viral genome replication domains through noncovalent interactions. E1B-55K and E4-ORF3 have critical functions in inactivating MRN and ATM to facilitate viral genome replication. We show that ATM kinase inhibitors rescue ΔE1B-55K/ΔE4-ORF3 viral genome replication and that the assembly of E2A domains recruits SUMO2/3 independently of E1B-55K and E4-ORF3. However, the morphology and organization of SUMO2/3-associated E2A domains is strikingly different from that in wild-type Ad5-infected cells. These data reveal that E1B-55K and E4-ORF3 specify the nuclear compartmentalization and structure of SUMO2/3-associated E2A domains, which could have important functions in viral replication. We show that E4-ORF3 specifically targets and sequesters the cellular E3 SUMO ligase PIAS3 but not PIAS1, PIAS2, or PIAS4. The assembly of E4-ORF3 into a multivalent nuclear matrix is required to target PIAS3. In contrast to MRN, PIAS3 is targeted by E4-ORF3 proteins from disparate adenovirus subgroups. Our studies reveal that PIAS3 is a novel and evolutionarily conserved target of E4-ORF3 in human adenovirus infections. Furthermore, we reveal that viral proteins not only disrupt but also usurp SUMO2/3 to transform the nucleus and assemble novel genomic domains that could facilitate pathological viral replication. SUMO is a key posttranslational modification that modulates the function, localization, and assembly of protein complexes. In the ever-escalating host-pathogen arms race, viruses have evolved strategies to subvert sumoylation. Adenovirus is a small DNA tumor virus that is a global human pathogen and key biomedical agent in basic research and

  4. Adenovirus E4-ORF3 Targets PIAS3 and Together with E1B-55K Remodels SUMO Interactions in the Nucleus and at Virus Genome Replication Domains

    PubMed Central

    Higginbotham, Jennifer M.

    2015-01-01

    ABSTRACT Adenovirus E4-ORF3 and E1B-55K converge in subverting critical overlapping cellular pathways to facilitate virus replication. Here, we show that E1B-55K and E4-ORF3 induce sumoylation and the assembly of SUMO2/3 viral genome replication domains. Using a conjugation-deficient SUMO2 construct, we demonstrate that SUMO2/3 is recruited to E2A viral genome replication domains through noncovalent interactions. E1B-55K and E4-ORF3 have critical functions in inactivating MRN and ATM to facilitate viral genome replication. We show that ATM kinase inhibitors rescue ΔE1B-55K/ΔE4-ORF3 viral genome replication and that the assembly of E2A domains recruits SUMO2/3 independently of E1B-55K and E4-ORF3. However, the morphology and organization of SUMO2/3-associated E2A domains is strikingly different from that in wild-type Ad5-infected cells. These data reveal that E1B-55K and E4-ORF3 specify the nuclear compartmentalization and structure of SUMO2/3-associated E2A domains, which could have important functions in viral replication. We show that E4-ORF3 specifically targets and sequesters the cellular E3 SUMO ligase PIAS3 but not PIAS1, PIAS2, or PIAS4. The assembly of E4-ORF3 into a multivalent nuclear matrix is required to target PIAS3. In contrast to MRN, PIAS3 is targeted by E4-ORF3 proteins from disparate adenovirus subgroups. Our studies reveal that PIAS3 is a novel and evolutionarily conserved target of E4-ORF3 in human adenovirus infections. Furthermore, we reveal that viral proteins not only disrupt but also usurp SUMO2/3 to transform the nucleus and assemble novel genomic domains that could facilitate pathological viral replication. IMPORTANCE SUMO is a key posttranslational modification that modulates the function, localization, and assembly of protein complexes. In the ever-escalating host-pathogen arms race, viruses have evolved strategies to subvert sumoylation. Adenovirus is a small DNA tumor virus that is a global human pathogen and key biomedical agent in

  5. [The Orf nodule].

    PubMed

    Dellamonica, P; Bernard, E; Ortonne, J P; Defontaine, A

    1983-09-15

    Human Orf disease is an exceptional dermatologic benign condition, due to a Parapox virus. In sheep and goats this infection is termed "Ecthyma Contagiosum". Human beings are contaminated from infected animals. We report three cases of Orf disease in the same family. Typical viral particles have been identified in the skin of one of these patients by electronic microscopy but cultures failed to recover the pathogen. A complete study of the literature allows us to review current knowledge on this disease with which practitioners are unfamiliar.

  6. Use of Protein AG in an Enzyme-Linked Immunosorbent Assay for Screening for Antibodies against Parapoxvirus in Wild Animals in Japan

    PubMed Central

    Inoshima, Yasuo; Shimizu, Shinya; Minamoto, Nobuyuki; Hirai, Katsuya; Sentsui, Hiroshi

    1999-01-01

    Using protein AG in an enzyme-linked immunosorbent assay (ELISA), we tried to detect antibodies against parapoxvirus in 9 species of wild animals in Japan: the Japanese badger (Meles meles anakuma), Japanese black bear (Ursus thibetanus japonicus), Japanese deer (Cervus nippon centralis), Japanese monkey (Macaca fuscata), Japanese raccoon dog (Nyctereutes procyonoides viverrinus), Japanese serow (Capricornis crispus), Japanese wild boar (Sus scrofa leucomystax), masked palm civet (Paguma larvata), and nutria (Myocastor coypus). A total of 272 serum samples were collected over the period from 1984 to 1995 and were tested by the protein AG-ELISA, the agar gel immunodiffusion test, and an indirect immunofluorescence assay. The protein AG-ELISA was effective in a serological survey for parapoxvirus in wild animals, and antibodies were detected only in Japanese serows. A total of 24 of 66 (36.4%) Japanese serows reacted positively, and they were found in almost all prefectures in all years tested. These results suggest that epizootic cycles of parapoxvirus exist widely in Japanese serows and that they could be reservoirs for the virus in the field in Japan. Moreover, it is probable that they might carry the virus to domestic animals such as cattle, sheep, and goats. PMID:10225841

  7. Understanding the role of ORF-C gene in the pathogenicity of infectious laryngotracheitis virus

    USDA-ARS?s Scientific Manuscript database

    Infectious laryngotracheitis (ILT) is a very serious and widespread respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Conventional attenuated ILT vaccines, obtained by continuous passages in chicken embryos and tissue culture, had been the main tools utilized by th...

  8. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light chain subunit of human ferritin (FTL). In cultured hepatoma cells, HEV-macro domain reduces secretion of ferritin without causing any change in the expression levels of FTL. This inhibitory effect was further enhanced upon Brefeldin-A treatment. The levels of transferrin Receptor 1 or ferroportin, two important proteins in iron metabolism, remained unchanged in HEV-macro domain expressing cells. Similarly, there were no alterations in the levels of cellular labile iron pool and reactive oxygen species, indicating that HEV-macro domain does not influence cellular iron homeostasis/metabolism. As ferritin is an acute-phase protein, secreted in higher level in infected persons and HEV-macro domain has the property of reducing synthesis of inflammatory cytokines, we propose that by directly binding to FTL, macro domain prevents ferritin from entering into circulation and helps in further attenuation of the host immune response.

  9. The PSAP motif within the ORF3 protein of an avian strain of the hepatitis E virus is not critical for viral infectivity in vivo but plays a role in virus release.

    PubMed

    Kenney, Scott P; Pudupakam, R S; Huang, Yao-Wei; Pierson, F William; LeRoith, Tanya; Meng, Xiang-Jin

    2012-05-01

    The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.

  10. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.

    PubMed

    Coelho, João; Martins, Carlos; Ferreira, Fernando; Leitão, Alexandre

    2015-01-01

    Topoisomerases modulate the topological state of DNA during processes, such as replication and transcription, that cause overwinding and/or underwinding of the DNA. African swine fever virus (ASFV) is a nucleo-cytoplasmic double-stranded DNA virus shown to contain an OFR (P1192R) with homology to type II topoisomerases. Here we observed that pP1192R is highly conserved among ASFV isolates but dissimilar from other viral, prokaryotic or eukaryotic type II topoisomerases. In both ASFV/Ba71V-infected Vero cells and ASFV/L60-infected pig macrophages we detected pP1192R at intermediate and late phases of infection, cytoplasmically localized and accumulating in the viral factories. Finally, we used a Saccharomyces cerevisiae temperature-sensitive strain in order to demonstrate, through complementation and in vitro decatenation assays, the functionality of P1192R, which we further confirmed by mutating its predicted catalytic residue. Overall, this work strengthens the idea that P1192R constitutes a target for studying, and possibly controlling, ASFV transcription and replication.

  11. A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication.

    PubMed

    Xu, Yiyang; AuCoin, David P; Huete, Alicia Rodriguez; Cei, Sylvia A; Hanson, Lisa J; Pari, Gregory S

    2005-03-01

    Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus type 8 [HHV8]) latently infects a number of cell types. Reactivation of latent virus can occur by treatment with the phorbol ester tetradecanoyl phorbol acetate (TPA) or with the transfection of plasmids expressing the lytic switch activator protein K-Rta, the gene product of ORF50. K-Rta expression is sufficient for the activation of the entire lytic cycle and the transactivation of viral genes necessary for DNA replication. In addition, recent evidence has suggested that K-Rta may participate directly in the initiation of lytic DNA synthesis. We have now generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a large deletion within the ORF50 locus. This BAC, BAC36Delta50, failed to produce infectious virus upon treatment with TPA and was defective for DNA synthesis. Expression of K-Rta in trans in BAC36Delta50-containing cells was able to abolish both defects. Real-time PCR revealed that K-bZIP, ORF40/41, and K8.1 were not expressed when BAC36Delta50-containing cells were induced with TPA. However, the mRNA levels of ORF57 were over fivefold higher in TPA-treated BAC36Delta50-containing cells than those observed in similarly treated wild-type BAC-containing cells. In addition, immunohistochemical analysis showed that while the latency-associated nuclear antigen (LANA) was expressed in the mutant BAC-containing cells, ORF59 and K8.1 expression was not detected in TPA-induced BAC36Delta50-containing cells. These results showed that K-Rta is essential for lytic viral reactivation and transactivation of viral genes contributing to DNA replication.

  12. The Varicella-Zoster Virus ORF47 Kinase Interferes with Host Innate Immune Response by Inhibiting the Activation of IRF3

    PubMed Central

    Vandevenne, Patricia; Lebrun, Marielle; El Mjiyad, Nadia; Ote, Isabelle; Di Valentin, Emmanuel; Habraken, Yvette; Dortu, Estelle; Piette, Jacques; Sadzot-Delvaux, Catherine

    2011-01-01

    The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15. PMID:21347389

  13. Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine

    PubMed Central

    Liu, Jian; Li, Chunyan; Zhang, Hua; Ma, Ping; Luo, Xianfeng; Zeng, Zhiyong; Hong, Nining; Liu, Xia; Wang, Bin; Wang, Feng; Gan, Zhenlei; Hao, Fei

    2014-01-01

    The purpose of this study was to investigate the effects of porcine interleukin (IL)-2 and IL-4 genes on enhancing the immunogenicity of a porcine reproductive and respiratory syndrome virus ORF5 DNA vaccine in piglets. Eukaryotic expression plasmids pcDNA-ORF5, pcDNA-IL-2, and pcDNA-IL-4 were constructed and then expressed in Marc-145 cells. The effects of these genes were detected using an indirect immunofluorescent assay and reverse transcription polymerase chain reaction (RT-PCR). Characteristic fluorescence was observed at different times after pcDNA-ORF5 was expressed in the Marc-145 cells, and PCR products corresponding to ORF5, IL-2, and IL-4 genes were detected at 48 h. Based on these data, healthy piglets were injected intramuscularly with different combinations of the purified plasmids: pcDNA-ORF5 alone, pcDNA-ORF5 + pcDNA-IL-2, pcDNA-ORF5 + pcDNA-IL-4, and pcDNA-ORF5 + pcDNAIL-4 + pcDNA-IL-2. The ensuing humoral immune responses, percentages of CD4+ and CD8+ T lymphocytes, proliferation indices, and interferon-γ expression were analyzed. Results revealed that the piglets co-immunized with pcDNA-ORF5 + pcDNA-IL-4 + pcDNA-IL-2 plasmids developed significantly higher antibody titers and neutralizing antibody levels, had significantly increased levels of specific T lymphocyte proliferation, elevated percentages of CD4+ and CD8+ T lymphocytes, and significantly higher IFN-γ production than the other inoculated pigs (p < 0.05). PMID:24136204

  14. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs.

    PubMed

    van Rooij, E M A; Rijsewijk, F A M; Moonen-Leusen, H W; Bianchi, A T J; Rziha, H-J

    2010-02-17

    Both DNA and Orf virus (ORFV; Parapox virus) based vaccines have shown promise as alternatives for conventional vaccines in pigs against pseudorabies virus (PRV) infection causing Aujeszky's disease. In the present study we evaluated the efficacy of different prime-boost regimes in pigs in terms of immunogenicity and protection against challenge infection with PRV. The different prime-boost regimes consisted of the homologous prime-boost regimes (DNA followed by DNA or ORFV followed by ORFV) and the heterologous prime-boost regimes (DNA followed by ORFV and ORFV followed by DNA), all based on glycoprotein D (gD) of PRV. Moreover, we compared the efficacy of the different prime-boost regimes with the efficacy of a conventional modified live vaccine (MLV). The different prime-boost regimes resulted in different levels of immunity and protection against challenge infection. Most effective was the regime of priming with DNA vaccine followed by boosting with the ORFV based vaccine. This regime resulted in strong antibody responses, comparable to the antibody responses obtained after prime-boost vaccination with a conventional MLV vaccine. Also with regard to protection, the prime DNA-boost ORFV regime performed better than the other prime-boost regimes. This study demonstrates the potential of a heterologous prime-boost vaccination strategy against PRV based on a single antigen, and that in the natural host, the pig.

  15. Cellular Human CLE/C14orf166 Protein Interacts with Influenza Virus Polymerase and Is Required for Viral Replication ▿

    PubMed Central

    Rodriguez, Ariel; Pérez-González, Alicia; Nieto, Amelia

    2011-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including RNA polymerase II. We previously described the interaction of influenza virus polymerase subunit PA with human CLE/C14orf166 protein (hCLE), a positive modulator of this cellular RNA polymerase. Here, we show that hCLE also interacts with the influenza virus polymerase complex and colocalizes with viral ribonucleoproteins. Silencing of hCLE causes reduction of viral polymerase activity, viral RNA transcription and replication, virus titer, and viral particle production. Altogether, these findings indicate that the cellular transcription factor hCLE is an important protein for influenza virus replication. PMID:21900157

  16. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    SciTech Connect

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.; Sinning, Allan; Henegar, Jeffrey; Norcross, Erin; Chinchar, V. Gregory

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.

  17. Autographa californica Multiple Nucleopolyhedrovirus orf132 Encodes a Nucleocapsid-Associated Protein Required for Budded-Virus and Multiply Enveloped Occlusion-Derived Virus Production

    PubMed Central

    Yang, Ming; Wang, Shuo; Yue, Xiu-Li

    2014-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132

  18. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    PubMed

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV(∆024)RABV-G or ORFV(∆121)RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV(∆024)RABV-G and ORFV(∆121)RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV(∆121)RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV(∆024)RABV-G-immunized animals, indicating a higher immunogenicity of ORFV(Δ121)-based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  20. In house ELISA based on recombinant ORF2 protein underline high prevalence of IgG anti-hepatitis E virus amongst blood donors in south Brazil

    PubMed Central

    Pandolfi, Rafael; Ramos de Almeida, Denise; Alves Pinto, Marcelo; Kreutz, Luiz Carlos

    2017-01-01

    Hepatitis E Virus (HEV) is a zoonotic pathogen responsible for causing acute hepatitis in human, especially in developing countries. Diagnosis of HEV usually relies on the detection of antibodies mostly by enzyme-linked immunosorbent assay (ELISA). In the present study, we designed a new indirect ELISA (iELISA) based on a short recombinant peptide derived from the capsid protein (ORF2p) and demonstrated its potential for detecting human IgG against HEV genotype 3. The best polystyrene plate (Maxisorp®), optimal ORF2p coating antigen concentration (0,67μg/well) and primary antibody dilution (1:100) were determined. This iELISA showed a sensitivity of 91.4% and specificity of 95.9%. The comparison of our in house iELISA with a commercial assay (RecomWell, Mikrogen®) showed 94.25% of agreement and a kappa index of 0.88. The ORF2 recombinant ELISA was used to screen 780 blood donors for anti-HEV IgG and we found that 314 (40,25%) of these donors were IgG positive. This high prevalence of antibodies suggests, for the first time, that the Southern Brazil region might be endemic to Hepatitis E Virus genotype 3. PMID:28486512

  1. In house ELISA based on recombinant ORF2 protein underline high prevalence of IgG anti-hepatitis E virus amongst blood donors in south Brazil.

    PubMed

    Pandolfi, Rafael; Ramos de Almeida, Denise; Alves Pinto, Marcelo; Kreutz, Luiz Carlos; Frandoloso, Rafael

    2017-01-01

    Hepatitis E Virus (HEV) is a zoonotic pathogen responsible for causing acute hepatitis in human, especially in developing countries. Diagnosis of HEV usually relies on the detection of antibodies mostly by enzyme-linked immunosorbent assay (ELISA). In the present study, we designed a new indirect ELISA (iELISA) based on a short recombinant peptide derived from the capsid protein (ORF2p) and demonstrated its potential for detecting human IgG against HEV genotype 3. The best polystyrene plate (Maxisorp®), optimal ORF2p coating antigen concentration (0,67μg/well) and primary antibody dilution (1:100) were determined. This iELISA showed a sensitivity of 91.4% and specificity of 95.9%. The comparison of our in house iELISA with a commercial assay (RecomWell, Mikrogen®) showed 94.25% of agreement and a kappa index of 0.88. The ORF2 recombinant ELISA was used to screen 780 blood donors for anti-HEV IgG and we found that 314 (40,25%) of these donors were IgG positive. This high prevalence of antibodies suggests, for the first time, that the Southern Brazil region might be endemic to Hepatitis E Virus genotype 3.

  2. Intrahost evolution of envelope glycoprotein and OrfA sequences after experimental infection of cats with a molecular clone and a biological isolate of feline immunodeficiency virus.

    PubMed

    Huisman, Willem; Schrauwen, Eefje J A; Rimmelzwaan, Guus F; Osterhaus, Albert D M E

    2008-10-01

    Feline immunodeficiency virus (FIV) is a member of the genus Lentivirus and causes AIDS-like disease in its natural host, the cat. Like other lentiviruses, FIV displays a high degree of nucleotide sequence variability that is reflected in both the geographic distribution of the viruses and the different cat species that are infected. Although a lot of data on sequence variation at the population level is available, relatively little is known about the intrahost variation of FIV sequences. In the present study, cats were infected with either a biological isolate of FIV or a molecular clone that was derived from the same isolate, AM19. After infection, the cats were monitored for up to 3 years and at various time points sequences were obtained of virus circulating in the plasma. Regions of the env gene and the orfA gene were amplified, cloned and their nucleotide sequence analyzed. Furthermore, the extent of sequence variation in the original inocula was also determined. It was found that FIV is displaying relative little sequence variation during infection of its host, both in the env and the orfA gene, especially after infection with molecular clone 19k1. Although the extent of variation was higher after infection with biological isolate AM19, a large portion of these variant sequences was already present in the inoculum.

  3. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36

    PubMed Central

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further

  4. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36.

    PubMed

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah; Zhu, Fanxiu

    2016-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences

  5. Tracing the genetic history of porcine reproductive and respiratory syndrome viruses derived from the complete ORF 5-7 sequences: a Bayesian coalescent approach.

    PubMed

    Yoon, Sook Hee; Kim, Hyekwon; Park, Bongkyun; Kim, Heebal

    2012-11-01

    To trace the genetic history of porcine reproductive and respiratory syndrome virus (PRRSV), we determined the complete sequences of ORFs 5 to 7 of four PRRSV isolates. These sequences were analyzed together with published sequences from 146 isolates from various parts of the world using a Bayesian coalescent approach as well as Bayesian inference and maximum-likelihood methods. All of the European-type (EU-type) viruses were classified into one of two groups or unclassified (4 isolates), while all North American-type (NA-type) viruses belonged to one of three major groups or were unclassified (5 isolates). Within each genotype, no apparent periodic and/or geographic influence on the evolution of PRRSVs was observed. The evolutionary rate of PRRSV isolates was estimated to be 1.55 × 10(-3) substitutions/site/year, and the time of the most recent common ancestor (TMRCA) was 491.2 years ago. Here, the TMRCA for the EU- and NA-type viruses was 58.7 and 62.6 years ago, respectively. A Bayesian skyline plot revealed that the viruses evolved at an almost constant population size until the late 1970s, when they experienced a population expansion that continued until the late 1980s. The population size then remained constant again until the early 2000s, when a rapid, sharp decline in the effective number of infections occurred.

  6. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C

    2015-04-02

    Honey bees (Apis mellifera) are susceptible to a wide range of pathogens, including a broad set of viruses. Recently, next-generation sequencing has expanded the list of viruses with, for instance, two strains of Lake Sinai Virus. Soon after its discovery in the USA, LSV was also discovered in other countries and in other hosts. In the present study, we assemble four almost complete LSV genomes, and show that there is remarkable sequence heterogeneity based on the Orf1, RNA-dependent RNA polymerase and capsid protein sequences in comparison to the previously identified LSV 1 and 2 strains. Phylogenetic analyses of LSV sequences obtained from single honey bee specimens further revealed that up to three distinctive clades could be present in a single bee. Such superinfections have not previously been identified for other honey bee viruses. In a search for the putative routes of LSV transmission, we were able to demonstrate the presence of LSV in pollen pellets and in Varroa destructor mites. However, negative-strand analyses demonstrated that the virus only actively replicates in honey bees and mason bees (Osmia cornuta) and not in Varroa mites.

  7. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters.

    PubMed Central

    Wu, C L; Wilcox, K W

    1991-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), pseudorabies virus (PRV), varicella-zoster virus (VZV), and equine herpesvirus 1 (EHV-1) are all classified as Alphaherpesvirinae. Each of these five viruses encodes an essential immediate-early (IE) regulatory protein referred to as HSV-1 ICP4, HSV-2 ICP4, PRV IE180, VZV ORF62 protein, and EHV-1 IE1, respectively. These five proteins share extensive homology with each other in domains referred to as regions 2 and 4. The HSV-1 ICP4 region 2 domain contains residues that are required for the DNA-binding capability of ICP4. In this report, we describe the expression of region 2 domains from the ICP4, IE180, and ORF62 genes as fusion proteins in Escherichia coli. DNA-binding assays revealed that each of these region 2 fusion proteins binds to a sequence that overlaps the transcription start site in the promoter for the gene encoding the corresponding protein. Each of the sites with high affinity for one or more of these fusion proteins contains the sequence 5'-ATCGT-3'. This sequence spans the mRNA cap site in the HSV-2 ICP4 gene promoter and is immediately upstream from the transcription start site in the EHV-1 IE1 gene. These results suggest that formation of a specific complex between an IE protein and its own gene promoter may be a common mechanism used by Alphaherpesvirinae to autoregulate transcription of an essential IE gene. Images PMID:1847444

  8. Serological survey of parapoxvirus infection in wild ruminants in Japan in 1996-9.

    PubMed Central

    Inoshima, Y.; Yamamoto, Y.; Takahashi, T.; Shino, M.; Katsumi, A.; Shimizu, S.; Sentsui, H.

    2001-01-01

    The prevalence of parapoxvirus infection was examined in free-ranging wild ruminants in Japan, Japanese serow (Capricornis crispus) and Japanese deer (Cervus nippon centralis), in 1996-9. We collected a total of 151 serum samples from 101 Japanese serows and 50 Japanese deer and tested for antibodies against parapoxvirus by an enzyme-linked immunosorbent assay and an agar gel immunodiffusion test. Overall seroprevalences among Japanese serows were 5/25 (20.0%) in 1996, 4/14 (28.6%) in 1997, 5/32 (15.6%) in 1998 and 2/30 (6.7%) in 1999, respectively. The seroprevalence increased with age but was not affected by sex. No antibodies were detected from any of 50 serum samples taken from Japanese deer. Our results in this study suggest that parapoxvirus infection is widespread among the population of Japanese serows, however, Japanese deer appear to be still free of the disease. PMID:11293676

  9. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): A promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination.

    PubMed

    Cui, Li-Chun; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong; Xu, Yi-Gang

    2015-06-17

    Spring viremia of carp virus (SVCV) and koi herpesvirus (KHV) are highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Although DNA vaccines reported in recent years could induce protective immune responses in carps against these viruses via injection, there are a number of consequences and uncertainties related to DNA vaccination. Therefore, more effective and practical method to induce protective immunity such as oral administration would be highly desirable. In this study, we investigated the utilities of a genetically engineered Lactobacillus plantarum (L. plantarum) coexpressing glycoprotein (G) of SVCV and ORF81 protein of KHV as oral vaccine to induce protective immunity in carps via oral vaccination. The surface-displayed recombinant plasmid pYG-G-ORF81 was electroporated into L. plantarum, giving rise to LP/pYG-G-ORF81, where expression and localization of G-ORF81 fusion protein from the LP/pYG-G-ORF81 was identified by SDS-PAGE, Western blotting and immunofluorescence assay. Bait feed particles containing the LP/pYG-G-ORF81 were used as vaccine to immunize carps via gastrointestinal route. Compared to control groups, the carps orally immunized with the LP/pYG-G-ORF81 were induced significant levels of immunoglobulin M (IgM), and its immunogenicity was confirmed by viral loads reduction detected by PCR assay after virus challenge followed by an effective protection rate 71% in vaccinated carps and 53% in vaccinated koi until at days 65 post challenge, respectively. Our study here demonstrates, for the first time, the ability of recombinant L. plantarum as oral vaccine against SVCV and KHV infection in carps, suggesting a practical multivalent strategy for the control of spring viremia of carp and koi herpesvirus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Orf nodules and immunosuppression: a case report and review of therapeutics].

    PubMed

    de Vicq de Cumptich, M; Snoeck, R; Sass, U; del Marmol, V; Binet, H

    2015-01-01

    In immunocompromised patient, parapoxvirus infection can be extensively necrotic and recurrent evolution. We describe a case of Orf nodule in a liver transplanted woman. We will consider the therapeutic options in case of infections by parapox in immunosuppressive patients, as described in the medical literature. In our specific case, local application of cidofovir (concentration of 1 %) together with local antiseptic solution, povidone iodine, led to complete remission of the lesion without any sign of toxicity. Finally, we will consider the therapeutic use of local cidofovir.

  11. Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus ORF51 is a ChaB homologous gene involved in budded virus production and DNA replication.

    PubMed

    Zheng, Fangliang; Huang, Yi; Long, Gang; Sun, Xiulian; Wang, Hanzhong

    2011-01-01

    The baculovirus ChaB proteins are conserved in all completely sequenced Lepidopteran NPVs and are annotated as putative DNA binding proteins. Here we investigated Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) ORF51 (ha51), one of the ChaB homologues in HearNPV. 5'-RACE revealed that Ha51 is transcribed from a conventional early promoter transcriptional initiator motif (CATT) located at 159nt upstream of ATG. RT-PCR confirmed that ha51 is an early transcribed gene. To study the function of Ha51 in the life cycle of HearNPV, Ha51 knockout and repair bacmids were generated by homologous recombination in Escherichia coli. Growth curve and DNA replication analyses showed that the levels of budded virus (BV) production and viral DNA accumulation were significantly higher in cells infected with Ha51 null virus than those infected with wild-type bacmid derived virus. Electron microscopy revealed that polyhedra formation was not affected by the deletion of Ha51. Bioassay demonstrated that the Ha51-deleted virus had similar oral infectivity as the wild-type and rescued virus. Western blot analyses suggested that HA51 is a component of the nucleocapsid of BV and occlusion-derived virus as well as the envelope of BV. Immunofluorescence microscopy showed that HA51 protein is mainly localized in the cytoplasm of infected cells. Taken together, our results indicate that, unlike previously characterized baculovirual ChaB genes, Ha51 is involved in viral DNA replication and BV production and is transcribed in the early stage of infection.

  12. New insights about ORF1 coding regions support the proposition of a new genus comprising arthropod viruses in the family Totiviridae.

    PubMed

    Dantas, Márcia Danielle A; Cavalcante, Gustavo Henrique O; Oliveira, Raffael A C; Lanza, Daniel C F

    2016-01-04

    Analyzing the positions of 2A-like polypeptide cleavage sites in all available genomes of arthropod totiviruses we propose the limits of all ORF1 coding sequences and observed that two proteins previously predicted in infectious myonecrosis virus genome are unique in the arthropod totiviruses group. A putative protein cleavage site upstream the major capsid protein was also identified only in these genomes. In addition, protein models generated using ab initio and threading approaches revealed conserved structures possibly related to formation of viral protrusions and RNA packaging, clarifying the mechanisms involved in the extracellular transmission. These data appoints that the group formed by arthropod totiviruses are sufficient distinctive to be clustered in new genus belonging to the Totiviridae family, in agreement with previous phylogenetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Molecular Characterization of the ORF3 and S1 Genes of Porcine Epidemic Diarrhea Virus Non S-INDEL Strains in Seven Regions of China, 2015.

    PubMed

    Wang, Enyu; Guo, Donghua; Li, Chunqiu; Wei, Shan; Wang, Zhihui; Liu, Qiujin; Zhang, Bei; Kong, Fanzhi; Feng, Li; Sun, Dongbo

    2016-01-01

    In an effort to trace the evolution of porcine epidemic diarrhea virus (PEDV), S1 and ORF3 genes of viruses identified in 41 pig farms from seven regions (North, Northeast, Northwest, Central, East, South West, and South, respectively) of China in 2015 were sequenced and analyzed. Sequence analysis revealed that the 41 ORF3 genes and 29 S1 genes identified in our study exhibited nucleotide homologies of 98.2%-100% and 96.6%-100%, respectively; these two genes exhibited low nucleotide sequence similarities with classical CV777 strain and early Chinese strain LZC. Phylogenetic analysis indicated that the identified PEDV strains belonged to global non S-INDEL strains, and exhibited genetic diversity; S1 gene of the HLJ2015/DP1-1 strain harbored an unique deletion of 12 nucleotides (A1130CAACTCCACTG1141); while the Chinese PEDV S-INDEL reference strains included two types of the "CV777" S-INDEL as well as the "US" S-INDEL, and all co-circulated with Chinese non S-INDEL strains. Of 29 identified S1 genes, the SS2 epitope (Y748SNIGVCK755) was highly conserved, while the SS6 epitope (L764QDGQVKI771) and pAPN receptor-binding region (aa 490-615) exhibited amino substitutions. Nine possible recombination events were identified between the 29 identifed S1 genes and the 3 S1 reference genes from early Chinese PEDV strains. The complete S genes of selected Chinese PEDV field strains (2011-2015) showed 5.18%-6.07% nucleotide divergence, which is far higher than the divergence observed in early Chinese PEDV strains (3.1%) (P<0.05). Our data provide evidence that PEDV non S-INDEL strains with genetic diversities and potential recombination circulate in seven regions of China in 2015; Chinese PEDV S-INDEL strains exhibit genetic diversity and co-circulate with non S-INDEL strains.

  14. Detection of Serum Antibodies to Hepatitis E Virus Based on HEV Genotype 3 ORF2 Capsid Protein Expressed in Nicotiana benthamiana

    PubMed Central

    Mazalovska, Milena; Varadinov, Nikola; Koynarski, Tsvetoslav; Minkov, Ivan; Teoharov, Pavel; Lomonossoff, George P.

    2017-01-01

    Background Hepatitis E virus (HEV) causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. There have been recent reports on the zoonotic spread of the virus, and several animal species, primarily pigs, have been recognized as reservoirs of HEV. Because of its possible spread, there is an urgent need of a method for the cost-effective production of HEV proteins that can be used as diagnostic antigens for the serological detection of anti-HEV antibodies. Methods The HEV open reading frame (ORF)2 protein was purified from plant tissue by using immobilized metal-anion chromatography (IMAC). The recombinant protein was used to develop an in-house ELISA for testing anti-HEV antibodies in both human and swine sera. Thirty-six serum samples collected from patients with serologically proven HEV infection with commercial kits were tested for anti-HEV IgG antibodies by using the plant-expressed protein. Forty-five serum samples collected from apparently healthy pigs in Bulgarian farms were also tested. Results We confirmed the transient expression and purification of a truncated version of the HEV genotype 3 capsid protein in Nicotiana benthamiana and its usefulness as a diagnostic antigen. ELISA showed the presence of anti-HEV IgG antibodies in 29 of the 36 human samples. The in-house ELISA showed anti-HEV IgG antibodies in 34 of the 45 pigs. Conclusions We describe a method for the production of HEV ORF2 protein in N. benthamiana and the usefulness of this protein for the serological detection of anti-HEV antibodies in both humans and swine. PMID:28445010

  15. Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene.

    PubMed

    Su, Yunfang; Liu, Yunchao; Chen, Yumei; Zhao, Baolei; Ji, Pengchao; Xing, Guangxu; Jiang, Dawei; Liu, Chang; Song, Yapeng; Wang, Guoqiang; Li, Dongliang; Deng, Ruiguang; Zhang, Gaiping

    2016-11-25

    Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1-789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed. PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software. The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13-019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains. These findings illustrated the existence of genetic diversity among

  16. Phylogenetics Based on Partial ORF2 of Triatoma Virus in Triatomines Collected Over a Decade From Domiciliary Habitats

    PubMed Central

    Susevich, María Laura; Marti, Gerardo Aníbal; Balsalobre, Agustín; Echeverría, María Gabriela

    2015-01-01

    The only virus sequenced and studied in triatomines is the Triatoma virus, from the Dicistroviridae family, which causes delayed development, reduced oviposition, and premature death of infected insects. With the goal of expanding the sequences already obtained in previous years and verifying if any changes occurred in their genomic sequences, 68 samples of triatomines from several provinces of Argentina were analyzed. Sixteen positive samples were obtained by Reverse Transcription (RT)-polymerase chain reaction using the VP3-VP1 subregion of open reading frame-2 as a diagnostic method; after sequencing, 11 samples were obtained from Triatoma infestans. These new sequences showed no significant differences in the analyzed regions, which were not grouped by species or habitat or geographical distribution. There were no differences when compared with the sequences found during 2002–2012, all obtained from the wild. We conclude that despite being an RNA virus, the different sequences show high homology. PMID:25797795

  17. Phylogenetics based on partial ORF2 of triatoma virus in triatomines collected over a decade from domiciliary habitats.

    PubMed

    Susevich, María Laura; Marti, Gerardo Aníbal; Balsalobre, Agustín; Echeverría, María Gabriela

    2015-01-01

    The only virus sequenced and studied in triatomines is the Triatoma virus, from the Dicistroviridae family, which causes delayed development, reduced oviposition, and premature death of infected insects. With the goal of expanding the sequences already obtained in previous years and verifying if any changes occurred in their genomic sequences, 68 samples of triatomines from several provinces of Argentina were analyzed. Sixteen positive samples were obtained by Reverse Transcription (RT)-polymerase chain reaction using the VP3-VP1 subregion of open reading frame-2 as a diagnostic method; after sequencing, 11 samples were obtained from Triatoma infestans. These new sequences showed no significant differences in the analyzed regions, which were not grouped by species or habitat or geographical distribution. There were no differences when compared with the sequences found during 2002-2012, all obtained from the wild. We conclude that despite being an RNA virus, the different sequences show high homology.

  18. Effects of Early or Overexpression of the Autographa californica Multiple Nucleopolyhedrovirus orf94 (ODV-e25) on Virus Replication.

    PubMed

    Luo, Xiao-Chun; Wang, Shan-Shan; Zhang, Jie; Qian, Duo-Duo; Wang, Si-Min; Li, Lu-Lin

    2013-01-01

    odv-e25(e25) is one of the core genes of baculoviruses. To investigate how it functions in the replication cycle of a baculovirus, a number of Autographa californica multiple nucleopolyhedrovirus recombinants with e25 under control of the promoter of immediate early gene ie1, or the promoter of the very late hyperexpressed gene p10, were constructed using a bacmid system, and the effects of early expression or overexpression of e25 on replication of the virus were evaluated. Microscopy and titration assays demonstrated that bacmids with e25 under control of ie1 promoter were unable to produce budded viruses; and that the recombinant viruses with e25 under control of p10 promoter generated budded virus normally, but formation of occlusion bodies were dramatically reduced and delayed in the infected cells. Electron microscopy showed that there were no mature virions or intact nucleocapsids present in the cells transfected with a recombinant bacmid with e25 under control of ie1 promoter. Quantitative real-time PCR analysis demonstrated that alteration of the e25 promoter did not affect viral DNA synthesis. The reporter gene expression from the promoter of the major capsid protein gene vp39 was reduced 63% by early expression of e25. Confocal microscopy revealed that E25 was predominantly localized in nuclei by 24 hours post infection with wild-type virus, but it remained in the cytoplasm in the cells transfected with a recombinant bacmid with e25 under control of the ie1 promoter, suggesting that the transport of E25 into nuclei was regulated in a specific and strict time dependent manner.

  19. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.

    PubMed Central

    Wirblich, C; Sibilia, M; Boniotti, M B; Rossi, C; Thiel, H J; Meyers, G

    1995-01-01

    Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size. PMID:7474137

  20. Mutational analysis of hepatitis E virus ORF1 "Y-domain": Effects on RNA replication and virion infectivity

    PubMed Central

    Parvez, Mohammad Khalid

    2017-01-01

    AIM To investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle. METHODS Sequences of human HEV Y-domain (amino acid sequences 216-442) and closely-related viruses were analyzed in silico. Site-directed mutagenesis of the Y-domain (HEV SAR55) was carried out and studied in the replicon-baculovirus-hepatoma cell model. In vitro transcribed mRNA (pSK-GFP) constructs were transfected into S10-3 cells and viral RNA replicating GFP-positive cells were scored by flow cytometry. Mutant virions’ infectivity was assayed on naïve HepG2/C3A cells. RESULTS In silico analysis identified a potential palmitoylation-site (C336C337) and an α-helix segment (L410Y411S412W413L414F415E416) in the HEV Y-domain. Molecular characterization of C336A, C337A and W413A mutants of the three universally conserved residues showed non-viability. Further, of the 10 consecutive saturation mutants covering the entire Y-domain nucleotide sequences (nts 650-1339), three constructs (nts 788-994) severely affected virus replication. This revealed the indispensability of the internal sequences but not of the up- or downstream sequences at the transcriptional level. Interestingly, the three mutated residues corresponded to the downstream codons that tolerated saturation mutation, indicating their post-translational functional/structural essentiality. In addition, RNA secondary structure prediction revealed formation of stable hairpins (nts 788-994) where saturation mutation drastically inhibited virion infectivity. CONCLUSION This is the first demonstration of the critical role of Y-domain sequences in HEV life cycle, which may involve gene regulation and/or membrane binding in intracellular replication complexes. PMID:28216965

  1. Transgenic Expression of Walleye Dermal Sarcoma Virus rv-cyclin (orfA) in Zebrafish does not Result in Tissue Proliferation

    PubMed Central

    Paul, Thomas A.; Rovnak, Joel; Quackenbush, Sandra L.; Whitlock, Kathleen; Zhan, Huiqing; Gong, Zhiyuan; Spitsbergen, Jan; Bowser, Paul R.

    2012-01-01

    Walleye dermal sarcoma (WDS) is a benign tumor of walleye fish that develops and completely regresses seasonally. The retrovirus associated with this disease, walleye dermal sarcoma virus, encodes three accessory genes, two of which, rv-cyclin (orfA) and orfb, are thought to play a role in tumor development. In this study, we attempted to recapitulate WDS development by expressing rv-cyclin in chimeric and stable transgenic zebrafish. Six stable transgenic lines expressing rv-cyclin from the constitutive CMVtk promoter were generated. Immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction demonstrate that rv-cyclin is widely expressed in different tissues in these fish. These lines were viable and histologically normal for up to 2 years. No increase in tumors or tissue proliferation was observed following N-ethyl N-nitrosourea exposure or following tail wounding and subsequent tissue regeneration compared to controls. These data indicate that rvcyclin is not independently sufficient for tumor induction in zebrafish. PMID:20349325

  2. Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59.

    PubMed

    Majerciak, Vladimir; Uranishi, Hiroaki; Kruhlak, Michael; Pilkington, Guy R; Massimelli, Maria Julia; Bear, Jenifer; Pavlakis, George N; Felber, Barbara K; Zheng, Zhi-Ming

    2011-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.

  3. Human orf (ecthyma contagious) a report of two cases from Saudi Arabia.

    PubMed

    Roy-Boulos, A M; Akhtar, M; Bendl, B

    1986-01-01

    Two cases of orf occuring in one family are reported. The patients developed characteristic skin lesions one week after sustaining cuts while slaughtering a sheep. The diagnosis of orf was confirmed by electron microscopy which revealed numerous large oval virus particle characteristics of parapox virus. This we believe is the first report of orf in Saudi Arabia.

  4. Development of an indirect ELISA assay for the detection of IgG antibodies against the ORF1 of Torque teno sus viruses 1 and 2 in conventional pigs.

    PubMed

    Nieto, David; Martínez-Guinó, Laura; Jiménez-Melsió, Alexandra; Segalés, Joaquim; Kekarainen, Tuija

    2015-10-22

    Torque teno sus viruses (TTSuV, family Anelloviridae) cause long lasting and persistent infection in pigs under subclinical scenarios, and are potentially linked to several economically important swine diseases. Currently, little is known about swine immune response against TTSuV infections. In this study, an ELISA assay was developed based on the ORF1-A recombinant protein of two known TTSuVs, namely TTSuV1 (genus Iotatorquevirus) and TTSuV2 (genus Kappatorquevirus). The assay was used to study the development of the humoral immune response against TTSuV1 and TTSuV2 in longitudinally sampled clinically healthy pigs and their dams. Anti ORF1-A IgG was found in serum of pigs and sows for both TTSuVs. From 15 sows, 15 (100%) and 13 (83%) had anti ORF1-A IgG against TTSuV1 and TTSuV2, respectively. Pig sero-prevalences at the first sampling (4 weeks of age) were 65% (24/37) and 5% (2/37) for TTSuV1 and TTSuV2, respectively. For TTSuV1, the highest anti ORF1-A IgG prevalence was observed at weeks 21 and 25, with 68% (25/37) sero-positive pigs. Quantitative PCR (qPCR) results at week 21 revealed that 26 out of 32 (81%) pigs were positive for TTSuV1. In the case of TTSuV2, the highest anti ORF1-A IgG prevalence was observed at week 21, with 84% (31/37) pigs being sero-positive. At the same week, 92% (34/37) of pigs were qPCR positive. In summary, anti ORF1-A IgGs were detected in both sows and piglets at different ages, indicating that these animals could mount a humoral immune response against both TTSuVs. However, the high percentage of viremic pigs in presence of anti ORF1-A IgG suggests that these antibodies are not able to remove TTSuVs from circulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins.

    PubMed

    Shchelkunov, S N; Safronov, P F; Totmenin, A V; Petrov, N A; Ryazankina, O I; Gutorov, V V; Kotwal, G J

    1998-04-10

    Sequencing and computer analysis of the left (52,283 bp) and right (49,649 bp) variable DNA regions of the cowpox virus strain GRI-90 (CPV-GRI) has revealed 51 and 37 potential open reading frames (ORFs), respectively. Comparison of the structure-function organization of these DNA regions of CPV-GRI with those previously published for corresponding regions of genomes of vaccinia virus, strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR); and variola major virus, strains India-1967 (VAR-IND), Bangladesh-1975 (VAR-BSH); and alastrim variola minor virus, strain Garcia-1966 (VAR-GAR), was performed. Within the left terminal region under study, an extended DNA sequence (14,171 bp), unique to CPV, has been found. Within the right region of the CPV-GRI genome two segments, which are unique to CPV DNA (1579 and 3585 bp) have been found. Numerous differences have been revealed in the genetic structure of CPV-GRI DNA regions, homologous to fragments of the genomes of the above-mentioned orthopoxvirus strains. A cluster of ORFs with structural similarity ot immunomodulatory and host range function of other poxviruses have also been detected. A comparison of the sequences of ORF B, crmA, crmB, crmC, IMP, and CHO hr genes of CPV Brighton strain (CPV-BRI) with the corresponding genes in strain GRI-90 have revealed an identity at the amino acid level ranging from 82 to 96% between the two strains. The findings are significant in light of the recent demonstration of CPV as an important poxvirus model system to probe the precise in vivo role(s) of the unique virally encoded immunomodulatory proteins. Also, the presence of a complete and intact repertoire of immunomodulatory proteins, ring canal proteins family, and host range genes indicates that CPV may have been the most ancient of all studied orthopoxviruses.

  6. Efficacy of a Parapoxvirus ovis-based immunomodulator against equine herpesvirus type 1 and Streptococcus equi equi infections in horses.

    PubMed

    Ons, Ellen; Van Brussel, Leen; Lane, Stephen; King, Vickie; Cullinane, Ann; Kenna, Rachel; Lyons, Pamela; Hammond, Toni-Ann; Salt, Jeremy; Raue, Rudiger

    2014-10-10

    The efficacy of Zylexis®, an immunomodulator in horses based on inactivated Parapoxvirus ovis (iPPVO), was assessed using an equine herpesvirus type 1 (EHV-1) challenge model in the presence of a natural infection with Streptococcus equi equi (S. equi). Eleven horses were treated with iPPVO and twelve were kept as controls. Six horses were challenged with EHV-1 and commingled with the horses on study. Animals were dosed on Days -2, 0 (just before commingling) and Day 7. On Day 11 significantly less nasal discharge, enlarged lymph nodes, EHV-1 shedding and lower rectal temperatures were observed in the iPPVO-treated group. In addition, iPPVO-treated horses showed significantly fewer enlarged lymph nodes on Days 17 and 19, significantly less lower jaw swelling on Day 3 and significantly lower rectal temperatures on Days 12 and 13. Dyspnoea, depression and anorexia were only recorded for the control group. Following challenge seven out of 11 horses in the iPPVO treated group shed EHV-1 but on Days 11, 12, 13, 14, 15 and 16 quantitative virus detection in this group was significantly lower as compared to the controls. All animals shed S. equi but the percentage of animals with positive bacterial detection was lower in the iPPVO group than in the control group from Day 14 through Day 28. This difference was significant on Day 24. No injection site reactions or adverse events were observed. In conclusion, Zylexis administration is safe and reduced clinical signs and shedding related to both EHV-1 and S. equi infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments.

    PubMed

    Gushchin, Vladimir A; Lukhovitskaya, Nina I; Andreev, Dmitri E; Wright, Kathryn M; Taliansky, Michael E; Solovyev, Andrey G; Morozov, Sergey Y; MacFarlane, Stuart A

    2013-01-01

    ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.

  8. A Sequence within the Varicella-Zoster Virus (VZV) OriS Is a Negative Regulator of DNA Replication and Is Bound by a Protein Complex Containing the VZV ORF29 Protein▿

    PubMed Central

    Khalil, Mohamed I.; Arvin, Ann; Jones, Jeremy; Ruyechan, William T.

    2011-01-01

    The architecture of the varicella-zoster virus (VZV) origin of DNA replication (OriS) differs significantly from that of the herpes simplex virus (HSV) DNA replication origin. Novel aspects of the VZV OriS include a GA-rich region, three binding sites for the VZV origin-binding protein (OBP) all on the same strand and oriented in the same direction, and a partial OBP binding site of unknown function. We have designated this partial binding site Box D and have investigated the role it plays in DNA replication and flanking gene expression. This has been done with a model system using a replication-competent plasmid containing OriS and a replication- and transcription-competent dual-luciferase reporter plasmid containing both the OriS and the intergenic region between VZV open reading frames (ORFs) 62 and 63. We have found that (i) Box D is a negative regulator of DNA replication independent of flanking gene expression, (ii) the mutation of Box D results in a decrease in flanking gene expression, thus a sequence within the VZV OriS affects transcription, which is in contrast to results reported for HSV-1, (iii) there is a specific Box D complex formed with infected cell extracts in electrophoretic mobility shift assay experiments, (iv) supershift assays show that this complex contains the VZV ORF29 single-strand DNA-binding protein, and (v) the formation of this complex is dependent on the presence of CGC motifs in Box D and its downstream flanking region. These findings show that the VZV ORF29 protein, while required for DNA replication, also plays a novel role in the suppression of that process. PMID:21937644

  9. A sequence within the varicella-zoster virus (VZV) OriS is a negative regulator of DNA replication and is bound by a protein complex containing the VZV ORF29 protein.

    PubMed

    Khalil, Mohamed I; Arvin, Ann; Jones, Jeremy; Ruyechan, William T

    2011-12-01

    The architecture of the varicella-zoster virus (VZV) origin of DNA replication (OriS) differs significantly from that of the herpes simplex virus (HSV) DNA replication origin. Novel aspects of the VZV OriS include a GA-rich region, three binding sites for the VZV origin-binding protein (OBP) all on the same strand and oriented in the same direction, and a partial OBP binding site of unknown function. We have designated this partial binding site Box D and have investigated the role it plays in DNA replication and flanking gene expression. This has been done with a model system using a replication-competent plasmid containing OriS and a replication- and transcription-competent dual-luciferase reporter plasmid containing both the OriS and the intergenic region between VZV open reading frames (ORFs) 62 and 63. We have found that (i) Box D is a negative regulator of DNA replication independent of flanking gene expression, (ii) the mutation of Box D results in a decrease in flanking gene expression, thus a sequence within the VZV OriS affects transcription, which is in contrast to results reported for HSV-1, (iii) there is a specific Box D complex formed with infected cell extracts in electrophoretic mobility shift assay experiments, (iv) supershift assays show that this complex contains the VZV ORF29 single-strand DNA-binding protein, and (v) the formation of this complex is dependent on the presence of CGC motifs in Box D and its downstream flanking region. These findings show that the VZV ORF29 protein, while required for DNA replication, also plays a novel role in the suppression of that process.

  10. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  11. [Clinical findings and diagnosis of a severs parapoxvirus epidemic in Finnish reindeer].

    PubMed

    Büttner, M; von Einem, C; McInnes, C; Oksanen, A

    1995-12-01

    During the winter of 1992/93 a parapox epidemic in reindeer occurred in the southern and central areas of Finland which killed 400 animals and 2750 animals showed clinical symptoms. At least ten cases of human infections and disease were reported. In addition to the uncertain epidemiology, the diagnosis using conventional methods was difficult and time consuming. Based upon published sequence data of the parapoxvirus (PPV) ovis prototype strain NZ-2, two different polymerase chain reaction (PCR) protocols were performed. The detection of a PPV specific nucleotide sequence encoding a region of the 42 kD major envelope protein proved to be reproducible. DNA extraction from scab samples was not absolutely necessary prior to the PCR procedure. PCR for the detection of PPV infection can be recommended as a flanking diagnostic method, especially when electron microscopy shows negative results. PCR may be a useful method to differentiate sheep-poxvirus and to reveal epidemiology and identity of new PPV isolates.

  12. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication.

    PubMed

    Qiu, Jianxiang; Tang, Zhimin; Yuan, Meijin; Wu, Wenbi; Yang, Kai

    2017-01-15

    During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.

  13. VZV ORF47 serine protein kinase and its viral substrates.

    PubMed

    Kenyon, Teri K; Grose, Charles

    2010-01-01

    ORF47, a serine protein kinase of varicella-zoster virus (VZV) and homolog of herpes simplex virus UL13, is an interesting modulator of VZV pathogenesis. This chapter summarizes research showing that ORF47 protein kinase activity, by virtue of phosphorylation of or binding to various viral substrates, regulates VZV proteins during all phases of viral infection and has a pronounced effect on the trafficking of gE, the predominant VZV glycoprotein, which in turn is critical for cell-to-cell spread of the virus. Casein kinase II, an ubiquitous cellular protein kinase, recognizes a similar but less stringent phosphorylation consensus sequence and can partially compensate for lack of ORF47 activity in VZV-infected cells. Differences between the phosphorylation consensus sites of the viral and cellular kinases are outlined in detail.

  14. Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples

    PubMed Central

    Abrahão, Jônatas S; Lima, Larissa S; Assis, Felipe L; Alves, Pedro A; Silva-Fernandes, André T; Cota, Marcela MG; Ferreira, Vanessa M; Campos, Rafael K; Mazur, Carlos; Lobato, Zélia IP; Trindade, Giliane S; Kroon, Erna G

    2009-01-01

    Background Orthopoxvirus (OPV) and Parapoxvirus (PPV) have been associated with worldwide exanthematic outbreaks. Some species of these genera are able to infect humans and domestic animals, causing serious economic losses and public health impact. Rapid, useful and highly specific methods are required to detect and epidemiologically monitor such poxviruses. In the present paper, we describe the development of a nested-multiplex PCR method for the simultaneous detection of OPV and PPV species directly from exanthematic lesions, with no previous viral isolation or DNA extraction. Methods and Results The OPV/PPV nested-multiplex PCR was developed based on the evaluation and combination of published primer sets, and was applied to the detection of the target pathogens. The method showed high sensitivity, and the specificity was confirmed by amplicon sequencing. Exanthematic lesion samples collected during bovine vaccinia or contagious ecthyma outbreaks were submitted to OPV/PPV nested-multiplex PCR and confirmed its applicability. Conclusion These results suggest that the presented multiplex PCR provides a highly robust and sensitive method to detect OPV and PPV directly from clinical samples. The method can be used for viral identification and monitoring, especially in areas where OPV and PPV co-circulate. PMID:19747382

  15. Attenuation, transmission, and immunogenicity of an ORF-C gene deleted strain of infectious laryngotracheitis virus (ILTV) in specific pathogen free chickens

    USDA-ARS?s Scientific Manuscript database

    Infectious laryngotracheitis (ILT) is a very serious and widespread respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Conventional attenuated ILT vaccines, obtained by continuous passages in chicken embryos and tissue culture, had been the main tools utilized by th...

  16. The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6.

    PubMed

    Borca, Manuel V; O'Donnell, Vivian; Holinka, Lauren G; Rai, Devendra K; Sanford, Brenton; Alfano, Marialexia; Carlson, Jolene; Azzinaro, Paul A; Alonso, Covadonga; Gladue, Douglas P

    2016-09-02

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few of these genes have been studied in some detail. Here we report the characterization of open reading frame Ep152R that has a predicted complement control module/SCR domain. This domain is found in Vaccinia virus proteins that are involved in blocking the immune response during viral infection. A recombinant ASFV harboring a HA tagged version of the Ep152R protein was developed (ASFV-G-Ep152R-HA) and used to demonstrate that Ep152R is an early virus protein. Attempts to construct recombinant viruses having a deleted Ep152R gene were consistently unsuccessful indicating that Ep152R is an essential gene. Interestingly, analysis of host-protein interactions for Ep152R using a yeast two-hybrid screen, identified BAG6, a protein previously identified as being required for ASFV replication. Furthermore, fluorescent microscopy analysis confirms that Ep152R-BAG6 interaction actually occurs in cells infected with ASFV. Published by Elsevier B.V.

  17. The Ep152R ORF of African Swine Fever Virus strain Georgia encodes for an essential gene that interacts with host protein BAG6

    USDA-ARS?s Scientific Manuscript database

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few have been studied in some detail. Here we rep...

  18. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.

  19. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression

    PubMed Central

    Vink, Elizabeth I.; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T.; Hearing, Patrick

    2015-01-01

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation. PMID:25984715

  20. Orf Disease Following "Eid ul-Adha": A Rare Cause of Erythema Multiforme.

    PubMed

    Shahmoradi, Zabihollah; Abtahi-Naeini, Bahareh; Pourazizi, Mohsen; Meidani, Mohsen

    2014-07-01

    Orf, also known as contagious pustular dermatitis, is an exanthemous disease caused by a parapox virus. It is usually a benign locally self-limiting illness; it can have systemic complication or progressive infected locations can include the finger, hand, arm, and face. Development of erythema multiforme following Orf infection is very rare. In Islamic populations such as those of Iran, Orf can be observed in individuals who are not occupationally involved, but may be in contact with sheep or goats after the Islamic worship as an "Eid ul-Adha." Here we report an erythema multiforme associated with multiple lesion of Orf disease following the "Eid ul-Adha" in Iranian housewives.

  1. High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations.

    PubMed

    Zong, J C; Ciufo, D M; Alcendor, D J; Wan, X; Nicholas, J; Browning, P J; Rady, P L; Tyring, S K; Orenstein, J M; Rabkin, C S; Su, I J; Powell, K F; Croxson, M; Foreman, K E; Nickoloff, B J; Alkan, S; Hayward, G S

    1999-05-01

    Infection with Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is common in certain parts of Africa, the Middle East, and the Mediterranean, but is rare elsewhere, except in AIDS patients. Nevertheless, HHV8 DNA is found consistently in nearly all classical, endemic, transplant and AIDS-associated KS lesions as well as in some rare AIDS-associated lymphomas. The concept that HHV8 genomes fall into several distinct subgroups has been confirmed and refined by PCR DNA sequence analysis of the ORF-K1 gene encoding a highly variable glycoprotein related to the immunoglobulin receptor family that maps at the extreme left-hand end of the HHV-8 genome. Among more than 60 different tumor samples from the United States, central Africa, Saudi Arabia, Taiwan, and New Zealand, amino acid substitutions were found at a total of 62% of the 289 amino acid positions. These variations defined four major subtypes and 13 distinct variants or clades similar to those found for the HIV ENV protein. The B and D subtype ORF-K1 proteins differ from the A and C subtypes by 30 and 24%, respectively, whereas A and C differ from each other by 15%. In all cases tested, multiple samples from the same patient were identical. Examples of the B subtype were found almost exclusively in KS patients from Africa or of African heritage, whereas the rare D subtypes were found only in KS patients of Pacific Island heritage. In contrast, C subtypes were found predominantly in classic KS and in iatrogenic and AIDS KS in the Middle East and Asia, whereas U.S. AIDS KS samples were primarily A1, A4, and C3 variants. We conclude that this unusually high diversity, in which 85% of the nucleotide changes lead to amino acid changes, reflects some unknown powerful biological selection process that has been acting preferentially on this early lytic cycle membrane signalling protein. Two distinct levels of ORF-K1 variability are recognizable. Subtype-specific variability indicative of

  2. Mutations in the UL97 ORF of ganciclovir-resistant clinical cytomegalovirus isolates differentially affect GCV phosphorylation as determined in a recombinant vaccinia virus system.

    PubMed

    Baldanti, Fausto; Michel, Detlef; Simoncini, Lavinia; Heuschmid, Maria; Zimmermann, Albert; Minisini, Rosalba; Schaarschmidt, Peter; Schmid, Thomas; Gerna, Giuseppe; Mertens, Thomas

    2002-04-01

    Mutations in the human cytomegalovirus (HCMV) UL97 phosphotransferase have been associated with ganciclovir (GCV) resistance due to an impairment of GCV monophosphorylation. Vaccinia virus recombinants (rVV) were generated that encoded different HCMV UL97 proteins (pUL97) with mutations previously detected in resistant HCMV clinical isolates at codons 460, 520, 592, 594, 595, 598 and 607. These rVVs allowed quantification of GCV phosphorylation catalyzed by the different mutated pUL97s. When compared to rVV-UL97 wild type, mean levels of residual intracellular GCV phosphorylation differed by a factor of 10 for the mutated UL97 proteins ranging from 5.2 to 51.8%. Mutations M460V (located in a UL97 region homologous to domain VIb of protein kinases) and H520Q (located in a cytomegalovirus-specific, functionally critical domain) were responsible for the lowest levels of residual GCV phosphorylation (9.3 and 5.2%). Mutations in a region homologous to the domain IX had a lower impact on GCV phosphorylation (15.8-51.8%). The relevance of pUL97 mutation G598S in inducing GCV resistance was demonstrated for the first time.

  3. Lamb pays lip service: two cases of ecthyma contagiosum (orf).

    PubMed

    de Wet, Carl; Murie, Jill

    2011-02-01

    Ecthyma contagiosum (orf) is caused by a parapox virus, which results in ulcerative stomatitis of mainly sheep and goats. The disease may be transmitted to humans through direct contact. Complications are rare in healthy individuals, who rarely report the disease. Two married, recreational sheep farmers, were bitten on their index fingers by an affected lamb. While the husband made an uneventful recovery after oral flucloxacillin, his wife was admitted to hospital with necrosis of her finger, cellulitis and lymphangitis requiring intravenous clindamycin. She subsequently developed a generalized maculo-papular rash, which was initially thought to be an adverse drug reaction, but, on hindsight, may have been erythema multiforme associated with orf. Orf is a common zoonosis, rarely reported in general practice. The disease is usually self-limiting and resolves in 6-8 weeks, but complications may occur. The diagnosis should be considered in at-risk occupational and religious groups.

  4. Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF.

    PubMed

    Tao, Jian-Jun; Zhou, Guang-Zhou; Gui, Jian-Fang; Zhang, Qi-Ya

    2008-03-01

    The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.

  5. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium.

    PubMed

    Pohlscheidt, M; Langer, U; Minuth, T; Bödeker, B; Apeler, H; Hörlein, H-D; Paulsen, D; Rübsamen-Waigmann, H; Henzler, H-J; Reichl, U

    2008-03-17

    For the production of a chemically inactivated Parapoxvirus ovis (PPVO), an adherent bovine kidney cell line was cultivated on Cytodex-3 microcarriers in suspension culture. The inactivated and purified virus particles have shown immune modulatory activity in several animal models. PPVO was produced by a biphasic batch process at the 3.5 and 10 L scale. Aeration was realised by bubble-free membrane oxygenation via a tube stator with a central two-blade anchor impeller. In order to increase efficiency, process robustness and safety, the established process was optimised. The cell line was adapted to a protein-free medium (except recombinant insulin) in order to increase biosafety. A scale up to a 50 L pilot plant with direct cell expansion was performed successfully. In parallel, the biphasic batch process was optimised with special emphasis on different operating conditions (cell number, Multiplicity of Infection (MOI), etc.) and process management (fed-batch, dialysis, etc.). The quality and concentration of the purified virus particles was assessed by quantitative electron microscopy, residual host cell protein and DNA-content and, finally, biologic activity in a transgenic mouse model. This integrated approach led to a new, safe, robust and highly productive large-scale production process, called "Volume-Expanded-Fed" Batch with cell densities up to 6-7e06 cells/mL. By subsequent dilution of infected cells into the next process scale, an increase in total productivity by a factor of 40 (related to an established biphasic batch process) was achieved.

  6. [Three patients with orf (ecthyma contagiosum)].

    PubMed

    Schimmer, B; Sprenger, H G; Wismans, P J; van Genderen, P J

    2004-04-17

    Orf was diagnosed in three patients: a 16-year-old Moroccan girl who had cut her finger in a butcher's shop, a 47-year-old Dutch woman who had allowed a lamb to suck on her finger on a children's farm, and a 50-year-old Dutch farm woman. Orf or ecthyma contagiosum is a well-known viral disease among sheep and goats. Transmission to humans as a zoonosis is rare but can take place via direct contact with infected animals or animal products. The clinical picture is usually characterized by a solitary lesion that develops on the dorsal side of the fingers or hands. This viral condition produces little or no systemic complaints and the lesions usually regress spontaneously without scar formation within 6 weeks (range 4-9 weeks). The correct diagnosis can usually be made on clinical grounds. The diagnosis may be confirmed by demonstration of the virus by electron microscopy or the polymerase chain reaction in fluid obtained from the skin lesions or by conventional histopathology. Early clinical recognition and knowledge of this benign, self-limiting viral condition is vital to avoid unnecessary surgical intervention. Proper information and reassurance of the infected patient are very important. All three patients recovered.

  7. Electron tomography of negatively stained complex viruses: application in their diagnosis

    PubMed Central

    Mast, Jan; Demeestere, Lien

    2009-01-01

    Background Electron tomographic analysis can be combined with the simple and rapid negative staining technique used in electron microscopy based virus diagnosis. Methods Standard negative staining of representative examples of parapoxviruses and paramyxoviruses was combined with electron tomographic analysis. Results Digital sectioning of reconstructions of these viruses at a selected height demonstrated the viral ultrastructure in detail, including the characteristic diagnostic features like the surface threads on C-particles of a parapoxvirus and individual glycoproteins and the internal nucleoprotein strand of Newcastle disease virus. For both viruses, deformation and flattening were observed. Conclusion The combination of negative staining of complex viruses with electron tomographic analysis, allows visualizing and measuring artifacts typical for negative staining. This approach allows sharp visualisation of structures in a subnanometer-thick plane, avoiding blurring due to superposition which is inherent to TEM. In selected examples, such analyses can improve diagnosis of viral agents. PMID:19208223

  8. LTR-Retrotransposons from Bdelloid Rotifers Capture Additional ORFs Shared between Highly Diverse Retroelement Types.

    PubMed

    Rodriguez, Fernando; Kenefick, Aubrey W; Arkhipova, Irina R

    2017-04-11

    Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highlydiversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga. We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)retrotransposons, in addition to conserved open reading frame (ORF) 1 and ORF2 corresponding to gag and pol genes, code for an unusually high variety of ORF3 sequences. Retrovirus-like LTR families in A. vaga belong to four major lineages, three of which are rotiferspecific and encode a dUTPase domain. However only one lineage contains a canonical envlike fusion glycoprotein acquired from paramyxoviruses (non-segmented negative-strand RNA viruses), although smaller ORFs with transmembrane domains may perform similar roles. A different ORF3 type encodes a GDSL esterase/lipase, which was previously identified as ORF1 in several clades of non-LTR retrotransposons, and implicated in membrane targeting. Yet another ORF3 type appears in unrelated LTR-retrotransposon lineages, and displays strong homology to DEDDy-type exonucleases involved in 3'-end processing of RNA and single-stranded DNA. Unexpectedly, each of the enzymatic ORF3s is also associated with different subsets of Penelope-like Athena retroelement families. The unusual association of the same ORF types with retroelements from different classes reflects their modular structure with a high degree of flexibility, and points to gene sharing between different groups of retroelements.

  9. Roles for the E4 orf6, orf3, and E1B 55-Kilodalton Proteins in Cell Cycle-Independent Adenovirus Replication

    PubMed Central

    Goodrum, Felicia D.; Ornelles, David A.

    1999-01-01

    Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G1 and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548–561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G1 cells infected with the mutant viruses compared to that in G1 cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G1. However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G1 than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G1. Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth. PMID:10438837

  10. Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication.

    PubMed

    Goodrum, F D; Ornelles, D A

    1999-09-01

    Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.

  11. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis.

    PubMed

    Menachery, Vineet D; Mitchell, Hugh D; Cockrell, Adam S; Gralinski, Lisa E; Yount, Boyd L; Graham, Rachel L; McAnarney, Eileen T; Douglas, Madeline G; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F; Hale, Andrew E; Stratton, Kelly G; Waters, Katrina M; Baric, Ralph S

    2017-08-22

    While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants. Copyright © 2017 Menachery et al.

  12. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs

    PubMed Central

    Pellet, J.; Tafforeau, L.; Lucas-Hourani, M.; Navratil, V.; Meyniel, L.; Achaz, G.; Guironnet-Paquet, A.; Aublin-Gex, A.; Caignard, G.; Cassonnet, P.; Chaboud, A.; Chantier, T.; Deloire, A.; Demeret, C.; Le Breton, M.; Neveu, G.; Jacotot, L.; Vaglio, P.; Delmotte, S.; Gautier, C.; Combet, C.; Deleage, G.; Favre, M.; Tangy, F.; Jacob, Y.; Andre, P.; Lotteau, V.; Rabourdin-Combe, C.; Vidalain, P. O.

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins. PMID:20007148

  13. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    PubMed

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  14. Detection of pseudocowpox virus in water buffalo (Bubalus bubalis) with vesicular disease in the state of São Paulo, Brazil, in 2016.

    PubMed

    Laguardia-Nascimento, Mateus; de Oliveira, Ana Paula Ferreira; Fernandes, Fernanda Rodas Pires; Rivetti, Anselmo Vasconcelos; Camargos, Marcelo Fernandes; Fonseca Júnior, Antônio Augusto

    2017-12-01

    Parapoxviruses are zoonotic viruses that infect cattle, goats and sheep; there have also been reports of infections in camels, domestic cats and seals. The objective of this report was to describe a case of vesicular disease caused by pseudocowpox virus (PCPV) in water buffalo (Bubalus bubalis) in Brazil. Sixty buffalo less than 6 months old exhibited ulcers and widespread peeling of the tongue epithelium. There were no cases of vesicular disease in pigs or horses on the same property. Samples were analysed by PCR and sequencing. Phylogenetic analysis in MEGA 7.01 was reconstructed using major envelope protein (B2L) by the Tamura three-parameter nucleotide substitution model and the maximum likelihood and neighbor joining models, both with 1000 bootstrap replicates. The genetic distance between the groups was analysed in MEGA using the maximum composite likelihood model. The rate variation among sites was modeled using gamma distribution. The presence of PCPV in the buffalo herd could be demonstrated in epithelium and serum. The minimum genetic distance between the isolated PCPV strain (262-2016) and orf virus and bovine papular stomatitis virus was 6.7% and 18.4%, respectively. The maximum genetic distance calculated was 4.6% when compared with a PCPV detected in a camel. Conclusions/Clinical Importance: The peculiar position of the isolated strain in the phylogenetic trees does not necessarily indicate a different kind of PCPV that infects buffalo. More samples from cattle and buffalo in Brazil must be sequenced and compared to verify if PCPV from buffalo are genetically different from samples derived from cattle.

  15. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    PubMed Central

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam; Schulz, Sarah; Daviter, Tina; Smollett, Katherine; Mahieu, Emilie; Erdmann, Susanne; Tinnefeld, Philip; Garrett, Roger; Grohmann, Dina; Rappsilber, Juri; Werner, Finn

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP). PMID:27882920

  16. Simian varicella virus open reading frame 63/70 expression is required for efficient virus replication in culture

    PubMed Central

    Brazeau, Elizabeth; Wellish, Mary; Kaufer, Benedict B.; Tischer, B. Karsten; Gray, Wayne; Zhou, Fuchun; Osterrieder, Nikolaus; Hanlon, Teri; Golive, Anjani; Hall, Travis; Nair, Sreekala; Owens, Gregory P.; Mueller, Niklaus H.; Cohrs, Randall J.; Pugazhenthi, Subbiah; Gilden, Don

    2011-01-01

    Simian varicella virus (SVV) open reading frame (ORF) 63, duplicated in the virus genome as ORF 70, is homologous to varicella zoster virus ORF 63/70. Transfection of bacterial artificial chromosome clones containing the wild-type SVV genome and mutants with stop codons in ORF 70, in both ORFs 63 and 70 and the repaired virus DNA sequences into Vero cells produced a cytopathic effect (CPE). The onset of CPE was much slower with the double-mutant transfectants (10 days vs. 3 days) and plaques were smaller. While SVV ORF 63 is not required for replication in culture, its expression leads to robust virus replication. PMID:21479719

  17. Norovirus Recombination in ORF1/ORF2 Overlap

    PubMed Central

    Bull, Rowena A.; Hansman, Grant S.; Clancy, Leighton E.; Tanaka, Mark M.; Rawlinson, William D.

    2005-01-01

    Norovirus (NoV) genogroups I and II (GI and GII) are now recognized as the predominant worldwide cause of outbreaks of acute gastroenteritis in humans. Three recombinant NoV GII isolates were identified and characterized, 2 of which are unrelated to any previously published recombinant NoV. Using data from the current study, published sequences, database searches, and molecular techniques, we identified 23 recombinant NoV GII and 1 recombinant NoV GI isolates. Analysis of the genetic relationships among the recombinant NoV GII isolates identified 9 independent recombinant sequences; the other 14 strains were close relatives. Two of the 9 independent recombinant NoV were closely related to other recombinants only in the polymerase region, and in a similar fashion 1 recombinant NoV was closely related to another only in the capsid region. Breakpoint analysis of recombinant NoV showed that recombination occurred in the open reading frame (ORF)1/ORF2 overlap. We provide evidence to support the theory of the role of subgenomic RNA promoters as recombination hotspots and describe a simple mechanism of how recombination might occur in NoV. PMID:16022784

  18. Fluorescent Tagging and Cellular Distribution of the Kaposi's Sarcoma-Associated Herpesvirus ORF45 Tegument Protein

    PubMed Central

    Bergson, Shir; Kalt, Inna; Itzhak, Inbal; Brulois, Kevin F.; Jung, Jae U.

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is a cancer-related human virus, classified as a member of the Gammaherpesvirinae subfamily. We report here the construction of a dual fluorescent-tagged KSHV genome (BAC16-mCherry-ORF45), which constitutively expresses green fluorescent protein (GFP) and contains the tegument multifunctional ORF45 protein as a fusion protein with monomeric Cherry fluorescent protein (mCherry). We confirmed that this virus is properly expressed and correctly replicates and that the mCherry-ORF45 protein is incorporated into the virions. Using this labeled virus, we describe the dynamics of mCherry-ORF45 expression and localization in newly infected cells as well as in latently infected cells undergoing lytic induction and show that mCherry can be used to monitor cells undergoing the lytic viral cycle. This virus is likely to enable future studies monitoring the dynamics of viral trafficking and tegumentation during viral ingress and egress. IMPORTANCE The present study describes the construction and characterization of a new recombinant KSHV genome BAC16 clone which expresses mCherry-tagged ORF45. This virus enables the tracking of cells undergoing lytic infection and can be used to address issues related to the trafficking and maturation pathways of KSHV virions. PMID:25165104

  19. Mechanisms of Cancer Cell Killing by the Adenovirus E4orf4 Protein

    PubMed Central

    Kleinberger, Tamar

    2015-01-01

    During adenovirus (Ad) replication the Ad E4orf4 protein regulates progression from the early to the late phase of infection. However, when E4orf4 is expressed alone outside the context of the virus it induces a non-canonical mode of programmed cell death, which feeds into known cell death pathways such as apoptosis or necrosis, depending on the cell line tested. E4orf4-induced cell death has many interesting and unique features including a higher susceptibility of cancer cells to E4orf4-induced cell killing compared with normal cells, caspase-independence, a high degree of evolutionary conservation of the signaling pathways, a link to perturbations of the cell cycle, and involvement of two distinct cell death programs, in the nucleus and in the cytoplasm. Several E4orf4-interacting proteins including its major partners, protein phosphatase 2A (PP2A) and Src family kinases, contribute to induction of cell death. The various features of E4orf4-induced cell killing as well as studies to decipher the underlying mechanisms are described here. Many explanations for the cancer specificity of E4orf4-induced cell death have been proposed, but a full understanding of the reasons for the different susceptibility of cancer and normal cells to killing by E4orf4 will require a more detailed analysis of the complex E4orf4 signaling network. An improved understanding of the mechanisms involved in this unique mode of programmed cell death may aid in design of novel E4orf4-based cancer therapeutics. PMID:25961489

  20. Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters.

    PubMed

    Jeong, J; Papin, J; Dittmer, D

    2001-02-01

    Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.

  1. Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant

    PubMed Central

    2011-01-01

    Equine herpesvirus-1 (EHV-1) infection remains a significant problem despite the widespread use of vaccines. The inability to generate a protective immune response to EHV-1 vaccination or infection is thought to be due to immunomodulatory properties of the virus, and the ORF1 and ORF2 gene products have been hypothesized as potential candidates with immunoregulatory properties. A pony infection study was performed to define immune responses to EHV-1, and to determine if an EHV-1 ORF1/2 deletion mutant (ΔORF1/2) would have different disease and immunoregulatory effects compared to wild type EHV-1 (WT). Infection with either virus led to cytokine responses that coincided with the course of clinical disease, particularly the biphasic pyrexia, which correlates with respiratory disease and viremia, respectively. Similarly, both viruses caused suppression of proliferative T-cell responses on day 7 post infection (pi). The ΔORF1/ORF2 virus caused significantly shorter primary pyrexia and significantly reduced nasal shedding, and an attenuated decrease in PBMC IL-8 as well as increased Tbet responses compared to WT-infected ponies. In conclusion, our findings are (i) that infection of ponies with EHV-1 leads to modulation of immune responses, which are correlated with disease pathogenesis, and (ii) that the ORF1/2 genes are of importance for disease outcome and modulation of cytokine responses. PMID:21314906

  2. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement

    PubMed Central

    Smirnova, Ekaterina; Firth, Andrew E.; Miller, W. Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M.; Chung, Betty Y.-W.; Ziegler-Graff, Véronique

    2015-01-01

    Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. PMID:25946037

  3. Adenoviral E4orf3 and E4orf6 Proteins, But Not E1B55K, Increase Killing of Cancer Cells by Radiotherapy in vivo

    SciTech Connect

    Liikanen, Ilkka; Dias, Joao D.; Nokisalmi, Petri; Sloniecka, Marta; Kangasniemi, Lotta; Rajecki, Mari; Dobner, Thomas; Tenhunen, Mikko; Kanerva, Anna; Pesonen, Sari; Ahtiainen, Laura Ph.D.; Hemminki, Akseli

    2010-11-15

    Purpose: Radiotherapy is widely used for treatment of many tumor types, but it can damage normal tissues. It has been proposed that cancer cells can be selectively sensitized to radiation by adenovirus replication or by using radiosensitizing transgenes. Adenoviral proteins E1B55K, E4orf3, and E4orf6 play a role in radiosensitization, by targeting the Mre11, Rad50, and NBS1 complex (MRN) and inhibiting DNA double-strand break (DSB) repair. We hypothesize that combined with irradiation, these adenoviral proteins increase cell killing through the impairment of DSB repair. Methods and Materials: We assessed the radiosensitizing/additive potential of replication-deficient adenoviruses expressing E1B55K, E4orf3, and E4orf6 proteins. Combination treatments with low-dose external photon beam radiotherapy were studied in prostate cancer (PC-3MM2 and DU-145), breast cancer (M4A4-LM3), and head and neck cancer (UT-SCC8) cell lines. We further demonstrated radiosensitizing or additive effects in mice with PC-3MM2 tumors. Results: We show enhanced cell killing with adenovirus and radiation combination treatment. Co-infection with several of the viruses did not further increase cell killing, suggesting that both E4orf6 and E4orf3 are potent in MRN inhibition. Our results show that adenoviral proteins E4orf3 and E4orf6, but not E1B55K, are effective also in vivo. Enhanced cell killing was due to inhibition of DSB repair resulting in persistent double-strand DNA damage, indicated by elevated phospho-H2AX levels at 24 h after irradiation. Conclusions: This knowledge can be applied for improving the treatment of malignant tumors, such as prostate cancer, for development of more effective combination therapies and minimizing radiation doses and reducing side effects.

  4. Orf Disease Following “Eid ul-Adha”: A Rare Cause of Erythema Multiforme

    PubMed Central

    Shahmoradi, Zabihollah; Abtahi-Naeini, Bahareh; Pourazizi, Mohsen; Meidani, Mohsen

    2014-01-01

    Orf, also known as contagious pustular dermatitis, is an exanthemous disease caused by a parapox virus. It is usually a benign locally self-limiting illness; it can have systemic complication or progressive infected locations can include the finger, hand, arm, and face. Development of erythema multiforme following Orf infection is very rare. In Islamic populations such as those of Iran, Orf can be observed in individuals who are not occupationally involved, but may be in contact with sheep or goats after the Islamic worship as an “Eid ul-Adha.” Here we report an erythema multiforme associated with multiple lesion of Orf disease following the “Eid ul-Adha” in Iranian housewives. PMID:25105005

  5. LTR-Retrotransposons from Bdelloid Rotifers Capture Additional ORFs Shared between Highly Diverse Retroelement Types

    PubMed Central

    Rodriguez, Fernando; Kenefick, Aubrey W.; Arkhipova, Irina R.

    2017-01-01

    Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highly-diversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga. We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)-retrotransposons, in addition to conserved open reading frame (ORF) 1 and ORF2 corresponding to gag and pol genes, code for an unusually high variety of ORF3 sequences. Retrovirus-like LTR families in A. vaga belong to four major lineages, three of which are rotifer-specific and encode a dUTPase domain. However only one lineage contains a canonical env-like fusion glycoprotein acquired from paramyxoviruses (non-segmented negative-strand RNA viruses), although smaller ORFs with transmembrane domains may perform similar roles. A different ORF3 type encodes a GDSL esterase/lipase, which was previously identified as ORF1 in several clades of non-LTR retrotransposons, and implicated in membrane targeting. Yet another ORF3 type appears in unrelated LTR-retrotransposon lineages, and displays strong homology to DEDDy-type exonucleases involved in 3′-end processing of RNA and single-stranded DNA. Unexpectedly, each of the enzymatic ORF3s is also associated with different subsets of Penelope-like Athena retroelement families. The unusual association of the same ORF types with retroelements from different classes reflects their modular structure with a high degree of flexibility, and points to gene sharing between different groups of retroelements. PMID:28398238

  6. Identification and Characterization of the Orf49 Protein of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    González, Carlos M.; Wong, Emily L.; Bowser, Brian S.; Hong, Gregory K.; Kenney, Shannon; Damania, Blossom

    2006-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Kaposi's sarcoma is the most common neoplasm among human immunodeficiency virus-positive individuals. Like other herpesviruses, KSHV is able to establish a predominantly latent, life-long infection in its host. The KSHV lytic cycle can be triggered by a number of stimuli that induce the expression of the key lytic switch protein, the replication and transcription activator (RTA) encoded by Orf50. The expression of Rta is necessary and sufficient to trigger the full lytic program resulting in the ordered expression of viral proteins, release of viral progeny, and host cell death. We have characterized an unknown open reading frame, Orf49, which lies adjacent and in the opposite orientation to Orf50. Orf49 is expressed during the KSHV lytic cycle and shows early transcription kinetics. We have mapped the 5′ and 3′ ends of the unspliced Orf49 transcript, which encodes a 30-kDa protein that is localized to both the nucleus and the cytoplasm. Interestingly, we found that Orf49 was able to cooperate with Rta to activate several KSHV lytic promoters containing AP-1 sites. The Orf49-encoded protein was also able to induce transcriptional activation through c-Jun but not the ATF1, ATF2, or CREB transcription factor. We found that Orf49 could induce phosphorylation and activation of the transcription factor c-Jun, the Jun N-terminal kinase (JNK), and p38. Our data suggest that Orf49 functions to activate the JNK and p38 pathways during the KSHV lytic cycle. PMID:16501115

  7. A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin

    PubMed Central

    Sharif, Saeed; Nakatani, Yoshio; Wise, Lyn; Corbett, Michael; Real, Nicola C.; Stuart, Gabriella S.; Lateef, Zabeen; Krause, Kurt; Mercer, Andrew A.; Fleming, Stephen B.

    2016-01-01

    Bovine papular stomatitis virus (BPSV) is a Parapoxvirus that induces acute pustular skin lesions in cattle and is transmissible to humans. Previous studies have shown that BPSV encodes a distinctive chemokine-binding protein (CBP). Chemokines are critically involved in the trafficking of immune cells to sites of inflammation and infected tissue, suggesting that the CBP plays a role in immune evasion by preventing immune cells reaching sites of infection. We hypothesised that the BPSV-CBP binds a wide range of inflammatory chemokines particularly those involved in BPSV skin infection, and inhibits the recruitment of immune cells from the blood into inflamed skin. Molecular analysis of the purified protein revealed that the BPSV-CBP is a homodimeric polypeptide with a MW of 82.4 kDa whilst a comprehensive screen of inflammatory chemokines by surface plasmon resonance showed high-affinity binding to a range of chemokines within the CXC, CC and XC subfamilies. Structural analysis of BPSV-CBP, based on the crystal structure of orf virus CBP, provided a probable explanation for these chemokine specificities at a molecular level. Functional analysis of the BPSV-CBP using transwell migration assays demonstrated that it potently inhibited chemotaxis of murine neutrophils and monocytes in response to CXCL1, CXCL2 as well as CCL2, CCL3 and CCL5 chemokines. In order to examine the effects of CBP in vivo, we used murine skin models to determine its impact on inflammatory cell recruitment such as that observed during BPSV infection. Intradermal injection of BPSV-CBP blocked the influx of neutrophils and monocytes in murine skin in which inflammation was induced with lipopolysaccharide. Furthermore, intradermal injection of BPSV-CBP into injured skin, which more closely mimics BPSV lesions, delayed the influx of neutrophils and reduced the recruitment of MHC-II+ immune cells to the wound bed. Our findings suggest that the CBP could be important in pathogenesis of BPSV infections

  8. Rapid improvement of human orf (ecthyma contagiosum) with topical imiquimod cream: report of four complicated cases.

    PubMed

    Erbağci, Zülal; Erbağci, Ibrahim; Almila Tuncel, A

    2005-01-01

    Orf is a zoonosis caused by an epitheliotropic DNA parapox virus. Human orf is a generally benign, self-limiting condition that usually regresses in 6-8 weeks without specific treatment. However, it may be accompanied by local symptoms including pain, pruritus, lymphangitis and axillary adenitis, or less frequently by systemic symptoms such as fever or malaise. Furthermore, it may be complicated by erythema multiforme, Stevens-Johnson syndrome, erysipelas, generalized mucocutaneous eruption, toxic erythema, eyelid oedema and giant, persistent or recurrent lesions in immunocompromised patients. Imiquimod, a potent topical immune response modifier, enhances both the innate and acquired immunity by stimulation of immune system cells resulting in local antiviral, antitumour and immunoregulatory activity. We present, for the first time, four complicated cases of orf successfully treated by topical imiquimod resulting in rapid regression of both orf and associated lesions. Two of the cases were complicated with erythema multiforme, one with recurrent eyelid oedema, and another had giant orf associated with axillary lymphadenitis. We suggest that topical imiquimod may be an effective and safe therapy for complicated orf cases.

  9. Adenovirus E4orf4 Protein Downregulates MYC Expression through Interaction with the PP2A-B55 Subunit▿

    PubMed Central

    Ben-Israel, Haggit; Sharf, Rakefet; Rechavi, Gideon; Kleinberger, Tamar

    2008-01-01

    The adenovirus E4 open reading frame 4 (E4orf4) protein is a multifunctional viral regulator that is involved in the temporal regulation of viral gene expression by modulating cellular and viral genes at the transcription and translation levels and by controlling alternative splicing of adenoviral late mRNAs. When expressed individually, E4orf4 induces apoptosis in transformed cells. Using oligonucleotide microarray analysis, validated by quantitative real time PCR, we found that MYC (also known as c-Myc) is downregulated early after the induction of E4orf4 expression. As a result, Myc protein levels are reduced in E4orf4-expressing cells. MYC downregulation is observed both when E4orf4 is expressed individually and within the context of viral infection. E4orf4 reduces MYC transcription but does not affect transcriptional elongation or RNA stability. An interaction with the PP2A-B55 subunit is required for the downregulation of MYC by E4orf4. Since Myc overexpression was previously shown to inhibit adenovirus replication, the downregulation of Myc by E4orf4 would contribute to efficient virus infection. PMID:18653458

  10. Adenovirus E4orf4 protein downregulates MYC expression through interaction with the PP2A-B55 subunit.

    PubMed

    Ben-Israel, Haggit; Sharf, Rakefet; Rechavi, Gideon; Kleinberger, Tamar

    2008-10-01

    The adenovirus E4 open reading frame 4 (E4orf4) protein is a multifunctional viral regulator that is involved in the temporal regulation of viral gene expression by modulating cellular and viral genes at the transcription and translation levels and by controlling alternative splicing of adenoviral late mRNAs. When expressed individually, E4orf4 induces apoptosis in transformed cells. Using oligonucleotide microarray analysis, validated by quantitative real time PCR, we found that MYC (also known as c-Myc) is downregulated early after the induction of E4orf4 expression. As a result, Myc protein levels are reduced in E4orf4-expressing cells. MYC downregulation is observed both when E4orf4 is expressed individually and within the context of viral infection. E4orf4 reduces MYC transcription but does not affect transcriptional elongation or RNA stability. An interaction with the PP2A-B55 subunit is required for the downregulation of MYC by E4orf4. Since Myc overexpression was previously shown to inhibit adenovirus replication, the downregulation of Myc by E4orf4 would contribute to efficient virus infection.

  11. Differential Regulation of the Overlapping Kaposi's Sarcoma-Associated Herpesvirus vGCR (orf74) and LANA (orf73) Promoters

    PubMed Central

    Jeong, Joseph; Papin, James; Dittmer, Dirk

    2001-01-01

    Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator. PMID:11160678

  12. [Expanding papillomatous nodule on forearm with acute lymphangitis. Case of diagnosis].

    PubMed

    Radtke, M A; Günzl, H-J; Siemann-Harms, U; Augustin, M; Coors, E A

    2009-06-01

    Ecthyma contagiosum (orf) is a dermatosis commonly seen in those in contact with sheep. It is caused by Parapoxvirus ovis (orf virus), an oval epitheliotropic DNA parapox virus. The skin disease develops in stages starting as a macule or papule, becoming nodular, and then regressing. Diagnosis is based on history and histology, as well as identifying the virus through cell culture or specified polymerase chain reaction (PCR). The treatment of this self-limited disease is usually symptomatic.

  13. Sequence analysis of ORF IV RTBV isolated from tungro infected Oryza sativa L. cv Ciherang

    NASA Astrophysics Data System (ADS)

    Hastilestari, Bernadetta Rina; Astuti, Dwi; Estiati, Amy; Nugroho, Satya

    2015-09-01

    The Effort to increase rice production is often constrained by pest and disease such as Tungro. The Tungro disease is caused by the joint infection with two dissimilar viruses; a bacil-form-DNA virus, the Rice tungro bacilliform virus(RTBV) and the spherical RNA virus, Rice tungro spherical virus (RTSV) and transmitted by Green leafhopper (Nephotettix virescens). The symptom of disease is caused by the presence of RTBV. The genome of RTBV consists of four Open reading frames (ORFs) which encode functional proteins. Of the four, ORF IV is unique because it exists only in RTBV. The most efficient method of generating disease resistance plants is to look for natural sources of resistance genes in wild or germplasm and then transfer the gene and the accompanying resistance in cultivated crop varieties. The aim of this study is, therefore, to isolate and analyze of 1170 bp gene of ORF 4 of Tungro virus isolated from an Indonesian rice cultivar, Ciherang (Oryza sativa L. cv Indica). DNA sequencing analysis using BLAST showed 94% similarity with the reference sequence gen bank Acc.M65026.1. The comparisons and mutation analysis of DNA sequences were discussed in this research.

  14. A 65-Year-Old Female from Connecticut with Orf Infection

    PubMed Central

    Estela Cubells, Jose Ramón; Braverman, Irwin; Kashgarian, Michael; Lazova, Rossitza

    2016-01-01

    The virus, which causes orf and induces acute pustular skin lesions in sheep and goats, is transmissible to humans yet is rarely observed in North America. We present a case of a 65-year-old female farmer from Connecticut who contracted orf from her sheep. The clinical and histopathologic features, important to arrive at the correct diagnosis of this uncommon yet important infection, are described. We also discuss the benign nature of this condition and emphasize that treatment is not required. PMID:27504446

  15. Regulation of Notch-mediated transcription by a bovine herpesvirus 1 encoded protein (ORF2) that is expressed in latently infected sensory neurons.

    PubMed

    Liu, Yilin; Jones, Clinton

    2016-08-01

    Bovine herpesvirus 1 (BoHV-1) is an Alphaherpesvirinae subfamily member that establishes life-long latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed during latency. An LR mutant virus containing stop codons at the amino-terminus of open reading frame (ORF)2 does not reactivate from latency and replicates less efficiently in tonsils and trigeminal ganglia. ORF2 inhibits apoptosis, interacts with Notch family members, and interferes with Notch-dependent transcription suggesting ORF2 expression enhances survival of infected neurons. The Notch signaling pathway is crucial for neuronal differentiation and survival suggesting that interactions between ORF2 and Notch family members regulate certain aspects of latency. Consequently, for this study, we compared whether ORF2 interfered with the four mammalian Notch family members. ORF2 consistently interfered with Notch1-3-mediated transactivation of three cellular promoters. Conversely, Notch4-mediated transcription was not consistently inhibited by ORF2. Electrophoretic shift mobility assays using four copies of a consensus-DNA binding site for Notch/CSL (core binding factor (CBF)-1, Suppressor of Hairless, Lag-2) as a probe revealed ORF2 interfered with Notch1 and 3 interactions with a CSL family member bound to DNA. Additional studies demonstrated ORF2 enhances neurite sprouting in mouse neuroblastoma cells that express Notch1-3, but not Notch4. Collectively, these studies indicate that ORF2 inhibits Notch-mediated transcription and signaling by interfering with Notch interacting with CSL bound to DNA.

  16. Phylogenetic relationships among group II intron ORFs

    PubMed Central

    Zimmerly, Steven; Hausner, Georg; Wu, Xu-chu

    2001-01-01

    Group II introns are widely believed to have been ancestors of spliceosomal introns, yet little is known about their own evolutionary history. In order to address the evolution of mobile group II introns, we have compiled 71 open reading frames (ORFs) related to group II intron reverse transcriptases and subjected their derived amino acid sequences to phylogenetic analysis. The phylogenetic tree was rooted with reverse transcriptases (RTs) of non-long terminal repeat retroelements, and the inferred phylogeny reveals two major clusters which we term the mitochondrial and chloroplast-like lineages. Bacterial ORFs are mainly positioned at the bases of the two lineages but with weak bootstrap support. The data give an overview of an apparently high degree of horizontal transfer of group II intron ORFs, mostly among related organisms but also between organelles and bacteria. The Zn domain (nuclease) and YADD motif (RT active site) were lost multiple times during evolution. Differences in domain structures suggest that the oldest ORFs were concise, while the ORF in the mitochondrial lineage subsequently expanded in three locations. The data are consistent with a bacterial origin for mobile group II introns. PMID:11222775

  17. Complete nucleotide sequence of Rose yellow leaf virus, a new member of the family Tombusviridae

    USDA-ARS?s Scientific Manuscript database

    The genome of the Rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides containing seven open reading frames (ORFs). ORF1 encodes a 27 kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode a 87 kDa (p87) protein t...

  18. Nucleotide sequence of papaya mosaic virus RNA.

    PubMed

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  19. Proteomic analysis of ubiquitin-like posttranslational modifications induced by the adenovirus E4-ORF3 protein.

    PubMed

    Sohn, Sook-Young; Bridges, Rebecca G; Hearing, Patrick

    2015-02-01

    Viruses interact with and regulate many host metabolic pathways in order to advance the viral life cycle and counteract intrinsic and extrinsic antiviral responses. The human adenovirus (Ad) early protein E4-ORF3 forms a unique scaffold throughout the nuclei of infected cells and inhibits multiple antiviral defenses, including a DNA damage response (DDR) and an interferon response. We previously reported that the Ad5 E4-ORF3 protein induces sumoylation of Mre11 and Nbs1, which are essential for the DDR, and their relocalization into E4-ORF3-induced nuclear inclusions is required for this modification to occur. In this study, we sought to analyze a global change in ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, by the Ad5 E4-ORF3 protein and to identify new substrates with these modifications. By a comparative proteome-wide approach utilizing immunoprecipitation/mass spectrometry, we found that Ubl modifications of 166 statistically significant lysine sites in 51 proteins are affected by E4-ORF3, and the proteome of modifications spans a diverse range of cellular functions. Ubl modifications of 92% of these identified sites were increased by E4-ORF3. We further analyzed SUMO3 conjugation of several identified proteins. Our findings demonstrated a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and revealed new SUMO3 substrates induced by E4-ORF3. The adenovirus E4-ORF3 protein induces dynamic structural changes in the nuclei of infected cells and counteracts host antiviral responses. One of the mechanisms that accounts for this process is the relocalization and sequestration of cellular proteins into an E4-ORF3 nuclear scaffold, but little is known about how this small viral protein affects diverse cellular responses. In this study, we analyzed for the first time the global pattern of ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, altered by E4-ORF3 expression. The results suggest a role for the Ad5 E4

  20. Proteomic Analysis of Ubiquitin-Like Posttranslational Modifications Induced by the Adenovirus E4-ORF3 Protein

    PubMed Central

    Sohn, Sook-Young; Bridges, Rebecca G.

    2014-01-01

    ABSTRACT Viruses interact with and regulate many host metabolic pathways in order to advance the viral life cycle and counteract intrinsic and extrinsic antiviral responses. The human adenovirus (Ad) early protein E4-ORF3 forms a unique scaffold throughout the nuclei of infected cells and inhibits multiple antiviral defenses, including a DNA damage response (DDR) and an interferon response. We previously reported that the Ad5 E4-ORF3 protein induces sumoylation of Mre11 and Nbs1, which are essential for the DDR, and their relocalization into E4-ORF3-induced nuclear inclusions is required for this modification to occur. In this study, we sought to analyze a global change in ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, by the Ad5 E4-ORF3 protein and to identify new substrates with these modifications. By a comparative proteome-wide approach utilizing immunoprecipitation/mass spectrometry, we found that Ubl modifications of 166 statistically significant lysine sites in 51 proteins are affected by E4-ORF3, and the proteome of modifications spans a diverse range of cellular functions. Ubl modifications of 92% of these identified sites were increased by E4-ORF3. We further analyzed SUMO3 conjugation of several identified proteins. Our findings demonstrated a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and revealed new SUMO3 substrates induced by E4-ORF3. IMPORTANCE The adenovirus E4-ORF3 protein induces dynamic structural changes in the nuclei of infected cells and counteracts host antiviral responses. One of the mechanisms that accounts for this process is the relocalization and sequestration of cellular proteins into an E4-ORF3 nuclear scaffold, but little is known about how this small viral protein affects diverse cellular responses. In this study, we analyzed for the first time the global pattern of ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, altered by E4-ORF3 expression. The results suggest a

  1. The Adenovirus E4-ORF3 Protein Stimulates SUMOylation of General Transcription Factor TFII-I to Direct Proteasomal Degradation

    PubMed Central

    Bridges, Rebecca G.; Sohn, Sook-Young; Wright, Jordan

    2016-01-01

    ABSTRACT Modulation of host cell transcription, translation, and posttranslational modification processes is critical for the ability of many viruses to replicate efficiently within host cells. The human adenovirus (Ad) early region 4 open reading frame 3 (E4-ORF3) protein forms unique inclusions throughout the nuclei of infected cells and inhibits the antiviral Mre11-Rad50-Nbs1 DNA repair complex through relocalization. E4-ORF3 also induces SUMOylation of Mre11 and Nbs1. We recently identified additional cellular targets of E4-ORF3 and found that E4-ORF3 stimulates ubiquitin-like modification of 41 cellular proteins involved in a wide variety of processes. Among the proteins most abundantly modified in an E4-ORF3-dependent manner was the general transcription factor II–I (TFII-I). Analysis of Ad-infected cells revealed that E4-ORF3 induces TFII-I relocalization and SUMOylation early during infection. In the present study, we explored the relationship between E4-ORF3 and TFII-I. We found that Ad infection or ectopic E4-ORF3 expression leads to SUMOylation of TFII-I that precedes a rapid decline in TFII-I protein levels. We also show that E4-ORF3 is required for ubiquitination of TFII-I and subsequent proteasomal degradation. This is the first evidence that E4-ORF3 regulates ubiquitination. Interestingly, we found that E4-ORF3 modulation of TFII-I occurs in diverse cell types but only E4-ORF3 of Ad species C regulates TFII-I, providing critical insight into the mechanism by which E4-ORF3 targets TFII-I. Finally, we show that E4-ORF3 stimulates the activity of a TFII-I-repressed viral promoter during infection. Our results characterize a novel mechanism of TFII-I regulation by Ad and highlight how a viral protein can modulate a critical cellular transcription factor during infection. PMID:26814176

  2. Structural and antigenic identification of the ORF12 protein (alpha TIF) of equine herpesvirus 1.

    PubMed

    Lewis, J B; Thompson, Y G; Feng, X; Holden, V R; O'Callaghan, D; Caughman, G B

    1997-04-14

    The equine herpesvirus 1 (EHV-1) homolog of the herpes simplex virus type 1 (HSV-1) tegument phosphoprotein, alpha TIF (Vmw65; VP16), was identified previously as the product of open reading frame 12 (ORF12) and shown to transactivate immediate early (IE) gene promoters. However, a specific virion protein corresponding to the ORF12 product has not been identified definitively. In the present study the ORF12 protein, designated ETIF, was identified as a 60-kDa virion component on the basis of protein fingerprint analyses in which the limited proteolysis profiles of the major 60-kDa in vitro transcription/ translation product of an ORF12 expression vector (pT7-12) were compared to those of purified virion proteins of similar size. ETIF was localized to the viral tegument in Western blot assays of EHV-1 virions and subvirion fractions using polyclonal antiserum and monoclonal antibodies generated against a glutathione-S-transferase-ETIF fusion protein. Northern and Western blot analyses of EHV-1-infected cell lysates prepared under various metabolic blocks indicated that ORF12 is expressed as a late gene, and cross reaction of polyclonal anti-GST-ETIF with a 63.5-kDa HSV-1 protein species suggested that ETIF and HSV-1 alpha TIF are antigenically related. Last, DNA band shift assays used to assess ETIF-specific complex formation indicated that ETIF participates in an infected cell protein complex with the EHV-1 IE promoter TAATGARAT motif.

  3. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor.

    PubMed

    Zhang, Zhen; Selariu, Anca; Warden, Charles; Huang, Grace; Huang, Ying; Zaccheus, Oluleke; Cheng, Tong; Xia, Ningshao; Zhu, Hua

    2010-07-01

    The Varicella Zoster Virus (VZV) is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka) has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV's almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka) genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes). We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome's 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7) has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles.

  4. Adenovirus E4-ORF3-dependent relocalization of TIF1{alpha} and TIF1{gamma} relies on access to the Coiled-Coil motif

    SciTech Connect

    Vink, Elizabeth I.; Yondola, Mark A.; Wu, Kai; Hearing, Patrick

    2012-01-20

    The adenovirus E4-ORF3 protein promotes viral replication by relocalizing cellular proteins into nuclear track structures, interfering with potential anti-viral activities. E4-ORF3 targets transcriptional intermediary factor 1 alpha (TIF1{alpha}), but not homologous TIF1{beta}. Here, we introduce TIF1{gamma} as a novel E4-ORF3-interacting partner. E4-ORF3 relocalizes endogenous TIF1{gamma} in virus-infected cells in vivo and binds to TIF1{gamma} in vitro. We used the homologous nature, yet differing binding capabilities, of these proteins to study how E4-ORF3 targets proteins for track localization. We mapped the ability of E4-ORF3 to interact with specific TIF1 subdomains, demonstrating that E4-ORF3 interacts with the Coiled-Coil domains of TIF1{alpha}, TIF1{beta}, and TIF1{gamma}, and that the C-terminal half of TIF1{beta} interferes with this interaction. The results of E4-ORF3-directed TIF1 protein relocalization assays performed in vivo were verified using coimmunoprecipitation assays in vitro. These results suggest that E4-ORF3 targets proteins for relocalization through a loosely homologous sequence dependent on accessibility.

  5. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    PubMed Central

    Dijkman, Ronald; Jebbink, Maarten F; Wilbrink, Berry; Pyrc, Krzysztof; Zaaijer, Hans L; Minor, Philip D; Franklin, Sally; Berkhout, Ben; Thiel, Volker; van der Hoek, Lia

    2006-01-01

    Background The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU) in Salisbury, UK. Results All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%). Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV. Conclusion Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo. PMID:17194306

  6. Structure- and Modeling-based Identification of the Adenovirus E4orf4 Binding Site in the Protein Phosphatase 2A B55α Subunit*

    PubMed Central

    Horowitz, Ben; Sharf, Rakefet; Avital-Shacham, Meirav; Pechkovsky, Antonina; Kleinberger, Tamar

    2013-01-01

    The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators. PMID:23530045

  7. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein.

    PubMed

    Orlando, Joseph S; Ornelles, David A

    2002-02-01

    The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.

  8. Expression and detection of LINE-1 ORF-encoded proteins.

    PubMed

    Dai, Lixin; LaCava, John; Taylor, Martin S; Boeke, Jef D

    2014-01-01

    LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.

  9. No evidence for translation of pog, a predicted overlapping gene of Solenopsis invicta virus 1

    USDA-ARS?s Scientific Manuscript database

    An overlapping open reading frame (ORF) with a potential to encode a functional protein has been identified within the 3'-proximal ORF of Solenopsis invicta virus 1 (SINV-1) and three bee viruses. This ORF has been referred to as predicted overlapping gene (pog). Protein motif searches of pog reve...

  10. Murine Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and Functions in both Viral Lytic Replication and Latency during In Vivo Infection.

    PubMed

    Qi, Jing; Han, Chuanhui; Gong, Danyang; Liu, Ping; Zhou, Sheng; Deng, Hongyu

    2015-06-01

    Replication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit of ORF48 from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates the ORF48 promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directly in vitro and also associates with ORF48 promoter in vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE during de novo infection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48 in vitro and in vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identified ORF48 as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication both in vitro and in vivo. The replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identified ORF48 as an RTA-responsive gene of MHV-68 and mapped the cis element involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of

  11. Occurrence of Pseudocowpox virus associated to Bovine viral diarrhea virus-1, Brazilian Amazon.

    PubMed

    Alves, Pedro A; Figueiredo, Poliana O; de Oliveira, Cairo H S; Barbosa, José D; Lima, Danillo H S; Bomjardim, Henrique A; Silva, Natália S; Campos, Karinny F; Oliveira, Carlos Magno C; Barbosa-Stancioli, Edel Figueiredo; Abrahão, Jônatas S; Kroon, Erna G; de Souza Trindade, Giliane

    2016-12-01

    In 2011, an outbreak of severe vesicular disease occurred in the state of Pará, Amazon region. Besides proliferative or verrucous lesions, cattle showed atypical clinical signs such as diarrhea and leading to death. The animals were submitted to clinical, pathological and molecular diagnosis, and laboratory tests have confirmed the presence of Pseudocowpox virus (PCPV), a Parapoxvirus genus member, and have also found Bovine viral diarrhea virus-1 (BVDV-1), probably causing persistent infection. The results of molecular diagnostics, followed by sequencing data demonstrated the circulation of both viruses (PCPV and BVDV-1) in an area previously affected by another poxvirus, as Vaccinia virus.The cocirculation between PCPV and BVDV-1 indicates a major concern for animal health because the clinical presentation can be a severe disease. This is the first detection of PCPV in the Brazilian Amazon.

  12. Systematic analysis of the IgG antibody immune response against varicella zoster virus (VZV) using a self-assembled protein microarray.

    PubMed

    Ceroni, Alessandro; Sibani, Sahar; Baiker, Armin; Pothineni, Venkata Raveendra; Bailer, Susanne M; LaBaer, Joshua; Haas, Jürgen; Campbell, Colin J

    2010-09-01

    Varicella zoster virus (VZV) is a human herpesvirus encoding at least 69 distinct viral proteins which causes chickenpox after primary infection and shingles during reactivation and which is particularly important in pregnancy and immunocompromised patients. Current serodiagnostic tests are either based on whole cell lysates or glycoprotein preparations. In order to investigate the humoral immune response to VZV infection or vaccination in more detail, and to improve the currently available diagnostic assays, we developed a nucleic acid programmable protein array (NAPPA) containing all 69 VZV proteins and performed a detailed analysis of 68 sera from individuals with either no, a previous or an acute VZV infection. In addition to the known reactive glycoprotein antigens (ORF 5, ORF 14, ORF 31, ORF 37, ORF 68), we discovered IgG antibodies against a variety of other membrane (ORF 2, ORF 24), capsid (ORF 20, ORF 23, ORF 43) and tegument (ORF 53, ORF 9, ORF 11) proteins, as well as other proteins involved in virus replication and assembly (ORF 25, ORF 26, ORF 28) and the transactivator proteins ORF 12, ORF 62 and ORF 63. All of these antigens were only reactive in a subset of VZV-positive individuals. A subset of the newly identified VZV antigens was validated by western blot analysis. Using these seroreactive new VZV antigens, more sensitive assays and tests distinguishing between different clinical entities may be developed.

  13. Upstream ORFs are prevalent translational repressors in vertebrates.

    PubMed

    Johnstone, Timothy G; Bazzini, Ariel A; Giraldez, Antonio J

    2016-04-01

    Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates. © 2016 The Authors.

  14. ORF Organization and Gene Recognition in the Yeast Genome

    PubMed Central

    Li, Hong; Zhang, Lirong

    2003-01-01

    Some rules on gene recognition and ORF organization in the Saccharomyces cerevisiae genome are demonstrated by statistical analyses of sequence data. This study includes: (a) The random frame rule—that the six reading frames W1, W2, W3, C1, C2 and C3 in the double-stranded genome are randomly occupied by ORFs (related phenomena on ORF overlapping are also discussed). (b) The inhomogeneity rule—coding and non-coding ORFs differ in inhomogeneity of base composition in the three codon positions. By use of the inhomogeneity index (IHI), one can make a distinction between coding (IHI > 14) and non-coding (IHI ≤ 14) ORFs at 95% accuracy. We find that ‘spurious’ ORFs (with IHI ≤ 14) are distributed mainly in three classes of ORFs, namely, those with ‘similarity to unknown proteins’, those with ‘no similarity’, or ‘questionable ORFs’. The total number of spurious ORFs (which are unlikely to be regarded as coding ORFs) is estimated to be 470. (c) The evaluation of ORF length distribution shows that below 200 amino acids the occurrence of ATG initiator ORFs is close to random. PMID:18629282

  15. Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs

    PubMed Central

    Boyne, James R; Jackson, Brian R; Taylor, Adam; Macnab, Stuart A; Whitehouse, Adrian

    2010-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) expresses numerous intronless mRNAs that are unable to access splicing-dependent cellular mRNA nuclear export pathways. To circumvent this problem, KSHV encodes the open reading frame 57 (ORF57) protein, which orchestrates the formation of an export-competent virus ribonucleoprotein particle comprising the nuclear export complex hTREX, but not the exon-junction complex (EJC). Interestingly, EJCs stimulate mRNA translation, which raises the intriguing question of how intronless KSHV transcripts are efficiently translated. Herein, we show that ORF57 associates with components of the 48S pre-initiation complex and co-sediments with the 40S ribosomal subunits. Strikingly, we observed a direct interaction between ORF57 and PYM, a cellular protein that enhances translation by recruiting the 48S pre-initiation complex to newly exported mRNAs, through an interaction with the EJC. Moreover, detailed biochemical analysis suggests that ORF57 recruits PYM to intronless KSHV mRNA and PYM then facilitates the association of ORF57 and the cellular translation machinery. We, therefore, propose a model whereby ORF57 interacts directly with PYM to enhance translation of intronless KSHV transcripts. PMID:20436455

  16. The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response

    PubMed Central

    Kechker, Peter; Sharf, Rakefet; Kleinberger, Tamar

    2016-01-01

    The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition

  17. The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response.

    PubMed

    Brestovitsky, Anna; Nebenzahl-Sharon, Keren; Kechker, Peter; Sharf, Rakefet; Kleinberger, Tamar

    2016-02-01

    The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition

  18. An Arginine-Faced Amphipathic Alpha Helix Is Required for Adenovirus Type 5 E4orf6 Protein Function

    PubMed Central

    Orlando, Joseph S.; Ornelles, David A.

    1999-01-01

    A region in the carboxy terminus of the protein encoded by open reading frame 6 in early region 4 (E4orf6) of adenovirus type 5 was determined to be required for directing nuclear localization of the E1B 55-kDa protein and for efficient virus replication. A peptide encompassing this region, corresponding to amino acids 239 through 255 of the E4orf6 protein, was analyzed by circular dichroism spectroscopy. The peptide showed evidence of self-interaction and displayed the characteristic spectra of an amphipathic α helix in the helix-stabilizing solvent trifluoroethanol. Disrupting the integrity of this α helix in the E4orf6 protein by proline substitutions or by removing amino acids 241 through 250 abolished its ability to direct the E1B 55-kDa protein to the nucleus when both proteins were transiently expressed in HeLa cells. Expression of E4orf6 variants that failed to direct nuclear localization of the E1B 55-kDa protein failed to enhance replication of the E4 mutant virus, dl1014, whereas expression of the wild-type E4orf6 protein restored growth of dl1014 to near-wild-type levels. These results suggest that the E4orf6 protein contains an arginine-faced, amphipathic α helix that is critical for a functional interaction with the E1B 55-kDa protein in the cell and for the function of the E4orf6 protein during a lytic infection. PMID:10233919

  19. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication

    PubMed Central

    Avey, Denis; Tepper, Sarah; Li, Wenwei; Turpin, Zachary; Zhu, Fanxiu

    2015-01-01

    Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates

  20. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K

    PubMed Central

    Malik, Poonam; Clements, J. Barklie

    2004-01-01

    ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic α/α′ and regulatory β subunits of CK2. CK2 modification enhanced the ORF57–hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago. PMID:15486205

  1. C9orf72 expansion disrupts ATM-mediated chromosomal break repair.

    PubMed

    Walker, Callum; Herranz-Martin, Saul; Karyka, Evangelia; Liao, Chunyan; Lewis, Katherine; Elsayed, Waheba; Lukashchuk, Vera; Chiang, Shih-Chieh; Ray, Swagat; Mulcahy, Padraig J; Jurga, Mateusz; Tsagakis, Ioannis; Iannitti, Tommaso; Chandran, Jayanth; Coldicott, Ian; De Vos, Kurt J; Hassan, Mohamed K; Higginbottom, Adrian; Shaw, Pamela J; Hautbergue, Guillaume M; Azzouz, Mimoun; El-Khamisy, Sherif F

    2017-09-01

    Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.

  2. A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements.

    PubMed

    Loftus, Matthew S; Verville, Nancy; Kedes, Dean H

    2017-09-01

    Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function.IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy

  3. A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements

    PubMed Central

    Loftus, Matthew S.; Verville, Nancy

    2017-01-01

    ABSTRACT Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common

  4. KSHV ORF57, a Protein of Many Faces

    PubMed Central

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis. PMID:25674768

  5. C9ORF72 mutations in neurodegenerative diseases.

    PubMed

    Liu, Ying; Yu, Jin-Tai; Zong, Yu; Zhou, Jing; Tan, Lan

    2014-02-01

    Recent works have demonstrated an expansion of the GGGGCC hexanucleotide repeat in the first intron of chromosome 9 open reading frame 72 (C9ORF72), encoding an unknown C9ORF72 protein, which was responsible for an unprecedented large proportion of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases of European ancestry. C9ORF72 is expressed in most tissues including the brain. Emerging evidence has demonstrated that C9ORF72 mutations could reduce the level of C9ORF72 variant 1, which may influence protein expression and the formation of nuclear RNA foci. The spectrum of mutations is broad and provides new insight into neurological diseases. Clinical manifestations of diseases related with C9ORF72 mutations can vary from FTD, ALS, primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), Huntington disease-like syndrome (HDL syndrome), to Alzheimer's disease. In this article, we will review the brief characterizations of the C9ORF72 gene, the expansion mutations, the related disorders, and their features, followed by a discussion of the deficiency knowledge of C9ORF72 mutations. Based on the possible pathological mechanisms of C9ORF72 mutations in ALS and FTD, we can find new targets for the treatment of C9ORF72 mutation-related diseases. Future studies into the mechanisms, taking into consideration the discovery of those disorders, will significantly accelerate new discoveries in this field, including targeting identification of new therapy.

  6. Structure- and modeling-based identification of the adenovirus E4orf4 binding site in the protein phosphatase 2A B55α subunit.

    PubMed

    Horowitz, Ben; Sharf, Rakefet; Avital-Shacham, Meirav; Pechkovsky, Antonina; Kleinberger, Tamar

    2013-05-10

    The adenovirus E4orf4 protein must bind protein phosphatase 2A (PP2A) for its functions. The E4orf4 binding site in PP2A was mapped to the α1,α2 helices of the B55α subunit. The E4orf4 binding site in PP2A-B55α lies above the substrate binding site and does not overlap it. A novel functional significance was assigned to the α1,α2 helices of the PP2A-B55α subunit. The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators.

  7. Analysis of the codon usage of the ORF2 gene of feline calicivirus.

    PubMed

    Zang, Minghui; He, Wanting; Du, Fanshu; Wu, Gongjian; Wu, Bohao; Zhou, Zhenlei

    2017-10-01

    Feline calicivirus (FCV) is a highly prevalent pathogen of the domestic cat that causes acute infections of the oral and upper respiratory tract. The E region of the ORF2 protein is responsible for the induction of virus-neutralizing antibodies, thus it is important to understand the codon usage of this gene. Here, analysed 90 coding sequences of ORF2 and show that it undergoes a low codon usage bias. In addition, although mutational bias is one of the factors shaping the codon usage bias of this gene, natural selection plays a more significant role. Our results reveal part of the mechanisms driving FCV evolution, which will lay foundation for the further research of FCV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comparison of virokine from camel pseudocowpoxvirus (PCPV) with interleukin 10 of the Dromedary camel (Camelus dromedarius).

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Sivakumar, G; Narnaware, S D; Tuteja, F C; Patil, N V

    2013-02-01

    Cellular interleukin-10 (IL-10) gene from the peripheral blood mononuclear cells of the healthy Dromedary camel (Camelus dromedarius) and viral IL-10 (vIL-10) from the skin scabs of the Dromedary camels infected with contagious ecthyma (a parapoxviral infection in the camels) were amplified by polymerase chain reaction, cloned and characterized. Sequence analysis revealed that the open reading frame (ORF) of dromedarian camel IL-10 is 537 bp in length, encoding 178 amino acid polypeptide while open reading frame of vIL-10 from camel is 561 bp, encoding 187 amino acid polypeptide. The Dromedary camel IL-10 exhibited 62.6% and 68.5% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from camel. Sequence analysis also revealed that the Dromedary camel IL-10 shared 99.4% and 98.3% identity at the nucleotide and amino acid level, respectively, with the Bactrian camel (Camelus bactrianus). But vIL-10 from camel shared 84.7% and 83.4% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from reindeer (Rangifer tarandus), which is a ruminant species belonging to the order Artiodactyla. The present study was conducted to evaluate the evolutionary origin of the camel parapoxvirus with parapoxviruses of cattle and sheep and the resultant sequence analysis revealed that camel parapoxvirus is closely related to cattle parapoxvirus than sheep parapoxvirus (Orf virus).

  9. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation.

  10. Evidence of zoonotic pseudocowpox virus infection from a cattle in Turkey.

    PubMed

    Oğuzoğlu, Tuba Çiğdem; Koç, Bahattin Taylan; Kirdeci, Armağan; Tan, Mehmet Tolga

    2014-01-01

    Pseudocowpox virus (PCPV) infects cattle throughout the world and has zoonotic potential. However, it is not known to infect cattle in Turkey. In August 2013, we observed ulcerative nodular swelling and pustules on udder and teats of a cow in a small village nearly Lake of Bafa, Milas, Mugla locate in southwestern part of Turkey. Interestingly, the similar lesions were also observed on skin of milkier women's hand at the same time. A PCPV strain was characterized based on the major envelop gene sequence. The phylogenetic analysis showed that the isolated strain was closely related to the members of other parapoxvirus genus. This study provides the first description of PCPV infection in Turkey.

  11. Discovery and Characterization of smORF-Encoded Bioactive Polypeptides

    PubMed Central

    Saghatelian, Alan; Couso, Juan Pablo

    2016-01-01

    Analysis of genomes, transcriptomes, and proteomes reveals the existence of hundreds to thousands of translated, yet non-annotated short open reading frames (small ORFs or smORFs). The discovery of smORFs, and their protein products, smORF-encoded polypeptides (SEPs), reveals a fundamental gap in our knowledge of protein-coding genes. Different studies have identified central roles for smORFs in metabolism, apoptosis, and development. The discovery of these bioactive SEPs emphasizes the functional potential of this unexplored class of biomolecules. Here, we provide an overview of this emerging field and highlight the opportunities for chemical biology to answer fundamental questions about these novel genes. Such studies will provide new insights into the protein-coding potential of genomes and identify functional genes with roles in biology and disease. PMID:26575237

  12. SIAH-1 interacts with the Kaposi's sarcoma-associated herpesvirus-encoded ORF45 protein and promotes its ubiquitylation and proteasomal degradation.

    PubMed

    Abada, Rinat; Dreyfuss-Grossman, Tsofia; Herman-Bachinsky, Yifat; Geva, Haim; Masa, Shiri-Rivka; Sarid, Ronit

    2008-03-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection.

  13. SIAH-1 Interacts with the Kaposi's Sarcoma-Associated Herpesvirus-Encoded ORF45 Protein and Promotes Its Ubiquitylation and Proteasomal Degradation▿

    PubMed Central

    Abada, Rinat; Dreyfuss-Grossman, Tsofia; Herman-Bachinsky, Yifat; Geva, Haim; Masa, Shiri-Rivka; Sarid, Ronit

    2008-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection. PMID:18077711

  14. Characterization of a second open reading frame in genome segment 10 of bluetongue virus

    PubMed Central

    Stewart, Meredith; Hardy, Alexandra; Barry, Gerald; Pinto, Rute Maria; Caporale, Marco; Melzi, Eleonora; Hughes, Joseph; Taggart, Aislynn; Janowicz, Anna; Varela, Mariana

    2015-01-01

    Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF. PMID:26290332

  15. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  16. Distribution of ORF2 and ORF3 genotypes of porcine circovirus type 2 (PCV-2) in wild boars and domestic pigs in Germany.

    PubMed

    Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Reinacher, Manfred; Willems, Hermann

    2011-03-24

    Porcine circovirus 2 (PCV-2), the essential infectious agent in PCVD (porcine circovirus diseases) circulates at high rates among domestic pig and wild boar populations. Wild boars may be viremic and shed the virus with excretions and secretions, and thus serve as a reservoir for domestic pig PCV-2 infection. We hypothesize that PCV-2 strains circulating in wild boars and in domestic pigs are significantly different and thus, partially independent. To prove this hypothesis, the present study investigated by sequence analysis the distribution of ORF2 and ORF3 genotypes of the PCV-2 genome within wild boars (n=40) and domestic pigs (n=60) from overlapping greater areas of Germany. The genotypes were compared with PCV-2 sequences from the Genbank database. The dominating genotype in domestic pigs was PCV-2b (98.4% of infected pigs), while only 4.8% of them were infected with PCV-2a. The corresponding prevalences of PCV-2a and -2b genotypes in wild boars were 58% and 70%, respectively. When also ORF3 genotypes were taken into account, more than 50% of wild boar PCV-2 genotypes were rare among German and European domestic pigs. In conclusion, these data provide evidence for a certain independence of PCV-2 infections in both species and a low chance for domestic pigs to be infected with PCV-2 of wild boar origin. On the other hand, PCV-2 genotypes specific for domestic pigs are also common in wild boars, although at lower frequencies, suggesting the spread of domestic pig PCV-2 to the wild boar population.

  17. Complete nucleotide sequence and genome organization of a Cactus virus X strain from Hylocereus undatus (Cactaceae).

    PubMed

    Liou, M R; Chen, Y R; Liou, R F

    2004-05-01

    The complete nucleotide sequence of a strain of Cactus virus X (CVX-Hu) isolated from Hylocereus undatus (Cactaceae) has been determined. Excluding the poly(A) tail, the sequence is 6614 nucleotides in length and contains seven open reading frames (ORFs). The genome organization of CVX is similar to that of other potexviruses. ORF1 encodes the putative viral replicase with conserved methyltransferase, helicase, and polymerase motifs. Within ORF1, two other ORFs were located separately in the +2 reading frame, we call these ORF6 and ORF7. ORF2, 3, and 4, which form the "triple gene block" characteristic of the potexviruses, encode proteins with molecular mass of 25, 12, and 7 KDa, respectively. ORF5 encodes the coat protein with an estimated molecular mass of 24 KDa. Sequence analysis indicated that proteins encoded by ORF1-5 display certain degree of homology to the corresponding proteins of other potexviruses. Putative product of ORF6, however, shows no significant similarity to those of other potexviruses. Phylogenetic analyses based on the replicase (the methyltransferase, helicase, and polymerase domains) and coat protein demonstrated a closer relationship of CVX with Bamboo mosaic virus, Cassava common mosaic virus, Foxtail mosaic virus, Papaya mosaic virus, and Plantago asiatica mosaic virus.

  18. Analyses of HTLV-1 sequences suggest interaction between ORF-I mutations and HAM/TSP outcome.

    PubMed

    Barreto, Fernanda Khouri; Khouri, Ricardo; Rego, Filipe Ferreira de Almeida; Santos, Luciane Amorim; Castro-Amarante, Maria Fernanda de; Bialuk, Izabela; Pise-Masison, Cynthia A; Galvão-Castro, Bernardo; Gessain, Antoine; Jacobson, Steven; Franchini, Genoveffa; Alcantara, Luiz Carlos

    2016-11-01

    The region known as pX in the 3' end of the human T-cell lymphotropic virus type 1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. HTLV-1 ORF-I produces the protein p12 and its cleavage product p8. The functions of these proteins have been linked to immune evasion and viral infectivity and persistence. It is known that the HTLV-1 infection does not necessarily imply the development of pathological processes and here we evaluated whether natural mutations in HTLV-1 ORF-I can influence the proviral load and clinical manifestation of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). For that, we performed molecular characterization, datamining and phylogenetic analysis with HTLV-1 ORF-I sequences from 156 patients with negative or positive diagnosis for HAM/TSP. Our analyses demonstrated that some mutations may be associated with the outcome of HAM/TSP (C39R, L40F, P45L, S69G and R88K) or with proviral load (P34L and F61L). We further examined the presence of mutations in motifs of HBZ and observed that P45L mutation is located within the HBZ nuclear localization signal and was found more frequently between patients with HAM/TSP and high proviral load. These results indicate that some natural mutations are located in functional domains of ORF-I and suggests a potential association between these mutations and the proviral loads and development of HAM/TSP. Therefore it is necessary to conduct functional studies aimed at evaluating the impact of these mutations on the virus persistence and immune evasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. E4orf6 Variants with Separate Abilities To Augment Adenovirus Replication and Direct Nuclear Localization of the E1B 55-Kilodalton Protein

    PubMed Central

    Orlando, Joseph S.; Ornelles, David A.

    2002-01-01

    The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic α-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic α-helix were analyzed. Two of the six arginine residues within the α-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic α-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection. PMID:11773420

  20. The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses

    PubMed Central

    Hull, R.; Sadler, J.; Longstaff, M.

    1986-01-01

    Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin. PMID:16453731

  1. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo

    PubMed Central

    Liu, Jue; Chen, Isabelle; Du, Qingyun; Chua, Huikheng; Kwang, Jimmy

    2006-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome. We previously showed that a novel identified protein, ORF3, was not essential for PCV2 replication in cultured PK15 cells and played a major role in virus-induced apoptosis. To evaluate the role of the ORF3 protein in viral pathogenesis in vivo, we inoculated 8-week-old BALB/c mice that have been developed for PCV2 replication with ORF3-deficient mutant PCV2 (mPCV2). By 42 days postinoculation, all of the mice inoculated with the mPCV2, as well as with wild-type PCV2 (wPCV2), had seroconverted to PCV2 capsid antibody, and the mutant induced levels of PCV2 antibodies that were higher than those of the wPCV2. The PCV2 genomic copy numbers in serum were significantly higher (P < 0.05) in the wPCV2-inoculated mice than in mice inoculated with the mPCV2. Also, the wPCV2 caused microscopic lesions characterized by lymphocyte depletion with histiocytic infiltration of lymphoid organs, but the mutant virus failed to induce any obvious pathological lesions. In situ hybridization and immunohistochemical analyses also showed that larger amounts of viral DNA and antigens were detected in the lymph nodes of the wPCV2-inoculated than mPCV2-inoculated mice. Furthermore, animals of the wPCV2-inoculated group showed significant downshifts of CD8+ T-cell subsets of peripheral blood lymphocytes compared to the control mice (P < 0.05) at various time points postinoculation. Also, the proportions of the CD4+ and CD4+ CD8+ cells were significantly reduced in wPCV2-inoculated mice at some time points postinoculation. In contrast, there are some reductions in the proportions of these subsets in the mutant virus-inoculated mice, but the proportions do not decrease significantly. Taken together, these results demonstrate that the ORF3 protein is also dispensable for viral replication in vivo and that it plays an important role in viral pathogenesis. PMID

  2. Marek's Disease Viruses Lacking Either R-LORF10 or LORF4 Have Altered Virulence in Chickens

    USDA-ARS?s Scientific Manuscript database

    The Marek’s disease virus (MDV) genome encodes about 110 open reading frames (ORFs). Many of these ORFs are annotated based purely on homology to other herpesvirus genes, thus, direct experiments are needed to verify the gene products, especially the hypothetical or MDV-specific ORFs, and character...

  3. Complete nucleotide sequence of rose yellow leaf virus, a new member of the family Tombusviridae.

    PubMed

    Mollov, Dimitre; Lockhart, Ben; Zlesak, David C

    2014-10-01

    The genome of the rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides long and to contain seven open reading frames (ORFs). ORF1 encodes a 27-kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode an 87-kDa (p87) protein that has amino acid similarity to the RNA-dependent RNA polymerase (RdRp) of members of the family Tombusviridae. ORFs 3 and 4 have no significant amino acid similarity to known functional viral ORFs. ORF5 encodes a 6-kDa (p6) protein that has similarity to movement proteins of members of the Tombusviridae. ORF5A has no conventional start codon and overlaps with p6. A putative +1 frameshift mechanism allows p6 translation to continue through the stop codon and results in a 12-kDa protein that has high homology to the carmovirus p13 movement protein. The 37-kDa protein encoded by ORF6 has amino acid sequence similarity to coat proteins (CP) of members of the Tombusviridae. ORF7 has no significant amino acid similarity to known viral ORFs. Phylogenetic analysis of the RdRp amino acid sequences grouped RYLV together with the unclassified Rosa rugosa leaf distortion virus (RrLDV), pelargonium line pattern virus (PLPV), and pelargonium chlorotic ring pattern virus (PCRPV) in a distinct subgroup of the family Tombusviridae.

  4. Udder orf infection and its role in ovine clinical mastitis caused by Pasteurella haemolytica.

    PubMed

    Burriel, A R

    1997-04-01

    During an experimental study of ovine subclinical mastitis caused by coagulase-negative staphylococci, an outbreak of contagious ecthyma occurred among ewes unvaccinated against parapox virus. The same group of ewes developed a high rate (43.7%) of clinical mastitis caused by Pasteurella haemolytica. The rate of clinical mastitis among ewes vaccinated against parapox virus was very low (3.7%) suggesting that the presence of orf in the unvaccinated ewes was contributing to the high rate of clinical mastitis. An examination of the iron, sodium, potassium and albumin concentration of milk collected from 16 unvaccinated and nine randomly selected vaccinated ewes before experimental infection with coagulase-negative staphylococci or their uninfected control mammary glands indicated significant differences in the iron (p < 0.0001) and sodium (p = 0.01) concentration. Increased iron concentration in the milk may have assisted in the development of udder infection caused by P. haemolytica as iron is easily utilised by this bacterium.

  5. Using the E4orf6-Based E3 Ubiquitin Ligase as a Tool To Analyze the Evolution of Adenoviruses

    PubMed Central

    Gilson, Timra; Ballmann, Mónika Z.; Papp, Tibor; Pénzes, Judit J.; Benkő, Mária; Harrach, Balázs; Branton, Philip E.

    2016-01-01

    ABSTRACT E4orf6 proteins from all human adenoviruses form Cullin-based ubiquitin ligase complexes that, in association with E1B55K, target cellular proteins for degradation. While most are assembled with Cul5, a few utilize Cul2. BC-box motifs enable all these E4orf6 proteins to assemble ligase complexes with Elongins B and C. We also identified a Cul2-box motif used for Cul2 selection in all Cul2-based complexes. With this information, we set out to determine if other adenoviruses also possess the ability to form the ligase complex and, if so, to predict their Cullin usage. Here we report that all adenoviruses known to encode an E4orf6-like protein (mastadenoviruses and atadenoviruses) maintain the potential to form the ligase complex. We could accurately predict Cullin usage for E4orf6 products of mastadenoviruses and all but one atadenovirus. Interestingly, in nonhuman primate adenoviruses, we found a clear segregation of Cullin binding, with Cul5 utilized by viruses infecting great apes and Cul2 by Old/New World monkey viruses, suggesting that a switch from Cul2 to Cul5 binding occurred during the period when great apes diverged from monkeys. Based on the analysis of Cullin selection, we also suggest that the majority of human adenoviruses, which exhibit a broader tropism for the eye and the respiratory tract, exhibit Cul5 specificity and resemble viruses infecting great apes, whereas those that infect the gastrointestinal tract may have originated from monkey viruses that share Cul2 specificity. Finally, aviadenoviruses also appear to contain E4orf6 genes that encode proteins with a conserved XCXC motif followed by, in most cases, a BC-box motif. IMPORTANCE Two early adenoviral proteins, E4orf6 and E1B55K, form a ubiquitin ligase complex with cellular proteins to ubiquitinate specific substrates, leading to their degradation by the proteasome. In studies with representatives of each human adenovirus species, we (and others) previously discovered that some

  6. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.

    PubMed

    Lau, Susanna K P; Feng, Yun; Chen, Honglin; Luk, Hayes K H; Yang, Wei-Hong; Li, Kenneth S M; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y Y; Ahmed, Syed Shakeel; Yeung, Hazel C; Lam, Carol S F; Cai, Jian-Piao; Wong, Samson S Y; Chan, Jasper F W; Yuen, Kwok-Yung; Zhang, Hai-Lin; Woo, Patrick C Y

    2015-10-01

    originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    -CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. PMID:26269185

  8. Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins.

    PubMed

    Tsai, Chi-Wei; Redinbaugh, Margaret G; Willie, Kristen J; Reed, Sharon; Goodin, Michael; Hogenhout, Saskia A

    2005-05-01

    The genome of the nucleorhabdovirus maize fine streak virus (MFSV) consists of 13,782 nucleotides of nonsegmented, negative-sense, single-stranded RNA. The antigenomic strand consisted of seven open reading frames (ORFs), and transcripts of all ORFs were detected in infected plants. ORF1, ORF6, and ORF7 had significant similarities to the nucleocapsid protein (N), glycoprotein (G), and polymerase (L) genes of other rhabdoviruses, respectively, whereas the ORF2, ORF3, ORF4, and ORF5 proteins had no significant similarities. The N (ORF1), ORF4, and ORF5 proteins localized to nuclei, consistent with the presence of nuclear localization signals (NLSs) in these proteins. ORF5 likely encodes the matrix protein (M), based on its size, the position of its NLS, and the localization of fluorescent protein fusions to the nucleus. ORF2 probably encodes the phosphoprotein (P) because, like the P protein of Sonchus yellow net virus (SYNV), it was spread throughout the cell when expressed alone but was relocalized to a subnuclear locus when coexpressed with the MFSV N protein. Unexpectedly, coexpression of the MFSV N and P proteins, but not the orthologous proteins of SYNV, resulted in accumulations of both proteins in the nucleolus. The N and P protein relocalization was specific to cognate proteins of each virus. The subcellular localizations of the MFSV ORF3 and ORF4 proteins were distinct from that of the SYNV sc4 protein, suggesting different functions. To our knowledge, this is the first comparative study of the cellular localizations of plant rhabdoviral proteins. This study indicated that plant rhabdoviruses are diverse in genome sequence and viral protein interactions.

  9. Molecular Virology of Hepatitis E Virus

    PubMed Central

    Ahmad, Imran; Holla, R. Prasida; Jameel, Shahid

    2011-01-01

    This review details the molecular virology of the hepatitis E virus (HEV). While replicons and in vitro infection systems have recently become available, a lot of information on HEV has been generated through comparisons with better-studied positive-strand RNA viruses and through subgenomic expression of viral open reading frames. These models are now being verified with replicon and infection systems. We provide here the current knowledge on the HEV genome and its constituent proteins - ORF1, ORF2 and ORF3. Based on the available information, we also modify the existing model of the HEV life cycle. PMID:21345356

  10. Genomic characterisation of taro bacilliform virus.

    PubMed

    Yang, I C; Hafner, G J; Dale, J L; Harding, R M

    2003-05-01

    Taro bacilliform virus (TaBV) has been classified as a putative badnavirus based on its non-enveloped, bacilliform virion morphology and transmission by mealybugs. The complete nucleotide sequence of a Papua New Guinea isolate of TaBV has now been determined and comprises 7458 bp. The genome contains four open reading frames (ORFs) on the plus-strand that potentially encode proteins of 17, 16, 214 and 13 kDa. The size and organisation of TaBV ORFs 1-3 is similar to that of most other badnaviruses, while the location of ORF 4 is similar to that of ORF 4 and ORF X of the atypical badnaviruses Citrus yellow mosaic virus and Cacao swollen shoot virus, respectively. The putative amino acid sequence of TaBV ORF 3 contained motifs that are conserved amongst badnavirus proteins including aspartic protease, reverse transcriptase (RT) and ribonuclease H (RNase H). The highly conserved putative plant tRNA(met)-binding site was also present in the 935 bp intergenic region of TaBV. Phylogenetic analysis using the amino acid sequence of ORF 3 showed that TaBV branched most closely to Dioscorea bacilliform virus. These results confirm that TaBV is a pararetrovirus of the genus Badnavirus, family Caulimoviridae.

  11. Molecular biology and replication of hepatitis E virus

    PubMed Central

    Cao, Dianjun; Meng, Xiang-Jin

    2012-01-01

    Hepatitis E virus (HEV), a single-stranded, positive-sense RNA virus, is responsible for acute hepatitis E epidemics in many developing countries, and the virus is also endemic in some industrialized countries. Hepatitis E is a recognized zoonotic disease, and several animal species, including pigs, are potential reservoirs for HEV. The genome of HEV contains three open reading frames (ORFs). ORF1 encodes the nonstructural proteins, ORF2 encodes the capsid protein, and ORF3 encodes a small multifunctional protein. The ORF2 and ORF3 proteins are translated from a single, bicistronic mRNA. The coding sequences for these two ORFs overlap each other, but neither overlaps with ORF1. Whereas the mechanisms underlying HEV replication are poorly understood, the construction of infectious viral clones, the identification of cell lines that support HEV replication, and the development of small animal models have allowed for more detailed study of the virus. As result of these advances, recently, our understanding of viral entry, genomic replication and viral egress has improved. Furthermore, the determination of the T=1 and T=3 structure of HEV virus-like particles has furthered our understanding of the replication of HEV. This article reviews the latest developments in the molecular biology of HEV with an emphasis on the genomic organization, the expression and function of genes, and the structure and replication of HEV. PMID:26038426

  12. NTPDASE4 Gene Products Cooperate with the Adenovirus E4orf4 Protein through PP2A-Dependent and -Independent Mechanisms and Contribute to Induction of Cell Death

    PubMed Central

    Avital-Shacham, Meirav; Sharf, Rakefet

    2014-01-01

    ABSTRACT The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene

  13. NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death.

    PubMed

    Avital-Shacham, Meirav; Sharf, Rakefet; Kleinberger, Tamar

    2014-06-01

    The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase

  14. Kaposi΄s sarcoma-associated herpesvirus ORF36 protein induces chromosome condensation and phosphorylation of histone H3.

    PubMed

    Kim, Sunmi; Cha, Seho; Jang, Jun Hyeong; Kim, Yejin; Seo, Taegun

    2013-01-01

    Kaposi΄s sarcoma-associated herpesvirus (KSHV) has been known as an agent causing Kaposi΄s sarcoma, primary effusion lymphoma, and multicentric Castleman΄s disease. In the lytic phase of the virus cycle, various viral genes are expressed, which causes host cell dysregulation. Among the lytic genes, viral protein kinase (vPK) encoded by ORF36 is a member of serine/threonine protein kinase (CHPK) family, which is involved in viral gene expression, viral DNA replication and encapsidation, and nuclear egress of virions. Recent studies have shown that the BGLF4 protein of Epstein-Barr virus (EBV), a member of the CHPK family, alters the host cell chromatin structure through phosphorylation of its key regulators. The role of KSHV ORF36 in cellular mitotic events, however, is not yet understood. In the current study, we showed that KSHV ORF36 induced chromosome condensation and phosphorylation of histone H3 on Ser 10, which are known as cellular mitosis markers. These processes have occurred in a kinase activity-dependent manner.

  15. Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis.

    PubMed

    Lin, Chao-Nan; Su, Bi-Ling; Huang, Hui-Pi; Lee, Jih-Jong; Hsieh, Min-Wei; Chueh, Ling-Ling

    2009-06-01

    Feline coronavirus (FCoV) varies greatly from causing subclinical or mild enteric infections to fatal feline infectious peritonitis (FIP). The open reading frame (ORF) 7b of FCoV has been speculated to play a determining role in virulence as deletions were found to be associated with avirulent viruses. To further clarify the correlation between this gene and FIP, clinical samples from 20 cats that had succumbed to wet-type FIP and 20 clinically healthy FCoV-infected cats were analysed. The ORF7b from the peritoneal/pleural effusions of FIP cats and from the rectal swabs of healthy cats was amplified. Of the 40 FCoVs analysed, 32 were found to have an intact 7b gene whereas eight showed deletions of either three or 12 nucleotides. Surprisingly, among the eight viruses with deletions, three were from FIP diseased cats. These results show that deletions in the ORF7b gene are not constrained to low pathogenicity/enteric biotypes but also associated with pathogenicity/FIP biotypes of FCoV.

  16. The complete nucleotide sequence and genomic organization of a novel victorivirus with two non-overlapping ORFs, identified in the plant-pathogenic fungus Phomopsis vexans.

    PubMed

    Zhang, Ru Jia; Zhong, Jie; Shang, Hong Hong; Pan, Xian Ting; Zhu, Hong Jian; Gao, Bi Da

    2015-07-01

    In this study, a novel virus designated Phomopsis vexans RNA virus 1 (PvRV1) was identified in a strain of Phomopsis vexans. The complete genomic nucleotide sequence was determined and analyzed. Sequence analysis indicated that PvRV1 is closely related to viruses in the genus Victorivirus of the family Totiviridae. Two open reading frames (ORF1 and 2) were found in the PvRV1 sequence, and these showed significant similarity to the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), respectively, of members of the family Totiviridae. The two ORFs were spaced 98 nt apart, which is unique to PvRV1 and different from the overlapping arrangement in most victoriviruses. The expression strategies of the CP and RdRp are discussed based on in silico RNA secondary structure analysis.

  17. The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus.

    PubMed Central

    Gustafson, G; Armour, S L

    1986-01-01

    The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs. Images PMID:3754962

  18. A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system.

    PubMed

    Zhang, Zhen; Huang, Ying; Zhu, Hua

    2008-03-01

    Varicella Zoster Virus (VZV) is the causative agent for both varicella (chicken pox) and herpes zoster (shingles). As a member of the human herpesvirus family, VZV contains a large DNA genome, encoding 70 unique open reading frames (ORFs). The functions of the majority of these ORFs remain unknown. Recently, the full-length VZV (P-Oka strain) genome was cloned as a VZV bacteria artificial chromosome (BAC) and additionally a firefly luciferase cassette was inserted to generate a novel luciferase VZV BAC. In this study, a highly efficient protocol has been developed exploiting the new luciferase VZV BAC system to rapidly isolate and characterize VZV ORF deletion mutants by growth curve analysis in cell culture.

  19. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment

    SciTech Connect

    Tian Caihong; Zhao Jinfang; Xu Yipeng; Xue Jian; Zhang Baoqin; Cui Yingjun; Zhang Minjuan; Bao Yanyuan; Zhang Chuanxi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm{sup De}) and a repaired virus (vBm{sup Re}) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD{sub 50} bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT{sub 50} bioassay.

  20. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment.

    PubMed

    Tian, Cai-Hong; Zhao, Jin-Fang; Xu, Yi-Peng; Xue, Jian; Zhang, Bao-Qin; Cui, Ying-Jun; Zhang, Min-Juan; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm(De)) and a repaired virus (vBm(Re)) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD(50) bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT(50) bioassay.

  1. Bad Phages in Good Bacteria: Role of the Mysterious orf63 of λ and Shiga Toxin-Converting Φ24B Bacteriophages.

    PubMed

    Dydecka, Aleksandra; Bloch, Sylwia; Rizvi, Ali; Perez, Shaili; Nejman-Falenczyk, Bozena; Topka, Gracja; Gasior, Tomasz; Necel, Agnieszka; Wegrzyn, Grzegorz; Donaldson, Logan W; Wegrzyn, Alicja

    2017-01-01

    Lambdoid bacteriophages form a group of viruses that shares a common schema of genome organization and lifecycle. Some of them can play crucial roles in creating the pathogenic profiles of Escherichia coli strains. For example, Shiga toxin-producing E. coli (STEC) acquired stx genes, encoding Shiga toxins, via lambdoid prophages (Stx phages). The results obtained so far present the evidence for the relation between the exo-xis region of the phage genome and lambdoid phage development, however molecular mechanisms of activities of the exo-xis genes' products are still unknown. In view of this, we decided to determine the influence of the uncharacterized open reading frame orf63 of the exo-xis region on lambdoid phages development using recombinant prophages, λ and Stx phage Φ24B. We have demonstrated that orf63 codes for a folded protein, thus, it is a functional gene. NMR spectroscopy and analytical gel filtration were used to extend this observation further. From backbone chemical shifts, Orf63 is oligomeric in solution, likely a trimer and consistent with its small size (63 aa.), is comprised of two helices, likely intertwined to form the oligomer. We observed that the deletion of phage orf63 does not impair the intracellular lambdoid phage lytic development, however delays the time and decreases the efficiency of prophage induction and in consequence results in increased survival of E. coli during phage lytic development. Additionally, the deletion of phage orf63 negatively influences expression of the major phage genes and open reading frames from the exo-xis region during prophage induction with hydrogen peroxide. We conclude, that lambdoid phage orf63 may have specific functions in the regulation of lambdoid phages development, especially at the stage of the lysis vs. lysogenization decision. Besides, orf63 probably participates in the regulation of the level of expression of essential phage genes and open reading frames from the exo-xis region during

  2. Beyond ORF: Student-Level Predictors of Reading Achievement

    ERIC Educational Resources Information Center

    Canto, Angela I.; Proctor, Briley E.

    2013-01-01

    This study explored student-level predictors of reading achievement among third grade regular education students. Predictors included student demographics (sex and socioeconomic status (SES), using free and reduced lunch as proxy for SES), direct observations of reading skills (oral reading fluency (ORF) and word decoding skill (nonsense word…

  3. Expanded C9ORF72 Hexanucleotide Repeat in Depressive Pseudodementia

    PubMed Central

    Bieniek, Kevin F.; van Blitterswijk, Marka; Baker, Matthew C.; Petrucelli, Leonard; Rademakers, Rosa; Dickson, Dennis W.

    2014-01-01

    Importance Expanded hexanucleotide repeats in C9ORF72 are a common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. Repeat expansions have also been detected infrequently in other disorders, including Alzheimer’s disease, dementia with Lewy bodies and Parkinsonian disorders. Objective To assess the incidence of the expanded C9ORF72 repeat in cases of depressive pseudodementia. Design An immunohistochemical screen of autopsied brains collected between 1998 and 2013. Setting Brain bank at Mayo Clinic Florida, a large tertiary care research institution. Participants Thirty one neuropathologically normal individuals (no atrophy, neuronal loss, or gliosis beyond what would be expected for age) with an antemortem clinical history or diagnosis of depression and/or dementia. Main Outcome Measures Presence of the hexanucleotide repeat was established using immunohistochemistry with a highly disease-specific antibody (C9RANT), and was further validated in carriers using repeat-primed polymerase chain reaction and Southern blotting. Results Of the 31 cases studied, 2 (6.45%) individuals harbored the C9ORF72 repeat expansion. Both patients were men with refractory depression. One patient experienced drug-induced Parkinsonism and sudden-onset dementia, while the other patient had a more insidious disease course suspected to be Alzheimer’s disease. Clinical and neuropathologic features are described. Conclusions and Relevance This report expands the range of clinicopathologic presentations of C9ORF72 expanded hexanucleotide repeat to include psychiatric disorders such as depressive pseudodementia. PMID:24756204

  4. C15orf48 — EDRN Public Portal

    Cancer.gov

    C15orf48 is expressed mainly in adult stomach, placenta, small intestine and colon, as well as in normal mucosa of esophagus. The gene was first identified in a study of human esophageal squamous cell carcinoma tissues. Levels of both the message and protein are reduced in carcinoma samples. Alternatively spliced transcript variants that encode the same protein have been identified.

  5. The C9ORF72 repeat expansion disrupts nucleocytoplasmic transport

    PubMed Central

    Haeusler, Aaron R.; Grima, Jonathan C.; Machamer, James B.; Steinwald, Peter; Daley, Elizabeth L.; Miller, Sean J.; Cunningham, Kathleen M.; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A.; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L.; Ostrow, Lyle W.; Matunis, Michael J.; Wang, Jiou; Sattler, Rita

    2016-01-01

    A GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila ortholog of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9ORF72 ALS patient-derived induced pluripotent stem cells (iPSNs), and in C9ORF72 patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9ORF72 iPSNs, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD amenable to pharmacotherapeutic intervention. PMID:26308891

  6. The ubiquitous cellular transcriptional factor USF targets the varicella-zoster virus open reading frame 10 promoter and determines virulence in human skin xenografts in SCIDhu mice in vivo.

    PubMed

    Che, Xibing; Berarducci, Barbara; Sommer, Marvin; Ruyechan, William T; Arvin, Ann M

    2007-04-01

    Varicella-zoster virus (VZV) open reading frame 10 (ORF10) is a determinant of virulence in SCIDhu skin xenografts but not in human T cells in vivo. In this analysis of the regulation of ORF10 transcription, we have identified four ORF10-related transcripts, including a major 1.3-kb RNA spanning ORF10 only and three other read-through transcripts. Rapid-amplification-of-cDNA-ends experiments indicated that the 1.3-kb transcript of ORF10 has single initiation and termination sites. In transient expression assays, the ORF10 promoter was strongly stimulated by the major VZV transactivator, IE62. Deletion analyses revealed approximate boundaries for the full ORF10 promoter activity between -75 and -45 and between +5 and -8, relative to the ORF10 transcription start site. The recombinant virus POKA10-Deltapro, with the ORF10 promoter deletion, blocked transcription of ORF10 and also of ORF9A and ORF9 mRNAs, whereas expression of read-through ORF9A/9/10 and ORF9/10 transcripts was increased, compensating for the loss of the monocistronic mRNAs. The cellular factor USF bound specifically to its consensus site within the ORF10 promoter and was required for IE62 transactivation, whereas disrupting the predicted TATA boxes or Oct-1 binding elements had no effect. The USF binding site was disrupted in the recombinant virus, POKA10-proDeltaUSF, and no ORF10 protein was produced. Both ORF10 promoter mutants reduced VZV replication in SCIDhu skin xenografts. These observations provided further evidence of the contribution of the ORF10 protein to VZV pathogenesis in skin and demonstrated that VZV depends upon the cellular transcriptional factor USF to support its virulence in human skin in vivo.

  7. Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae viruses

    SciTech Connect

    B. Wiedenheft; K. Stedman; F. Roberto; D. Willits; A. K. Gleske; L. Zoeller; J. Snyder; T. Douglas; M. Young

    2004-02-01

    The complete genome sequences of two Sulfolobus spindle-shaped viruses (SSVs) from acidic hot springs in Kamchatka (Russia) and Yellowstone National Park (United States) have been determined. These nonlytic temperate viruses were isolated from hyperthermophilic Sulfolobus hosts, and both viruses share the spindleshaped morphology characteristic of the Fuselloviridae family. These two genomes, in combination with the previously determined SSV1 genome from Japan and the SSV2 genome from Iceland, have allowed us to carry out a phylogenetic comparison of these geographically distributed hyperthermal viruses. Each virus contains a circular double-stranded DNA genome of _15 kbp with approximately 34 open reading frames (ORFs). These Fusellovirus ORFs show little or no similarity to genes in the public databases. In contrast, 18 ORFs are common to all four isolates and may represent the minimal gene set defining this viral group. In general, ORFs on one half of the genome are colinear and highly conserved, while ORFs on the other half are not. One shared ORF among all four genomes is an integrase of the tyrosine recombinase family. All four viral genomes integrate into their host tRNA genes. The specific tRNA gene used for integration varies, and one genome integrates into multiple loci. Several unique ORFs are found in the genome of each isolate.

  8. Viruses

    USDA-ARS?s Scientific Manuscript database

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  9. Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro.

    PubMed Central

    Cohen, J I; Seidel, K

    1994-01-01

    Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV. Images PMID:7966575

  10. Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas

    PubMed Central

    Moreau, Pierrick; Faury, Nicole; Pepin, Jean-François; Segarra, Amélie; Webb, Stephen

    2012-01-01

    Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus. PMID:22419803

  11. Analysis of clinical ostreid herpesvirus 1 (Malacoherpesviridae) specimens by sequencing amplified fragments from three virus genome areas.

    PubMed

    Renault, Tristan; Moreau, Pierrick; Faury, Nicole; Pepin, Jean-François; Segarra, Amélie; Webb, Stephen

    2012-05-01

    Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 "specimens" collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus.

  12. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: candidate type species for a new virus genus.

    PubMed

    Vives, M C; Galipienso, L; Navarro, L; Moreno, P; Guerri, J

    2001-08-15

    The complete nucleotide sequence of Citrus leaf blotch virus (CLBV) was determined. CLBV genomic RNA (gRNA) has 8747 nt, excluding the 3'-terminal poly(A) tail, and contains three open reading frames (ORFs) and untranslated regions (UTR) of 73 and 541 nucleotides at the 5' and 3' termini, respectively. ORF1 potentially encodes a 227.4-kDa polypeptide, which has methyltransferase, papain-like protease, helicase, and RNA-dependent RNA polymerase motifs. ORF2 encodes a 40.2-kDa polypeptide containing a motif characteristic of cell-to-cell movement proteins. The 40.7-kDa polypeptide encoded by ORF3 was identified as the coat protein. The genome organization of CLBV resembles that of viruses in the genus Trichovirus, but they differ in various aspects: (i) in trichoviruses ORF2 overlaps ORFs 1 and 3, whereas in CLBV, ORFs 2 and 3 are separated and ORFs 1 and 2 overlap in one nucleotide; (ii) CLBV gRNA and CP are larger than those of trichoviruses; and (iii) the CLBV 3' UTR is larger than that of trichoviruses. Phylogenetic comparisons based on CP amino acid signatures clearly separates CLBV from trichoviruses. Also contrasting with trichoviruses, CLBV could not be transmitted to Chenopodium quinoa Willd. Considering these singularities, we propose that CLBV should be included in a new virus genus. Copyright 2001 Academic Press.

  13. Molecular variation of hop mosaic virus isolates.

    PubMed

    Poke, Fiona S; Crowle, Damian R; Whittock, Simon P; Wilson, Calum R

    2010-10-01

    Hop mosaic virus (HpMV), a member of the genus Carlavirus, is importance to hop production worldwide. We identified variation in nucleic and amino acid sequences among 23 HpMV isolates from Australia, the USA, the Czech Republic, South Africa and Japan using a 1,455-bp fragment covering the 3' end of the virus genome including ORFs 4, 5 and 6. Three clusters of two or more isolates were identified in phylogenies of the total nucleotide sequence and the coat protein (ORF5) amino acid sequence. Two of these clusters combined in analyses of ORF4 and ORF6 amino acid sequences. Isolates from within and outside of Australia were found in each cluster, indicating that sequence variation was not associated with geographic source. Monitoring of HpMV variants in the field and evaluation of the impact of variants on vector association, rate of spread, and hop yield and quality can now be undertaken.

  14. Frontotemporal dementia due to C9ORF72 mutations

    PubMed Central

    Takada, Leonel T.; Rankin, Katherine P.; Yokoyama, Jennifer S.; Rutherford, Nicola J.; Fong, Jamie C.; Khan, Baber; Karydas, Anna; Baker, Matt C.; DeJesus-Hernandez, Mariely; Pribadi, Mochtar; Coppola, Giovanni; Geschwind, Daniel H.; Rademakers, Rosa; Lee, Suzee E.; Seeley, William; Miller, Bruce L.; Boxer, Adam L.

    2012-01-01

    Objective: To describe the phenotype of patients with C9FTD/ALS (C9ORF72) hexanucleotide repeat expansion. Methods: A total of 648 patients with frontotemporal dementia (FTD)–related clinical diagnoses and Alzheimer disease (AD) dementia were tested for C9ORF72 expansion and 31 carried expanded repeats (C9+). Clinical and neuroimaging data were compared between C9+ (15 behavioral variant FTD [bvFTD], 11 FTD–motor neuron disease [MND], 5 amyotrophic lateral sclerosis [ALS]) and sporadic noncarriers (48 bvFTD, 19 FTD-MND, 6 ALS). Results: All C9+ patients displayed clinical syndromes of bvFTD, ALS, or FTD-MND. At first evaluation, C9+ bvFTD patients had more delusions and greater impairment of working memory, but milder eating dysregulation compared to bvFTD noncarriers. C9+FTD-MND patients had a trend for longer survival and had an earlier age at onset than FTD-MND noncarriers. Voxel-based morphometry demonstrated more thalamic atrophy in FTD and FTD-MND carriers than in noncarriers. Conclusions: Patients with the C9ORF72 hexanucleotide repeat expansion develop bvFTD, ALS, or FTD-MND with similar clinical and imaging features to sporadic cases. Other FTD spectrum diagnoses and AD dementia appear rare or absent among C9+ individuals. Longer survival in C9+ FTD-MND suggests slower disease progression and thalamic atrophy represents a novel and unexpected feature. PMID:22875087

  15. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and kelp fly virus

    USDA-ARS?s Scientific Manuscript database

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the stru...

  16. Inactivation of C4orf26 in toothless placental mammals.

    PubMed

    Springer, Mark S; Starrett, James; Morin, Phillip A; Lanzetti, Agnese; Hayashi, Cheryl; Gatesy, John

    2016-02-01

    Previous studies have reported inactivated copies of six enamel-related genes (AMBN, AMEL, AMTN, ENAM, KLK4, MMP20) and one dentin-related gene (DSPP) in one or more toothless vertebrates and/or vertebrates with enamelless teeth, thereby providing evidence that these genes are enamel or tooth-specific with respect to their critical functions that are maintained by natural selection. Here, we employ available genome sequences for edentulous and enamelless mammals to evaluate the enamel specificity of four genes (WDR72, SLC24A4, FAM83H, C4orf26) that have been implicated in amelogenesis imperfecta, a condition in which proper enamel formation is abrogated during tooth development. Coding sequences for WDR72, SCL24A4, and FAM83H are intact in four edentulous taxa (Chinese pangolin, three baleen whales) and three taxa (aardvark, nine-banded armadillo, Hoffmann's two-toed sloth) with enamelless teeth, suggesting that these genes have critical functions beyond their involvement in tooth development. By contrast, genomic data for C4orf26 reveal inactivating mutations in pangolin and bowhead whale as well as evidence for deletion of this gene in two minke whale species. Hybridization capture of exonic regions and PCR screens provide evidence for inactivation of C4orf26 in eight additional baleen whale species. However, C4orf26 is intact in all three species with enamelless teeth that were surveyed, as well as in 95 additional mammalian species with enamel-capped teeth. Estimates of selection intensity suggest that dN/dS ratios on branches leading to taxa with enamelless teeth are similar to the dN/dS ratio on branches leading to taxa with enamel-capped teeth. Based on these results, we conclude that C4orf26 is tooth-specific, but not enamel-specific, with respect to its essential functions that are maintained by natural selection. A caveat is that an alternative splice site variant, which translates exon 3 in a different reading frame, is putatively functional in

  17. Roles for λ Orf and Escherichia Coli Reco, Recr and Recf in λ Recombination

    PubMed Central

    Sawitzke, J. A.; Stahl, F. W.

    1997-01-01

    Bacteriophage λ lacking its Red recombination functions requires either its own gene product, Orf, or the product of Escherichia coli's recO, recR and recF genes (RecORF) for efficient recombination in recBC sbcB sbcC mutant cells (the RecF pathway). Phage crosses under conditions of a partial block to DNA replication have revealed the following: (1) In the presence of Orf, RecF pathway recombination is similar to λ Red recombination; (2) Orf is necessary for focusing recombination toward the right end of the chromosome as λ is conventionally drawn; (3) RecORF-mediated RecF pathway recombination is not focused toward the right end of the chromosome, which may indicate that RecORF travels along the DNA; (4) both Orf- and RecORF-mediated RecF pathway recombination are stimulated by DNA replication; and (5) low level recombination in the simultaneous absence of Orf and RecORF may occur by a break-copy mechanism that is not initiated by a double strand break. Models for the roles of Orf and RecO, RecR and RecF in recombination are presented. PMID:9335578

  18. Nucleotide sequence of shallot virus X RNA reveals a 5'-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3'-proximal cistrons.

    PubMed

    Kanyuka, K V; Vishnichenko, V K; Levay, K E; Kondrikov DYu; Ryabov, E V; Zavriev, S K

    1992-10-01

    The 8890 nucleotide RNA sequence of shallot virus X (ShVX), a new virus isolated from shallot, has been determined. The sequence contains six open reading frames (ORFs) which encode putative proteins (in the 5' to 3' direction) of M(r) 194528 (ORF1), 26333 (ORF2), 11245 (ORF3), 42209 (ORF4), 28486 (ORF5) and 14741 (ORF6). The ORF1 protein was found to be highly homologous to the putative potexvirus RNA replicases; ORF2, -3, -5 and -6 proteins also have analogues among the potex- and/or carlavirus-encoded proteins. ORF3 is followed by an AUG-lacking frame coding for an amino acid sequence homologous to that of the 7K to 8K proteins of the triple gene block of the above-mentioned viruses. The putative ORF4 protein has no reliable homology with proteins in the database. The results obtained testify that, except for the unique 42K protein gene, the ShVX genome combines a number of elements typical of both carla- and potexviruses.

  19. Novel Host-Related Virulence Factors Are Encoded by Squirrelpox Virus, the Main Causative Agent of Epidemic Disease in Red Squirrels in the UK

    PubMed Central

    Kjær, Karina Hansen; Wood, Ann R.; Hughes, Margaret; Martensen, Pia Møller; Radford, Alan D.; Hall, Neil; Chantrey, Julian

    2014-01-01

    Squirrelpox virus (SQPV) shows little evidence for morbidity or mortality in North American grey squirrels (Sciurus carolinensis), in which the virus is endemic. However, more recently the virus has emerged to cause epidemics with high mortality in Eurasian red squirrels (S. vulgaris) in Great Britain, which are now threatened. Here we report the genome sequence of SQPV. Comparison with other Poxviridae revealed a core set of poxvirus genes, the phylogeny of which showed SQPV to be in a new Chordopoxvirus subfamily between the Molluscipoxviruses and Parapoxviruses. A number of SQPV genes were related to virulence, including three major histocomaptibility class I homologs, and one CD47 homolog. In addition, a novel potential virulence factor showing homology to mammalian oligoadenylate synthetase (OAS) was identified. This family of proteins normally causes activation of an endoribonuclease (RNaseL) within infected cells. The putative function of this novel SQPV protein was predicted in silico. PMID:24983354

  20. The genome of camelpox virus.

    PubMed

    Afonso, C L; Tulman, E R; Lu, Z; Zsak, L; Sandybaev, N T; Kerembekova, U Z; Zaitsev, V L; Kutish, G F; Rock, D L

    2002-03-30

    Camelpox virus (CMLV), a member of the Orthopoxvirus genus in the Poxviridae, is the etiologic agent of a disease of camels. Here we report the CMLV genomic sequence with analysis. The 205,719-bp CMLV genome contains 211 putative genes and consists of a central region bound by identical inverted terminal repeats of approximately 7 kb. A high degree of similarity in gene order, gene content, and amino acid composition in the region located between CMLV017 and CMLV184 (average 96% amino acid identity to vaccinia virus (VACV)) indicates a close structural and functional relationship between CMLV and other known orthopoxviruses (OPVs). Notably, CMLV contains a unique region of approximately 3 kb, which encodes three ORFs (CMLV185, CMLV186, CMLV187) absent in other OPVs. These ORFs are most similar to B22R homologues found in other chordopoxvirus genera. Among OPVs, CMLV is the most closely related to variola virus (VARV), sharing all genes involved in basic replicative functions and the majority of genes involved in other host-related functions. Differences between CMLV and VARV include deletion and disruption of a large number of genes. Twenty-seven CMLV ORFs are absent in VARV, including seven full-length homologues of NMDA-like receptor, phospholipase D, Schlafen, MT-4 virulence, kelch, VACV C8L, and cowpox (CPXV) B21R proteins. Thirty-eight CMLV ORFs, some of which are fragments of larger genes, differ in size from corresponding VARV ORFs by more than 10% (amino acids). Genome structure and phylogenetic analysis of DNA sequences for all ORFs indicate that CMLV is clearly distinct from VARV and VACV and, as it has been suggested for VARV, it may have originated from a CPXV virus-like ancestor.

  1. Synergy between cucumber mosaic virus and zucchini yellow mosaic virus on Cucurbitaceae hosts tested by real-time reverse transcription-polymerase chain reaction.

    PubMed

    Zeng, Rong; Liao, Qiansheng; Feng, Junli; Li, Dingjun; Chen, Jishuang

    2007-06-01

    Cucumber mosaic virus (CMV) and zucchini yellow mosaic virus (ZYMV) are two principal viruses infecting cucurbitaceous crops, and their synergy has been repeatedly observed. In our present work, a real-time reverse transcription-polymerase chain reaction procedure was established to study the accumulation kinetics of these two viruses in single and combined infections at the molecular level. The accumulations of open reading frames (ORFs) for 1a, 2a, 3a and coat protein (CP) of CMV and CP of ZYMV were tested. In the single infection, CMV-Fny ORFs accumulated to their maxima in cucumber or bottle gourd at 14 d post-inoculation (dpi), and gradually declined thereafter. ZYMV-SD CP ORF reached maximal accumulation at 14 and 28 dpi on cucumber and bottle gourd, respectively. However, when co-infected with CMV-Fny and ZYMV-SD, the maximal accumulation levels of all viral ORFs were delayed. CMV-Fny ORFs reached their maxima at 21 dpi on both hosts, and ZYMV-SDCP ORF reached maximal accumulation at 21 and 28 dpi on cucumber and bottle gourd, respectively. Generally, the accumulation levels of CMV-Fny ORFs in the co-infection were higher than those in the single infection, whereas the accumulation of ZYMV-SD CP ORF showed a reverse result.

  2. Solenopsis invicta virus 3: Mapping of Structural Proteins, Ribosomal Frameshifting, and Similarities to Acyrthosiphon pisum virus and Kelp fly virus

    PubMed Central

    Valles, Steven M.; Bell, Susanne; Firth, Andrew E.

    2014-01-01

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order. PMID:24686475

  3. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell.

    PubMed

    Zhu, Ruo-Lin; Lei, Xiao-Ying; Ke, Fei; Yuan, Xiu-Ping; Zhang, Qi-Ya

    2011-02-01

    Genomic sequence of Scophthalmus maximus rhabdovirus (SMRV) isolated from diseased turbot has been characterized. The complete genome of SMRV comprises 11,492 nucleotides and encodes five typical rhabdovirus genes N, P, M, G and L. In addition, two open reading frames (ORF) are predicted overlapping with P gene, one upstream of P and smaller than P (temporarily called Ps), and another in P gene which may encodes a protein similar to the vesicular stomatitis virus C protein. The C ORF is contained within the P ORF. The five typical proteins share the highest sequence identities (48.9%) with the corresponding proteins of rhabdoviruses in genus Vesiculovirus. Phylogenetic analysis of partial L protein sequence indicates that SMRV is close to genus Vesiculovirus. The first 13 nucleotides at the ends of the SMRV genome are absolutely inverse complementarity. The gene junctions between the five genes show conserved polyadenylation signal (CATGA(7)) and intergenic dinucleotide (CT) followed by putative transcription initiation sequence A(A/G)(C/G)A(A/G/T), which are different from known rhabdoviruses. The entire Ps ORF was cloned and expressed, and used to generate polyclonal antibody in mice. One obvious band could be detected in SMRV-infected carp leucocyte cells (CLCs) by anti-Ps/C serum via Western blot, and the subcellular localization of Ps-GFP fusion protein exhibited cytoplasm distribution as multiple punctuate or doughnut shaped foci of uneven size. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus.

    PubMed

    Liu, Yong-sheng; Zhou, Jian-hua; Chen, Hao-tai; Ma, Li-na; Ding, Yao-zhong; Wang, Meng; Zhang, Jie

    2010-08-01

    In this study, we calculated the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to implement a comparative analysis of codon usage pattern of open reading frames (ORFs) which belong to the two main genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). By analysis of synonymous codon usage values in each ORF of PRRSV, the optimal codons for most amino acids were all C or G-ended codons except GAU for Asp, CAU for His, UUU for Phe and CCU for Pro. The synonymous codon usage patterns in different ORFs of PRRSV were different and genetically conserved. Among them, ORF1a, ORF4, ORF5 and ORF7 could cluster these strains into the two main serotypes (EU and US). Due to mutational pressure, compositional constraint played an important role in shaping the synonymous codon usage pattern in different ORFs, and the synonymous codon usage diversity in ORFs was correlated with gene function. The degree of CUB for some particular amino acids under strong selection pressure probably served as a potential genetic marker for each ORF in PRRSV. However, gene length and translational selection in nature had no effect on the synonymous codon usage pattern in PRRSV. These conclusions could not only offer an insight into the synonymous codon usage pattern and differentiation of gene function, but also assist in understanding the discrepancy of evolution among ORFs in PRRSV. Copyright 2010 Elsevier B.V. All rights reserved.

  5. In Vitro Proteolytic Processing of the MD145 Norovirus ORF1 Nonstructural Polyprotein Yields Stable Precursors and Products Similar to Those Detected in Calicivirus-Infected Cells

    PubMed Central

    Belliot, Gaël; Sosnovtsev, Stanislav V.; Mitra, Tanaji; Hammer, Carl; Garfield, Mark; Green, Kim Y.

    2003-01-01

    The MD145-12 strain (GII/4) is a member of the genus Norovirus in the Caliciviridae and was detected in a patient with acute gastroenteritis in a Maryland nursing home. The open reading frame 1 (ORF1) (encoding the nonstructural polyprotein) was cloned as a consensus sequence into various expression vectors, and a proteolytic cleavage map was determined. The virus-encoded cysteine proteinase mediated at least five cleavages (Q330/G331, Q696/G697, E875/G876, E1008/A1009, and E1189/G1190) in the ORF1 polyprotein in the following order: N-terminal protein; nucleoside triphosphatase; 20-kDa protein (p20); virus protein, genome linked (VPg); proteinase (Pro); polymerase (Pol). A time course analysis of proteolytic processing of the MD145-12 ORF1 polyprotein in an in vitro coupled transcription and translation assay allowed the identification of stable precursors and final mapped cleavage products. Stable precursors included p20VPg (analogous to the 3AB of the picornaviruses) and ProPol (analogous to the 3CD of the picornaviruses). Less stable processing intermediates were identified as p20VPgProPol, p20VPgPro, and VPgPro. The MD145-12 Pro and ProPol proteins were expressed in bacteria as active forms of the proteinase and used to further characterize their substrate specificities in trans cleavage assays. The MD145-12 Pro was able to cleave its five mapped cleavage sites in trans and, in addition, could mediate trans cleavage of the Norwalk virus (GI/I) ORF1 polyprotein into a similar proteolytic processing profile. Taken together, our data establish a model for proteolytic processing in the noroviruses that is consistent with nonstructural precursors and products identified in studies of caliciviruses that replicate in cell culture systems. PMID:14512545

  6. In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells.

    PubMed

    Belliot, Gaël; Sosnovtsev, Stanislav V; Mitra, Tanaji; Hammer, Carl; Garfield, Mark; Green, Kim Y

    2003-10-01

    The MD145-12 strain (GII/4) is a member of the genus Norovirus in the Caliciviridae and was detected in a patient with acute gastroenteritis in a Maryland nursing home. The open reading frame 1 (ORF1) (encoding the nonstructural polyprotein) was cloned as a consensus sequence into various expression vectors, and a proteolytic cleavage map was determined. The virus-encoded cysteine proteinase mediated at least five cleavages (Q(330)/G(331), Q(696)/G(697), E(875)/G(876), E(1008)/A(1009), and E(1189)/G(1190)) in the ORF1 polyprotein in the following order: N-terminal protein; nucleoside triphosphatase; 20-kDa protein (p20); virus protein, genome linked (VPg); proteinase (Pro); polymerase (Pol). A time course analysis of proteolytic processing of the MD145-12 ORF1 polyprotein in an in vitro coupled transcription and translation assay allowed the identification of stable precursors and final mapped cleavage products. Stable precursors included p20VPg (analogous to the 3AB of the picornaviruses) and ProPol (analogous to the 3CD of the picornaviruses). Less stable processing intermediates were identified as p20VPgProPol, p20VPgPro, and VPgPro. The MD145-12 Pro and ProPol proteins were expressed in bacteria as active forms of the proteinase and used to further characterize their substrate specificities in trans cleavage assays. The MD145-12 Pro was able to cleave its five mapped cleavage sites in trans and, in addition, could mediate trans cleavage of the Norwalk virus (GI/I) ORF1 polyprotein into a similar proteolytic processing profile. Taken together, our data establish a model for proteolytic processing in the noroviruses that is consistent with nonstructural precursors and products identified in studies of caliciviruses that replicate in cell culture systems.

  7. Investigation of C9orf72 in 4 Neurodegenerative Disorders

    PubMed Central

    Xi, Zhengrui; Zinman, Lorne; Grinberg, Yakov; Moreno, Danielle; Sato, Christine; Bilbao, Juan M.; Ghani, Mahdi; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Morón, Francisco J.; Lang, Anthony E.; Marras, Connie; Bruni, Amalia; Colao, Rosanna; Maletta, Raffaele G.; Puccio, Gianfranco; Rainero, Innocenzo; Pinessi, Lorenzo; Galimberti, Daniela; Morrison, Karen E.; Moorby, Catriona; Stockton, Joanne D.; Masellis, Mario; Black, Sandra E.; Hazrati, Lili-Naz; Liang, Yan; van Haersma de With, Jan; Fornazzari, Luis; Villagra, Roque; Rojas-Garcia, Ricardo; Clarimón, Jordi; Mayeux, Richard; Robertson, Janice; St George-Hyslop, Peter; Rogaeva, Ekaterina

    2014-01-01

    Objective To estimate the allele frequency of C9orf72 (G4C2) repeats in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer disease (AD), and Parkinson disease (PD). Design The number of repeats was estimated by a 2-step genotyping strategy. For expansion carriers, we sequenced the repeat flanking regions and obtained APOE genotypes and MAPT H1/H2 haplotypes. Setting Hospitals specializing in neurodegenerative disorders. Subjects We analyzed 520 patients with FTLD, 389 patients with ALS, 424 patients with AD, 289 patients with PD, 602 controls, 18 families, and 29 patients with PD with the LRRK2 G2019S mutation. Main Outcome Measure The expansion frequency. Results Based on a prior cutoff (>30 repeats), the expansion was detected in 9.3% of patients with ALS, 5.2% of patients with FTLD, and 0.7% of patients with PD but not in controls or patients with AD. It was significantly associated with family history of ALS or FTLD and age at onset of FTLD. Phenotype variation (ALS vs FTLD) was not associated with MAPT, APOE, or variability in the repeat flanking regions. Two patients with PD were carriers of 39 and 32 repeats with questionable pathological significance, since the 39-repeat allele does not segregate with PD. No expansion or intermediate alleles (20–29 repeats) were found among the G2019S carriers and AD cases with TAR DNA-binding protein 43–positive inclusions. Surprisingly, the frequency of the 10-repeat allele was marginally increased in all 4 neurodegenerative diseases compared with controls, indicating the presence of an unknown risk variation in the C9orf72 locus. Conclusions The C9orf72 expansion is a common cause of ALS and FTLD, but not of AD or PD. Our study raises concern about a reliable cutoff for the pathological repeat number, which is important in the utility of genetic screening. PMID:22964832

  8. Identification of Putative ORF5 Protein of Porcine Circovirus Type 2 and Functional Analysis of GFP-Fused ORF5 Protein

    PubMed Central

    Xu, Han; Wang, Tao; Zhang, Yanming

    2015-01-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent responsible for causing porcine circovirus-associated diseases in pigs. To date, eleven RNAs and five viral proteins of PCV2 have been detected. Here, we identified a novel viral gene within the PCV2 genome, termed ORF5, that exists at both the transcriptional and translational level during productive infection of PCV2 in porcine alveolar macrophages 3D4/2 (PAMs). Northern blot analysis was used to demonstrate that the ORF5 gene measures 180 bp in length and overlaps completely with ORF1 when read in the same direction. Site-directed mutagenesis was used to show that the ORF5 protein is not essential for PCV2 replication. To investigate the biological functions of the novel protein, we constructed a recombinant eukaryotic expression plasmid capable of expressing PCV2 ORF5. The results show that the GFP-tagged PCV2 ORF5 protein localizes to the endoplasmic reticulum (ER), is degraded via the proteasome, inhibits PAM growth and prolongs the S-phase of the cell cycle. Further studies show that the GFP-tagged PCV2 ORF5 protein induces ER stress and activates NF-κB, which was further confirmed by a significant upregulation in IL-6, IL-8 and COX-2 expression. In addition, five cellular proteins (GPNMB, CYP1A1, YWHAB, ZNF511 and SRSF3) were found to interact with ORF5 via yeast two-hybrid assay. These findings provide novel information on the identification and functional analysis of the PCV2 ORF5 protein and are likely to be of benefit in elucidating the molecular mechanisms of PCV2 pathogenicity. However, additional experiments are needed to validate the expression and function of the ORF5 protein during PCV2 infection in vitro before any definitive conclusion can be drawn. PMID:26035722

  9. Choristoneura fumiferana granulovirus: sequence analysis and 5' characterization of ORF891.

    PubMed

    Bah, A; Lucarotti, C J; Arella, M; Guertin, C

    1999-01-01

    A gene located immediately upstream of the granulin gene of Choristoneura fumiferana (ChfuGV) granulovirus was identified, sequenced and named ORF891. The determined, putative open reading frame (ORF) of 891 bp encodes an estimated 34.6 kDa protein. The 5' end transcript of the gene was mapped and analysed. A putative promoter region organization of ChfuGV ORF891 contains a consensus late baculovirus promoter element, TAAG, and two putative early TATA boxes similar to the promoters of ORF909 of Cryptophlebia leucotreta granulovirus (ClGV). Sequence comparisons of ChfuGV ORF891 with ClGV ORF909 and Cydia pomonella granulovirus (CpGV) ORF124R showed respective homologies of 60.9 and 63.9% for nucleotides and 46.3% and 49.3% for amino acids. Homology of ChfuGV ORF891 with ME53 ORF of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) was 68.2% for nucleotides but a total lack of homology for amino acid sequences. Two zinc finger motifs are also associated with ChfuGV ORF891.

  10. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD.

    PubMed

    Liu, Elaine Y; Russ, Jenny; Wu, Kathryn; Neal, Donald; Suh, Eunran; McNally, Anna G; Irwin, David J; Van Deerlin, Vivianna M; Lee, Edward B

    2014-10-01

    Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.

  11. Primate-specific ORF0 contributes to retrotransposon-mediated diversity.

    PubMed

    Denli, Ahmet M; Narvaiza, Iñigo; Kerman, Bilal E; Pena, Monique; Benner, Christopher; Marchetto, Maria C N; Diedrich, Jolene K; Aslanian, Aaron; Ma, Jiao; Moresco, James J; Moore, Lynne; Hunter, Tony; Saghatelian, Alan; Gage, Fred H

    2015-10-22

    LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.

  12. Complete genome sequence of yacon necrotic mottle virus, a novel putative member of the genus Badnavirus.

    PubMed

    Lee, Ye-Ji; Kwak, Hae-Ryun; Lee, Young-Kee; Kim, Mi-Kyeong; Choi, Hong-Soo; Seo, Jang-Kyun

    2015-04-01

    The complete genome sequence of a previously undescribed virus isolated from a yacon plant exhibiting necrotic mottle, chlorosis, stunting, and leaf malformation symptoms in Gyeongju, Korea, was determined. The genome of this virus consists of one circular double-stranded DNA of 7661 bp in size. The genome contained four open reading frames (ORFs 1 to 4) on the plus strand that potentially encode proteins of 26, 32, 234, and 25 kDa. Protein BLAST analysis showed that ORF3, which is the largest ORF, has 45 % amino acid sequence identity (with 89 % coverage) to the ORF3 of fig badnavirus 1 (FBV-1), a recently identified badnavirus. Phylogenetic analysis provided further evidence that the virus identified in this study is probably a member of a new species in the genus Badnavirus. The name yacon necrotic mottle virus (YNMoV) is proposed for this new virus.

  13. Hepatitis E virus genotype 3f sequences from pigs in Thailand, 2011-2012.

    PubMed

    Keawcharoen, Juthatip; Thongmee, Thanunrat; Panyathong, Raphee; Joiphaeng, Pichai; Tuanthap, Supansa; Oraveerakul, Kanisak; Theamboonlers, Apiradee; Poovorawan, Yong

    2013-04-01

    Phylogenetic analysis of partial ORF1 and ORF2 genes of Hepatitis E virus (HEV) strains from pigs in Thailand during 2011-2012 was performed. The result indicated that the current Thai strains belonged to the genotype 3 subgroup 3f, which were similar to the previous HEVs circulating in humans in Thailand.

  14. Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements

    PubMed Central

    2014-01-01

    Background Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. Results Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. Conclusions The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate. PMID:25093042

  15. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein.

    PubMed

    Nelson, Christopher A; Pekosz, Andrew; Lee, Chung A; Diamond, Michael S; Fremont, Daved H

    2005-01-01

    The open reading frame (ORF) 7a of the SARS-associated coronavirus (SARS-CoV) encodes a unique type I transmembrane protein of unknown function. We have determined the 1.8 A resolution crystal structure of the N-terminal ectodomain of orf7a, revealing a compact seven-stranded beta sandwich unexpectedly similar in fold and topology to members of the Ig superfamily. We also demonstrate that, in SARS-CoV- infected cells, the orf7a protein is expressed and retained intracellularly. Confocal microscopy studies using orf7a and orf7a/CD4 chimeras implicate the short cytoplasmic tail and transmembrane domain in trafficking of the protein within the endoplasmic reticulum and Golgi network. Taken together, our findings provide a structural and cellular framework in which to explore the role of orf7a in SARS-CoV pathogenesis.

  16. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    SciTech Connect

    Chen, Lei

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  17. Selection of Apoptosis-Deficient Adenovirus E4orf4 Mutants in Saccharomyces cerevisiae

    PubMed Central

    Afifi, Rana; Sharf, Rakefet; Shtrichman, Ronit; Kleinberger, Tamar

    2001-01-01

    Adenovirus E4orf4 protein has been shown to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed cells. Furthermore, E4orf4 also induces toxicity in Saccharomyces cerevisiae in a PP2A-dependent manner (D. Kornitzer and T. Kleinberger, submitted for publication). In this work, we utilized yeast cells to select for nonapoptotic E4orf4 mutants which, in turn, were shown to possess a diminished ability to bind PP2A. The success of this selection system will provide additional apoptosis-relevant mutants for E4orf4 research and strongly supports the relevance of E4orf4-induced toxicity in S. cerevisiae to E4orf4-induced apoptosis in mammalian cells. PMID:11287598

  18. In vivo RNA localization of I factor, a non-LTR retrotransposon, requires a cis-acting signal in ORF2 and ORF1 protein

    PubMed Central

    del Carmen Seleme, Maria; Disson, Olivier; Robin, Stéphanie; Brun, Christine; Teninges, Danielle; Bucheton, Alain

    2005-01-01

    According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobilization, here we analyzed in vivo the protein and RNA expression patterns of the I factor, a model NLR in Drosophila. We show that ORF1p and I factor RNA, specifically produced during transposition, are co-expressed and tightly co-localize with a specific pattern (Loc+) exclusively in the cytoplasm of germ cells permissive for retrotransposition. Using an ORF2 mutated I factor, we show that ORF2p plays no role in the Loc+ patterning. With deletion derivatives of an I factor we define an RNA localization signal required to display the Loc+ pattern. Finally, by complementation experiments we show that ORF1p is necessary for the efficient localization of I factor RNA. Our data suggest that ORF1p is involved in proper folding and stabilization of I factor RNA for efficient targeting, through Loc+ patterning, to the nuclear neighborhood where downstream steps of the retrotransposition process occur. PMID:15687386

  19. Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modification of p53

    PubMed Central

    DeHart, Caroline J.; Perlman, David H.

    2015-01-01

    ABSTRACT Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1–17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076–1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3

  20. Human herpesvirus 8 infections in the Amsterdam Cohort Studies (1984–1997): Analysis of seroconversions to ORF65 and ORF73

    PubMed Central

    Goudsmit, Jaap; Renwick, Neil; Dukers, Nicole H. T. M.; Coutinho, Roel A.; Heisterkamp, Siem; Bakker, Margreet; Schulz, Thomas F.; Cornelissen, Marion; Weverling, Gerrit J.

    2000-01-01

    We have shown previously that human herpesvirus 8 (HHV8) seroconversion for antibodies to the latency-associated nuclear antigen encoded by ORF73 and/or the lytic capsid antigen (vp19) encoded by ORF65 is associated with orogenital contact and is strongly linked to the development of Kaposi's sarcoma among HIV-infected individuals in the Amsterdam Cohort Studies. Here, we investigate the relationship between seroconversion to these antigens and primary HHV8 infection. Between 1984 and 1997, 215 HHV8 seroconversions to ORF73 (106 cases or 49%) and/or to ORF65 (159 cases or 74%) were recorded in the cohort of homosexual men. The HHV8 seroconversion rate among HIV-infected homosexual men (6.2 per 100 person years) was consistently higher than among HIV-uninfected men (2.6 per 100 person years). In HIV-infected but not in uninfected individuals, seroconversion to ORF73/latency-associated nuclear antigen precedes that to ORF65/vp19. Antibody levels to both ORF65- and ORF73-encoded antigens were higher in HIV-infected than in HIV-uninfected men, and among HIV-seropositives, antibody levels to ORF65/vp19 rise even higher with declining CD4 cell counts and peak with Kaposi's sarcoma development, suggesting continuing and increasing viral replication. In 10.3% of HHV8 seroconversions, transient serum viremia could be demonstrated before or at seroconversion. Together with the previously reported link between unprotected orogenital sex and HHV8 seroconversion, our observations suggest that HHV8 seroconversions result from primary infections. PMID:10781089

  1. A regulatory gene (ECO-orf4) required for ECO-0501 biosynthesis in Amycolatopsis orientalis.

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2014-02-01

    ECO-0501 is a novel linear polyene antibiotic, which was discovered from Amycolatopsis orientalis. Recent study of ECO-0501 biosynthesis pathway revealed the presence of regulatory gene: ECO-orf4. The A. orientalis ECO-orf4 gene from the ECO-0501 biosynthesis cluster was analyzed, and its deduced protein (ECO-orf4) was found to have amino acid sequence homology with large ATP-binding regulators of the LuxR (LAL) family regulators. Database comparison revealed two hypothetical domains, a LuxR-type helix-turn-helix (HTH) DNA binding motif near the C-terminal and an N-terminal nucleotide triphosphate (NTP) binding motif included. Deletion of the corresponding gene (ECO-orf4) resulted in complete loss of ECO-0501 production. Complementation by one copy of intact ECO-orf4 restored the polyene biosynthesis demonstrating that ECO-orf4 is required for ECO-0501 biosynthesis. The results of overexpression ECO-orf4 on ECO-0501 production indicated that it is a positive regulatory gene. Gene expression analysis by reverse transcription PCR of the ECO-0501 gene cluster showed that the transcription of ECO-orf4 correlates with that of genes involved in polyketide biosynthesis. These results demonstrated that ECO-orf4 is a pathway-specific positive regulatory gene that is essential for ECO-0501 biosynthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking

    PubMed Central

    Farg, Manal A.; Sundaramoorthy, Vinod; Sultana, Jessica M.; Yang, Shu; Atkinson, Rachel A.K.; Levina, Vita; Halloran, Mark A.; Gleeson, Paul A.; Blair, Ian P.; Soo, Kai Y.; King, Anna E.; Atkin, Julie D.

    2014-01-01

    Intronic expansion of a hexanucleotide GGGGCC repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene is the major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. However, the cellular function of the C9ORF72 protein remains unknown. Here, we demonstrate that C9ORF72 regulates endosomal trafficking. C9ORF72 colocalized with Rab proteins implicated in autophagy and endocytic transport: Rab1, Rab5, Rab7 and Rab11 in neuronal cell lines, primary cortical neurons and human spinal cord motor neurons, consistent with previous predictions that C9ORF72 bears Rab guanine exchange factor activity. Consistent with this notion, C9ORF72 was present in the extracellular space and as cytoplasmic vesicles. Depletion of C9ORF72 using siRNA inhibited transport of Shiga toxin from the plasma membrane to Golgi apparatus, internalization of TrkB receptor and altered the ratio of autophagosome marker light chain 3 (LC3) II:LC3I, indicating that C9ORF72 regulates endocytosis and autophagy. C9ORF72 also colocalized with ubiquilin-2 and LC3-positive vesicles, and co-migrated with lysosome-stained vesicles in neuronal cell lines, providing further evidence that C9ORF72 regulates autophagy. Investigation of proteins interacting with C9ORF72 using mass spectrometry identified other proteins implicated in ALS; ubiquilin-2 and heterogeneous nuclear ribonucleoproteins, hnRNPA2/B1 and hnRNPA1, and actin. Treatment of cells overexpressing C9ORF72 with proteasome inhibitors induced the formation of stress granules positive for hnRNPA1 and hnRNPA2/B1. Immunohistochemistry of C9ORF72 ALS patient motor neurons revealed increased colocalization between C9ORF72 and Rab7 and Rab11 compared with controls, suggesting possible dysregulation of trafficking in patients bearing the C9ORF72 repeat expansion. Hence, this study identifies a role for C9ORF72 in Rab-mediated cellular trafficking. PMID:24549040

  3. The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene.

    PubMed

    Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M

    1998-03-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.

  4. The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter.

    PubMed

    Hasegawa, A; Verver, J; Shimada, A; Saito, M; Goldbach, R; Van Kammen, A; Miki, K; Kameya-Iwaki, M; Hibi, T

    1989-12-11

    The complete nucleotide sequence of an infectious clone of soybean chlorotic mottle virus (SoyCMV) DNA was determined and compared with those of three other caulimoviruses, cauliflower mosaic virus (CaMV), carnation etched ring virus and figwort mosaic virus. The double-stranded DNA genome of SoyCMV (8,175 bp) contained nine open reading frames (ORFs) and one large intergenic region. The primer binding sites, gene organization and size of ORFs were similar to those of the other caulimoviruses, except for ORF I, which was split into ORF Ia and Ib. The amino acid sequences deduced from each ORF showed only short, highly homologous regions in several of the corresponding ORFs of the three other caulimoviruses. A promoter fragment of 378 bp in SoyCMV ORF III showed a strong expression activity, comparable to that of the CaMV 35S promoter, in tobacco mesophyll protoplasts as determined by a beta-glucuronidase assay using electrotransfection. The fragment contained CAAT and TATA boxes but no transcriptional enhancer signal as reported for the CaMV 35S promoter. Instead, it had sequences homologous to a part of the translational enhancer signal reported for the 5'-leader sequence of tobacco mosaic virus RNA.

  5. Two mRNAs are transcribed from banana bunchy top virus DNA-1.

    PubMed

    Beetham, P R; Hafner, G J; Harding, R M; Dale, J L

    1997-01-01

    We have mapped the mRNA transcripts of banana bunchy top virus (BBTV) DNA-1. Northern hybridization and 3' RACE analysis identified two poly-adenylated RNAs associated with BBTV DNA-1. Previously, one major ORF in the virion sense of DNA-1 had been identified, which encoded a putative replication protein (Rep). An mRNA was identified in BBTV infected bananas that was clearly transcribed from this Rep ORF. Further, a second transcript was identified which mapped to an ORF completely within the Rep ORF. This encoded a putative 5 kDa protein of unknown function. Both these transcripts were also identified in a tobacco plant that had been transformed with Agrobacterium tumefaciens harbouring a binary construct containing the Rep ORF from BBTV DNA-1. This Rep ORF was inserted 3' of a cauliflower mosaic virus 35S promoter and 5' of a vegetable storage protein terminator. The transcripts mapped from these tobacco plants were identical at the 3' end to the transcripts from BBTV infected banana plants. The site of polyadenylation for the Rep ORF was at base 963 immediately 3' of the translational stop codon confirming that the polyadenylation signals for this transcript were all within the ORF. However, the internal ORF had a large untranslated region of 272 bases with its site of polyadenylation at nucleotide 803 and a polyadenylation signal 3' of the translational stop codon. A possible upstream termination signal (A/TTGTAA) was identified and was conserved within BBTV DNA-1 sequences from different international isolates.

  6. Identification of Small Molecule Compounds That Selectively Inhibit Varicella-Zoster Virus Replication

    PubMed Central

    Visalli, Robert J.; Fairhurst, Jeanette; Srinivas, Shamala; Hu, William; Feld, Boris; DiGrandi, Martin; Curran, Kevin; Ross, Adma; Bloom, Jonathan D.; van Zeijl, Marja; Jones, Thomas R.; O'Connell, John; Cohen, Jeffrey I.

    2003-01-01

    A series of nonnucleoside, N-α-methylbenzyl-N′-arylthiourea analogs were identified which demonstrated selective activity against varicella-zoster virus (VZV) but were inactive against other human herpesviruses, including herpes simplex virus. Representative compounds had potent activity against VZV early-passage clinical isolates and an acyclovir-resistant isolate. Resistant viruses generated against one inhibitor were also resistant to other compounds in the series, suggesting that this group of related small molecules was acting on the same virus-specific target. Sequencing of the VZV ORF54 gene from two independently derived resistant viruses revealed mutations in ORF54 compared to the parental VZV strain Ellen sequence. Recombinant VZV in which the wild-type ORF54 sequence was replaced with the ORF54 gene from either of the resistant viruses became resistant to the series of inhibitor compounds. Treatment of VZV-infected cells with the inhibitor impaired morphogenesis of capsids. Inhibitor-treated cells lacked DNA-containing dense-core capsids in the nucleus, and only incomplete virions were present on the cell surface. These data suggest that the VZV-specific thiourea inhibitor series block virus replication by interfering with the function of the ORF54 protein and/or other proteins that interact with the ORF54 protein. PMID:12551972

  7. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae

    PubMed Central

    Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David

    2017-01-01

    Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector. PMID:28747815

  8. Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer

    PubMed Central

    Škalamera, Dubravka; Dahmer, Mareike; Purdon, Amy S.; Wilson, Benjamin M.; Ranall, Max V.; Blumenthal, Antje; Gabrielli, Brian; Gonda, Thomas J.

    2012-01-01

    The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors. PMID:23251614

  9. Comparative analyses of the 9 glycoprotein genes found in wild-type and vaccine strains of varicella-zoster virus.

    PubMed

    Storlie, Johnathan; Maresova, Lucie; Jackson, Wallen; Grose, Charles

    2008-03-01

    The complete DNA sequences of wild-type and vaccine strains of varicella-zoster virus have been published and listed in GenBank. In this comparative genomic analysis, the sequences of the 9 glycoprotein open reading frames (ORFs) were compared. They included gE (ORF68), gI (ORF 67), gC (ORF14), gH (ORF37), gL (ORF60), gB (ORF31), gK (ORF5), gM (ORF50), and gN (ORF8 or ORF9A). After realignment on the basis of newer data, the corrected gB sequence was lengthened to include 931 residues. The data showed that there were glycoprotein polymorphisms that differentiated North American/European strains from Japanese strains-for example, an additional ATG codon in the gL of all Oka strains. Also, there were a small number of coding single-nucleotide polymorphisms present only in glycoproteins of vaccine strains. Because these changes were highly conserved, the structure of the glycoprotein was unlikely to be altered.

  10. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease.

    PubMed

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G; Souza, Flávia O; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo; Fernandes, Patricia Machado Bueno

    2016-01-01

    Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.

  11. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease

    PubMed Central

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J. Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G.; Souza, Flávia O.; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo

    2016-01-01

    Papaya sticky disease, or “meleira”, is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2. PMID:27166626

  12. Molecular characterization of the 3' terminus of the simian hemorrhagic fever virus genome.

    PubMed Central

    Godeny, E K; Zeng, L; Smith, S L; Brinton, M A

    1995-01-01

    The 3' end of the simian hemorrhagic fever virus (SHFV) single-stranded RNA genome was cloned and sequenced. Adjacent to the 3' poly(A) tract, we identified a 76-nucleotide noncoding region preceded by two overlapping reading frames (ORFs). The ultimate 3' ORF of the viral genome encodes the capsid protein, and the penultimate ORF encodes the smallest SHFV envelope protein. These two ORFs overlap each other by 26 nucleotides. Northern (RNA) blot hybridization analyses of cytoplasmic RNA extracts from SHFV-infected MA-104 cells with gene-specific probes revealed the presence of full-length genomic RNA as well as six subgenomic SHFV-specific mRNA species. The subgenomic mRNAs are 3' coterminal. In its virion morphology and size, genome structure and length, and replication strategy, SHFV is most similar to lactate dehydrogenase-elevating virus, equine arteritis virus, and porcine reproductive and respiratory syndrome virus. PMID:7884922

  13. Production of Myxoma virus gateway entry and expression libraries and validation of viral protein expression.

    PubMed

    Smallwood, Sherin E; Rahman, Masmudur M; Werden, Steven J; Martino, Maria Fernanda; McFadden, Grant

    2011-05-01

    Invitrogen's Gateway technology is a recombination-based cloning method that allows for rapid transfer of numerous open reading frames (ORFs) into multiple plasmid vectors, making it useful for diverse high-throughput applications. Gateway technology has been utilized to create an ORF library for Myxoma virus (MYXV), a member of the Poxviridae family of DNA viruses. MYXV is the prototype virus for the genus Leporipoxvirus, and is pathogenic only in European rabbits. MYXV replicates exclusively in the host cell cytoplasm, and its genome encodes 171 ORFs. A number of these ORFs encode proteins that interfere with or modulate host defense mechanisms, particularly the inflammatory responses. Furthermore, MYXV is able to productively infect a variety of human cancer cell lines and is being developed as an oncolytic virus for treating human cancers. MYXV is therefore an excellent model for studying poxvirus biology, pathogenesis, and host tropism, and a good candidate for ORFeome development.

  14. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2.

    PubMed

    Zhang, Li; Tian, Yabin; Wen, Zhiheng; Zhang, Feng; Qi, Ying; Huang, Weijin; Zhang, Heqiu; Wang, Youchun

    2016-12-01

    Although the biological and epidemiological features of hepatitis E virus (HEV) have been studied extensively in recent years, the mechanism by which HEV infects cells is still poorly understood. In this study, coimmunoprecipitation, pull-down, and ELISA were used to show that the HEV ORF2 protein interacts directly with the ectodomain of both ASGR1 and ASGR2. Susceptibility to HEV correlated positively with the expression level of surface asialoglycoprotein receptor (ASGPR) in cell lines. ASGPR-directed small interfering RNA (siRNA) in HEV-infected PLC/PRF/5 cells had no significant effect on HEV release, suggesting that ASGPR mainly regulates the viral binding and entry steps. Both the purified ASGPR ectodomain and anti-ASGPR antibodies disturbed the binding of HEV to PLC/PRF/5 cells. The classic ASGPR ligands asialofetuin, asialoganglioside, and fibronectin competitively inhibited the binding of HEV to hepatocytes in the presence of calcium. HeLa cell lines stably expressing ASGPR displayed increased HEV-binding capacity, whereas ASGPR-knockout PLC/PRF/5 cell lines had lower HEV-binding capacity. Thus, our study demonstrates that ASGPR is involved in and facilitates HEV infection by binding to ORF2. J. Med. Virol. 88:2186-2195, 2016. © 2016 Wiley Periodicals, Inc.

  15. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes.

    PubMed

    Yamamoto, Takenobu; Ali, Mir A; Liu, XueQiao; Cohen, Jeffrey I

    2014-03-01

    Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells. Published by Elsevier Inc.

  16. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes

    PubMed Central

    Yamamoto, Takenobu; Ali, Mir A.; Liu, XueQiao; Cohen, Jeffrey I.

    2016-01-01

    Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells. PMID:24606682

  17. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion☆

    PubMed Central

    Waite, Adrian J.; Bäumer, Dirk; East, Simon; Neal, James; Morris, Huw R.; Ansorge, Olaf; Blake, Derek J.

    2014-01-01

    An intronic G4C2 hexanucleotide repeat expansion in C9ORF72 is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several mechanisms including RNA toxicity, repeat-associated non-AUG translation mediated dipeptide protein aggregates, and haploinsufficiency of C9orf72 have been implicated in the molecular pathogenesis of this disorder. The aims of this study were to compare the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and to determine the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects. Our Southern blot studies identified smaller repeat expansions (250–1800 bp) that were only detectable with the flanking probe highlighting the potential for divergent results using different Southern blotting protocols that could complicate genotype–phenotype correlation studies. Further, we characterize a new C9orf72 antibody and show for the first time decreased C9orf72 protein levels in the frontal cortex from patients with a pathological hexanucleotide repeat expansion. These data suggest that a reduction in C9orf72 protein may be a consequence of the disease. PMID:24559645

  18. [Serologic studies of domestic cats for potential human pathogenic virus infections from wild rodents].

    PubMed

    Nowotny, N

    1996-05-01

    For several viral infections a reservoir in wild rodents has been demonstrated. Some of the agents are known or suspected to be pathogenic for humans. Because improvements in hygiene have reduced direct human contact with rodents, domestic cats could be acting as active transmitters of these viruses from rodents to man. We selected 4 such pathogens--ortho- and parapox-, hanta- and encephalomyocarditis viruses--which, in different ways, may lead to serious human illness: Ortho- and parapoxvirus infections may cause localized pox lesions following direct skin contact. In general, the lesions heal without complications; in immunosuppressed or -deficient individuals, however, infection may generalize and take a dramatic course. Hantaviruses exist in various serotypes with different pathogenicity for human beings, varying from asymptomatic infection to highly fatal disease. In central and northern Europe the Puumala serotype is predominant causing influenza-like symptoms and renal dysfunction. Human infections arise from inhalation of aerosolized excreta of persistently infected rodents. Infections of man associated with encephalomyocarditis virus were demonstrated sporadically in cases of encephalitis and meningitis. In the present study, we investigated in 200 feline serum samples the prevalence of antibodies to ortho- and parapox-, hanta- and encephalomyocarditis virus. All serum samples were from cats that had been allowed to roam outside and to hunt. They were submitted from all parts of Austria for routine diagnosis in 1993. Four per cent of cats showed antibodies to orthopoxviruses with haemagglutination inhibition (HI) titres of 16-512; because of extensive cross-reactivity, positive samples reacted with all investigated orthopoxviruses (a feline orthopoxvirus recently isolated in Vienna, the reference strain of cowpox virus, Brighton, and vaccinia virus, strain IHD), only varying in titre. The specificity of the results was confirmed by virus neutralisation (VN

  19. Hepatitis E Virus Produced from Cell Culture Has a Lipid Envelope

    PubMed Central

    Qi, Ying; Zhang, Feng; Zhang, Li; Harrison, Tim J.; Huang, Weijin; Zhao, Chenyan; Kong, Wei; Jiang, Chunlai; Wang, Youchun

    2015-01-01

    The absence of a productive cell culture system hampered detailed analysis of the structure and protein composition of the hepatitis E virion. In this study, hepatitis E virus from a robust HEV cell culture system and from the feces of infected monkeys at the peak of virus excretion was purified by ultra-centrifugation. The common feature of the two samples after ultracentrifugation was that the ORF2 protein mainly remained in the top fractions. The ORF2 protein from cell culture system was glycosylated, with an apparent molecular weight of 88 kDa, and was not infectious in PLC/PRF/5 cells. The ORF2 protein in this fraction can bind to and protect HEV RNA from digestion by RNase A. The RNA-ORF2 product has a similar sedimentation coefficient to the virus from feces. The viral RNA in the cell culture supernatant was mainly in the fraction of 1.15g/cm3 but that from the feces was mainly in the fraction of 1.21 g/cm3. Both were infectious in PLC/PRF/5 cells. And the fraction in the middle of the gradient (1.06g/cm3) from the cell culture supernatant,but not that from the feces, also has ORF2 protein and HEV RNA but was not infectious in PLC/PRF/5.The infectious RNA-rich fraction from the cell culture contained ORF3 protein and lipid but the corresponding fraction from feces had no lipid and little ORF3 protein. The lipid on the surface of the virus has no effect on its binding to cells but the ORF3 protein interferes with binding. The result suggests that most of the secreted ORF2 protein is not associated with HEV RNA and that hepatitis E virus produced in cell culture differs in structure from the virus found in feces in that it has a lipid envelope. PMID:26161670

  20. Phage Orf Family Recombinases: Conservation of Activities and Involvement of the Central Channel in DNA Binding

    PubMed Central

    Curtis, Fiona A.; Malay, Ali D.; Trotter, Alexander J.; Wilson, Lindsay A.; Barradell-Black, Michael M. H.; Bowers, Laura Y.; Reed, Patricia; Hillyar, Christopher R. T.; Yeo, Robert P.; Sanderson, John M.; Heddle, Jonathan G.; Sharples, Gary J.

    2014-01-01

    Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination. PMID:25083707

  1. A Pilot Study for Standardizing Curriculum-Based Measurement Oral Reading Fluency (CBM ORF) in Arabic

    ERIC Educational Resources Information Center

    Abu-Hamour, Bashir

    2014-01-01

    This study examined the psychometric proprieties of the Arabic version of the Curriculum-Based Measurement Oral Reading Fluency (CBM ORF) for Jordanian students. A sample of 200 students (six to eight years old) was recruited from four public primary schools in Jordan. Results indicated that the CBM ORF had adequate reliability and validity…

  2. No common founder for C9orf72 expansion mutation in Sweden.

    PubMed

    Chiang, Huei-Hsin; Forsell, Charlotte; Lindström, Anna-Karin; Lilius, Lena; Thonberg, Håkan; Nennesmo, Inger; Graff, Caroline

    2017-02-01

    Hexanucleotide expansion mutations in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause for frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). SNP haplotype analyses have suggested that all C9orf72 expansion mutations originate from a common founder. However, not all C9orf72 expansion mutation carriers have the same haplotype. To investigate if the C9orf72 expansion mutation carriers in Sweden share a common founder, we have genotyped SNPs flanking the C9orf72 expansion mutation in cases with FTD, FTD-ALS or ALS to perform haplotype analysis. We have genotyped 57 SNPs in 232 cases of which 45 carried the C9orf72 expansion mutation. Two risk haplotypes consisting of 31 SNPs, spanning 131 kbp, were found to be significantly associated with the mutation. In summary, haplotype analysis on Swedish C9orf72 expansion mutation carriers indicates that the C9orf72 expansion mutation arose on at least two risk haplotypes.

  3. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype

    PubMed Central

    Rutherford, Nicola J.; Heckman, Michael G.; DeJesus-Hernandez, Mariely; Baker, Matt C.; Soto-Ortolaza, Alexandra I.; Rayaprolu, Sruti; Stewart, Heather; Finger, Elizabeth; Volkening, Kathryn; Seeley, William W.; Hatanpaa, Kimmo J.; Lomen-Hoerth, Catherine; Kertesz, Andrew; Bigio, Eileen H.; Lippa, Carol; Knopman, David S.; Kretzschmar, Hans A.; Neumann, Manuela; Caselli, Richard J.; White, Charles L.; Mackenzie, Ian R.; Petersen, Ronald C.; Strong, Michael J.; Miller, Bruce L.; Boeve, Bradley F.; Uitti, Ryan J.; Boylan, Kevin; Wszolek, Zbigniew K.; Graff-Radford, Neill R.; Dickson, Dennis W.; Ross, Owen A.; Rademakers, Rosa

    2012-01-01

    Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers. PMID:22840558

  4. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein

    PubMed Central

    Callahan, Kathryn E.; Hickman, Alison B.; Jones, Charles E.; Ghirlando, Rodolfo; Furano, Anthony V.

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference—the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  5. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency

    PubMed Central

    Burkhardt, David H; Rouskin, Silvi; Zhang, Yan; Li, Gene-Wei; Weissman, Jonathan S; Gross, Carol A

    2017-01-01

    Bacterial mRNAs are organized into operons consisting of discrete open reading frames (ORFs) in a single polycistronic mRNA. Individual ORFs on the mRNA are differentially translated, with rates varying as much as 100-fold. The signals controlling differential translation are poorly understood. Our genome-wide mRNA secondary structure analysis indicated that operonic mRNAs are comprised of ORF-wide units of secondary structure that vary across ORF boundaries such that adjacent ORFs on the same mRNA molecule are structurally distinct. ORF translation rate is strongly correlated with its mRNA structure in vivo, and correlation persists, albeit in a reduced form, with its structure when translation is inhibited and with that of in vitro refolded mRNA. These data suggest that intrinsic ORF mRNA structure encodes a rough blueprint for translation efficiency. This structure is then amplified by translation, in a self-reinforcing loop, to provide the structure that ultimately specifies the translation of each ORF. DOI: http://dx.doi.org/10.7554/eLife.22037.001 PMID:28139975

  6. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish

    PubMed Central

    Chew, Guo-Liang; Pauli, Andrea; Schier, Alexander F.

    2016-01-01

    Upstream open reading frames (uORFs) are ubiquitous repressive genetic elements in vertebrate mRNAs. While much is known about the regulation of individual genes by their uORFs, the range of uORF-mediated translational repression in vertebrate genomes is largely unexplored. Moreover, it is unclear whether the repressive effects of uORFs are conserved across species. To address these questions, we analyse transcript sequences and ribosome profiling data from human, mouse and zebrafish. We find that uORFs are depleted near coding sequences (CDSes) and have initiation contexts that diminish their translation. Linear modelling reveals that sequence features at both uORFs and CDSes modulate the translation of CDSes. Moreover, the ratio of translation over 5′ leaders and CDSes is conserved between human and mouse, and correlates with the number of uORFs. These observations suggest that the prevalence of vertebrate uORFs may be explained by their conserved role in repressing CDS translation. PMID:27216465

  7. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant, Solenopsis invicta

    SciTech Connect

    Valles, Steven M.; Hashimoto, Yoshifumi

    2009-06-05

    We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number (FJ528584)), comprised of 10,386 nucleotides, and polyadenylated at the 3' terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5' proximal ORF (ORF 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3' proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 +- 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.

  8. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response.

    PubMed

    Karuppannan, Anbu K; Qiang, Jia; Chang, C C; Kwang, Jimmy

    2013-11-04

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.

  9. The KSHV RNA regulator ORF57: target specificity and its role in the viral life cycle.

    PubMed

    Vogt, Carolin; Bohne, Jens

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which enhances the expression of intron-less KSHV genes on multiple post-transcriptional levels mainly affecting RNA stability and export to the cytoplasm. Yet, it remains elusive how ORF57 recognizes viral RNAs and discriminates them from cellular messenger RNAs (mRNAs). Although one common binding motif on three separate KSHV RNAs has been described, most other lytic genes lack this sequence element. In this article we will review the sequence requirements for ORF57 to enhance RNA expression and discuss a model how ORF57 achieves specificity for viral RNAs. Finally, the role of ORF57 is integrated into the viral life cycle as a complex interplay with other viral and host factors and with implications for cellular gene expression. © 2016 Wiley Periodicals, Inc.

  10. Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum?

    PubMed

    Thormann, K; Dürre, P

    2001-11-01

    The gene of Orf5 (SolR) of Clostridium acetobutylicum DSM 792 was subcloned and overexpressed in Escherichia coli. The protein was purified with Ni-NTA agarose and used for DNA binding assays. No DNA binding of Orf5 to regions upstream of the sol operon from C. acetobutylicum was observed. Overexpression of Orf5 in C. acetobutylicum led to a change in the organism's pattern of glycosylated exoproteins. The Orf5 protein was localized in the cell membrane fraction and to a small extent in the supernatant medium. Based on these results Orf5 (SolR) appears not to act as a transcriptional repressor in C. acetobutylicum, but instead may be an enzyme involved in glycosylation or deglycosylation.

  11. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    PubMed

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  12. [Differentiation of geographic biovariants of smallpox virus by PCR].

    PubMed

    Babkin, I V; Babkina, I N

    2010-01-01

    Comparative analysis of amino acid and nucleotides sequences of ORFs located in extended segments of the terminal variable regions in variola virus genome detected a promising locus for viral genotyping according to the geographic origin. This is ORF O1L of VARV. The primers were calculated for synthesis of this ORF fragment by PCR, which makes it possible to distinguish South America-Western Africa genotype from other VARV strains. Subsequent RFLP analysis reliably differentiated Asian strains from African strains (except Western Africa isolates). This method has been tested using 16 VARV strains from various geographic regions. The developed approach is simple, fast and reliable.

  13. A loop-mediated isothermal amplification assay for rapid and sensitive detection of bovine papular stomatitis virus.

    PubMed

    Kurosaki, Yohei; Okada, Sayaka; Nakamae, Sayuri; Yasuda, Jiro

    2016-12-01

    Bovine papular stomatitis virus (BPSV) causes pustular cutaneous disease in cattle worldwide. This paper describes the development of a specific loop-mediated isothermal amplification (LAMP) assay to detect BPSV which did not cross-react with other parapoxviruses. To assess analytical sensitivity of this LAMP assay, DNA was extracted from serially diluted BPSV from which the infectious titer was determined by a novel assay based on calf kidney epithelial cells. The LAMP assay had equivalent analytical sensitivity to quantitative PCR, and could detect as few as 86 copies of viral DNA per reaction. These results suggest that the assay is a specific and sensitive technique to rapidly diagnose bovine papular stomatitis in domestic animals.

  14. Association of the plasma and tissue riboflavin levels with C20orf54 expression in cervical lesions and its relationship to HPV16 infection.

    PubMed

    Aili, Aixingzi; Hasim, Ayshamgul; Kelimu, Alimujiang; Guo, Xia; Mamtimin, Batur; Abudula, Abuliz; Upur, Halmurat

    2013-01-01

    Riboflavin deficiency can cause a variety of metabolic problems that lead to skin and mucosal disorders. Limited evidence suggests that high intake of riboflavin may reduce overall risks of cancer. However, association of this deficiency with cervical cancer and precancerous lesions are still not definitively known. In this study, we characterized the relationship between plasma and tissue riboflavin levels and C20orf54 protein expression in patients with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) as well as the relationship of these levels with human papillomavirus virus 16, 18 (HPV16/18) infections. High-performance liquid chromatography (HPLC) was used to measure blood riboflavin levels in patients with CIN and CSCC, and an enzyme-linked immunosorbent assay (ELISA) was used to determine tissue riboflavin levels in patients with CSCC and matched normal mucous epithelia. The expression of C20orf54 in fresh CSCC and matched tissues were detected by qRT-PCR and western blot, respectively. And it was further confirmed by immunohistochemistry (IHC) with formalin-fixed, paraffin-embedded CIN and CSCC. An HPV genotyping chip was used to analyze HPV infection and typing. The results showed that patients with CIN and CSCC had decreased plasma riboflavin levels as compared with normal controls. There was also significantly decreased riboflavin in tissues from CSCC patients, when compared with normal cervical epithelia. C20orf54 expression were significantly up-regulated in CSCC compared to matched control on both mRNA and protein level. Tissue riboflavin levels were significantly lower in HPV16/18 positive tissue compared with HPV16/18-negative tissue, and an inverse association was found between tissue riboflavin levels and C20orf54 mRNA and protein expression in CSCC. Additionally, C20orf54 was significantly correlated with tumor stages. In conclusion, C20orf54 tend to play a protective role in Uyghur cervical carcinogenesis of

  15. Association of the Plasma and Tissue Riboflavin Levels with C20orf54 Expression in Cervical Lesions and Its Relationship to HPV16 Infection

    PubMed Central

    Kelimu, Alimujiang; Guo, Xia; Mamtimin, Batur; Abudula, Abuliz; Upur, Halmurat

    2013-01-01

    Riboflavin deficiency can cause a variety of metabolic problems that lead to skin and mucosal disorders. Limited evidence suggests that high intake of riboflavin may reduce overall risks of cancer. However, association of this deficiency with cervical cancer and precancerous lesions are still not definitively known. In this study, we characterized the relationship between plasma and tissue riboflavin levels and C20orf54 protein expression in patients with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) as well as the relationship of these levels with human papillomavirus virus 16, 18 (HPV16/18) infections. High-performance liquid chromatography (HPLC) was used to measure blood riboflavin levels in patients with CIN and CSCC, and an enzyme-linked immunosorbent assay (ELISA) was used to determine tissue riboflavin levels in patients with CSCC and matched normal mucous epithelia. The expression of C20orf54 in fresh CSCC and matched tissues were detected by qRT-PCR and western blot, respectively. And it was further confirmed by immunohistochemistry (IHC) with formalin-fixed, paraffin-embedded CIN and CSCC. An HPV genotyping chip was used to analyze HPV infection and typing. The results showed that patients with CIN and CSCC had decreased plasma riboflavin levels as compared with normal controls. There was also significantly decreased riboflavin in tissues from CSCC patients, when compared with normal cervical epithelia. C20orf54 expression were significantly up-regulated in CSCC compared to matched control on both mRNA and protein level. Tissue riboflavin levels were significantly lower in HPV16/18 positive tissue compared with HPV16/18-negative tissue, and an inverse association was found between tissue riboflavin levels and C20orf54 mRNA and protein expression in CSCC. Additionally, C20orf54 was significantly correlated with tumor stages. In conclusion, C20orf54 tend to play a protective role in Uyghur cervical carcinogenesis of

  16. RUNX1 Permits E4orf6-Directed Nuclear Localization of the Adenovirus E1B-55K Protein and Associates with Centers of Viral DNA and RNA Synthesis▿

    PubMed Central

    Marshall, Leslie J.; Moore, Amy C.; Ohki, Misao; Kitabayashi, Issay; Patterson, David; Ornelles, David A.

    2008-01-01

    The localization of the adenovirus E1B-55K-E4orf6 protein complex is critical for its function. Prior studies demonstrated that E4orf6 directs the nuclear localization of E1B-55K in human cells and in rodent cells that contain part of human chromosome 21. We show here that the relevant activity on chromosome 21 maps to RUNX1. RUNX1 proteins are transcription factors that serve as scaffolds for the assembly of proteins that regulate transcription and RNA processing. After transfection, the RUNX1a, RUNX1b, and RUNX1-ΔN variants allowed E4orf6-directed E1B-55K nuclear localization. The failure of RUNX1c to allow nuclear colocalization was relieved by the deletion of amino-terminal residues of this protein. In the adenovirus-infected mouse cell, RUNX1 proteins were localized to discrete structures about the periphery of viral replication centers. These sites are enriched in viral RNA and RNA-processing factors. RUNX1b and RUNX1a proteins displaced E4orf6 from these sites. The association of E1B-55K at viral replication centers was enhanced by the RUNX1a and RUNX1b proteins, but only in the absence of E4orf6. In the presence of E4orf6, E1B-55K occurred in a perinuclear cytoplasmic body resembling the aggresome and was excluded from the nucleus of the infected mouse cell. We interpret these findings to mean that a dynamic relationship exists between the E4orf6, E1B-55K, and RUNX1 proteins. In cooperation with E4orf6, RUNX1 proteins are able to modulate the localization of E1B-55K and even remodel virus-specific structures that form at late times of infection. Subsequent studies will need to determine a functional consequence of the interaction between E4orf6, E1B-55K, and RUNX1. PMID:18417565

  17. Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations.

    PubMed

    Wang, Zheng; Iida, Aritoshi; Miyake, Noriko; Nishiguchi, Koji M; Fujita, Kosuke; Nakazawa, Toru; Alswaid, Abdulrahman; Albalwi, Mohammed A; Kim, Ok-Hwa; Cho, Tae-Joon; Lim, Gye-Yeon; Isidor, Bertrand; David, Albert; Rustad, Cecilie F; Merckoll, Else; Westvik, Jostein; Stattin, Eva-Lena; Grigelioniene, Giedre; Kou, Ikuyo; Nakajima, Masahiro; Ohashi, Hirohumi; Smithson, Sarah; Matsumoto, Naomichi; Nishimura, Gen; Ikegawa, Shiro

    2016-01-01

    Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina.

  18. Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5.

    PubMed

    Schaffrath, R; Meacock, P A

    1995-06-15

    The ORF5 of Kluyveromyces lactis killer plasmid pGKL2 (k2) is capable of encoding a small neutral protein of 18 kDa of as yet unassigned function. Although this ORF is located between two larger ORFs, 4 and 6, which it overlaps, RNA analysis showed that it is transcribed monocistronically. One-step gene disruption of ORF5, via in vivo homologous recombination between native plasmid k2 and a transfer vector employing the Saccharomyces cerevisiae LEU2 gene fused to the k2 UCS5 element, yielded Leu+ transformants at high frequencies. The transformants were found to carry a new recombinant form of k2 with ORF5 replaced by the LEU2 marker, termed rk2, in addition to the wild-type plasmids k1 and k2. Northern analysis detected a plasmid-dependent LEU2 transcript distinct in size and regulation from its nuclear counterpart. Recombinant plasmid, rk2, was unable to displace native k2 during Leu+ selective growth; however rk2 was displaced by k2 during non-selective growth. Thus, ORF5 appears to be an essential gene for plasmid integrity and/or maintenance. The ORF5 product was detected by over-expression of an epitope-tagged allele in the baculovirus system. Western analysis using a monoclonal antibody specific for the epitope tag identified a protein band with apparent molecular weight of 20 kDa, corresponding in size to the predicted product.

  19. The role of the FTD-ALS associated C9orf72 expansion in suicide victims.

    PubMed

    Solje, Eino; Riipinen, Pirkko; Helisalmi, Seppo; Särkioja, Terttu; Laitinen, Marjo; Hiltunen, Mikko; Hakko, Helinä; Remes, Anne M

    Impulsive and aggressive traits are not only common features displayed by patients with behavioural variant frontotemporal dementia (bvFTD), they may well be the first clinical manifestations of the disease. In addition, suicidal behaviour has been postulated to be a symptom of bvFTD. A hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) is the major genetic cause for familial bvFTD. During recent years, several genetic factors predisposing to suicide have been identified, but there are no previous studies analysing the role of the C9orf72 expansion in suicides. In the present study, we aimed to analyse the prevalence of the C9orf72 expansion in unselected suicide victims. The prevalence of the C9orf72 expansion was analysed in a cohort of 109 Finnish victims of suicide (mean age at death 46.1 years; range 18-86 years). The C9orf72 expansion was analysed from the post mortem blood samples. Results showed that no abnormal length C9orf72 expansions were detected in the study cohort. In conclusion, even though suicidal behaviour may be encountered in bvFTD patients, the C9orf72 expansion is not a common genetic finding in unselected suicide victims.

  20. Hepatitis E Virus and Related Viruses in Animals.

    PubMed

    Thiry, D; Mauroy, A; Pavio, N; Purdy, M A; Rose, N; Thiry, E; de Oliveira-Filho, E F

    2017-02-01

    Hepatitis E is an acute human liver disease in healthy individuals which may eventually become chronic. It is caused by the hepatitis E virus (HEV) and can have a zoonotic origin. Nearly 57,000 people die yearly from hepatitis E-related conditions. The disease is endemic in both developing and developed countries with distinct epidemiologic profiles. In developing countries, the disease is associated with inadequate water treatment, while in developed countries, transmission is associated with animal contact and the ingestion of raw or uncooked meat, especially liver. All human HEV are grouped into at least four genotypes, while HEV or HEV-related viruses have been identified in an increasing number of domestic and wild animal species. Despite a high genetic diversity, only one single HEV serotype has been described to date for HEV genotypes 1-4. The discovery of new HEV or HEV-related viruses leads to a continuing increase in the number of genotypes. In addition, the genome organization of all these viruses is variable with overlapping open reading frames (ORF) and differences in the location of ORF3. In spite of the role of some domestic and wild animals as reservoir, the origin of HEV and HEV-related viruses in humans and animals is still unclear. This review discusses aspects of the detection, molecular virology, zoonotic transmission and origin of HEV and HEV-related viruses in the context of 'One Health' and establishes a link between the previous and the new taxonomy of this growing virus family.

  1. Physical Mapping of bchG, orf427, and orf177 in the Photosynthesis Gene Cluster of Rhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene

    PubMed Central

    Addlesee, Hugh A.; Fiedor, Leszek; Hunter, C. Neil

    2000-01-01

    The purple photosynthetic bacterium Rhodobacter sphaeroides has within its genome a cluster of photosynthesis-related genes approximately 41 kb in length. In an attempt to identify genes involved in the terminal esterification stage of bacteriochlorophyll biosynthesis, a previously uncharacterized 5-kb region of this cluster was sequenced. Four open reading frames (ORFs) were identified, and each was analyzed by transposon mutagenesis. The product of one of these ORFs, bchG, shows close homologies with (bacterio)chlorophyll synthetases, and mutants in this gene were found to accumulate bacteriopheophorbide, the metal-free derivative of the bacteriochlorophyll precursor bacteriochlorophyllide, suggesting that bchG is responsible for the esterification of bacteriochlorophyllide with an alcohol moiety. This assignment of function to bchG was verified by the performance of assays demonstrating the ability of BchG protein, heterologously synthesized in Escherichia coli, to esterify bacteriochlorophyllide with geranylgeranyl pyrophosphate in vitro, thereby generating bacteriochlorophyll. This step is pivotal to the assembly of a functional photosystem in R. sphaeroides, a model organism for the study of structure-function relationships in photosynthesis. A second gene, orf177, is a member of a large family of isopentenyl diphosphate isomerases, while sequence homologies suggest that a third gene, orf427, may encode an assembly factor for photosynthetic complexes. The function of the remaining ORF, bchP, is the subject of a separate paper (H. Addlesee and C. N. Hunter, J. Bacteriol. 181:7248–7255, 1999). An operonal arrangement of the genes is proposed. PMID:10809697

  2. C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis

    PubMed Central

    Muthana, Munitta; Hawtree, Sarah; Wilshaw, Adam; Linehan, Eimear; Roberts, Hannah; Khetan, Sachin; Adeleke, Gbadebo; Wright, Fiona; Akil, Mohammed; Fearon, Ursula; Veale, Douglas; Ciani, Barbara; Wilson, Anthony G.

    2015-01-01

    The variant rs26232, in the first intron of the chromosome 5 open reading frame 30 (C5orf30) locus, has recently been associated with both risk of developing rheumatoid arthritis (RA) and severity of tissue damage. The biological activities of human C5orf30 are unknown, and neither the gene nor protein show significant homology to any other characterized human sequences. The C5orf30 gene is present only in vertebrate genomes with a high degree of conservation, implying a central function in these organisms. Here, we report that C5orf30 is highly expressed in the synovium of RA patients compared with control synovial tissue, and that it is predominately expressed by synovial fibroblast (RASF) and macrophages in the lining and sublining layer of the tissue. These cells play a central role in the initiation and perpetuation of RA and are implicated in cartilage destruction. RASFs lacking C5orf30 exhibit increased cell migration and invasion in vitro, and gene profiling following C5orf30 inhibition confirmed up-regulation of genes involved in cell migration, adhesion, angiogenesis, and immune and inflammatory pathways. Importantly, loss of C5orf30 contributes to the pathology of inflammatory arthritis in vivo, because inhibition of C5orf30 in the collagen-induced arthritis model markedly accentuated joint inflammation and tissue damage. Our study reveal C5orf30 to be a previously unidentified negative regulator of tissue damage in RA, and this protein may act by modulating the autoaggressive phenotype that is characteristic of RASFs. PMID:26316022

  3. Insertional mutation of orfD of the DCW cluster of Streptococcus pneumoniae attenuates virulence.

    PubMed

    Palmen, R; Ogunniyi, A D; Berroy, P; Larpin, S; Paton, J C; Trombe, M C

    1999-12-01

    Mutational analysis of a 5.5 kb fragment of the genome Streptococcus pneumoniae led to the identification of a putative new virulence gene, designated orfD. Insertion mutagenesis of flanking genes on the fragment suggested that the corresponding gene products were required for in vitro growth. In contrast, insertion mutation of orfD did not alter in vitro growth or the transformability pattern of the mutated strain. However, it did reduce bacterial growth in mice and attenuated virulence in an intraperitoneal model of infection. orfD is flanked by orfC (63 codons) and ftsL (105 codons) and all three genes are upstream of pbpx. orfC showed no similarity with other known proteins. ftsL of S. pneumoniae exhibits minimal sequence similarity with ftsL of E. coli, but shares 16% identical residues with the ftsL homologue encoded by ylld of B. subtilis. Also, ftsL of S. pneumoniae has a predicted topology similar to that described for ftsL of E. coli. Putative promoters with an extended -10 box could be identified upstream of both orfC or orfD. The four open reading frames (including pbpx) are orientated in the same direction, and polycistronic transcription could theoretically start at either promoter. Interestingly, this region shows organizational and sequence homologies with genes controlling division and cell wall biosynthesis (DCW) in other bacteria. The attenuation of virulence in the orfD insertion mutant might be due to the loss of function of the orfD gene product or to an altered level of expression of downstream genes.

  4. C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.

    PubMed

    Dobson-Stone, Carol; Hallupp, Marianne; Loy, Clement T; Thompson, Elizabeth M; Haan, Eric; Sue, Carolyn M; Panegyres, Peter K; Razquin, Cristina; Seijo-Martínez, Manuel; Rene, Ramon; Gascon, Jordi; Campdelacreu, Jaume; Schmoll, Birgit; Volk, Alexander E; Brooks, William S; Schofield, Peter R; Pastor, Pau; Kwok, John B J

    2013-01-01

    A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in 'non-expansion' patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine 'expansion-positive' patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an 'intermediate' allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of 'non-expansion' FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.

  5. A novel biomarker C6orf106 promotes the malignant progression of breast cancer.

    PubMed

    Jiang, Guiyang; Zhang, Xiupeng; Zhang, Yong; Wang, Liang; Fan, Chuifeng; Xu, Hongtao; Miao, Yuan; Wang, Enhua

    2015-09-01

    C6orf106 (chromosome 6 open reading frame 106) is a recently discovered protein encoded by the 6th chromosome. Though many proteins encoded by chromosome 6 are reportedly related to cancer, schizophrenia, autoimmunity and many other diseases, the function of C6orf106 was not well demonstrated so far. As measured by immunohistochemical staining, C6orf106 was positive in normal breast duct myoepithelial cells (92.31 %, 72/78), but negative in normal breast duct glandular epithelial cells (3.85 %, 3/78). In breast ductal carcinoma in situ, C6orf106 showed weakly or moderately positive (77.97 %, 46/59), but it was significantly strongly positive in invasive ductal carcinoma (79.57 %, 148/186). The expression intensity of C6orf106 seemed increased significantly along with the malignancy of breast cancer (p < 0.001). Additionally, C6orf106 expression was significantly correlated with TNM stage (p = 0.001 and p = 0.004) and lymph node metastasis (p = 0.018 and p = 0.025) of the overall and the triple-negative breast cancer, respectively. Consistently, we found that the interference of C6orf106 was able to inhibit cell proliferation and invasion of two triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, accompanied by the decrease of cyclin A2, cyclin B1, c-myc, and N-cadherin and the increase of E-cadherin. Collectively, these results indicate that C6orf106 may promote tumor progression in the invasive breast cancer, particularly in triple-negative breast cancer, and C6orf106 might serve as a novel therapeutic target of breast cancer, especially for triple-negative breast cancer.

  6. Investigation, expression, and molecular modeling of ORF2, a metagenomic lipolytic enzyme.

    PubMed

    Garcia, Rosmeriana Afnis Marioto; Pereira, Mariana Rangel; Maester, Thaís Carvalho; de Macedo Lemos, Eliana Gertrudes

    2015-04-01

    One clone exhibiting lipolytic activity was selected among 30 positives from a metagenomic library of a microbe consortium specialized in petroleum hydrocarbon degradation. From this clone, a sublibrary was constructed and a metagenome contig was assembled and analyzed using the ORF Finder; thus, it was possible to identify a potential ORF that encodes a lipolytic enzyme, denoted ORF2. This ORF is composed of 1035-bp 345 amino acids and displayed 98 % identity with an alpha/beta hydrolase from Pseudomonas nitroreducens (accession number WP024765380.1). When analyzed against a metagenome database, ORF2 also showed 76 % of sequence identity with a hypothetical protein from a marine metagenome (accession number ECT55726.1). The ProtParam analyses indicated that the recombinant protein ORF2 has a molecular mass approximately 39 kDa, as expected from its amino acid sequence, and based on phylogenetic analysis and molecular modeling, it was possible to suggest that ORF2 is a new member from family V. This enzyme exhibits the catalytic triad and conserved motifs typical from this family, wherein the serine residue is located in the central position of the conserved motif GASMGG. The orf2 gene was cloned in the expression vector pET28a, and the recombinant protein was superexpressed in Escherichia coli BL21(DE3) cells. The lipolytic activity of protein bands presented in a SDS-PAGE gel was confirmed by zymogram analyses, indicating ORF2 activity. These discoveries raise the possibility of employing this protein in biotechnological applications, such as bioremediation.

  7. The Apis mellifera filamentous virus genome

    USDA-ARS?s Scientific Manuscript database

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  8. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  9. Modified Indirect Porcine Circovirus (PCV) Type 2-Based and Recombinant Capsid Protein (ORF2)-Based Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to PCV

    PubMed Central

    Nawagitgul, Porntippa; Harms, Perry A.; Morozov, Igor; Thacker, Brad J.; Sorden, Steven D.; Lekcharoensuk, Chalermpol; Paul, Prem S.

    2002-01-01

    Postweaning multisystemic wasting syndrome of swine associated with porcine circovirus (PCV) is a recently reported and economically important disease. Simple and reliable diagnostic methods are needed for detecting antibodies to PCV type 2 (PCV2) for monitoring of PCV infection. Here, we report the development of two modified indirect enzyme-linked immunosorbent assays (ELISAs): a PCV2 ELISA based on cell-culture-propagated PCV2 and an ORF2 ELISA based on recombinant major capsid protein. PCV2 and ORF2 ELISA detected antibodies to PCV2 and the capsid protein, respectively, in sera from pigs experimentally infected with PCV2 as early as 14 and 21 days postinoculation (dpi). The kinetics of the antibody response to PCV2 and the major capsid protein were similar. Repeatability tests revealed that the coefficients of variation of positive sera within and between runs for both assays were less than 30%. To validate the assays, PCV2 and ORF2 ELISAs were performed with 783 serum samples of young and adult pigs collected from different herds in the Midwestern United States and compared with an indirect immunofluorescent assay (IIF). Six out of 60 samples collected from nursery and growing pigs in 1987 were positive by both ELISA and IIF. Compared with IIF, the diagnostic sensitivity, specificity, and accuracy of PCV2 and ORF2 ELISAs were similar (>90%). The tests showed no cross-reactivity with antibodies to porcine parvovirus and porcine reproductive and respiratory syndrome virus. There was good agreement between the two ELISAs and between the ELISAs and IIF. The availability of the two ELISAs should accelerate our understanding of the host immune response to PCV2 and facilitate the development of prevention and control strategies by elucidating the ecology of PCV2 within swine populations. PMID:11777826

  10. C9orf72 repeat expansions that cause frontotemporal dementia are detectable among patients with psychosis.

    PubMed

    Watson, Annie; Pribadi, Mochtar; Chowdari, Kodavali; Clifton, Sue; Joel Wood; Miller, Bruce L; Coppola, Giovanni; Nimgaonkar, Vishwajit

    2016-01-30

    A pathologic hexanucleotide repeat expansion in C9orf72 causes frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). Behavioral abnormalities can also occur among mutation carriers with FTD, but it is uncertain whether such mutations occur among persons with psychoses per se. Among participants in a genetic study of psychoses (N=739), two pairs of related individuals had C9orf72 expansions, of whom three were diagnosed with schizophrenia (SZ) / schizoaffective disorder (SZA), but their clinical features did not suggest dementia or ALS. A few patients with SZ/SZA carry C9orf72 repeat expansions; such individuals are highly likely to develop FTD/ALS.

  11. Tau Pathology in Frontotemporal Lobar Degeneration with C9ORF72 Hexanucleotide Repeat Expansion

    PubMed Central

    Bieniek, Kevin F.; Murray, Melissa E.; Rutherford, Nicola J.; Castanedes-Casey, Monica; DeJesus-Hernandez, Mariely; Liesinger, Amanda M.; Baker, Matthew C.; Boylan, Kevin B.; Rademakers, Rosa; Dickson, Dennis W.

    2012-01-01

    An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration associated with TDP-43 pathology (FTLD-TDP). In addition to TDP-43-positive neuronal and glial inclusions, C9ORF72-linked FTLD-TDP has characteristic TDP-43-negative neuronal cytoplasmic and intranuclear inclusions as well as dystrophic neurites in the hippocampus and cerebellum. These lesions are immunopositive for ubiquitin and ubiquitin-binding proteins, such as sequestosome-1/p62 and ubiquilin-2. Studies examining the frequency of the C9ORF72 mutation in clinically probable Alzheimer’s disease (AD) have found a small proportion of AD cases with the mutation. This prompted us to systematically explore the frequency of Alzheimer type pathology in a series of 17 FTLD-TDP cases with mutations in C9ORF72 (FTLD-C9ORF72). We identified 4 cases with sufficient Alzheimer type pathology to meet criteria for intermediate-to-high likelihood AD. We compared AD pathology in the 17 FTLD-C9ORF72 to 13 cases of FTLD-TDP linked to mutations in the gene for progranulin (FTLD-GRN) and 36 cases of sporadic FTLD (sFTLD). FTLD-C9ORF72 cases had higher Braak neurofibrillary tangle stage than FTLD-GRN. Increased tau pathology in FTLD-C9ORF72 was assessed with thioflavin-S fluorescent microscopy-based neurofibrillary tangle counts and with image analysis of tau burden in temporal cortex and hippocampus. FTLD-C9ORF72 had significantly more neurofibrillary tangles and higher tau burden compared with FTLD-GRN. The differences were most marked in limbic regions. On the other hand, sFTLD and FTLD-C9ORF72 had a similar burden of tau pathology. These results suggest FTLD-C9ORF72 has increased propensity for tau pathology compared to FTLD-GRN, but not sFTLD. The accumulation of tau as well as lesions immunoreactive for ubiquitin and ubiquitin binding proteins (p62 and ubiquilin-2) suggests that mutations in C9ORF72 may involve

  12. Molecular Epidemiology of orf513-Bearing Class 1 Integrons in Multiresistant Clinical Isolates from Argentinean Hospitals

    PubMed Central

    Arduino, Sonia M.; Catalano, Mariana; Orman, Betina E.; Roy, Paul H.; Centrón, Daniela

    2003-01-01

    The spread of orf513-bearing class 1 integrons is associated with blaCTX-M-2 in gram-negative clinical isolates in Argentina, with In35 being the most frequently found integron (74%). Among 65 isolates without blaCTX-M-2, only one harbored a novel orf513-bearing class 1 integron with the dfrA3b gene. The finding of orf513 not associated with class 1 integrons in two gram-positive strains indicates the widespread occurrence of this putative site-specific recombinase. PMID:14638506

  13. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations

    PubMed Central

    Rollinson, Sara; Thompson, Jennifer C.; Harris, Jennifer M.; Stopford, Cheryl L.; Richardson, Anna M. T.; Jones, Matthew; Gerhard, Alex; Davidson, Yvonne S.; Robinson, Andrew; Gibbons, Linda; Hu, Quan; DuPlessis, Daniel; Neary, David; Pickering-Brown, Stuart M.

    2012-01-01

    The identification of a hexanucleotide repeat expansion in the C9ORF72 gene as the cause of chromosome 9-linked frontotemporal dementia and motor neuron disease offers the opportunity for greater understanding of the relationship between these disorders and other clinical forms of frontotemporal lobar degeneration. In this study, we screened a cohort of 398 patients with frontotemporal dementia, progressive non-fluent aphasia, semantic dementia or mixture of these syndromes for mutations in the C9ORF72 gene. Motor neuron disease was present in 55 patients (14%). We identified 32 patients with C9ORF72 mutations, representing 8% of the cohort. The patients’ clinical phenotype at presentation varied: nine patients had frontotemporal dementia with motor neuron disease, 19 had frontotemporal dementia alone, one had mixed semantic dementia with frontal features and three had progressive non-fluent aphasia. There was, as expected, a significant association between C9ORF72 mutations and presence of motor neuron disease. Nevertheless, 46 patients, including 22 familial, had motor neuron disease but no mutation in C9ORF72. Thirty-eight per cent of the patients with C9ORF72 mutations presented with psychosis, with a further 28% exhibiting paranoid, deluded or irrational thinking, whereas <4% of non-mutation bearers presented similarly. The presence of psychosis dramatically increased the odds that patients carried the mutation. Mutation bearers showed a low incidence of motor stereotypies, and relatively high incidence of complex repetitive behaviours, largely linked to patients’ delusions. They also showed a lower incidence of acquired sweet food preference than patients without C9ORF72 mutations. Post-mortem pathology in five patients revealed transactive response DNA-binding protein 43 pathology, type A in one patient and type B in three. However, one patient had corticobasal degeneration pathology. The findings indicate that C9ORF72 mutations cause some but not all

  14. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality

    SciTech Connect

    Ramalho, T.O.; Figueira, A.R.; Sotero, A.J.; Wang, R.; Geraldino Duarte, P.S.; Farman, M.; Goodin, M.M.

    2014-09-15

    The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a member of the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an initially local lesion host was quantified. - Highlights: • We report genome sequence determination for Coffee ringspot virus (CoRSV). • CoRSV should be considered a member of the proposed Dichorhavirus genus. • We report temperature-dependent systemic infection of an initially local lesion host. • We report in planta protein and localization data for five CoRSV proteins. • In silico predictions of the CoRSV proteins were validated using in vivo assays.

  15. Molecular organization of Leishmania RNA virus 1.

    PubMed Central

    Stuart, K D; Weeks, R; Guilbride, L; Myler, P J

    1992-01-01

    The complete 5284-nucleotide sequence of the double-stranded RNA genome of Leishmania RNA virus 1 (LRV1) was determined and contains three open reading frames (ORFs) on the plus (+) (mRNA) strand. The predicted amino acid sequence of ORF3 has motifs characteristic of viral RNA-dependent RNA polymerases. ORF2, which may encode the major viral coat protein, overlaps ORF3 by 71 nucleotides, suggesting a +1 translational frameshift to produce a gag-pol type of fusion protein. Two alternative models for the frameshift are presented. The 5' splice leader sequence of kinetoplastid mRNAs is not in LRV1 RNA. This suggests that the 450-base region at the 5' end of the LRV1 (+)-strand, which contains ORF1 and is highly conserved among viral strains, does not encode protein but has a role in initiation of translation and/or RNA stability. The similarity of LRV1 genomic organization, replication cycle, and RNA-dependent RNA polymerase sequence to those of the yeast virus ScV L-A suggests a common ancestral origin. The possibility that LRV1 affects pathogenesis in leishmaniasis is intriguing. Images PMID:1382295

  16. Regulation of the Abundance of Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2

    PubMed Central

    Chang, Tzu-Hsuan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-01-01

    The switch between latency and the lytic cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490–535) and PARS-II (aa 590–650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50. PMID:27698494

  17. Regulation of the Abundance of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2.

    PubMed

    Chang, Tzu-Hsuan; Wang, Shie-Shan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-10-01

    The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535) and PARS-II (aa 590-650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.

  18. 1-Deoxy-d-Xylulose 5-Phosphate Synthase, the Gene Product of Open Reading Frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus

    PubMed Central

    Hahn, Frederick M.; Eubanks, Lisa M.; Testa, Charles A.; Blagg, Brian S. J.; Baker, Jonathan A.; Poulter, C. Dale

    2001-01-01

    In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and d-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-d-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-d-xylulose 5-phosphate synthase A and B, containing a His6 tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-d-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-d-xylulose 5-phosphate synthase A and B: Kmpyruvate = 0.61 and 3.0 mM, Kmd-glyceraldehyde 3-phosphate = 150 and 120 μM, and Vmax = 1.9 and 1.4 μmol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-d-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11. PMID:11114895

  19. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  20. Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader.

    PubMed

    Pooggin, M M; Hohn, T; Fütterer, J

    2000-06-09

    The pregenomic 35 S RNA of cauliflower mosaic virus (CaMV) belongs to the growing number of mRNAs known to have a complex leader sequence. The 612-nucleotide leader contains several short open reading frames (sORFs) and forms an extended hairpin structure. Downstream translation of 35 S RNA is nevertheless possible due to the ribosome shunt mechanism, by which ribosomes are directly transferred from a take-off site near the capped 5' end of the leader to a landing site near its 3' end. There they resume scanning and reach the first long open reading frame. We investigated in detail how the multiple sORFs influence ribosome migration either via shunting or linear scanning along the CaMV leader. The sORFs together constituted a major barrier for the linear ribosome migration, whereas the most 5'-proximal sORF, sORF A, in combination with sORFs B and C, played a positive role in translation downstream of the leader by diverting scanning ribosomes to the shunt route. A simplified, shunt-competent leader was constructed with the most part of the hairpin including all the sORFs except sORF A replaced by a scanning-inhibiting structure. In this leader as well as in the wild type leader, proper translation and termination of sORF A was required for efficient shunt and also for the level of shunt enhancement by a CaMV-encoded translation transactivator. sORF A could be replaced by heterologous sORFs, but a one-codon (start/stop) sORF was not functional. The results implicate that in CaMV, shunt-mediated translation requires reinitiation. The efficiency of the shunt process is influenced by translational properties of the sORF.

  1. Treatment of chronic stomatitis of cats by local paramunization with PIND-ORF.

    PubMed

    Mayr, B; Deininger, S; Büttner, M

    1991-02-01

    33 cats, suffering from chronic stomatitis, were treated with orally given paramunity inducer PIND-ORF (local paramunization). As a control 39 cats in the same practice were treated with other conventional methods. The reconvalescence rate (healing without rezidives) of experimental animals was 42%. From control animals only 13% reached this status. Oral paramunization with PIND-ORF is recommended as an alternative treatment for hitherto existing therapeutic measures against chronic stomatitis.

  2. Tanay virus, a new species of virus isolated from mosquitoes in the Philippines.

    PubMed

    Nabeshima, Takeshi; Inoue, Shingo; Okamoto, Kenta; Posadas-Herrera, Guillermo; Yu, Fuxun; Uchida, Leo; Ichinose, Akitoyo; Sakaguchi, Miako; Sunahara, Toshihiko; Buerano, Corazon C; Tadena, Florencio P; Orbita, Ildefonso B; Natividad, Filipinas F; Morita, Kouichi

    2014-06-01

    In 2005, we isolated a new species of virus from mosquitoes in the Philippines. The virion was elliptical in shape and had a short single projection. The virus was named Tanay virus (TANAV) after the locality in which it was found. TANAV genomic RNA was a 9562 nt+poly-A positive strand, and polycistronic. The longest ORF contained putative RNA-dependent RNA polymerase (RdRP); however, conserved short motifs in the RdRP were permuted. TANAV was phylogenetically close to Negevirus, a recently proposed taxon of viruses isolated from haemophagic insects, and to some plant viruses, such as citrus leprosis virus C, hibiscus green spot virus and blueberry necrotic ring blotch virus. In this paper, we describe TANAV and the permuted structure of its RdRP, and discuss its phylogeny together with those of plant viruses and negevirus.

  3. [Construction of pORF-mIG and activity evaluation of MIG in vitro].

    PubMed

    Zhang, Ru; Tian, Ling; Xiao, Fei; Wen, Yan-jun; li, Jiong; Hou, Jian-mei; Zhang, Ling; Li, Gang; Yao, Bing; Chen, Xian-cheng; Mel, Kai

    2006-07-01

    To establish a transformant of monokine induced by interferon-gamma (MIG) with the eukaryotic expression vector for further investigating the efficacy of its use in antitumor gene therapy. The MIG full-length cDNA was amplified from pBLAST-MIG and was cloned into the eukaryote expression vector pORF-mcs, and the resulted recombinant plasmid was named pORF-MIG. The recombinant pORF-MIG was determined with restriction enzyme and sequencing, and then it was transfected into COS-7 cells by Lipfectamin. Expression of the transformant was detected by immunoblot assay, and the bioactivity was assessed by chemotaxis assay. The restriction analysis and the sequence determination confirmed that the recombinant pORF-MIG contained the MIG full-length cDNA. And the transformants of pORF-MIG expressed the MIG protein which could apparently attract the activated lymphocytes. The recombinant pORF-MIG was constructed successfully, and this recombinant eukaryotic expression vector could be used in additional studies on the biological effect of MIG and its use in anti-tumor gene therapy.

  4. C9orf72 repeat expansions are a rare genetic cause of parkinsonism

    PubMed Central

    Lesage, Suzanne; Le Ber, Isabelle; Condroyer, Christel; Broussolle, Emmanuel; Gabelle, Audrey; Thobois, Stéphane; Pasquier, Florence; Mondon, Karl; Dion, Patrick A.; Rochefort, Daniel; Rouleau, Guy A.; Dürr, Alexandra; Brice, Alexis

    2013-01-01

    The recently identified C9ORF72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. Since several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson’s disease or other forms of parkinsonism might carry pathogenic C9OFR72 expansions. Therefore, we looked for C9ORF72 repeat expansions in 1,446 parkinsonian unrelated patients consisted of 1,225 clinically diagnosed with Parkinson’s disease, 123 with progressive supranuclear palsy, 21 with corticobasal degeneration syndrome, 43 with Lewy body dementia and 25 with multiple system atrophy-parkinsonism. Of the 1,446 parkinsonian patients, five carried C9ORF72 expansions: three patients with typical Parkinson’s disease, one with corticobasal degeneration syndrome and another with progressive supranuclear palsy. This study shows that: i) although rare, C9ORF72 repeat expansions may be associated with clinically typical Parkinson’s disease, but also with other parkinsonism; ii) in several patients, parkinsonism was dopa-responsive and remained pure, without associated dementia, for more than 10 years; iii) interestingly, all C9ORF72 repeat expansion carriers had positive family histories of parkinsonism, degenerative dementias or amyotrophic lateral sclerosis. This study also provides the tools for identifying parkinsonian patients with C9ORF72 expansions, with important consequences for genetic counseling. PMID:23413259

  5. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies

    PubMed Central

    Hensman Moss, Davina J.; Poulter, Mark; Beck, Jon; Hehir, Jason; Polke, James M.; Campbell, Tracy; Adamson, Garry; Mudanohwo, Ese; McColgan, Peter; Haworth, Andrea; Wild, Edward J.; Sweeney, Mary G.; Houlden, Henry; Mead, Simon

    2014-01-01

    Objective: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. Methods: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. Results: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. Discussion: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data. PMID:24363131

  6. Clinicopathological Study of Patients With C9ORF72-Associated Frontotemporal Dementia Presenting With Delusions.

    PubMed

    Shinagawa, Shunichiro; Naasan, Georges; Karydas, Anna M; Coppola, Giovanni; Pribadi, Mochtar; Seeley, William W; Trojanowski, John Q; Miller, Bruce L; Grinberg, Lea T

    2015-06-01

    Several clinical studies point to a high prevalence of psychotic symptoms in frontotemporal dementia associated with C9ORF72 mutations, but clinicopathological studies addressing the association between C9ORF72 mutations and delusions are lacking. Seventeen patients with pathologically proven frontotemporal lobar degeneration (FTLD) associated with C9ORF72 mutations were identified from Neurodegenerative Disease Brain Bank. Of the 17 cases with C9ORF72 mutation, 4 exhibited well-defined delusions. The clinical history, neurological examination, neuropsychological testing, neuroimaging analysis, and postmortem assessment of the patients with delusions were evaluated and compared with the other cases. The content of the delusions was mixed including persecution, infidelity, and grandiosity. All cases showed parkinsonism; voxel-based morphometry analysis showed greater precuneus atrophy in patients with delusions than those without delusions. All 4 had unclassifiable FTLD with TAR DNA-binding protein inclusions, with characteristics of both type A and type B. Three cases had additional τ pathology and another had α-synuclein pathology. C9ORF72 carriers with well-defined delusions likely associated with additional pathologies and parietal atrophy in neuroimaging. Patients presenting with middle-aged onset of delusions should be screened for C9ORF72 mutations, especially if family history and parkinsonism are present. © The Author(s) 2014.

  7. C9orf72 hexanucleotide repeat expansion analysis in Chinese spastic paraplegia patients.

    PubMed

    Luo, Yingying; Jiao, Bin; Wang, Junling; Du, Juan; Yan, Xinxiang; Xia, Kun; Tang, Beisha; Shen, Lu

    2014-12-15

    Recently, a hexanucleotide repeat expansion in the C9orf72 gene has been identified to cause frontotemporal dementia, amyotrophic lateral sclerosis families and many other neurodegenerative diseases. Owing to the overlapping phenotypes among HSP, frontotemporal dementia and amyotrophic lateral sclerosis we hypothesized that C9orf72 expansions might be a genetic risk factor or modifier of HSP. The aim of this study was to find out whether C9orf72 expansions also confer risk to spastic paraplegia (SPG). We recruited 112 genetically unidentified SPG patients, 68 SPG4 patients and 313 controls in mainland China to determine if hexanucleotide repeat of C9orf72 plays a role in spastic paraplegia. No large expansion was detected in all subjects. C9orf72 repeat expansions were not associated with onset of HSP. Our results support the notion that repeat expansions in C9orf72 may not be associated with HSP in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Repeat expansions in the C9ORF72 gene contribute to Alzheimer's disease in Caucasians.

    PubMed

    Kohli, Martin A; John-Williams, Krista; Rajbhandary, Ruchita; Naj, Adam; Whitehead, Patrice; Hamilton, Kara; Carney, Regina M; Wright, Clinton; Crocco, Elizabeth; Gwirtzman, Harry E; Lang, Rosalyn; Beecham, Gary; Martin, Eden R; Gilbert, John; Benatar, Michael; Small, Gary W; Mash, Deborah; Byrd, Goldie; Haines, Jonathan L; Pericak-Vance, Margaret A; Züchner, Stephan

    2013-05-01

    Recently, a hexanucleotide repeat expansion in the C9ORF72 gene has been identified to account for a significant portion of Caucasian families affected by frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Given the clinical overlap of FTD with Alzheimer's disease (AD), we hypothesized that C9ORF72 expansions might contribute to AD. In Caucasians, we found C9ORF72 expansions in the pathogenic range of FTD/ALS (>30 repeats) at a proportion of 0.76% in AD cases versus 0 in control subjects (p = 3.3E-03; 1182 cases, 1039 controls). In contrast, no large expansions were detected in individuals of African American ethnicity (291 cases, 620 controls). However, in the range of normal variation of C9ORF72 expansions (0-23 repeat copies), we detected significant differences in distribution and mean repeat counts between Caucasians and African Americans. Clinical and pathological re-evaluation of identified C9ORF72 expansion carriers revealed 9 clinical and/or autopsy confirmed AD and 2 FTD final diagnoses. Thus, our results support the notion that large C9ORF72 expansions lead to a phenotypic spectrum of neurodegenerative disease including AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Genome of Horsepox Virus

    PubMed Central

    Tulman, E. R.; Delhon, G.; Afonso, C. L.; Lu, Z.; Zsak, L.; Sandybaev, N. T.; Kerembekova, U. Z.; Zaitsev, V. L.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses. PMID:16940536

  10. Varicella-zoster virus transcriptome in latently infected human ganglia.

    PubMed

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Cordery-Cotter, Robert; Gilden, Don; Cohrs, Randall J

    2011-03-01

    We recently developed a novel multiplex reverse transcription (RT)-PCR assay that allows rapid and sensitive detection of transcripts corresponding to all 68 unique varicella-zoster virus (VZV) open reading frames (ORFs) in only five amplification reactions (M. A. Nagel, D. Gilden, T. Shade, B. Gao, and R. J. Cohrs, J. Virol. Methods 157:62-68, 2009). Herein, we applied multiplex RT-PCR analysis to mRNA extracted from 26 trigeminal ganglia latently infected with VZV and one control trigeminal ganglion negative for VZV DNA that were removed from 14 men and women, 16 to 84 years of age, within 24 h after death. Analysis identified VZV transcripts mapping to VZV ORFs 29, 62, and 63, previously detected and sequence verified; VZV ORFs 4 and 40, previously detected by in situ hybridization; and VZV ORFs 11, 41, 43, 57, and 68, not previously detected. VZV ORF 63 transcripts were the most prevalent. Comparison of the 10 VZV ORFs transcribed during latency to their herpes simplex virus type 1 homologues reveals that the latently transcribed VZV genes encode immediate-early, early, and late transcripts.

  11. Bombyx mori nucleopolyhedrovirus ORF94, a novel late protein is identified to be a component of ODV structural protein.

    PubMed

    Liang, Guiting; Li, Guohui; Chen, Keping; Yao, Qin; Chen, Huiqing; Zhou, Yang

    2010-09-01

    Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluorescence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.

  12. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  13. Complete nucleotide sequence of the new potexvirus "Alstroemeria virus X". Brief report.

    PubMed

    Fuji, S; Shinoda, K; Ikeda, M; Furuya, H; Naito, H; Fukumoto, F

    2005-11-01

    A flexuous virus was isolated in Japan from an alstroemeria plant showing mosaic symptoms. The virus had a broad host range but had systemically latent infectivity in alstroemeria. The virus was assigned to the genus Potexvirus based on morphology and physical properties and on an analysis of the complete nucleotide sequence. The genomic RNA of the virus was 7,009 nucleotides in length, excluding the 3'-terminal poly (A) tail. It contained five open reading frames (ORFs), which was consistent with other members of the genus Potexvirus. Although nucleotide sequences of the ORFs differ from previously reported potexviruses, a phylogenetic analysis placed it phylogenetically close to Narcissus mosaic virus and Scallion virus X. Therefore, we propose that this virus should be designated as Alstroemeria virus X (AlsVX).

  14. Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma

    PubMed Central

    Feng, Fan; Lu, Yin-Ying; Zhang, Fan; Gao, Xu-Dong; Zhang, Chuan-Fu; Meredith, Alex; Xu, Zhong-Xian; Yang, Yu-Tao; Chang, Xiu-Juan; Wang, Hong; Qu, Jian-Hui; Zeng, Zhen; Yang, Jun-Lan; Wang, Chun-Ping; Zhu, Yun-Feng; Cui, Jia-Jun; Yang, Yong-Ping

    2013-01-01

    AIM: To clarify the specific roles and mechanisms of long interspersed nuclear element-1 ORF-1 protein [human long interspersed nuclear element-1 (LINE-1), ORF-1p] in chemotherapeutic drug resistance and cell proliferation regulation in hepatocellular carcinoma (HCC) cells. METHODS: MTT assays were performed to identify the effect of the chemotherapeutic drug toxicity on HepG2 cells. Cell proliferation inhibition and the IC50 were calculated by the Origin 8.0 software. Western blotting assays were performed to investigate whether LINE-1 ORF-1p modulates the expression of some important genes, including p53, p27, p15, Bcl-2, mdr, and p-gp. To corroborate the proliferation and anchor-independent growth results, the HepG2 cells were analyzed by flow cytometry to investigate the effect of LINE-1 ORF-1p on the apoptosis regulation. RESULTS: LINE-1 ORF-1p contributed to the resistance to several chemotherapeutic drugs (cisplatin and epirubicin) in HepG2 cells. The IC50 of the epirubicin and cisplatin increased from 36.04 nmol/L to 59.11 nmol/L or from 37.94 nmol/L to 119.32 nmol/L. Repression of LINE-1 ORF-1p expression by the siRNA could markedly enhance the response of HepG2 cells to the epirubicin and cisplatin. The IC50 correspondingly decreased from 28.06 nmol/L to 3.83 nmol/L or from 32.04 nmol/L to 2.89 nmol/L. Interestingly, down-regulation of LINE-1 ORF-1p level by siRNA could promote the response of HepG2 cells to the paclitaxel. The IC50 decreased from 35.90 nmol/L to 7.36 nmol/L. However, overexpression of LINE-1 ORF-1p did not modulate the paclitaxel toxicity in HepG2 cells. Further Western blotting revealed that LINE-1 ORF-1p enhanced mdr and p-gp gene expression. As a protein arrested in the nucleus, LINE-1 ORF-1p may function through modulating transcriptional activity of some important transcription factors. Indeed, LINE-1 ORF-1p promoted HepG2 cell proliferation, anchor-independent growth and protected the cells against apoptosis through modulating the

  15. Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma.

    PubMed

    Feng, Fan; Lu, Yin-Ying; Zhang, Fan; Gao, Xu-Dong; Zhang, Chuan-Fu; Meredith, Alex; Xu, Zhong-Xian; Yang, Yu-Tao; Chang, Xiu-Juan; Wang, Hong; Qu, Jian-Hui; Zeng, Zhen; Yang, Jun-Lan; Wang, Chun-Ping; Zhu, Yun-Feng; Cui, Jia-Jun; Yang, Yong-Ping

    2013-02-21

    To clarify the specific roles and mechanisms of long interspersed nuclear element-1 ORF-1 protein [human long interspersed nuclear element-1 (LINE-1), ORF-1p] in chemotherapeutic drug resistance and cell proliferation regulation in hepatocellular carcinoma (HCC) cells. MTT assays were performed to identify the effect of the chemotherapeutic drug toxicity on HepG2 cells. Cell proliferation inhibition and the IC50 were calculated by the Origin 8.0 software. Western blotting assays were performed to investigate whether LINE-1 ORF-1p modulates the expression of some important genes, including p53, p27, p15, Bcl-2, mdr, and p-gp. To corroborate the proliferation and anchor-independent growth results, the HepG2 cells were analyzed by flow cytometry to investigate the effect of LINE-1 ORF-1p on the apoptosis regulation. LINE-1 ORF-1p contributed to the resistance to several chemotherapeutic drugs (cisplatin and epirubicin) in HepG2 cells. The IC50 of the epirubicin and cisplatin increased from 36.04 nmol/L to 59.11 nmol/L or from 37.94 nmol/L to 119.32 nmol/L. Repression of LINE-1 ORF-1p expression by the siRNA could markedly enhance the response of HepG2 cells to the epirubicin and cisplatin. The IC50 correspondingly decreased from 28.06 nmol/L to 3.83 nmol/L or from 32.04 nmol/L to 2.89 nmol/L. Interestingly, down-regulation of LINE-1 ORF-1p level by siRNA could promote the response of HepG2 cells to the paclitaxel. The IC50 decreased from 35.90 nmol/L to 7.36 nmol/L. However, overexpression of LINE-1 ORF-1p did not modulate the paclitaxel toxicity in HepG2 cells. Further Western blotting revealed that LINE-1 ORF-1p enhanced mdr and p-gp gene expression. As a protein arrested in the nucleus, LINE-1 ORF-1p may function through modulating transcriptional activity of some important transcription factors. Indeed, LINE-1 ORF-1p promoted HepG2 cell proliferation, anchor-independent growth and protected the cells against apoptosis through modulating the expression of p15, p21

  16. Detection of rice tungro bacilliform virus gene products in vivo.

    PubMed

    Hay, J; Grieco, F; Druka, A; Pinner, M; Lee, S C; Hull, R

    1994-12-01

    To study the products of the open reading frames (ORFs) of rice tungro bacilliform virus in rice plants the sequences containing ORFs I (encoding a 24-kDa protein, P24) and IV (P46) and the protease and polymerase (reverse transcriptase+RNaseH) domains of ORF III were cloned into a pGEX expression vector. The proteins, which were C-terminal fusions to glutathione S-transferase, were expressed in Escherichia coli and antisera were raised against them which, together with an antiserum against virus particles, was used to probe blots of proteins from infected and uninoculated plants and from virus preparations. The P24 antiserum detected virus-specific proteins of 74, 60, and 52 kDa, which are much bigger than expected. These proteins were found in virus preparations and immunogold labeling suggested that they might be internal in the particles. Virus-specific proteins of 33, 37, 62, and > 150 kDa were revealed by antiserum to virus particles. The antiserum to the protease revealed proteins of 13.5, 37, and 68 kDa both in extracts from infected plants and in purified virus preparations. This antiserum decorated intact virus particles as did the particle antiserum. The polymerase domain antiserum reacted with products of 56, 65, and 68 kDa in extracts from infected plants but not in virus particles. The antiserum to the ORF IV product did not detect any bands in either infected plant extracts or virus preparations. The significance of these products is discussed.

  17. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling

    PubMed Central

    Amick, Joseph; Roczniak-Ferguson, Agnes; Ferguson, Shawn M.

    2016-01-01

    Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia. However, beyond bioinformatics predictions that suggested structural similarity to folliculin, the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome-editing strategies to investigate C9orf72 interactions, subcellular localization, and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We also observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO, and double-KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 and impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) after depletion of either C9orf72 or SMCR8. Collectively these results identify strong physical and functional interactions between C9orf72 and SMCR8 and support a lysosomal site of action for this protein complex. PMID:27559131

  18. Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling

    PubMed Central

    Conchina, Karen; Chu, Justin; Nirujogi, Raja Sekhar; Brady, Nathan R.; Hamacher-Brady, Anne

    2016-01-01

    The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other’s protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases. PMID:27875531

  19. C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease

    PubMed Central

    Harms, Matthew; Benitez, Bruno; Cairns, Nigel; Cooper, Breanna; Cooper, Paul; Mayo, Kevin; Carrell, David; Faber, Kelley; Williamson, Jennifer; Bird, Tom; Diaz-Arrastia, Ramon; Foroud, Tatiana M.; Boeve, Bradley F.; Graff-Radford, Neill R.; Mayeux, Richard; Chakraverty, Sumitra; Goate, Alison M.; Cruchaga, Carlos

    2013-01-01

    Objective Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD). Design, setting and patients This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD. Main Outcome Measure We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers. Results Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions. Interpretation C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history. PMID:23588422

  20. Structure and mechanism of ORF36, an Aminosugar Oxidizing Enzyme in Everninomicin Biosynthesis†

    PubMed Central

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T. M.

    2010-01-01

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitrosugar, l-evernitrose, analogs of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically-generated thymidine diphosphate (TDP)-l-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-l-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of 18O2 establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products, and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 Å resolution x-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-coA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36. PMID:20866105

  1. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    PubMed

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Mutations in C10orf11, a Melanocyte-Differentiation Gene, Cause Autosomal-Recessive Albinism

    PubMed Central

    Grønskov, Karen; Dooley, Christopher M.; Østergaard, Elsebet; Kelsh, Robert N.; Hansen, Lars; Levesque, Mitchell P.; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L.; Rosenberg, Thomas

    2013-01-01

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2–q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. PMID:23395477

  3. Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis

    SciTech Connect

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T.M.

    2010-12-07

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent Gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitro sugar, L-evernitrose, analogues of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically generated thymidine diphosphate (TDP)-L-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five-enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-L-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single-oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of {sup 18}O{sub 2} establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 {angstrom} resolution X-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-CoA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36.

  4. Genomic characterization of Ambrosia asymptomatic virus 1 and evidence of other Tymovirales members in the Oklahoma tallgrass prairie revealed by sequence analysis.

    PubMed

    Dutta, Mukta; Sokhandan Bashir, Nemat; Palmer, Michael W; Melcher, Ulrich

    2014-07-01

    The Plant Virus Biodiversity and Ecology project was undertaken to better understand the nature of plant-viral interactions and the occurrence of non-pathogenic viruses. Plants from the Tallgrass Prairie Preserve (TPP), Osage County, Oklahoma, were surveyed from 2005 to 2008 for the presence of viruses, resulting in the detection, using a virus-like particle enrichment method, of the genome a novel virus, Ambrosia asymptomatic virus 1 (AAV1), from Ambrosia psilostachya DC (western ragweed). Here, we present the genomic organization and genetic variability of AAV1. The virus has a single-stranded RNA genome of about 7408 nt, which has six open reading frames (ORFs). Phylogenetic analysis of the replicase and coat protein ORFs of the virus indicates strongly that the virus should be placed in the genus Mandarivirus. No evidence of recombination was detected. We also report the detection in the TPP of two known viruses and seven other putative viruses, members of the order Tymovirales.

  5. Repeat sequences from complex ds DNA viruses can be used as minisatellite probes for DNA fingerprinting.

    PubMed

    Crawford, A M; Buchanan, F C; Fraser, K M; Robinson, A J; Hill, D F

    1991-01-01

    In a search for new fingerprinting probes for use with sheep, repeat sequences derived from five poxviruses, an iridovirus and a baculovirus were screened against DNA from sheep pedigrees. Probes constructed from portions of the parapox viruses, orf virus and papular stomatitis virus and the baculovirus from the alfalfa looper, Autographa californica, nuclear polyhedrosis virus all gave fingerprint patterns. Probes from three other poxviruses and an iridovirus did not give useful banding patterns.

  6. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae.

    PubMed

    Depierreux, Delphine; Vong, Minh; Nibert, Max L

    2016-06-02

    Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.

  7. Recent advances in Hepatitis E virus.

    PubMed

    Meng, X J

    2010-03-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, belongs to the family Hepeviridae. At least four major genotypes of HEV have been recognized: genotypes 1 and 2 are restricted to humans and associated with epidemics in developing countries, whereas genotypes 3 and 4 are zoonotic and infect humans and several other animals in both developing and industrialized countries. Besides humans, strains of HEV have been genetically identified from swine, chickens, sika deer, mongeese, and rabbits. The genome of HEV consists of three open reading frames (ORFs): ORF1 codes for nonstructural proteins, ORF2 codes for capsid protein, and ORF3 codes for a small multifunctional protein. The ORF2 and ORF3 proteins are translated from a single bicistronic mRNA and overlap each other but neither overlaps ORF1. The recent determination of the 3D crystal structure of the HEV capsid protein should facilitate the development of vaccines and antivirals. The identification and characterization of animal strains of HEV from pigs and chickens and the demonstrated ability of cross-species infection by swine HEV raise public health concerns for zoonosis. Accumulating evidence indicated that hepatitis E is a zoonotic disease and pigs and more likely other animal species are reservoirs for HEV. This article provides an overview of the recent advances in hepatitis E and its causative agent, including nomenclature and genomic organization, gene expression and functions, 3D structure of the virions, changing perspectives on higher mortality during pregnancy and chronic hepatitis E, animal reservoirs, zoonotic risk, food safety, and novel animal models.

  8. Psychosis and Hallucinations in FTD with C9ORF72 mutation: A detailed clinical cohort

    PubMed Central

    Kertesz, Andrew; Ang, Lee Cyn; Jesso, Sarah; MacKinley, Julia; Baker, Matt; Brown, Patricia; Shoesmith, Christen; Rademakers, Rosa; Finger, Elizabeth C.

    2014-01-01

    OBJECTIVE To describe in detail the presenting symptoms and clinical course of a cohort of patients with Frontotemporal dementia and the recently described C9ORF72 repeat expansion. BACKGROUND Recent discovery of the C9ORF72 repeat expansion linked to familial frontotemporal dementia and ALS has permitted retrospective evaluation of potential defining clinical characteristics that may distinguish C9ORF72 mutation carriers from other patients with FTD. Prior reports have identified a subset of patients with an increased incidence of psychosis, specifically delusions, though the detailed nature of these symptoms is not yet well described. METHODS We conducted a retrospective chart review of to report the detailed case histories of 7 patients with C9ORF72 mutations from a cohort of 61 patients with FTD. Results Detailed histories available from these patients reveal an increased incidence of psychosis, including visual and auditory hallucinations and delusions compared to sporadic FTD patients in our cohort. CONCLUSIONS This cohort confirms and adds symptom-related details to prior reports of increased incidence of psychotic phenomenon in FTD and ALS patients with C9ORF72 mutations, to enhance future clinical identification and diagnosis of patients presenting with these symptoms. PMID:24077574

  9. Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans.

    PubMed

    Sokolowski, Mark; Chynces, May; deHaro, Dawn; Christian, Claiborne M; Belancio, Victoria P

    2017-05-19

    Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD

    PubMed Central

    O'Rourke, Jacqueline G.; Bogdanik, Laurent; Muhammad, A.K.M.G.; Gendron, Tania F.; Kim, Kevin J.; Austin, Andrew; Cady, Janet; Liu, Elaine; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W.; Harms, Matthew B.; Petrucelli, Leonard; Lee, Edward B.; Lutz, Cathleen M.; Baloh, Robert H.

    2015-01-01

    Summary Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (~100-1000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically, and are not sufficient to drive neurodegeneration in mice at levels seen in patients. PMID:26637796

  11. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.

    PubMed

    O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H

    2015-12-02

    Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.

  12. Hemotin, a Regulator of Phagocytosis Encoded by a Small ORF and Conserved across Metazoans

    PubMed Central

    Pueyo, José I.; Amin, Unum; Evans, Iwan R.; Bishop, Sarah A.; Couso, Juan P.

    2016-01-01

    Translation of hundreds of small ORFs (smORFs) of less than 100 amino acids has recently been revealed in vertebrates and Drosophila. Some of these peptides have essential and conserved cellular functions. In Drosophila, we have predicted a particular smORF class encoding ~80 aa hydrophobic peptides, which may function in membranes and cell organelles. Here, we characterise hemotin, a gene encoding an 88aa transmembrane smORF peptide localised to early endosomes in Drosophila macrophages. hemotin regulates endosomal maturation during phagocytosis by repressing the cooperation of 14-3-3ζ with specific phosphatidylinositol (PI) enzymes. hemotin mutants accumulate undigested phagocytic material inside enlarged endo-lysosomes and as a result, hemotin mutants have reduced ability to fight bacteria, and hence, have severely reduced life span and resistance to infections. We identify Stannin, a peptide involved in organometallic toxicity, as the Hemotin functional homologue in vertebrates, showing that this novel regulator of phagocytic processing is widely conserved, emphasizing the significance of smORF peptides in cell biology and disease. PMID:27015288

  13. Narcissus symptomless virus: a new carlavirus of daffodils.

    PubMed

    Chen, J; Shi, Y-H; Lu, Y-W; Adams, M J; Chen, J-P

    2006-11-01

    A filamentous virus, with particles 600-650 nm long, was purified from Narcissus pseudonarcissus (daffodil) in Hangzhou and an antiserum prepared. After mechanical inoculation, the virus could be detected serologically in Narcissus species but not in some commonly used virus indicators. Infection was symptomless. The complete sequence of the genomic RNA (8281 nt) showed six predicted ORFs typical of carlaviruses. Pairwise comparisons of gene sequences and phylogenetic analysis demonstrated that the new virus should be classified as a carlavirus but that it was not closely related to members of any current species. We propose the name Narcissus symptomless virus (NSV).

  14. A novel single-stranded RNA virus in Nesidiocoris tenuis.

    PubMed

    Xu, Pengjun; Song, Xueru; Yang, Xianming; Tang, Zhaoqi; Ren, Guangwei; Lu, Yanhui

    2017-04-01

    The complete genome sequence of a novel single-stranded RNA virus in Nesidiocoris tenuis was determined by RNA-seq and rapid amplification of cDNA ends (RACE) methodologies and was named N. tenuis virus 1. The genomic RNA was 3970 nucleotides (nt) in length and contained two putative open reading frames (ORFs). ORF1 encoded a polypeptide with 283 amino acids containing a viral (superfamily 1) RNA helicase (Hel) domain, and ORF2 encoded a polypeptide with 294 amino acids containing an RNA-dependent RNA polymerase (RdRP) domain. Phylogenetic analysis using the deduced amino acid sequences indicated that the N. tenuis virus 1 clustered with Blackford virus; however, the low bootstrap values and unique genomic structure suggested that the virus is a prototype of a new type of unclassified viruses. The prevalence of N. tenuis virus 1 infection in field populations of N. tenuis differed between three locations, with 28.32% of the 113 sampled individuals testing positive for the virus.

  15. Nucleotide sequence of the bean strain of southern bean mosaic virus.

    PubMed

    Othman, Y; Hull, R

    1995-01-10

    The genome of the bean strain of southern bean mosaic virus (SBMV-B) comprises 4109 nucleotides and thus is slightly shorter than those of the two other sequenced sobemoviruses (southern bean mosaic virus, cowpea strain (SBMV-C) and rice yellow mottle virus (RYMV)). SBMV-B has an overall sequence similarity with SBMV-C of 55% and with RYMV of 45%. Three potential open reading frames (ORFs) were recognized in SBMV-B which were in similar positions in the genomes of SBMV-C and RYMV. However, there was no analog of SBMV-C and RYMV ORF 3. From a comparison of the predicted sequences of the ORFs of these three sobemoviruses and of the noncoding regions, it is suggested that the two SBMV strains differ from one another as much as they do from RYMV and that they should be considered as different viruses.

  16. Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83.

    PubMed

    Braunagel, S C; Guidry, P A; Rosas-Acosta, G; Engelking, L; Summers, M D

    2001-12-01

    orf101 is a late gene of Autographa californica nucleopolyhedrovirus (AcMNPV). It encodes a protein of 42 kDa which is a component of the nucleocapsid of budded virus (BV) and occlusion-derived virus (ODV). To reflect this viral localization, the product of orf101 was named BV/ODV-C42 (C42). C42 is predominantly detected within the infected-cell nucleus: at 24 h postinfection (p.i.), it is coincident with the virogenic stroma, but by 72 h p.i., the stroma is minimally labeled while C42 is more uniformly located throughout the nucleus. Yeast two-hybrid screens indicate that C42 is capable of directly interacting with the viral proteins p78/83 (1629K) and ODV-EC27 (orf144). These interactions were confirmed using blue native gels and Western blot analyses. At 28 h p.i., C42 and p78/83 are detected in two complexes: one at approximately 180 kDa and a high-molecular-mass complex (500 to 600 kDa) which also contains EC27.

  17. Detection in vivo of a new gene product (gene III) of cauliflower mosaic virus

    PubMed Central

    Xiong, C.; Lebeurier, G.; Hirth, L.

    1984-01-01

    Cauliflower mosaic virus DNA contains six major open reading frames (ORFs). As only the mRNA corresponding to the transcription of gene VI and its translation product have been isolated, the identification in infected plants of products corresponding to the five other putative genes remains to be established. The present paper reports the detection of an ORF III product by means of antibodies raised against an NH2-terminal synthetic peptide of 19 amino acids corresponding to a sequence predicted from the nucleotide sequence of ORF III. The detection of this gene product raises the question of the mechanism of its expression. Images PMID:16593524

  18. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  19. Immunodominant epitopes mapped by synthetic peptides on the capsid protein of avian hepatitis E virus are non-protective.

    PubMed

    Guo, Hailong; Zhou, E M; Sun, Z F; Meng, X J

    2008-03-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted antigenic domains by synthetic peptides. However, whether these epitopes are protective against avian HEV infection has not been investigated. In this study, groups of chickens were immunized with keyhole limpet hemocyanin (KLH)-conjugated peptides and recombinant avian HEV ORF2 antigen followed by challenge with avian HEV virus to assess the protective capacity of these peptides containing the epitopes. While avian HEV ORF2 protein showed complete protection against infection, viremia and fecal virus shedding were found in all peptide-immunized chickens. Using purified IgY from normal, anti-peptide, and anti-avian HEV ORF2 chicken sera, an in-vitro neutralization and in-vivo monitoring assay was performed to further evaluate the neutralizing ability of anti-peptide IgY. Results showed that none of the anti-peptide IgY can neutralize avian HEV in vitro, as viremia, fecal virus shedding, and seroconversion appeared similarly in chickens inoculated with avian HEV mixed with anti-peptide IgY and chickens inoculated with avian HEV mixed with normal IgY. As expected, chickens inoculated with the avian HEV and anti-avian HEV ORF2 IgY mixture did not show detectable avian HEV infection. Taken together, the results of this study demonstrated that immunodominant epitopes on avian HEV ORF2 protein identified by synthetic peptides are non-protective, suggesting protective neutralizing epitope on avian HEV ORF2 may not be linear as is human HEV.

  20. Human sealpox resulting from a seal bite: confirmation that sealpox virus is zoonotic.

    PubMed

    Clark, C; McIntyre, P G; Evans, A; McInnes, C J; Lewis-Jones, S

    2005-04-01

    The case of a marine mammal technician who sustained a seal-bite to the hand that produced a lesion clinically very similar to orf is described. Sequence analysis of the viral DNA amplified from the lesion by the polymerase chain reaction indicated that it was sealpox virus in origin. This is the first report providing unequivocal evidence that sealpox may be transmitted to humans and causes lesions very similar to orf.

  1. C14ORF166 overexpression is associated with pelvic lymph node metastasis and poor prognosis in uterine cervical cancer.

    PubMed

    Zhang, Weijing; Ou, Jianping; Lei, Fangyong; Hou, Teng; Wu, Shu; Niu, Chunhao; Xu, Liqun; Zhang, Yanna

    2016-01-01

    C14ORF166 (chromosome 14 open reading frame 166) is a transcriptional repressor related to the regulation of centrosome architecture. However, the role of C14ORF166 in the development and progression of cancer remains largely unknown. The aim of this study was to investigate the expression and clinicopathological significance of C14ORF166 in cervical cancer. C14ORF166 expression was analyzed using quantitative real-time PCR (RT-PCR) and Western blotting in cervical cancer cell lines and eight paired cervical cancer samples and the adjacent normal tissues. Immunohistochemistry was used to analyze C14ORF166 protein expression in 148 clinicopathologically characterized cervical cancer specimens. Statistical analyses were performed to evaluate the relationship between the expression of C14ORF166 and clinicopathologic features and prognosis. C14ORF166 mRNA and protein expression were significantly upregulated in cervical cancer cell lines and tissue samples (P < 0.05). Immunohistochemical analysis revealed a high expression of C14ORF166 was observed in 39.9 % (59/148) of the cervical cancer specimens; the remaining samples expressed low levels or did not express any detectable C14ORF166. The chi-square test indicated that high-level expression of C14ORF166 was significantly associated with International Federation of Gynecology and Obstetrics (FIGO) stage (P < 0.001), vital status (P = 0.026), tumor size (P = 0.034), serum squamous cell carcinoma antigen level (SCC-Ag; P = 0.035), and pelvic lymph node metastasis (P < 0.001). Patients with highly expressed C14ORF166 showed a tendency to receive postoperative chemotherapy (P = 0.005) and postoperative radiation (P = 0.008). Furthermore, high C14ORF166 expression was associated with poorer overall survival compared to low C14ORF166 expression, and C14ORF166 was a significant prognostic factor in univariate and multivariate analysis (P < 0.05). High C14ORF166 expression had prognostic

  2. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation

    PubMed Central

    De Luca, Chiara; Guadagni, Fiorella; Sinibaldi-Vallebona, Paola; Sentinelli, Steno; Gallucci, Michele; Hoffmann, Andreas; Schumann, Gerald G.; Spadafora, Corrado; Sciamanna, Ilaria

    2016-01-01

    LINE-1 (L1) retrotransposons are a source of endogenous reverse transcriptase (RT) activity, which is expressed as part of the L1-encoded ORF2 protein (L1-ORF2p). L1 elements are highly expressed in many cancer types, while being silenced in most differentiated somatic tissues. We previously found that RT inhibition reduces cell proliferation and promotes differentiation in neoplastic cells, indicating that high endogenous RT activity promotes cancer growth. Here we investigate the expression of L1-ORF2p in several human types of cancer. We have developed a highly specific monoclonal antibody (mAb chA1-L1) to study ORF2p expression and localization in human cancer cells and tissues. We uncover new evidence for high levels of L1-ORF2p in transformed cell lines and staged epithelial cancer tissues (colon, prostate, lung and breast) while no or only basal ORF2p expression was detected in non-transformed cells. An in-depth analysis of colon and prostate tissues shows ORF2p expression in preneoplastic stages, namely transitional mucosa and prostate intraepithelial neoplasia (PIN), respectively. Our results show that L1-ORF2p is overexpressed in tumor and in preneoplastic colon and prostate tissues; this latter finding suggests that ORF2p could be considered as a potential early diagnostic biomarker. PMID:26716650

  3. Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies.

    PubMed

    Kun-Rodrigues, Celia; Ross, Owen A; Orme, Tatiana; Shepherd, Claire; Parkkinen, Laura; Darwent, Lee; Hernandez, Dena; Ansorge, Olaf; Clark, Lorraine N; Honig, Lawrence S; Marder, Karen; Lemstra, Afina; Scheltens, Philippe; van der Flier, Wiesje; Louwersheimer, Eva; Holstege, Henne; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Holton, Janice; Compta, Yaroslau; Van Deerlin, Vivianna; Trojanowski, John Q; Serrano, Geidy E; Beach, Thomas G; Clarimon, Jordi; Lleó, Alberto; Morenas-Rodríguez, Estrella; Lesage, Suzanne; Galasko, Douglas; Masliah, Eliezer; Santana, Isabel; Diez, Monica; Pastor, Pau; Tienari, Pentti J; Myllykangas, Liisa; Oinas, Minna; Revesz, Tamas; Lees, Andrew; Boeve, Brad F; Petersen, Ronald C; Ferman, Tanis J; Escott-Price, Valentina; Graff-Radford, Neill; Cairns, Nigel J; Morris, John C; Stone, David J; Pickering-Brown, Stuart; Mann, David; Dickson, Dennis W; Halliday, Glenda M; Singleton, Andrew; Guerreiro, Rita; Bras, Jose

    2017-01-01

    C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB.

  4. OrfPredictor: predicting protein-coding regions in EST-derived sequences

    PubMed Central

    Min, Xiang Jia; Butler, Gregory; Storms, Reginald; Tsang, Adrian

    2005-01-01

    OrfPredictor is a web server designed for identifying protein-coding regions in expressed sequence tag (EST)-derived sequences. For query sequences with a hit in BLASTX, the program predicts the coding regions based on the translation reading frames identified in BLASTX alignments, otherwise, it predicts the most probable coding region based on the intrinsic signals of the query sequences. The output is the predicted peptide sequences in the FASTA format, and a definition line that includes the query ID, the translation reading frame and the nucleotide positions where the coding region begins and ends. OrfPredictor facilitates the annotation of EST-derived sequences, particularly, for large-scale EST projects. OrfPredictor is available at . PMID:15980561

  5. Frontotemporal lobar dementia and amyotrophic lateral sclerosis associated with c9orf72 expansion.

    PubMed

    Le Ber, I

    2015-01-01

    An intronic GGGGCC repeat expansion in c9orf72 gene has been identified as the most common genetic cause of frontotemporal lobar dementia (FTLD), amyotrophic lateral sclerosis (ALS) and FTLD-ALS. The discovery of c9orf72 gene has led to important scientific progresses and has considerably changed our clinical practice over the last few years. This paper summarizes the common and less typical phenotypes associated with c9orf72 expansion, the complex pathological pattern characterized by p62/dipeptide repeat aggregates, as well as the pathological mechanisms by which the expansion might produce neurodegeneration implicating loss-of-function, RNA toxicity, RNA-binding protein sequestration and accumulation of dipeptide repeats. We also discuss the recommendations and limits for genetic testing and counseling in clinical practice. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Decoding sORF translation - from small proteins to gene regulation.

    PubMed

    Cabrera-Quio, Luis Enrique; Herberg, Sarah; Pauli, Andrea

    2016-11-01

    Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.

  7. Oral-facial-digital syndrome type VI: is C5orf42 really the major gene?

    PubMed

    Romani, Marta; Mancini, Francesca; Micalizzi, Alessia; Poretti, Andrea; Miccinilli, Elide; Accorsi, Patrizia; Avola, Emanuela; Bertini, Enrico; Borgatti, Renato; Romaniello, Romina; Ceylaner, Serdar; Coppola, Giangennaro; D'Arrigo, Stefano; Giordano, Lucio; Janecke, Andreas R; Lituania, Mario; Ludwig, Kathrin; Martorell, Loreto; Mazza, Tommaso; Odent, Sylvie; Pinelli, Lorenzo; Poo, Pilar; Santucci, Margherita; Signorini, Sabrina; Simonati, Alessandro; Spiegel, Ronen; Stanzial, Franco; Steinlin, Maja; Tabarki, Brahim; Wolf, Nicole I; Zibordi, Federica; Boltshauser, Eugen; Valente, Enza Maria

    2015-01-01

    Oral-facial-digital type VI syndrome (OFDVI) is a rare phenotype of Joubert syndrome (JS). Recently, C5orf42 was suggested as the major OFDVI gene, being mutated in 9 of 11 families (82 %). We sequenced C5orf42 in 313 JS probands and identified mutations in 28 (8.9 %), most with a phenotype of pure JS. Only 2 out of 17 OFDVI patients (11.7 %) were mutated. A comparison of mutated vs. non-mutated OFDVI patients showed that preaxial and mesoaxial polydactyly, hypothalamic hamartoma and other congenital defects may predict C5orf42 mutations, while tongue hamartomas are more common in negative patients.

  8. The N-terminus of vaccinia virus host range protein C7L is essential for function

    PubMed Central

    Terajima, Masanori; Urban, Stina L.; Leporati, Anita M.

    2012-01-01

    Vaccinia virus (VACV), a member of the Poxviridae family of large double-stranded DNA viruses, is being used as a smallpox vaccine as well as an expression vector for immunization against other infectious diseases and cancer. The host range of wild type VACV is very broad among mammalian cells. C7L is a host range gene identified in VACV and is well conserved in mammalian poxviruses except for parapoxviruses and molluscum contagiosum virus. The molecular mechanisms by which the C7L gene exerts host range function are not well understood. The C7L protein does not have any known conserved domains or show sequence similarity to cellular proteins or viral proteins other than the C7L homologues in mammalian poxviruses. We generated recombinant vaccinia viruses carrying deletion mutants of the C7L gene using NYVAC as a parental strain and found that the N-terminus is essential for host range function of C7L, which is consistent with a previous report that showed homology among C7L homologues are greater near the N-terminus than the C-terminus. PMID:23001690

  9. Identification of a novel C16orf57 mutation in Athabaskan patients with Poikiloderma with Neutropenia.

    PubMed

    Clericuzio, Carol; Harutyunyan, Karine; Jin, Weidong; Erickson, Robert P; Irvine, Alan D; McLean, W H Irwin; Wen, Yaran; Bagatell, Rochelle; Griffin, Thomas A; Shwayder, Tor A; Plon, Sharon E; Wang, Lisa L

    2011-02-01

    Poikiloderma with Neutropenia (PN), Clericuzio-Type (OMIM #604173) is characterized by poikiloderma, chronic neutropenia, recurrent sinopulmonary infections, bronchiectasis, and nail dystrophy. First described by Clericuzio in 1991 in 14 patients of Navajo descent, it has since also been described in non-Navajo patients. C16orf57 has recently been identified as a causative gene in PN. The purpose of our study was to describe a spectrum of C16orf57 mutations in a cohort of PN patients including five patients of Athabaskan (Navajo and Apache) ancestry. Eleven patients from eight kindreds were enrolled in an IRB-approved study at Baylor College of Medicine. Five patients were of Athabaskan ancestry. PCR amplification and sequencing of the entire coding region of the C16orf57 gene was performed on genomic DNA. We identified biallelic C16orf57 mutations in all 11 PN patients in our cohort. The seven new deleterious mutations consisted of deletion (2), nonsense (3), and splice site (2) mutations. The patients of Athabaskan ancestry all had a common deletion mutation (c.496delA) which was not found in the six non-Athabaskan patients. Mutations in the C16orf57 gene have been identified thus far in all patients studied with a clinical diagnosis of PN. We have identified seven new mutations in C16orf57 in PN patients. One of these is present in all patients of Athabaskan descent, suggesting that c.496delA represents the PN-causative mutation in this subpopulation. Copyright © 2010 Wiley-Liss, Inc.

  10. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers

    PubMed Central

    van Blitterswijk, Marka; Mullen, Bianca; Heckman, Michael G.; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Brown, Patricia H.; Murray, Melissa E.; Hsiung, Ging-Yuek R.; Stewart, Heather; Karydas, Anna M.; Finger, Elizabeth; Kertesz, Andrew; Bigio, Eileen H.; Weintraub, Sandra; Mesulam, Marsel; Hatanpaa, Kimmo J.; White, Charles L.; Neumann, Manuela; Strong, Michael J.; Beach, Thomas G.; Wszolek, Zbigniew K.; Lippa, Carol; Caselli, Richard; Petrucelli, Leonard; Josephs, Keith A.; Parisi, Joseph E.; Knopman, David S.; Petersen, Ronald C.; Mackenzie, Ian R.; Seeley, William W.; Grinberg, Lea T.; Miller, Bruce L.; Boylan, Kevin B.; Graff-Radford, Neill R.; Boeve, Bradley F.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated four genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1) and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 controls, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1 or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% versus 0% in controls, P=0.013), whereas the frequency in probands with FTD was identical to controls. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings. PMID:24866401

  11. Mutation of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease

    PubMed Central

    Sugiana, Canny; Pagliarini, David J.; McKenzie, Matthew; Kirby, Denise M.; Salemi, Renato; Abu-Amero, Khaled K.; Dahl, Hans-Henrik M.; Hutchison, Wendy M.; Vascotto, Katherine A.; Smith, Stacey M.; Newbold, Robert F.; Christodoulou, John; Calvo, Sarah; Mootha, Vamsi K.; Ryan, Michael T.; Thorburn, David R.

    2008-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease. PMID:18940309

  12. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination.

    PubMed

    Li, Chunhua; Li, Zhen; Zou, Yong; Wicht, Oliver; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2013-01-01

    Porcine epidemic diarrhea virus (PEDV) causes severe economic losses in the swine industry in China and other Asian countries. Infection usually leads to an acute, often lethal diarrhea in piglets. Despite the impact of the disease, no system is yet available to manipulate the viral genome which has severely hampered research on this virus until today. We have established a reverse genetics system for PEDV based on targeted RNA recombination that allows the modification of the 3'-end of the viral genome, which encodes the structural proteins and the ORF3 protein. Using this system, we deleted the ORF3 gene entirely from the viral genome and showed that the ORF3 protein is not essential for replication of the virus in vitro. In addition, we inserted heterologous genes (i.e. the GFP and Renilla luciferase genes) at two positions in the viral genome, either as an extra expression cassette or as a replacement for the ORF3 gene. We demonstrated the expression of both GFP and Renilla luciferase as well as the application of these viruses by establishing a convenient and rapid virus neutralization assay. The new PEDV reverse genetics system will enable functional studies of the structural proteins and the accessory ORF3 protein and will allow the rational design and development of next generation PEDV vaccines.

  13. The nucleotide sequence and genome organization of Plasmopara halstedii virus

    PubMed Central

    2011-01-01

    Background Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Methods Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. Results The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. Conclusions The results showed the presence of a single and new virus type in

  14. Rubus chlorotic mottle virus, a new sobemovirus infecting raspberry and bramble.

    PubMed

    McGavin, W J; Macfarlane, S A

    2009-01-01

    The complete nucleotide sequence of a new member of the unassigned genus Sobemovirus, isolated from raspberry and bramble plants in north east Scotland and given the name Rubus chlorotic mottle virus (RuCMV), was obtained. The virus has a single, positive-strand RNA genome of 3,983 nucleotides and, in common with other sobemoviruses, contains four open reading frames (ORFs) encoding, from 5' to 3', the P1 protein that is likely to be a suppressor of RNA silencing, ORF2a that has homology to serine-proteases, ORF2b that is the probable RNA dependent RNA polymerase, and ORF3 that is the coat protein. ORF2b protein is potentially expressed as a fusion with ORF2a protein by a -1 frameshift at the heptanucleotide sequence UUUAAAC. Phylogenetic analyses showed that RuCMV is a distinct virus not closely related to any of the other sequenced sobemoviruses. Based on the obtained sequence a full-length cDNA copy of RuCMV was cloned and in vitro transcripts derived from this clone were shown to be fully infectious.

  15. Eimeria tenella: a novel dsRNA virus in E. tenella and its complete genome sequence analysis.

    PubMed

    Wu, Bin; Zhang, Xichen; Gong, Pengtao; Li, Mingying; Ding, He; Xin, Caiyan; Zhao, Na; Li, Jianhua

    2016-04-01

    Protozoa double-stranded (ds) RNA viruses have been described in Trichomonas, Giardia, and Leishmania. In this study, dsRNA and virus-like particles (approximately 30 nm in diameter) were discovered in Eimeria tenella sporulated oocysts. The complete genome of this novel dsRNA virus was sequenced using a three-step strategy. The sequencing results showed that the complete genome sequence was 6006 bp containing two open reading frames (ORFs) (2367 bp for ORF1 and 3216 bp for ORF2) with a five-nucleotide overlap (UGA/UG). The predicted ORF1 and ORF2 encoded a putative capsid protein of 788 amino acids (84.922 kDa) and a putative RNA-dependent RNA polymerase (RdRp) protein of 1071 amino acids (118.190 kDa). BLASTp analysis showed that the amino acid sequences for the E. tenella virus shared similarity with the E. brunetti RNA virus, with 29% homology in capsid proteins and 36% in RDRP proteins. The two untranslated regions were 349 bp (5' UTR) and 78 bp (3' UTR). The complete genome sequence of the E. tenella virus resembled characteristics of the Totiviridae family, indicating that this virus was a novel member of Totiviridae. Surprisingly, phylogenetic analysis showed that the E. tenella virus, E. brunetti RNA virus 1, and Mycoviruses were clustered into the genus Victorivirus and separated from the reported protozoa viruses, strongly suggesting a novel Eimeriaviruses subgenus. To the best of our knowledge, this is the first report for the complete genome sequence of the E. tenella virus. Using the nomenclature generally adopted for viruses, this new isolate was named E. tenella RNA virus 1. This study provides a foundation basis for further research on the biological characteristics of Eimeriaviruses.

  16. VIDA: a virus database system for the organization of animal virus genome open reading frames

    PubMed Central

    Albà, M. Mar; Lee, David; Pearl, Frances M. G.; Shepherd, Adrian J.; Martin, Nigel; Orengo, Christine A.; Kellam, Paul

    2001-01-01

    VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html. PMID:11125070

  17. VIDA: a virus database system for the organization of animal virus genome open reading frames.

    PubMed

    Albà, M M; Lee, D; Pearl, F M; Shepherd, A J; Martin, N; Orengo, C A; Kellam, P

    2001-01-01

    VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/ VIDA.html.

  18. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix- associated PML bodies

    PubMed Central

    1995-01-01

    The PML protein was first identified as part of a fusion product with the retinoic acid receptor alpha (RAR alpha), resulting from the t(15;17) chromosomal translocation associated with acute promyelocytic leukemia (APL). It has been previously demonstrated that PML, which is tightly bound to the nuclear matrix, concentrates in discrete subnuclear compartments that are disorganized in APL cells due to the expression of the PML-RAR alpha hybrid. Here we report that adenovirus infection causes a drastic redistribution of PML from spherical nuclear bodies into fibrous structures. The product encoded by adenovirus E4- ORF3 is shown to be responsible for this reorganization and to colocalize with PML into these fibers. In addition, we demonstrate that E1A oncoproteins concentrate in the PML domains, both in infected and transiently transfected cells, and that this association requires the conserved amino acid motif (D)LXCXE, common to all viral oncoproteins that bind pRB or the related p107 and p130 proteins. The SV-40 large T antigen, another member of this oncoprotein family is also found in close association with the PML nuclear bodies. Taken together, the present data indicate that the subnuclear domains containing PML represent a preferential target for DNA tumor viruses, and therefore suggest a more general involvement of the PML nuclear bodies in oncogenic processes. PMID:7559785

  19. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    PubMed

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance

    PubMed Central

    Gelaye, Esayas; Mach, Lukas; Kolodziejek, Jolanta; Grabherr, Reingard; Loitsch, Angelika; Achenbach, Jenna E.; Nowotny, Norbert; Diallo, Adama; Lamien, Charles Euloge

    2017-01-01

    Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus (SPPV) and lumpy skin disease virus (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) [genus Parapoxvirus]. The assay is based on high-resolution melting curve analysis (HRMCA) of PCR amplicons produced using genus specific primer pairs and dsDNA binding dye. Differences in fragment size and GC content were used as discriminating power. The assay generated three well separated melting regions for each genus and provided additional intra-genus genotyping allowing the differentiation of the eight poxviruses based on amplicon melting temperature. Out of 271 poxviral DNA samples tested: seven CPXV, 25 CMLV, 42 GTPV, 20 SPPV, 120 LSDV, 33 ORFV, 20 PCPV and two BPSV were detected; two samples presented co-infection with CMLV and PCPV. The assay provides a rapid, sensitive, specific and cost-effective method for the detection of pox diseases in a broad range of animal species and humans. PMID:28216667

  1. A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance.

    PubMed

    Gelaye, Esayas; Mach, Lukas; Kolodziejek, Jolanta; Grabherr, Reingard; Loitsch, Angelika; Achenbach, Jenna E; Nowotny, Norbert; Diallo, Adama; Lamien, Charles Euloge

    2017-02-20

    Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus (SPPV) and lumpy skin disease virus (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) [genus Parapoxvirus]. The assay is based on high-resolution melting curve analysis (HRMCA) of PCR amplicons produced using genus specific primer pairs and dsDNA binding dye. Differences in fragment size and GC content were used as discriminating power. The assay generated three well separated melting regions for each genus and provided additional intra-genus genotyping allowing the differentiation of the eight poxviruses based on amplicon melting temperature. Out of 271 poxviral DNA samples tested: seven CPXV, 25 CMLV, 42 GTPV, 20 SPPV, 120 LSDV, 33 ORFV, 20 PCPV and two BPSV were detected; two samples presented co-infection with CMLV and PCPV. The assay provides a rapid, sensitive, specific and cost-effective method for the detection of pox diseases in a broad range of animal species and humans.

  2. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  3. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, indivi