Science.gov

Sample records for parasitic nematode brugia

  1. Heme acquisition in the parasitic filarial nematode Brugia malayi

    PubMed Central

    Luck, Ashley N.; Yuan, Xiaojing; Voronin, Denis; Slatko, Barton E.; Hamza, Iqbal; Foster, Jeremy M.

    2016-01-01

    Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi. In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non–heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3–6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.—Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi. PMID:27363426

  2. Draft genome of the filarial nematode parasite Brugia malayi.

    PubMed

    Ghedin, Elodie; Wang, Shiliang; Spiro, David; Caler, Elisabet; Zhao, Qi; Crabtree, Jonathan; Allen, Jonathan E; Delcher, Arthur L; Guiliano, David B; Miranda-Saavedra, Diego; Angiuoli, Samuel V; Creasy, Todd; Amedeo, Paolo; Haas, Brian; El-Sayed, Najib M; Wortman, Jennifer R; Feldblyum, Tamara; Tallon, Luke; Schatz, Michael; Shumway, Martin; Koo, Hean; Salzberg, Steven L; Schobel, Seth; Pertea, Mihaela; Pop, Mihai; White, Owen; Barton, Geoffrey J; Carlow, Clotilde K S; Crawford, Michael J; Daub, Jennifer; Dimmic, Matthew W; Estes, Chris F; Foster, Jeremy M; Ganatra, Mehul; Gregory, William F; Johnson, Nicholas M; Jin, Jinming; Komuniecki, Richard; Korf, Ian; Kumar, Sanjay; Laney, Sandra; Li, Ben-Wen; Li, Wen; Lindblom, Tim H; Lustigman, Sara; Ma, Dong; Maina, Claude V; Martin, David M A; McCarter, James P; McReynolds, Larry; Mitreva, Makedonka; Nutman, Thomas B; Parkinson, John; Peregrín-Alvarez, José M; Poole, Catherine; Ren, Qinghu; Saunders, Lori; Sluder, Ann E; Smith, Katherine; Stanke, Mario; Unnasch, Thomas R; Ware, Jenna; Wei, Aguan D; Weil, Gary; Williams, Deryck J; Zhang, Yinhua; Williams, Steven A; Fraser-Liggett, Claire; Slatko, Barton; Blaxter, Mark L; Scott, Alan L

    2007-09-21

    Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.

  3. Crystal structure of the cyclophilin-like domain from the parasitic nematode Brugia malayi.

    PubMed Central

    Mikol, V.; Ma, D.; Carlow, C. K.

    1998-01-01

    Cyclophilins are a family of proteins that exhibit peptidyl-prolyl cis-trans isomerase activity and bind the immunosuppressive agent cyclosporin A (CsA). Brugia malayi is a filarial nematode parasite of humans, for which a cyclophilin-like domain was identified at the N-terminal of a protein containing 843 amino acid residues. There are two differences in sequence in the highly conserved CsA binding site: A histidine and a lysine replace a tryptophan and an alanine, respectively. The crystal structure of this domain has been determined by the molecular replacement method and refined to an R-factor of 16.9% at 2.15 A resolution. The overall structure is similar to other cyclophilins; however, major differences occur in two loops. Comparison of the CsA binding site of this domain with members of the cyclophilin family shows significant structural differences, which can account for the reduced sensitivity of the Brugia malayi protein to inhibition by CsA. PMID:9655334

  4. Characterization of innate immunity genes in the parasitic nematode Brugia malayi.

    PubMed

    Libro, Silvia; Slatko, Barton E; Foster, Jeremy M

    The filarial nematode Brugia malayi is one of the causative agents of lymphatic filariasis, a neglected tropical disease that affects 120 million people worldwide. The limited effectiveness of available anthelmintics and the absence of a vaccine have prompted extensive research on the interaction between Brugia and its obligate bacterial endosymbiont, Wolbachia. Recent studies suggest that Wolbachia is able to manipulate its nematode host immunity but relatively little is known about the immune system of filarial nematodes. Therefore, elucidation of the mechanisms underlying the immune system of B. malayi may be useful for understanding how the symbiotic relationship is maintained and help in the identification of new drug targets. In order to characterize the main genetic pathways involved in B. malayi immunity, we exposed adult female worms to two bacterial lysates (Escherichia coli and Bacillus amyloliquefaciens), dsRNA and dsDNA. We performed transcriptome sequencing of worms exposed to each immune elicitor at two different timepoints. Gene expression analysis of untreated and immune-challenged worms was performed to characterize gene expression patterns associated with each type of immune stimulation. Our results indicate that different immune elicitors produced distinct expression patterns in B. malayi, with changes in the expression of orthologs of well-characterized C. elegans immune pathways such as insulin, TGF-β, and p38 MAPK pathways, as well as C-type lectins and several stress-response genes.

  5. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. Results The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (pi)RNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. Conclusions This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention. PMID:22216965

  6. Prolyl 4-Hydroxlase Activity Is Essential for Development and Cuticle Formation in the Human Infective Parasitic Nematode Brugia malayi*

    PubMed Central

    Winter, Alan D.; McCormack, Gillian; Myllyharju, Johanna; Page, Antony P.

    2013-01-01

    Collagen prolyl 4-hydroxylases (C-P4H) are required for formation of extracellular matrices in higher eukaryotes. These enzymes convert proline residues within the repeat regions of collagen polypeptides to 4-hydroxyproline, a modification essential for the stability of the final triple helix. C-P4H are most often oligomeric complexes, with enzymatic activity contributed by the α subunits, and the β subunits formed by protein disulfide isomerase (PDI). Here, we characterize this enzyme class in the important human parasitic nematode Brugia malayi. All potential C-P4H subunits were identified by detailed bioinformatic analysis of sequence databases, function was investigated both by RNAi in the parasite and heterologous expression in Caenorhabditis elegans, whereas biochemical activity and complex formation were examined via co-expression in insect cells. Simultaneous RNAi of two B. malayi C-P4H α subunit-like genes resulted in a striking, highly penetrant body morphology phenotype in parasite larvae. This was replicated by single RNAi of a B. malayi C-P4H β subunit-like PDI. Surprisingly, however, the B. malayi proteins were not capable of rescuing a C. elegans α subunit mutant, whereas the human enzymes could. In contrast, the B. malayi PDI did functionally complement the lethal phenotype of a C. elegans β subunit mutant. Comparison of recombinant and parasite derived material indicates that enzymatic activity may be dependent on a non-reducible covalent link, present only in the parasite. We therefore demonstrate that C-P4H activity is essential for development of B. malayi and uncover a novel parasite-specific feature of these collagen biosynthetic enzymes that may be exploited in future parasite control. PMID:23223450

  7. Molecular characterization of a cyclosporin A-insensitive cyclophilin from the parasitic nematode Brugia malayi.

    PubMed

    Page, A P; Landry, D; Wilson, G G; Carlow, C K

    1995-09-12

    The cyclophilins are a family of proteins that exhibit peptidyl-prolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosporin A (CsA) to varying degrees. We have isolated a cDNA clone encoding a novel cyclophilin from the human filarial parasite Brugia malayi. This gene possesses an N-terminal domain homologous to cyclophilins from diverse phyla (49-60% amino acid sequence identity) and a hydrophilic C-terminal domain. The cyclophilin domain was overexpressed in Escherichia coli and found to possess peptidyl-prolyl cis-trans isomerase (PPIase) activity, with a kcat/Km value of 7.9 x 10(6) M-1 s-1. A histidine residue in lieu of tryptophan in the highly conserved CsA-binding site suggests that B. malayi cyclophilin is more closely related to the cyclophilin-like proteins described recently from natural killer (NK) cells, plants, and the 40 kDa cyclophilins from mammals. In accordance with the histidine-containing CsA-binding domain, the B. malayi enzyme was relatively insensitive to inhibition by CsA, since an IC50 value of 860 nM (compared to 19 nM for human cyclophilin A) was determined.

  8. Chitinase is stored and secreted from the inner body of microfilariae and has a role in exsheathment in the parasitic nematode Brugia malayi

    PubMed Central

    Wu, Yang; Preston, Gillian; Bianco, Albert E.

    2008-01-01

    Chitinase expression in microfilariae of the parasitic nematode Brugia malayi (B. malayi, Bm) is coincidental with the onset of their infectivity to mosquitoes. An antibody raised to Onchocerca volvulus (O. volvulus, Ov) infective-stage larval chitinase (Ov-CHI-1) was specifically reactive against B. malayi microfilarial chitinase and was used to study the localization of chitinase in B. malayi during microfilarial development and transmission to the insect vector. Immuno-electron microscopy (IEM) was used to demonstrate that the chitinase was confined to the inner body of the microfilariae and furthermore that chitinase was only present in sheathed microfilarial species, although the inner body is present in all species. Observation using the IEM implicates two distinct routes of chitinase secretion from the inner body, via either the pharyngeal thread, or during transmission of the microfilariae to the vector, contained in vesicle-like structures. Many morphological studies have described the structure of the inner body, but no function has been assigned to it as of yet. Although it has been commented that the cells surrounding the inner body and pharyngeal thread are those destined to become the intestine and pharynx and that the inner body represents a store of material. Our studies suggest that chitinase is one such product stored in the inner body and that it is secreted during the exsheathment of the microfilaria in the mosquito. PMID:18611418

  9. Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite.

    PubMed

    Dangi, Anil; Vedi, Satish; Nag, Jeetendra Kumar; Paithankar, Sameer; Singh, Mahendra Pratap; Kar, Santosh Kumar; Dube, Anuradha; Misra-Bhattacharya, Shailja

    2009-09-01

    Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.

  10. Development of an In Vivo RNAi Protocol to Investigate Gene Function in the Filarial Nematode, Brugia malayi

    PubMed Central

    Song, Chuanzhe; Gallup, Jack M.; Day, Tim A.

    2010-01-01

    Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed. PMID:21203489

  11. Cytokine production in BALB/c mice immunized with radiation attenuated third stage larvae of the filarial nematode, Brugia pahangi

    SciTech Connect

    Bancroft, A.J.; Devaney, E. ); Grencis, R.K.; Else, K.J. )

    1993-02-15

    BALB/c mice immunized with radiation-attenuated third stage larvae of the filarial nematode Brugia pahangi are strongly immune to challenge infection. Investigation of the profile of cytokines secreted by spleen cells from immune mice stimulated in vitro with either parasite Ag or with Con A revealed high levels of IL-5 and IL-9 and moderate levels of IL-4. In contrast, secretion of IFN-[gamma] by spleen cells from immune animals was negligible. Spleen cells from control mice secreted low levels of all cytokines assayed. Levels of parasite-specific IgE were significantly elevated in immune animals and a peripheral blood eosinophilia was observed, which exhibited a biphasic distribution. Our results are consistent with the preferential expansion of Th2 cells in immune animals and provide the basis for dissecting the means by which radiation-attenuated larvae of filarial nematodes stimulate immunity. 5l refs., 3 figs., 3 tabs.

  12. Heat shock and developmental expression of hsp83 in the filarial nematode Brugia pahangi.

    PubMed

    Thompson, F J; Cockroft, A C; Wheatley, I; Britton, C; Devaney, E

    2001-11-01

    hsp83 was cloned from the filarial nematode Brugia pahangi. The mRNA was constitutively expressed at 37 degrees C in life cycle stages that live in the mammalian host (microfilariae and adult worms). Heat shock resulted in only a minimal increase in levels of transcription. A genomic copy of hsp83 was isolated and was shown to contain 11 introns while sequencing of the 5' upstream region revealed several heat shock elements. Using a chloramphenicol acetyltransferase (CAT) reporter gene construct the expression of hsp83 from B. pahangi (Bp-hsp83) was studied by transfection of COS-7 cells. Similar to the expression pattern in the parasite, CAT activity was detected at 37 degrees C and was not influenced by heat shock. When the free-living nematode Caenorhabditis elegans was transfected with the same construct, CAT activity was not observed at normal growth temperatures (21 degrees C) or under moderate heat shock conditions (28 degrees C). However exposure to more severe heat shock (35 degrees C) resulted in an increase in CAT activity. These results suggest that Bp-hsp83 has a temperature threshold > or = 35 degrees C for expression.

  13. Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi

    PubMed Central

    Agbedanu, Prince N; Harischandra, Hiruni; Moorhead, Andrew R; Day, Tim A; Bartholomay, Lyric C; Kimber, Michael J

    2015-01-01

    Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed

  14. How to become a parasite - lessons from the genomes of nematodes.

    PubMed

    Dieterich, Christoph; Sommer, Ralf J

    2009-05-01

    The phylum Nematoda is biologically diverse; it includes parasites of plants and animals in addition to free-living taxa. To date, the genomes of six nematodes have been sequenced. Comparative analyses of these ecologically diverse nematodes are beginning to reveal the mechanisms by which parasites arise and how they evolve. Here, we discuss some emerging principles for the mechanisms and evolution of parasitism. First, horizontal gene transfer represents a common theme in nematode parasites. Second, the human parasite Brugia malayi lost otherwise essential genes most probably owing to the mutualistic relationship with a bacterial endosymbiont. Finally, some parasitic features evolved under free-living conditions. A recent study revealed a conserved endocrine mechanism controlling the formation of dauer and infective larvae in nematodes.

  15. The Geological Record of Parasitic Nematode Evolution.

    PubMed

    Poinar, George O

    2015-01-01

    This chapter discusses the evolutionary history of nematode parasites of invertebrates, vertebrates and plants based on fossil remains in amber, stone and coprolites dating from the Palaeozoic to the Holocene. The earliest parasitic nematode is a primitive plant parasite from the Devonian. Fossil invertebrate-parasitic nematodes first appeared in the Early Cretaceous, while the earliest fossil vertebrate-parasitic nematodes are from Upper Triassic coprolites. Specific examples of fossil nematode parasites over time are presented, along with views on the origin and evolution of nematodes and their hosts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Interactions of microfungi and plant parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    Plant parasitic nematodes and microfungi inhabit many of the same ecological habitats and interact in almost every conceivable way. Nematodes can feed on fungi, and conversely fungi can use nematodes as a food source. Fungi have been widely studied as biological controls of plant parasitic nematod...

  17. Therapeutic immunomodulators from nematode parasites.

    PubMed

    Harnett, William; Harnett, Margaret M

    2008-06-19

    There has been an alarming increase in the incidence of autoimmune and allergic diseases in Western countries in the past few decades. However, in countries endemic for parasitic helminth infections, such diseases remain relatively rare. Hence, it has been hypothesised that helminths may protect against the development of autoimmunity and allergy. This article reviews the evidence supporting this idea with respect to helminths of the phylum Nematoda (nematodes), considering data from human studies and animal models of inflammatory disease. The nature and mode of action of nematode-derived molecules with immunomodulatory properties are considered, and their therapeutic efficacy in models of autoimmunity and allergy described. The recent and future use of nematodes and their products in treating human disease are also discussed.

  18. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Use of Iodogen and sulfosuccinimidobiotin to identify and isolate cuticular proteins of the filarial parasite Brugia malayi.

    PubMed

    Alvarez, R M; Henry, R W; Weil, G J

    1989-03-01

    The cuticle of filarial nematodes is a dynamic structure which may be an important target for protective host immune responses. Prior studies have employed radioiodination of intact parasites to demonstrate that the collagenous cuticle of filariids contains relatively few exposed proteins, some of which are stage and/or species-specific. In the present study, we have used sulfo-NHS-biotin to label and affinity purify cuticular components of living adult Brugia malayi. Results obtained by this method were compared with the widely used Iodogen method of surface radioiodination by SDS-PAGE analysis of detergent-solubilized worms and by ultrastructural analysis. Both labeling methods produced very similar electrophoretic patterns with major doublets at 70 and 100 kDa, a major band at 25 kDa, and minor bands between 60-200 kDa. Ultrastructural analysis showed that both methods labeled components throughout all levels of the parasite cuticle; underlying somatic tissues were not labeled. The biotinylated components were isolated from the total parasite extract by affinity chromatography on an avidin matrix. Further characterization of these surface-associated proteins may lead to improved methods for the control of filariasis.

  20. Parasitic nematodes - from genomes to control.

    PubMed

    Mitreva, Makedonka; Zarlenga, Dante S; McCarter, James P; Jasmer, Douglas P

    2007-08-19

    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs.

  1. Cloning, expression, purification and kinetics of trehalose-6-phosphate phosphatase of filarial parasite Brugia malayi.

    PubMed

    Kushwaha, Susheela; Singh, Prashant K; Rana, Ajay K; Misra-Bhattacharya, Shailja

    2011-08-01

    The pleiotropic functions of disaccharide trehalose in the biology of nematodes and its absence from mammalian cells suggest that its biosynthesis may provide a useful target for developing novel nematicidal drugs. The trehalose-6-phosphate phosphatase (TPP), one of the enzymes of trehalose metabolism has not been characterized so far in nematodes except the free living nematode Caenorhabditis elegans where it's silencing results into lethal outcomes. This prompted us to clone and characterize Brugia malayi TPP in order to discover novel antifilarial drug target. The recombinant protein (Bm-TPP) was purified with apparent homogeneity on a metal ion column and it was found to possess high phosphatase activity with robust specificity for the substrate trehalose-6-phosphate. Bm-TPP was found to be a member of the HAD-like hydrolase super family II based on the conserved motifs required for catalytic reaction. The K(m) for substrate trehalose-6-phosphate was around 0.42 mM with pH optimum ∼7.0 and the enzyme showed an almost absolute requirement for Mg(2+) as a metal ion. Bm-TPP was expressed in all the life-stages of B. malayi. In the absence of an effective macrofilaricidal agent and validated antifilarial drug target, Bm-TPP bodes well as a rational drug target against lymphatic filariasis.

  2. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants.

    PubMed

    Silvestre, A; Cabaret, J

    2004-06-01

    In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control)? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation) are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole). Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy) are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial: it is not possible to avoid it, but only to delay its development in farm animal industry.

  3. Evolution of plant parasitism among nematodes.

    PubMed

    Baldwin, J G; Nadler, S A; Adams, B J

    2004-01-01

    Despite extraordinary diversity of free-living species, a comparatively small fraction of nematodes are parasites of plants. These parasites represent at least three disparate clades in the nematode tree of life, as inferred from rRNA sequences. Plant parasites share functional similarities regarding feeding, but many similarities in feeding structures result from convergent evolution and have fundamentally different developmental origins. Although Tylenchida rRNA phylogenies are not fully resolved, they strongly support convergent evolution of sedentary endoparasitism and plant nurse cells in cyst and root-knot nematodes. This result has critical implications for using model systems and genomics to identify and characterize parasitism genes for representatives of this clade. Phylogenetic studies reveal that plant parasites have rich and complex evolutionary histories that involve multiple transitions to plant parasitism and the possible use of genes obtained by horizontal transfer from prokaryotes. Developing a fuller understanding of plant parasitism will require integrating more comprehensive and resolved phylogenies with appropriate choices of model organisms and comparative evolutionary methods.

  4. Differential transcript expression between the microfilariae of the filarial nematodes, Brugia malayi and B. pahangi

    PubMed Central

    2010-01-01

    Background Brugia malayi and B. pahangi are two closely related nematodes that cause filariasis in humans and animals. However, B. pahangi microfilariae are able to develop in and be transmitted by the mosquito, Armigeres subalbatus, whereas most B. malayi are rapidly melanized and destroyed within the mosquito hemocoel. A cross-species microarray analysis employing the B. malayi V2 array was carried out to determine the transcriptional differences between B. malayi and B. pahangi microfilariae with similar age distribution. Results Following microarray data analysis, a list of preferentially expressed genes in both microfilariae species was generated with a false discovery rate estimate of 5% and a signal intensity ratio of 2 or higher in either species. A total of 308 probes were preferentially expressed in both species with 149 probes, representing 123 genes, in B. pahangi microfilariae and 159 probes, representing 107 genes, in B. malayi microfilariae. In B. pahangi, there were 76 (62%) up-regulated transcripts that coded for known proteins that mapped into the KEGG pathway compared to 61 (57%) transcripts in B. malayi microfilariae. The remaining 47 (38%) transcripts in B. pahangi and 46 (43%) transcripts in B. malayi microfilariae were comprised almost entirely of hypothetical genes of unknown function. Twenty-seven of the transcripts in B. pahangi microfilariae coded for proteins that associate with the secretory pathway compared to thirty-nine in B. malayi microfilariae. The data obtained from real-time PCR analysis of ten genes selected from the microarray list of preferentially expressed genes showed good concordance with the microarray data, indicating that the microarray data were reproducible. Conclusion In this study, we identified gene transcripts that were preferentially expressed in the microfilariae of B. pahangi and B. malayi, some of which coded for known immunomodulatory proteins. These comparative transcriptome data will be of interest to

  5. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes

    PubMed Central

    Ward, Jordan D.

    2015-01-01

    Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism. PMID:26644478

  6. Molecular analysis of plant-parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    In addition to traditional morphology-based taxonomic approaches, molecular methods are often required to confirm diagnoses or to establish phylogenetic relationships among plant-parasitic nematodes. Current challenges, including limitations of existing methods, and new research directions will be d...

  7. Homologs of the Caenorhabditis elegans masculinizing gene her-1 in C. briggsae and the filarial parasite Brugia malayi.

    PubMed Central

    Streit, A; Li, W; Robertson, B; Schein, J; Kamal, I H; Marra, M; Wood, W B

    1999-01-01

    The masculinizing gene her-1 in Caenorhabditis elegans (Ce-her-1) encodes a novel protein, HER-1A, which is required for male development. To identify conserved elements in her-1 we have cloned and characterized two homologous nematode genes: one by synteny from the closely related free-living species C. briggsae (Cb-her-1) and the other, starting with a fortuitously identified expressed sequence tag, from the distantly related parasite Brugia malayi (Bm-her-1). The overall sequence identities of the predicted gene products with Ce-HER-1A are only 57% for Cb-HER-1, which is considerably lower than has been found for most homologous briggsae genes, and 35% for Bm-HER-1. However, conserved residues are found throughout both proteins, and like Ce-HER-1A, both have putative N-terminal signal sequences. Ce-her-1 produces a larger masculinizing transcript (her-1a) and a smaller transcript of unknown function (her-1b); both are present essentially only in males. By contrast, Cb-her-1 appears to produce only one transcript, corresponding to her-1a; it is enriched in males but present also in hermaphrodites. Injection of dsRNA transcribed from Cb-her-1 into C. briggsae hermaphrodites (RNA interference) caused XO animals to develop into partially fertile hermaphrodites. Introducing a Cb-her-1 construct as a transgene under control of the C. elegans unc-54 myosin heavy chain promoter caused strong masculinization of both C. briggsae and C. elegans hermaphrodites. Introduction of a similar Bm-her-1 construct into C. elegans caused only very weak, if any, masculinization. We conclude that in spite of considerable divergence the Cb gene is likely to be a functional ortholog of Ce-her-1, while the function of the distantly related Bm gene remains uncertain. PMID:10430584

  8. Remote Sensing of Parasitic Nematodes in Plants

    NASA Technical Reports Server (NTRS)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  9. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    PubMed

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi.

  10. Cuticle surface coat of plant-parasitic nematodes.

    PubMed

    Davies, Keith G; Curtis, Rosane H C

    2011-01-01

    The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.

  11. Unravelling parasitic nematode natural history using population genetics.

    PubMed

    Gilabert, Aude; Wasmuth, James D

    2013-09-01

    The health and economic importance of parasitic nematodes cannot be overstated. Moreover, they offer a complex and diverse array of life strategies, raising a multitude of evolutionary questions. Researchers are applying population genetics to parasitic nematodes in order to disentangle some aspects of their life strategies, improve our knowledge about disease epidemiology, and design control strategies. However, population genetics studies of nematodes have been constrained due to the difficulty in sampling nematodes and developing molecular markers. In this context, new computational and sequencing technologies represent promising tools to investigate population genomics of parasitic, non-model, nematode species in an epidemiological context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Diversity and Expression of MicroRNAs in the Filarial Parasite, Brugia malayi

    PubMed Central

    Poole, Catherine B.; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J.; Bauche, David; McReynolds, Larry A.

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics. PMID:24824352

  13. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    PubMed

    Poole, Catherine B; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J; Bauche, David; McReynolds, Larry A

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  14. Identification of tgh-2, a Filarial Nematode Homolog of Caenorhabditis elegans daf-7 and Human Transforming Growth Factor β, Expressed in Microfilarial and Adult Stages of Brugia malayi

    PubMed Central

    Gomez-Escobar, Natalia; Gregory, William F.; Maizels, Rick M.

    2000-01-01

    A novel member of the transforming growth factor β (TGF-β) family has been identified in the filarial nematode parasite Brugia malayi by searching the recently developed Expressed Sequence Tag (EST) database produced by the Filarial Genome Project. Designated tgh-2, this new gene shows most similarity to a key product regulating dauer larva formation in Caenorhabditis elegans (DAF-7) and to the human down-modulatory cytokine TGF-β. Homology to DAF-7 extends throughout the length of the 349-amino-acid (aa) protein, which is divided into an N-terminal 237 aa, including a putative signal sequence, a 4-aa basic cleavage site, and a 108-aa C-terminal active domain. Similarity to human TGF-β is restricted to the C-terminal domain, over which there is a 32% identity between TGH-2 and TGF-β1, including every cysteine residue. Expression of tgh-2 mRNA has been measured over the filarial life cycle. It is maximal in the microfilarial stage, with lower levels of activity around the time of molting within the mammal, but continues to be expressed by mature adult male and female parasites. Expression in both the microfilaria, which is in a state of arrested development, and the adult, which is terminally differentiated, indicates that tgh-2 may play a role other than purely developmental. This is consistent with our observation that TGH-2 is secreted by adult worms in vitro. Recombinant TGH-2 expressed in baculovirus shows a low level of binding to TGF-β-receptor bearing mink lung epithelial cells (MELCs), which is partially inhibited (16 to 39%) with human TGF-β, and activates plasminogen activator inhibitor-1 transcription in MELCs, a marker for TGF-β-mediated transduction. Further tests will be required to establish whether the major role of B. malayi TGH-2 (Bm-TGH-2) is to modulate the host immune response via the TGF-β pathway. PMID:11035752

  15. Role of horizontal gene transfer in the evolution of plant parasitism among nematodes.

    PubMed

    Mitreva, Makedonka; Smant, Geert; Helder, Johannes

    2009-01-01

    Horizontal gene transfer (HGT) implies the non-sexual exchange of genetic material between species - in some cases even across kingdoms. Although common among Bacteria and Archaea, HGTs from pro- to eukaryotes and between eukaryotes were thought to be extremely rare. Recent studies on intracellular bacteria and their hosts seriously question this view. Recipient organisms could benefit from HGT as new gene packages could allow them to broaden or change their diet, colonize new habitats, or survive conditions that previously would have been lethal.About a decade ago, plant parasitic nematodes were shown to produce and secrete cellulases. Prior to this, animals were thought to fully depend on microbial symbionts for the breakdown of plant cell walls. This discovery prompted Keen and Roberts (1) to hypothesize that the ability of nematodes to parasitize plants was acquired by HGT from soil bacteria to (ancestral) bacterivorous nematodes. Since the identification of the first nematode cellulases, many more plant cell wall-degrading enzymes (CWDE) have been identified in a range of plant parasitic nematode species.Here we discuss a number of criteria that can be used to underpin an HGT claim. HGT requires close physical contact between donor and recipient, and this could be achieved in, for example, a symbiont-host, or a trophic relationship. The former type of relationship was indeed shown to potentially result in the transfer of genetic material (e.g., Brugia malayi and Wolbachia). However, currently known endosymbionts of nematodes may not be the source of CWDEs. Remarkably, all cellulases discovered so far within the order Tylenchida belong to a single glycoside hydrolase family (GHF5). A range of soil bacteria harbours GHF5 cellulases, but of course nothing can be said about the gene content of soil bacteria at the time HGT took place (if at all). We suggest that characterisation of cellulases (and other CWDEs) and their genomic organisation in more basal

  16. Absence of Wolbachia endobacteria in Sri Lankan isolates of the nematode parasite of animals Setaria digitata.

    PubMed

    Voronin, Denis; Abeykoon, A M L L; Gunawardene, Y I Silva; Dassanayake, Ranil S

    2015-01-30

    Setaria digitata is an animal filarial parasite with natural hosts of cattle and buffaloes that causes mild disease conditions. Infection of non-permissive hosts such as goats, sheep and horses, by this nematode can cause cerebrospinal nematodiasis that leads to lumbar paralysis and the eventual death of the animals and inflicts considerable economic losses on livestock farmers. Wolbachia are obligate mutualistic endosymbionts for some filarial nematodes and are currently being targeted for the control of diseases caused by these parasites. However, little is known about the occurrence of this endosymbiont in the Setariidae family. In this work, worms collected from infected cattle in Sri Lanka were morphologically identified as S. digitata and tested for the presence of Wolbachia by PCR screening using the WSP- and Wolbachia-specific 16S rRNA and multilocus sequence typing primers that were designed to amplify the gatB, coxA, hcpA, ftsZ and fbpA sequences of Wolbachia. The presence of endobacteria in S. digitata was also examined by whole-mount immunofluorescence staining of the parasites and transmission electron microscopic studies. These analyses did not produce evidence of presence of Wolbachia or any other endosymbiotic bacteria in S. digitata, whereas such evidence was found in Brugia malayi, which was used as a positive control in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes

    PubMed Central

    Wylie, Todd; Martin, John C.; Dante, Michael; Mitreva, Makedonka Dautova; Clifton, Sandra W.; Chinwalla, Asif; Waterston, Robert H.; Wilson, Richard K.; McCarter, James P.

    2004-01-01

    Nematode.net (www.nematode.net) is a web- accessible resource for investigating gene sequences from nematode genomes. The database is an outgrowth of the parasitic nematode EST project at Washington University’s Genome Sequencing Center (GSC), St Louis. A sister project at the University of Edinburgh and the Sanger Institute is also underway. More than 295 000 ESTs have been generated from >30 nematodes other than Caenorhabditis elegans including key parasites of humans, animals and plants. Nematode.net currently provides NemaGene EST cluster consensus sequence, enhanced online BLAST search tools, functional classifications of cluster sequences and comprehensive information concerning the ongoing generation of nematode genome data. The long-term goal of nematode.net is to provide the scientific community with the highest quality sequence information and tools for studying these diverse species. PMID:14681448

  18. RNAi and functional genomics in plant parasitic nematodes.

    PubMed

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.

  19. Signatures of adaptation to plant parasitism in nematode genomes.

    PubMed

    Bird, David McK; Jones, John T; Opperman, Charles H; Kikuchi, Taisei; Danchin, Etienne G J

    2015-02-01

    Plant-parasitic nematodes cause considerable damage to global agriculture. The ability to parasitize plants is a derived character that appears to have independently emerged several times in the phylum Nematoda. Morphological convergence to feeding style has been observed, but whether this is emergent from molecular convergence is less obvious. To address this, we assess whether genomic signatures can be associated with plant parasitism by nematodes. In this review, we report genomic features and characteristics that appear to be common in plant-parasitic nematodes while absent or rare in animal parasites, predators or free-living species. Candidate horizontal acquisitions of parasitism genes have systematically been found in all plant-parasitic species investigated at the sequence level. Presence of peptides that mimic plant hormones also appears to be a trait of plant-parasitic species. Annotations of the few genomes of plant-parasitic nematodes available to date have revealed a set of apparently species-specific genes on every occasion. Effector genes, important for parasitism are frequently found among those species-specific genes, indicating poor overlap. Overall, nematodes appear to have developed convergent genomic solutions to adapt to plant parasitism.

  20. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes.

    PubMed

    Stepek, Gillian; McCormack, Gillian; Birnie, Andrew J; Page, Antony P

    2011-02-01

    Nematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities.

  1. Sequence data swell for nematodes.

    PubMed

    Hertz-Fowler, Christiane; Pain, Arnab

    2008-11-01

    With more than 80,000 described species that are extremely diverse in terms of ecology and biology, the Nematoda phylum is one of the most common animal phyla. This month's Genome Watch describes genomes of several nematodes, including that of the human filarial parasite Brugia malayi.

  2. Osmoregulation in the parasitic nematode Pseudoterranova decipiens.

    PubMed

    Fusé, M; Davey, K G; Sommerville, R I

    1993-02-01

    When subjected to hyper- or hypo-osmotic stress at 5 degrees C for 24 h, third-stage larvae of the parasitic nematode Pseudoterranova decipiens do not exhibit changes in mass or in the osmotic pressure of the pseudocoelomic fluid. Immersion in solutions containing 3H2O demonstrates that exchange with the water in the pseudocoelomic fluid is substantially complete within 24 h. Sacs composed of cylinders of body wall without the intestine and pseudocoelomic fluid do not gain weight when immersed for 24 h in hypotonic medium. Metabolic poisons abolish the ability of whole worms and sacs to maintain their weight when immersed in hypotonic media. These observations support the conclusion that the nematode is capable of at least short-term osmoregulation and that the site of osmoregulation is the body wall. The observations that more fluid is passed from the anus in some hypo-osmotically stressed worms and that worms ligatured at the tail exhibit a small increase in mass when exposed to hypo-osmotic conditions may indicate that the intestine plays a minor and subsidiary role in osmoregulation.

  3. Infection with parasitic nematodes confounds vaccination efficacy.

    PubMed

    Urban, Joseph F; Steenhard, Nina R; Solano-Aguilar, Gloria I; Dawson, Harry D; Iweala, Onyinye I; Nagler, Cathryn R; Noland, Gregory S; Kumar, Nirbhay; Anthony, Robert M; Shea-Donohue, Terez; Weinstock, Joel; Gause, William C

    2007-08-19

    T helper (Th) cells produce signature cytokine patterns, induced largely by intracellular versus extracellular pathogens that provide the cellular and molecular basis for counter regulatory expression of protective immunity during concurrent infections. The production of IL-12 and IFN-gamma, for example, resulting from exposure to many bacterial, viral, and protozoan pathogens is responsible for Th1-derived protective responses that also can inhibit development of Th2-cells expressing IL-4-dependent immunity to extracellular helminth parasites and vice versa. In a similar manner, concurrent helminth infection alters optimal vaccine-induced responses in humans and livestock; however, the consequences of this condition have not been adequately studied especially in the context of a challenge infection following vaccination. Demands for new and effective vaccines to control chronic and emerging diseases, and the need for rapid deployment of vaccines for bio security concerns requires a systematic evaluation of confounding factors that limit vaccine efficacy. One common albeit overlooked confounder is the presence of gastrointestinal nematode parasites in populations of humans and livestock targeted for vaccination. This is particularly important in areas of the world were helminth infections are prevalent, but the interplay between parasites and emerging diseases that can be transmitted worldwide make this a global issue. In addition, it is not clear if the epidemic in allergic disease in industrialized countries substitutes for geohelminth infection to interfere with effective vaccination regimens. This presentation will focus on recent vaccination studies in mice experimentally infected with Heligmosomoides polygyrus to model the condition of gastrointestinal parasite infestation in mammalian populations targeted for vaccination. In addition, a large animal vaccination and challenge model against Mycoplasma hyopneumonia in swine exposed to Ascaris suum will provide

  4. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    PubMed

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  5. Caenorhabditis elegans: A Genetic Guide to Parasitic Nematode Biology.

    PubMed

    Bird, D M; Opperman, C H

    1998-09-01

    The advent of parasite genome sequencing projects, as well as an increase in biology-directed gene discovery, promises to reveal genes encoding many of the key molecules required for nematode-host interactions. However, distinguishing parasitism genes from those merely required for nematode viability remains a substantial challenge. Although this will ultimately require a functional test in the host or parasite, the free-living nematode Caenorhabditis elegans can be exploited as a heterologous system to determine function of candidate parasitism genes. Studies of C. elegans also have revealed genetic networks, such as the dauer pathway, that may also be important adaptations for parasitism. As a more directed means of identifying parasitism traits, we developed classical genetics for Heterodera glycines and have used this approach to map genes conferring host resistance-breaking phenotypes. It is likely that the C. elegans and H. glycines genomes will be at least partially syntenic, thus permitting predictive physical mapping of H. glycines genes of interest.

  6. The draft genome of the parasitic nematode Trichinella spiralis

    PubMed Central

    Mitreva, Makedonka; Jasmer, Douglas P.; Zarlenga, Dante S.; Wang, Zhengyuan; Abubucker, Sahar; Martin, John; Taylor, Christina M.; Yin, Yong; Fulton, Lucinda; Minx, Pat; Yang, Shiaw-Pyng; Warren, Wesley C.; Fulton, Robert S.; Bhonagiri, Veena; Zhang, Xu; Hallsworth-Pepin, Kym; Clifton, Sandra W.; McCarter, James P.; Appleton, Judith; Mardis, Elaine R.; Wilson, Richard K.

    2011-01-01

    Genome-based studies of metazoan evolution are most informative when phylogenetically diverse species are incorporated in the analysis. As such, evolutionary trends within and outside the phylum Nematoda have been less revealing by focusing only on comparisons involving Caenorhabditis elegans. Herein, we present a draft of the 64 megabase nuclear genome of Trichinella spiralis, containing 15,808 protein coding genes. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum enabling identification of archetypical genes and molecular signatures exclusive to nematodes. Comparative analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic vs. a non-parasitic nematode, and a preponderance of gene loss and gain events in nematodes relative to Drosophila melanogaster. This sequence and the panphylum characteristics identified herein will advance evolutionary studies and strategies to combat global parasites of humans, food animals and crops. PMID:21336279

  7. A comparison of two methods for quantifying parasitic nematode fecundity

    USDA-ARS?s Scientific Manuscript database

    Accurate measures of nematode fecundity can provide important information for investigating parasite life history evolution, transmission potential, and effects on host health. Understanding differences among fecundity assessment protocols and standardizing methods, where possible, will enable compa...

  8. Aggregative group behavior in insect parasitic nematode disperal

    USDA-ARS?s Scientific Manuscript database

    Movement behavior is critical to determination of spatial ecology and success of foraging in predators and parasites. In this study movement behavior of entomopathogenic nematodes was explored. Movement patterns in sand were investigated when nematodes were applied to a specific locus or when the ne...

  9. Horizontal gene transfer in nematodes: a catalyst for plant parasitism?

    PubMed

    Haegeman, Annelies; Jones, John T; Danchin, Etienne G J

    2011-08-01

    The origin of plant parasitism within the phylum Nematoda is intriguing. The ability to parasitize plants has originated independently at least three times during nematode evolution and, as more molecular data has emerged, it has become clear that multiple instances of horizontal gene transfer (HGT) from bacteria and fungi have played a crucial role in the nematode's adaptation to this new lifestyle. The first reported HGT cases in plant-parasitic nematodes were genes encoding plant cell wall-degrading enzymes. Other putative examples of HGT were subsequently described, including genes that may be involved in the modulation of the plant's defense system, the establishment of a nematode feeding site, and the synthesis or processing of nutrients. Although, in many cases, it is difficult to pinpoint the donor organism, candidate donors are usually soil dwelling and are either plant-pathogenic or plant-associated microorganisms, hence occupying the same ecological niche as the nematodes. The exact mechanisms of transfer are unknown, although close contacts with donor microorganisms, such as symbiotic or trophic interactions, are a possibility. The widespread occurrence of horizontally transferred genes in evolutionarily independent plant-parasitic nematode lineages suggests that HGT may be a prerequisite for successful plant parasitism in nematodes.

  10. Transgenesis in parasitic nematodes: building a better array

    PubMed Central

    Lok, James B.

    2011-01-01

    In spite of recent progress in the development of transgenesis in parasitic nematodes, several impediments remain before this methodology can become a practical and widely employed tool in parasitology. Recently published studies on transgenesis in the necromenic nematode Pristionchus pacificus from the laboratory of Ralf Sommer highlight several leads that might be valuable as efforts to refine current systems in obligate parasites go forward. PMID:19617000

  11. Thioredoxin peroxidases from Brugia malayi.

    PubMed

    Ghosh, I; Eisinger, S W; Raghavan, N; Scott, A L

    1998-03-15

    Parasite-derived antioxidant proteins have been implicated in playing an important role in protection against the oxygen radicals that are generated during aerobic metabolism and in defense against host immune cell attack. Here we report that filarial nematodes include the thioredoxin peroxidase/thiol-specific antioxidant (TPx/TSA) family of antioxidant proteins as part of their complex defense against radical-mediated damage. At the protein level, the TPx/TSA from Brugia malayi (Bm-TPx-1) was approximately 50% identical and approximately 60% similar to TPx/TSAs from mammals, amphibians and yeast. Bm-TPx-1 was also approximately 60% identical to putative TPx proteins from a related filarial nematode, Onchocerca volvulus, and from the free-living nematode Caenorhabditis elegans. That B. malayi may express multiple forms of molecules with TPx/TSA activity was indicated by the identification of a B. malayi gene encoding a second, distinct member of the TPx/TSA family (Bm-tpx-2). Bm-tpx-1 was found to be transcribed in all stages of the parasite present in the mammalian host and the 25 kDa translation product was present in all of the developmental stages studied. The results of immunohistochemical, immunofluorescent and immunoprecipitation studies showed Bm-TPx-1 to be localized in the cells of the hypodermis/lateral chord in adult parasites and not to be present at the surface or in excretory/secretory products. The distribution in the parasite suggests that Bm-TPx-1 may play its major role in countering radicals produced within cells. A recombinant form of Bm-TPx-1 was biologically active and capable of protecting DNA from oxygen radical-mediated damage. Thioredoxin peroxidases may prove to be a critical component in the parasite's defense against injury caused by oxygen radicals derived from endogenous and exogenous sources.

  12. Suppression of plant parasitic nematodes in the chinampa agricultural soils.

    PubMed

    Zuckerman, B M; Dicklow, M B; Coles, G C; Garcia-E, R; Marban-Mendoza, N

    1989-06-01

    Soil from the chinampa agricultural system in the Valley of Mexico suppressed damage by plant-parasitic nematodes to tomatoes and beans in greenhouse and growth chamber trials. Sterilization of the chinampa soil resulted in a loss of the suppressive effect, thereby indicating that one or more biotic factors were responsible for the low incidence of nematode damage. Nine organisms were isolated from chinampa soil, which showed antinematodal properties in culture. Naturally occurring populations of plant-parasitic nematodes were of lower incidence in chinampa soil than in Chapingo soil.

  13. Evolution of Parasitism in Insect-transmitted Plant Nematodes

    PubMed Central

    Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.

    2003-01-01

    Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987

  14. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  15. Checklist of nematode parasites of amphibians from Argentina.

    PubMed

    González, Cynthya Elizabeth; Inés, Hamann Monika

    2015-07-01

    This review includes information about 47 taxa of nematode parasites reported from 34 species of Argentinean amphibians, all belonging to order Anura (33 native species and 1 introduced species). Thirty four nematode species have been reported as adults and 13 species were reported as larvae (10 taxa) or juveniles (3 taxa). Two species, Cosmocerca parva and C. podicipinus (Cosmocercidae), collected as adults, are the most commonly occurring adult nematodes in Argentinean amphibians; each of them parasitize 14 amphibian species. The bufonid Rhinella schneideri and the leptodactylid Leptodactylus bufonius present the highest species richness of parasitic nematodes (9 species); followed by Rhinella fernandezae, R. arenarum and Leptodactylus chaquensis, each of which is parasitized by 8 nematode species. Mean species richenss was highest for the family Bufonidae (4.5±3.4; range: 1-9); followed by the Leptodactylidae (3.5±2.8; range: 1-9). Data on hosts, geographical distribution, site of infection, location of deposited materials, and information about life cycles are provided. This is the first compilation of information on nematode parasites of amphibians in Argentina.

  16. Top 10 plant-parasitic nematodes in molecular plant pathology.

    PubMed

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  17. Sequence mining and transcript profiling to explore cyst nematode parasitism

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Gai, Xiaowu; Martin, John; Recknor, Justin; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2009-01-01

    Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H

  18. Disparate gain and loss of parasitic abilities among nematode lineages.

    PubMed

    Holterman, Martijn; Karegar, Akbar; Mooijman, Paul; van Megen, Hanny; van den Elsen, Sven; Vervoort, Mariette T W; Quist, Casper W; Karssen, Gerrit; Decraemer, Wilfrida; Opperman, Charles H; Bird, David M; Kammenga, Jan; Goverse, Aska; Smant, Geert; Helder, Johannes

    2017-01-01

    Plant parasitism has arisen time and again in multiple phyla, including bacteria, fungi, insects and nematodes. In most of these organismal groups, the overwhelming diversity hampers a robust reconstruction of the origins and diversification patterns of this trophic lifestyle. Being a moderately diversified phylum with ≈ 4,100 plant parasites (15% of total biodiversity) subdivided over four independent lineages, nematodes constitute a major organismal group for which the genesis of plant parasitism could be mapped. Since substantial crop losses worldwide have been attributed to less than 1% of these plant parasites, research efforts are severely biased towards this minority. With the first molecular characterisation of numerous basal and supposedly harmless plant parasites as well as their non-parasitic relatives, we were able to generate a comprehensive molecular framework that allows for the reconstruction of trophic diversification for a complete phylum. In each lineage plant parasites reside in a single taxonomic grouping (family or order), and by taking the coverage of the next lower taxonomic level as a measure for representation, 50, 67, 100 and 85% of the known diversity was included. We revealed distinct gain and loss patterns with regard to plant parasitism per se as well as host exploitation strategies between these lineages. Our map of parasitic nematode biodiversity also revealed an unanticipated time reversal in which the two most ancient lineages showed the lowest level of ecological diversification and vice versa.

  19. A sensory code for host seeking in parasitic nematodes

    PubMed Central

    Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.

    2011-01-01

    Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558

  20. Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model

    PubMed Central

    Ritchie, Ryan; Goundry, Amy; O’Neill, Kerry; Marchesi, Francesco; Devaney, Eileen

    2016-01-01

    Helminth parasites remain a major constraint upon human health and well-being in many parts of the world. Treatment of these infections relies upon a very small number of therapeutics, most of which were originally developed for use in animal health. A lack of high throughput screening systems, together with limitations of available animal models, has restricted the development of novel chemotherapeutics. This is particularly so for filarial nematodes, which are long-lived parasites with a complex cycle of development. In this paper, we describe attempts to visualise the immune response elicited by filarial parasites in infected mice using a non-invasive bioluminescence imaging reagent, luminol, our aim being to determine whether such a model could be developed to discriminate between live and dead worms for in vivo compound screening. We show that while imaging can detect the immune response elicited by early stages of infection with L3, it was unable to detect the presence of adult worms or, indeed, later stages of infection with L3, despite the presence of worms within the lymphatic system of infected animals. In the future, more specific reagents that detect secreted products of adult worms may be required for developing screens based upon live imaging of infected animals. PMID:27992545

  1. Nondestructive imaging of plant-parasitic nematode development and host response to nematode pathogenesis.

    PubMed

    Dinh, Phuong T Y; Knoblauch, Michael; Elling, Axel A

    2014-05-01

    The secluded lifestyle of endoparasitic plant nematodes hampers progress toward a comprehensive understanding of plant-nematode interactions. A novel technique that enables nondestructive, long-term observations of a wide range of live nematodes in planta is presented here. As proof of principle, Pratylenchus penetrans, Heterodera schachtii, and Meloidogyne chitwoodi were labeled fluorescently with PKH26 and used to infect Arabidopsis thaliana grown in microscopy rhizosphere chambers. Nematode behavior, development, and morphology were observed for the full duration of each parasite's life cycle by confocal microscopy for up to 27 days after inoculation. PKH26 accumulated in intestinal lipid droplets and had no negative effect on nematode infectivity. This technique enabled visualization of Meloidogyne gall formation, nematode oogenesis, and nematode morphological features, such as the metacorpus, vulva, spicules, and cuticle. Additionally, microscopy rhizosphere chambers were used to characterize plant organelle dynamics during M. chitwoodi infection. Peroxisome abundance strongly increased in early giant cells but showed a marked decrease at later stages of feeding site development, which suggests a modulation of plant peroxisomes by root-knot nematodes during the infection process. Taken together, this technique facilitates studies aimed at deciphering plant-nematode interactions at the cellular and subcellular level and enables unprecedented insights into nematode behavior in planta.

  2. Molecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra Kumar; Misra-Bhattacharya, Shailja

    2012-01-01

    The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD+-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD+-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD+-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies. PMID:22815933

  3. Antagonists of Plant-parasitic Nematodes in Florida Citrus

    PubMed Central

    Walter, David Evans; Kaplan, David T.

    1990-01-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare. PMID:19287759

  4. Antagonists of Plant-parasitic Nematodes in Florida Citrus.

    PubMed

    Walter, D E; Kaplan, D T

    1990-10-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare.

  5. DNA barcoding of parasitic nematodes: is it kosher?

    PubMed

    Siddall, Mark E; Kvist, Sebastion; Phillips, Anna; Oceguera-Figuero, Alejandro

    2012-06-01

    Nematode parasites were encountered in kosher-certified fish meat and roe, and the question was raised as to whether or not these food products were kosher as concerns food preparation standards-a matter that pertains to the identity and, by extension, the life cycle of the parasites. To ascertain the identities of parasitic nematodes, given the distorted or damaged nature of the specimens, molecular techniques were applied in the form of DNA barcoding. To our knowledge, this is the first application of this technique to an obviously cultural concern as opposed to one of health or economic significance. Results, based both on cytochrome c oxidase subunits I and II, suggested that the parasite species found in the fish products are anisakine species that do not inhabit the intestinal lumen of the fish hosts examined. Thus, there was no evidence of failure to adhere to food preparation practices consistent with the proscriptions of Orthodox Judaism. Notwithstanding the success of DNA barcoding in determining at least the higher taxonomic identities of the parasites, some shortcomings of the DNA barcoding pipeline as it pertains to nematode parasites were encountered; specifically, the paucity of data available for the DNA barcoding locus, even for very common nematode taxa.

  6. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    PubMed

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  7. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    PubMed

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes.

  8. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts

    USDA-ARS?s Scientific Manuscript database

    Most hosts are concurrently or sequentially infected with multiple parasites, thus fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, non-invasive methods for obtaining quantita...

  9. Root-Knot Nematode Parasitism Suppresses Host RNA Silencing.

    PubMed

    Walsh, E; Elmore, J M; Taylor, C G

    2017-04-12

    Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual "giant cells") is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host's RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.

  10. The draft genome of the parasitic nematode Trichinella spiralis.

    PubMed

    Mitreva, Makedonka; Jasmer, Douglas P; Zarlenga, Dante S; Wang, Zhengyuan; Abubucker, Sahar; Martin, John; Taylor, Christina M; Yin, Yong; Fulton, Lucinda; Minx, Pat; Yang, Shiaw-Pyng; Warren, Wesley C; Fulton, Robert S; Bhonagiri, Veena; Zhang, Xu; Hallsworth-Pepin, Kym; Clifton, Sandra W; McCarter, James P; Appleton, Judith; Mardis, Elaine R; Wilson, Richard K

    2011-03-01

    Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map-assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.

  11. Filaria-induced immune evasion: suppression by the infective stage of Brugia malayi at the earliest host-parasite interface.

    PubMed

    Semnani, Roshanak Tolouei; Law, Melissa; Kubofcik, Joseph; Nutman, Thomas B

    2004-05-15

    To assess the physiologic interactions between the infective stage of Brugia malayi--one of the extracellular parasites responsible for lymphatic filariasis in humans--and the APC with which they come in contact during their development and routes of travel, we have investigated the interaction between the infective stage (L3) of B. malayi and human Langerhans cells (LC) in the skin. Our data indicate that live L3 result in increased migration of LC from the epidermis without affecting the viability of these cells and up-regulation of the IL-18 cytokine involved in LC migration. Live L3 also result in down-regulation of MHC class I and II on the LC cell surface. Additionally, microarray data indicate that live L3 significantly down-regulated expression of IL-8 as well as of multiple genes involved in Ag presentation, reducing the capacity of LC to induce CD4(+) T cells in allogeneic MLR, and thus resulting in a decreased ability of LC to promote CD4(+) T cell proliferation and production of IFN-gamma and IL-10. These data suggest that L3 exert a down-regulatory response in epidermal LC that leads to a diminished capacity of these cells to activate CD4(+) T cells.

  12. Cryopreservation of Radopholus similis, a tropical plant-parasitic nematode.

    PubMed

    Elsen, Annemie; Vallterra, Salvador Ferrandis; Van Wauwe, Tom; Thuy, Trinh Thi Thu; Swennen, Rony; De Waele, Dirk; Panis, Bart

    2007-10-01

    For obligate plant-parasitic nematodes, cryopreservation has advantages over the usual preservation methods on whole plants or axenic culture systems, because the latter two are labourious and time and space consuming. In addition, cross contamination among different isolates can occur easily. Moreover, specific genetic studies require maintenance of the original population. The nematode under investigation, Radopholus similis, is a plant-parasitic nematode from the humid tropics. Therefore, any treatment at low temperatures is likely to add extra stress to the nematode, making the development of a cryopreservation protocol extremely difficult. In this paper, we describe experiments to achieve a successful cryopreservation protocol for the tropical nematode R. similis using vitrification solution-based methods based on a well defined mixture of cryoprotectants in combination with ultra-rapid cooling and thawing rates. A two-step treatment was used consisting of an incubation in glycerol followed by the application of a vitrifying mixture of methanol, glycerol and glucose. After cryopreservation, the pathogenicity of the nematodes was not altered, since they could infect and reproduce on carrot discs after recovery in the Ringer solution. The cryopreservation method described can be used for routine cryopreservation of R. similis lines from different origins.

  13. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes.

    PubMed

    Benesh, Daniel P; Lafferty, Kevin D; Kuris, Armand

    2017-03-01

    Parasitologists have worked out many complex life cycles over the last ~150 yr, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8,510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2,313 development time measurements and 7,660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  14. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    USGS Publications Warehouse

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  15. Immunological aspects of nematode parasite control in sheep.

    PubMed

    Miller, J E; Horohov, D W

    2006-04-01

    Gastrointestinal nematode parasitism is arguably the most serious constraint affecting sheep production worldwide. Economic losses are caused by decreased production, the costs of prophylaxis and treatment, and the death of the infected animals. The nematode of particular concern is Haemonchus contortus, which can cause severe blood loss resulting in anemia, anorexia, depression, loss of condition, and eventual death. The control of nematode parasites traditionally relies on anthelmintic treatment. The evolution of anthelmintic resistance in nematode populations threatens the success of drug treatment programs. Alternative strategies for control of nematode infections are being developed, and one approach is to take advantage of the host's natural or acquired immune responses, which can be used in selection programs to increase the level of resistance in the population. Vaccination can also be used to stimulate or boost the host's acquired immunity. The induction of protective resistance is dependent on the pattern of cytokine gene expression induced during infection by two defined CD4+ T-helper cell subsets, which have been designated as Th1 or Th2. Intracellular parasites most often invoke a Th1-type response, and helminth parasites a Th2-type response. Breeds of sheep resistant to infection have developed resistance over a much longer term of host-parasite relationship than genetically selected resistant lines. The immune components involved in these different responses and types of host-parasite relationships will be reviewed. The potential for using vaccines has been investigated, with variable results, for several decades. The few successes and potential new antigen candidates will also be reviewed.

  16. Prevalence and intensity of nematode parasites in Wisconsin ermine.

    PubMed

    Dubay, Shelli; Buchholz, Matthew J; Lisiecki, Robert; Huspeni, Todd; Ginnett, Tim; Haen, Luke; Borsdorf, Phil

    2014-10-01

    In the midwestern United States, ermine ( Mustela erminea ) are economically important because they are legally harvested for pelts. Information on parasites of ermine is lacking, and the effects that nematode parasites have on body condition of ermine hosts are unknown. We identified Skrjabingylus nasicola and Filaroides martis in ermine trapped from 2007 to 2013 from 6 counties in Wisconsin. Small mammals, commonly consumed by ermine, serve as paratenic hosts for both parasites. Our goal was to identify how age and sex of ermine, along with year, influence nematode parasitism. We also investigated how infection affected body condition for male and female ermine using body mass standardized by length as an index of body condition. We commonly found S. nasicola and F. martis in male and female ermine, but both prevalence and intensity of infection were higher for males. Relative to juveniles (<1 yr), adult (>1 yr) male ermine did not exhibit significantly higher intensity or prevalence of either parasite. We found that body condition was not compromised by infection for either sex, and intensity of S. nasicola and prevalence of F. martis were highest during the 2010-2011 trapping season. Of the 6 yr studied, precipitation was highest during the summer before the 2010-2011 season, and increased precipitation can cause increases in populations of gastropod intermediate hosts. We think that several distinct natural history components, namely, mating structure, diet, and metabolic rate, influence nematode parasitism in ermine.

  17. Nematode parasites of waterfowl (Anseriformes) from western United States

    USGS Publications Warehouse

    McDonald, M.E.

    1974-01-01

    Thirty-four species of nematodes were found in 415 Anseriformes (Anatidae) of 27 species; 93.7% of birds over 4 weeks old were infected. Data on prevalence, host specificity, age of host, and geographic distribution are given. Infections were more intense in sick birds and birds in poor physical condition. Accidental or abnormal infection was more likely in sick than in normal birds. From 1 to 13 species of nematodes are reported from each host species, including 118 new host records, 3 nematodes new for North America, and 1 new species. Multiple infections were present in 76.5% of birds parasitized; eight species of nematodes were found in one whistling swan (Olor columbianus).

  18. Resistance of Grape Rootstocks to Plant-parasitic Nematodes

    PubMed Central

    Ferris, H.; Zheng, L.; Walker, M. A.

    2012-01-01

    Candidate grape rootstocks were selected through a rigorous screening program initiated with important sources of resistance to Meloidogyne pathotypes and to Xiphinema index in Muscadinia rotundifolia and Vitis species native to North America. Based on their rooting capability and horticultural characteristics, 200 candidates were selected from 5,000 progeny of multiple crosses between commercial grape rootstocks and wild grape species that exhibited resistance to nematodes. After a 15-year screening process, 13 selections emerged with either almost complete or complete combined resistance to M. incognita Race 3, M. incognita pathotype Harmony C, M. arenaria pathotype Harmony A, and X. index, important nematode pests of grapevines. Durability of this broad resistance was tested by challenging the selections with the target nematodes in combination and with the target nematodes in combinations with species not included in the screening process. Durability of resistance of the candidate rootstocks was also tested by exposure to the nematode communities of infested field soils from different locations. Breadth of resistance was determined on the basis of their host status to non-target nematodes, including Mesocriconema xenoplax, Pratylenchus vulnus, Tylenchulus semipenetrans and Paratylenchus hamatus. After a total of 204 separate trials, the rootstocks were released to the grape industry as UCD GRN1, UCD GRN2, UCD GRN3, UCD GRN4, and UCD GRN5. We provide a compilation of current knowledge of the host status of these five newly released rootstocks and of 27 other rootstock cultivars to plant-parasitic nematodes. PMID:23482972

  19. Resistance of Grape Rootstocks to Plant-parasitic Nematodes.

    PubMed

    Ferris, H; Zheng, L; Walker, M A

    2012-12-01

    Candidate grape rootstocks were selected through a rigorous screening program initiated with important sources of resistance to Meloidogyne pathotypes and to Xiphinema index in Muscadinia rotundifolia and Vitis species native to North America. Based on their rooting capability and horticultural characteristics, 200 candidates were selected from 5,000 progeny of multiple crosses between commercial grape rootstocks and wild grape species that exhibited resistance to nematodes. After a 15-year screening process, 13 selections emerged with either almost complete or complete combined resistance to M. incognita Race 3, M. incognita pathotype Harmony C, M. arenaria pathotype Harmony A, and X. index, important nematode pests of grapevines. Durability of this broad resistance was tested by challenging the selections with the target nematodes in combination and with the target nematodes in combinations with species not included in the screening process. Durability of resistance of the candidate rootstocks was also tested by exposure to the nematode communities of infested field soils from different locations. Breadth of resistance was determined on the basis of their host status to non-target nematodes, including Mesocriconema xenoplax, Pratylenchus vulnus, Tylenchulus semipenetrans and Paratylenchus hamatus. After a total of 204 separate trials, the rootstocks were released to the grape industry as UCD GRN1, UCD GRN2, UCD GRN3, UCD GRN4, and UCD GRN5. We provide a compilation of current knowledge of the host status of these five newly released rootstocks and of 27 other rootstock cultivars to plant-parasitic nematodes.

  20. Functional roles of effectors of plant-parasitic nematodes.

    PubMed

    Haegeman, Annelies; Mantelin, Sophie; Jones, John T; Gheysen, Godelieve

    2012-01-15

    Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Allelopathy in the Management of Plant-Parasitic Nematodes

    PubMed Central

    Halbrendt, J. M.

    1996-01-01

    There are numerous reports of nematicidal chemicals in crude plant homogenates, leachates, and decomposing residues. These compounds are usually assumed to be secondary metabolites, which serve as chemical defenses against disease and parasites. When such compounds are released into the rhizosphere, they are known as allelochemicals. The possibility exists to exploit allelochemicals for nematode control, and there have been many attempts to use this approach either by rotation, intercropping, or green manure treatments. Results have met with mixed success. Proof of allelochemical activity in field situations is difficult to obtain, but it is evident that some rotation crops are significantly better at reducing nematode populations than others. Rotations with non-host plants may simply deny the nematode population an adequate food source for reproduction (passive suppression), whereas allelopathic crops kill nematodes by the production of toxic compounds (active suppression). Progress toward sustainable agriculture should benefit from studies on allelopathic nematode control. However, grower acceptance of new plant-rotation strategies are based on economic and logistical considerations as well as efficacy. A potential practical application of allelopathic nematode control that involves using rapeseed as a green manure crop to reduce populations of Xiphinema americanum sensu lato in temperate orchards is presented. PMID:19277340

  2. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis

    USDA-ARS?s Scientific Manuscript database

    Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. The CLE ...

  3. Genome Similarity Implies that Citrus-Parasitic Burrowing Nematodes do not Represent a Unique Species.

    PubMed

    Kaplan, D T; Opperman, C H

    1997-12-01

    Burrowing nematodes from Central America, Dominican Republic, Florida, Guadeloupe, Hawaii, and Puerto Rico were characterized for their ability to parasitize citrus, but citrus parasites were found only in Florida. Sequence tag sites originally amplified from a citrus-parasitic burrowing nematode were polymorphic among 37 burrowing nematode isolates and were not correlated with citrus parasitism, nematode isolate collection site, or amplification of a 2.4-kb sequence tag site (DK#1). Results of a RAPD analysis and characterization of the isozymes phosphoglucose isomerase, lactate dehydrogenase, and malate dehydrogenase indicated that the burrowing nematode isolates were highly similar. Citrus parasitism in Florida appears to be associated with limited changes in the burrowing nematode genome. Findings did not substantiate a previous report that R. citrophilus was present in Hawaii. Overall, these data do not support assignment of sibling species status to burrowing nematodes that differ with respect to citrus parasitism.

  4. Plant-Parasitic Nematodes in Maine Agricultural Soils

    PubMed Central

    Huettel, W N.; Francl, L. J.; Henn, A.; Bourgoin, T.

    1990-01-01

    In a survey of plant-parasitic nematodes associated with agricultural crops in nine Maine counties, 744 soil samples from 26 potential host plants were analyzed between November 1987 and January 1989. The most commonly encountered nematode genus was Pratylenchus, occurring in 85% of the samples from most crops, except blueberries and onions. Pratylenchus penetrans and P. crenatus were found commonly as species mixtures, with P. penetrans composing 40-80% of the mixture. Meloidogyne hapla was encountered in 16% of the samples in four counties, generally in potato rotations. Other nematodes encountered were Aphelenchoides spp., Criconemella curvature, Ditylenchus spp., Helicotylenchus pseudorobustus, H. digonicus, Heterodera trifolii, Paratylenchus projectus, Trichodorus spp., Tylenchorhynchus maximus, and Xiphinema americanum. Potato fields were the most heavily sampled and thus weighted the statewide results. PMID:19287791

  5. [Screening endophytic bacteria against plant-parasitic nematodes].

    PubMed

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  6. Nematode Parasites of Teiid Lizards from the Brazilian Amazon Rainforest.

    PubMed

    Macedo, Lilian Cristina; Gardner, Scott L; Melo, Francisco Tiago Vasconcelos; Giese, Elane Guerreiro; Dos Santos, Jeannie Nascimento

    2016-11-30

    This study presents the helminth composition and parameters of infection by several species of nematodes in teiid lizards, Ameiva a. ameiva (Linnaeus, 1758), Cnemidophorus cryptus Cole & Dessauer, 1993, and Kentropyx calcarata Spix, 1825 from the Brazilian Amazonian Rainforest. The lizard populations we studied were parasitized by six species of Nemata, including: Spinicauda spinicauda (Olfers, 1919), Parapharyngodon alvarengai Freitas, 1957, Physaloptera sp. (adults), Physaloptera sp. (larvae), Piratuba digiticauda Lent and Freitas, 1941, and Anisakidae (larvae). The overall prevalence was 66.17% and the mean intensity of infection was 19.40 ± 25.48. The association between the body-length of lizards and abundance and richness of parasitic nematodes was statistically significant only in Ameiva a. ameiva. A new host record is reported here with one specimen of the family Anasakidae in Ameiva a. ameiva. Both S. spinicauda and Physaloptera sp. represent new records from C. cryptus.

  7. Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance.

    PubMed

    Chen, Baozhen; Deutmeyer, Alex; Carr, John; Robertson, Alan P; Martin, Richard J; Pandey, Santosh

    2011-01-01

    With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 μm, which was larger than 123 μm of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 μm, which was less than 393 μm of LEVR. The mean propagation velocity of SENS, 149 μm s-1, was similar to LEVR, 143 μm s-1. The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0.5 μm. The EC50 for SENS was 3 μm and the EC50 for LEVR was 10 μm. This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion.

  8. Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance

    PubMed Central

    CHEN, BAOZHEN; DEUTMEYER, ALEX; CARR, JOHN; ROBERTSON, ALAN P.; MARTIN, RICHARD J.; PANDEY, SANTOSH

    2010-01-01

    SUMMARY With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 μm, which was larger than 123 μm of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 μm, which was less than 393 μm of LEVR. The mean propagation velocity of SENS, 149 μm s−1, was similar to LEVR, 143 μm s−1. The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0.5 μM. The EC50 for SENS was 3 μM and the EC50 for LEVR was 10 μM. This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion. PMID:20663251

  9. Absence of Wolbachia endobacteria in the human parasitic nematode Dracunculus medinensis and two related Dracunculus species infecting wildlife

    PubMed Central

    2014-01-01

    Background Wolbachia endosymbionts are a proven target for control of human disease caused by filarial nematodes. However, little is known about the occurrence of Wolbachia in taxa closely related to the superfamily Filarioidea. Our study addressed the status of Wolbachia presence in members of the superfamily Dracunculoidea by screening the human parasite Dracunculus medinensis and related species from wildlife for Wolbachia. Findings D. medinensis, D. lutrae and D. insignis specimens were all negative for Wolbachia colonization by PCR screening for the Wolbachia ftsZ, 16S rRNA and Wolbachia surface protein (wsp) sequences. The quality and purity of the DNA preparations was confirmed by amplification of nematode 18S rRNA and cytochrome c oxidase subunit I sequences. Furthermore, Wolbachia endobacteria were not detected by whole mount fluorescence staining, or by immunohistochemistry using a Wolbachia-specific antiserum. In contrast, positive control Brugia malayi worms were shown to harbour Wolbachia by PCR, fluorescence staining and immunohistochemistry. Conclusions Three examined species of Dracunculus showed no evidence of Wolbachia endobacteria. This supports that members of the superfamily Dracunculoidea are free of Wolbachia. Within the order Spirurida, these endosymbionts appear restricted to the Filarioidea. PMID:24685011

  10. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France.

    PubMed

    Villemant, Claire; Zuccon, Dario; Rome, Quentin; Muller, Franck; Poinar, George O; Justine, Jean-Lou

    2015-01-01

    Since its introduction in France 10 years ago, the yellow-legged Asian bee-hawking hornet Vespa velutina has rapidly spread to neighboring countries (Spain, Portugal, Belgium, Italy, and Germany), becoming a new threat to beekeeping activities. While introduced species often leave behind natural enemies from their original home, which benefits them in their new environment, they can also suffer local recruitment of natural enemies. Three mermithid parasitic subadults were obtained from V. velutina adults in 2012, from two French localities. However, these were the only parasitic nematodes reported up to now in Europe, in spite of the huge numbers of nests destroyed each year and the recent examination of 33,000 adult hornets. This suggests that the infection of V. velutina by these nematodes is exceptional. Morphological criteria assigned the specimens to the genus Pheromermis and molecular data (18S sequences) to the Mermithidae, due to the lack of Pheromermis spp. sequences in GenBank. The species is probably Pheromermis vesparum, a parasite of social wasps in Europe. This nematode is the second native enemy of Vespa velutina recorded in France, after a conopid fly whose larvae develop as internal parasitoids of adult wasps and bumblebees. In this paper, we provide arguments for the local origin of the nematode parasite and its limited impact on hornet colony survival. We also clarify why these parasites (mermithids and conopids) most likely could not hamper the hornet invasion nor be used in biological control programs against this invasive species.

  11. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France

    PubMed Central

    Zuccon, Dario; Rome, Quentin; Muller, Franck; Poinar Jr, George O.; Justine, Jean-Lou

    2015-01-01

    Since its introduction in France 10 years ago, the yellow-legged Asian bee-hawking hornet Vespa velutina has rapidly spread to neighboring countries (Spain, Portugal, Belgium, Italy, and Germany), becoming a new threat to beekeeping activities. While introduced species often leave behind natural enemies from their original home, which benefits them in their new environment, they can also suffer local recruitment of natural enemies. Three mermithid parasitic subadults were obtained from V. velutina adults in 2012, from two French localities. However, these were the only parasitic nematodes reported up to now in Europe, in spite of the huge numbers of nests destroyed each year and the recent examination of 33,000 adult hornets. This suggests that the infection of V. velutina by these nematodes is exceptional. Morphological criteria assigned the specimens to the genus Pheromermis and molecular data (18S sequences) to the Mermithidae, due to the lack of Pheromermis spp. sequences in GenBank. The species is probably Pheromermis vesparum, a parasite of social wasps in Europe. This nematode is the second native enemy of Vespa velutina recorded in France, after a conopid fly whose larvae develop as internal parasitoids of adult wasps and bumblebees. In this paper, we provide arguments for the local origin of the nematode parasite and its limited impact on hornet colony survival. We also clarify why these parasites (mermithids and conopids) most likely could not hamper the hornet invasion nor be used in biological control programs against this invasive species. PMID:26038716

  12. The activation and suppression of plant innate immunity by parasitic nematodes.

    PubMed

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  13. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    PubMed

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  14. Plant-parasitic Nematode Acetylcholinesterase Inhibition by Carbamate and Organophosphate Nematicides.

    PubMed

    Opperman, C H; Chang, S

    1990-10-01

    The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response to the organophosphates was approximately equivalent. The sulfur-containing phosphate nematicides were poor inhibitors of nematode acetylcholinesterase, but treatment with an oxidizing agent greatly improved inhibition. Behavioral bioassays with living nematodes revealed a poor relationship between enzyme inhibition and expression of symptoms in live nematodes.

  15. Effect of Certain Antibiotics Against Filarial Parasite Brugia malayi In Vitro: Possible Role of Oxidative Stress

    PubMed Central

    Mahajan, Rachna Sabharwal; Veerpathran, Anandharaman; Dakshinamoorthy, Gajalakshmi; Sharma, Richa Dwarkaprasad; Reddy, Maryada Venkatarami

    2010-01-01

    WHO-Tropical Disease Research scheme highlighted the need for development of new anti-filarial drugs. Certain antibiotics have recently been found effective against Wolbachia, co-existing symbiotically with filarial parasites. Inflammatory response entails oxidative mechanism to educe direct anti-microbial effect. In the present study microfilariae were maintained in vitro in medium supplemented with varying concentrations of tetracycline, doxycycline (20–100 μg/ml) or ciprofloxacin (50–250 μg/ml) separately to find out any involvement of oxidative mechanism in the anti-filarial effect of these antibiotics. Loss of motility of the microfilariae was measured after 48 h and correlated with the levels of MDA, nitric oxide and protein-carbonylation. Significant loss of microfilarial motility was recorded with increasing concentration of tetracycline and doxycycline but with ciprofloxacin the effect was not marked. Agents with high antifilarial activity revealed significant association with oxidative parameters in a dose dependent manner. The result suggests that oxidative effect might be exploited to design novel antifilarial drug candidate. PMID:21966105

  16. Detection of enzymes dehydrogenases and proteases inBrugia malayi filarial parasites.

    PubMed

    Bhandary, Y P; Krithika, K N; Kulkarni, Sandeep; Reddy, M V R; Harinath, B C

    2006-03-01

    Lymphatic filariasis caused mainly by infection fromW. bancrofti andB. malayi remains a major cause of clinical morbidity in tropical and subtropical countries. Analysis ofB. malayi mf, infective larval and adult worm lysates for the activity of enzymes led to the demonstration of activities of three key enzymes of carbohydrate metabolism viz., Malate dehydrogenase (MDH), Malic enzyme (ME) and Glucose-6-phosphate dehydrogenase (G6PDH) in all the three stages of the parasite. The specific activity of all the three dehydrogenases was significantly high in mf lysate compared to their activity in lysates of the other two stages (P<0.001). Analysis by native polyacrylamide gel to their activity inlysates of the other two stages (P<0.001). Analysis by native polyacrylamide gel electrophoresis (PAGE) using 7.5% non-gradient gel showed the presence of two isoforms of each of the three enzymes (MDH, ME & G6PDH) in mf lysate, while only one form of each enzyme was present in L(3) larval and adult worm lysates. Further proteolytic enzyme activity was demonstrated both in microfilarial and infective larval lysates ofB. malayi. While both mf and L(3) larval lysates showed optimal protease activity at alkaline pH of 9.0, the mf lysate showed increased activity also at pH 3.0. The infective larval lysate was markedly inhibited by Tosylamide-L-Phenylalanine chloromethyl ketone (TPCK), a thiol protease inhibitor, while the protease activity in mf lysate was significantly inhibited by both TPCK and a serine protease inhibitor Phenyl Methyl Sulphonyl Flouride (PMSF). In sodium do-decyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using gelatin copolymerized gel, the microfilarial lysate showed 3 protease molecules of 40 kDa, 180 kDa and 200 kDa and the L(3) larval lysate had 6 protease molecules of 18, 25, 37, 49, 70 and 200 kDa size.

  17. Plant-parasitic Nematode Problems in the Pacific Islands.

    PubMed

    Bridge, J

    1988-04-01

    The Pacific islands have a diverse range of food and cash crops with indigenous and introduced nematode problems. The staple food crops have serious nematode pests, such as Meloidogyne spp. on sweet potato, Hirschmanniella miticausa causing corm rot of taro, and Pratylenchus coffeae and Radopholus sp. producing tuber dry rot of yams. Bananas are infested with P. coffeae or R. similis, citrus with Tylenchulus semipenetrans, rice with Aphelenchoides besseyi, and ginger with Meloidogyne spp. and R. similis. Rotylenchulus reniformis, P. zeae, P. brachyurus, and Helicotylenchus spp. are important on all of these and other crops, such as sugarcane, passion fruit, pawpaw, and cassava. Meloidogyne spp. cause serious damage to local and introduced leaf and fruit vegetables and other crops, such as tobacco, sugarcane, pawpaw, black pepper, and pyrethrum. Many other plant-parasitic genera and species, some undescribed, occur in the Pacific, and there are many islands still to be investigated.

  18. Protofilament number in microtubules in cells of two parasitic nematodes.

    PubMed

    Davis, C; Gull, K

    1983-12-01

    The parasitic nematodes, Ascaridia galli and Trichostrongylus colubriformis, were prepared for electron microscopy with fixatives containing tannic acid, which allowed their microtubule protofilament number to be examined. In contrast to many mammalian tissues, the nematodes did not contain microtubules with 13 protofilaments. Ascaridia galli contained microtubules with 11 protofilaments in all tissues examined, including nerve, intestinal, pharyngeal, and hypodermal cells. Trichostrongylus colubriformis contained nerve cells, known as microtubule cells, with bundles of larger microtubules (approximately 30 nm in diameter) with 14 protofilaments. The microtubules in these cells did not appear to be continuous for the entire length of the axon. Other cells examined in T. colubriformis, including nerve, intestinal and pharyngeal cells, contained two distinct types of microtubules, one with 11 protofilaments and an approximate diameter of 25 nm, and one with 12 protofilaments and an approximate diameter of 27 nm. All cell types examined contained both types of microtubules.

  19. Plant-parasitic Nematode Problems in the Pacific Islands

    PubMed Central

    Bridge, John

    1988-01-01

    The Pacific islands have a diverse range of food and cash crops with indigenous and introduced nematode problems. The staple food crops have serious nematode pests, such as Meloidogyne spp. on sweet potato, Hirschmanniella miticausa causing corm rot of taro, and Pratylenchus coffeae and Radopholus sp. producing tuber dry rot of yams. Bananas are infested with P. coffeae or R. similis, citrus with Tylenchulus semipenetrans, rice with Aphelenchoides besseyi, and ginger with Meloidogyne spp. and R. similis. Rotylenchulus reniformis, P. zeae, P. brachyurus, and Helicotylenchus spp. are important on all of these and other crops, such as sugarcane, passion fruit, pawpaw, and cassava. Meloidogyne spp. cause serious damage to local and introduced leaf and fruit vegetables and other crops, such as tobacco, sugarcane, pawpaw, black pepper, and pyrethrum. Many other plant-parasitic genera and species, some undescribed, occur in the Pacific, and there are many islands still to be investigated. PMID:19290200

  20. "Parasite-induced aposematism" protects entomopathogenic nematode parasites against invertebrate enemies.

    PubMed

    Jones, Rebecca S; Fenton, Andy; Speed, Michael P

    2016-01-01

    Aposematism is a well-known strategy in which prey defend themselves from predation by pairing defenses such as toxins, with warning signals that are often visually conspicuous color patterns. Here, we examine the possibility that aposematism can be induced in a host by colonies of infectious parasites in order to protect the parasites from the consequences of attacks on the host. Earlier studies show that avian predators are reluctant to feed on carcasses of host prey that are infected with the entomopathogenic nematode, Heterorhabditis bacteriophora. As the age of infection increases, the parasites kill and preserve the host and subsequently cause its color to change, becoming bright pink then red. Nematode colonies in dead hosts may also be vulnerable, however, to nocturnally active foragers that do not use vision in prey detection. Here, then we test a novel hypothesis that the nematode parasites also produce a warning odor, which functions to repel nocturnally active predators (in this case, the beetle Pterostichus madidus). We show that beetles decrease their feeding on infected insect prey as the age of infection increases and that olfactory cues associated with the infections are effective mechanisms for deterring beetle predation, even at very early stages of infection. We propose that "parasite-induced aposematism" from the nematodes serves to replace the antipredator defenses of the recently killed host. Because sessile carcasses are exposed to a greater range of predators than the live hosts, several alternative defense mechanisms are required to protect the colony, hence aposematic signals are likely diverse in such "parasite-induced aposematism."

  1. Comparative analysis of the secretome from a model filarial nematode (Litomosoides sigmodontis) reveals maximal diversity in gravid female parasites.

    PubMed

    Armstrong, Stuart D; Babayan, Simon A; Lhermitte-Vallarino, Nathaly; Gray, Nick; Xia, Dong; Martin, Coralie; Kumar, Sujai; Taylor, David W; Blaxter, Mark L; Wastling, Jonathan M; Makepeace, Benjamin L

    2014-10-01

    Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies

  2. Comparative Analysis of the Secretome from a Model Filarial Nematode (Litomosoides sigmodontis) Reveals Maximal Diversity in Gravid Female Parasites*

    PubMed Central

    Armstrong, Stuart D.; Babayan, Simon A.; Lhermitte-Vallarino, Nathaly; Gray, Nick; Xia, Dong; Martin, Coralie; Kumar, Sujai; Taylor, David W.; Blaxter, Mark L.; Wastling, Jonathan M.; Makepeace, Benjamin L.

    2014-01-01

    Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies

  3. Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans

    PubMed Central

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-01-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes. PMID:19071962

  4. Chemical ecology and isolation of biologically active compounds from parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    Root knot nematodes (Meloidogyne spp) are possibly the economically most important and best-studied species of plant parasitic nematodes. However, for Meloidogyne spp and the intensely studied nematode, Caenorhabditis elegans, very little is known about signaling within and in-between species. It h...

  5. Influence of Plant-Parasitic Nematodes on Longleaf Pine Seedlings

    PubMed Central

    Ruehle, J. L.

    1973-01-01

    Seedlings of longleaf pine (Pinus palustris) were grown in 20-cm pots for 5 to 7 months in the greenhouse following inoculation with a high or low level of one of seven species of plant-parasitic nematodes. Belonolaimus longicaudatus and Helicotylenchus dihystera had no effect on seedling growth. High inoculum densities of Hoplolaimus galeatus and Tylenchorhynchus claytoni caused a significant reduction of fresh weight of seedling roots. Root and top weights of seedlings grown in soil infested with Meloidodera floridensis or Pratylenchus brachyurus were significantly less than those of seedlings in noninfested soil. Root growth of seedlings was stimulated by the higher inoculum density of Scutellonema brachyurum. PMID:19319287

  6. Influence of plant-parasitic nematodes on longleaf pine seedlings.

    PubMed

    Ruehle, J L

    1973-01-01

    Seedlings of longleaf pine (Pinus palustris) were grown in 20-cm pots for 5 to 7 months in the greenhouse following inoculation with a high or low level of one of seven species of plant-parasitic nematodes. Belonolaimus longicaudatus and Helicotylenchus dihystera had no effect on seedling growth. High inoculum densities of Hoplolaimus galeatus and Tylenchorhynchus claytoni caused a significant reduction of fresh weight of seedling roots. Root and top weights of seedlings grown in soil infested with Meloidodera floridensis or Pratylenchus brachyurus were significantly less than those of seedlings in noninfested soil. Root growth of seedlings was stimulated by the higher inoculum density of Scutellonema brachyurum.

  7. Survey of gastrointestinal nematode parasites in Saskatchewan beef herds

    PubMed Central

    Jelinski, Murray; Lanigan, Emily; Gilleard, John; Waldner, Cheryl; Royan, Grant

    2016-01-01

    A survey of gastrointestinal parasites in Saskatchewan beef herds was conducted over the summer of 2014. Fecal samples were collected on 3 occasions during the summer grazing season from beef cows and calves from 14 herds. The mean number of strongylid eggs per gram of feces recovered from calves increased 9-fold (95% CI: 4.5 to 18) over the summer period, while egg counts in the cows remained constant over the same period. The prevalence and infection intensities of gastrointestinal nematode parasites in cow-calf herds in Saskatchewan were comparable to what is seen in cattle grazing in the northern regions of the United States and for which anthelmintic treatments have resulted in positive production benefits. PMID:26834267

  8. Plant-parasitic nematodes associated with grapevines, Vitis vinifera, in Washington and Idaho

    USDA-ARS?s Scientific Manuscript database

    Surveys were conducted in eastern Washington and Idaho to determine the plant-parasitic nematodes associated with wine grape (Vitis vinifera) vineyards. The most commonly encountered plant-parasitic nematodes in eastern Washington and Idaho wine grape vineyards were Meloidogyne hapla, Paratylenchus ...

  9. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

    PubMed

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang; Sun, Ming

    2016-07-27

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants. © 2016 The Author(s).

  10. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes

    PubMed Central

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang

    2016-01-01

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor. We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants. PMID:27466450

  11. Origins of Nematode Parasitism in the Families Strongyloididae, Rhabditidae, Plectidae and Diplogasteridae

    NASA Astrophysics Data System (ADS)

    Sachson, W.; Ngo, K.; Heim, N.; Payne, J.

    2016-12-01

    Parasitism is a fairly common trait found in the animal kingdom, and the effects parasites have on organisms is closely studied. On the other hand, how many different organisms evolve to become parasites is relatively unstudied, but trends between the size of these parasites and their environment may hold clues to their emergence. By looking at the size of parasitic nematodes, their free-living relatives and their environments, it is possible to deduce the cause of the parasitic tendencies of these families. In regard to nematodes, comparison of their body size and lifestyle does indeed reveal a trend between parasitic and free-living species. Many nematodes within the same family have evolved drastically different lifestyles within the same environment, and some have evolved when a new environment is available. In particular, the families Rhabditidae, Strongyloididae, Plectidae, and Diplogasteridae show abnormal ratios of parasite species to free-living species compared to others, in the case of Rhabditidae nearing a 1:1 ratio. Most importantly, the nature of each departure from each lifestyle appears to influence the size of the organism. What has been noticed in parasites can be described as an adaptation of Foster's Rule, which dictates the size of parasites depending on the environment and ecology of their ancestor. First of all, parasites change their size depending on their available resources. When free-living nematodes are given the opportunity to parasitize another organism, their body size changes in respect to the abundance of nutrients the nematode can extract from the host, which tends to let nematodes grow larger. On the other hand, when a parasitic nematode exits from parasitism to live freely or is parasitizing an organism within their natural environment, their size should decrease as they do not have access to as many resources as they did before. Using this idea, it is possible to understand the origins of parasitism and how organisms are driven

  12. Exploring the Host Parasitism of the Migratory Plant-Parasitic Nematode Ditylenchus destuctor by Expressed Sequence Tags Analysis

    PubMed Central

    Peng, Huan; Gao, Bing-li; Kong, Ling-an; Yu, Qing; Huang, Wen-kun; He, Xu-feng; Long, Hai-bo; Peng, De-liang

    2013-01-01

    The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary

  13. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    PubMed

    Peng, Huan; Gao, Bing-li; Kong, Ling-an; Yu, Qing; Huang, Wen-kun; He, Xu-feng; Long, Hai-bo; Peng, De-liang

    2013-01-01

    The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary

  14. Effect of gamma radiation on Brugia L3 development in vivo and the kinetics of granulomatous inflammation induced by these parasites.

    PubMed

    Nasarre, C; Rao, U R; Coleman, S U; Klei, T R

    1997-12-01

    Previous studies have shown that the downregulation of parasite-specific cellular immune response in Brugia-infected jirds requires viable worms but is not dependent on microfilariae (MF) for either induction or maintenance of this phenomenon. To clarify further which life cycle stages induce filarial hyporesponsiveness, jirds were infected intraperitoneally with third stage larvae (L3) exposed to 0, 15, 25, 35, 45, or 90 krad of gamma radiation to differentially alter L3 development. Necropsies were performed at 7, 14, 28, and 118 days postinoculation (DPI). The degree of parasite development, intraperitoneal inflammation, and pulmonary granulomatous inflammation (PGRN) to parasite antigen-coated beads embolized in the lungs were monitored at the time of necropsy. Parasite survival and worm lengths were inversely related to the irradiation dose. Gamma radiation at 35, 45, or 90 krad prevented larval molt to the adult stage. Some parasites irradiated with 15 or 25 krad developed beyond fourth stage larvae (L4) to infertile adult females. The PGRN peaked at 14 DPI in all infected groups. Downregulation of the PGRN occurred after 14 DPI in groups that received nonirradiated L3 or L3 irradiated with 15 krad. No significant decrease of the PGRN occurred in groups that received parasites irradiated with more than 15 krad. Significant peritoneal inflammation as indicated by an increase in macrophages occurred only in jirds that received nonirradiated L3. These data demonstrate the importance of the adult stages in inducing downmodulation in the absence of MF and suggest that the L4 may also play a role in the induction of this phenomenon. An alternate conclusion is that parasite burden and not developmental stage is important in the induction of this hyporesponsive state.

  15. Effects of catechin polyphenols and preparations from the plant-parasitic nematode Heterodera glycines on protease activity and behavior in three nematode species

    USDA-ARS?s Scientific Manuscript database

    Protease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of 8 catechin polyphenol analogs, (+)-catechin, (-)- epicatechin (EC), (-)-gallocatechin (GC)...

  16. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida.

    PubMed

    McSorley, Robert

    2011-06-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.

  17. Overview of Organic Amendments for Management of Plant-Parasitic Nematodes, with Case Studies from Florida

    PubMed Central

    2011-01-01

    Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions. PMID:22791915

  18. Identification and analysis of insulin like peptides in nematode secretomes provide targets for parasite control

    PubMed Central

    Gahoi, Shachi; Gautam, Budhayash

    2016-01-01

    Insulin-like (ins) peptides play an important role in development and metabolism across the metazoa. In nematodes, these are also required for dauer formation and longevity and are expressed in different types of neurons across various life stages which demonstrate their role in parasites and could become possible targets for parasite control. To date, many nematode genomes are publically available. However, a systematic screening of ins peptides across different nematode group has not been reported. In the present study, we systematically identified ins peptides in the secretomes of 73 nematodes with fully sequenced genomes covering five different groups viz. plant parasitic, animal parasitic, human parasitic, entomopathogenic and free living nematodes. From the total of 93,949 secretory proteins, 176 proteins were uniquely mapped to 40 identified C. elegans ins families. The obtained result showed that 74.15% of the identified ins proteins were represented in free living nematodes only and remaining 25.84% were combinedly identified in all other nematode groups. The ins-1, ins-17 and ins-18 were the only ins families which were detected in all the studied nematode groups. Out of 176 proteins, 96 of ins proteins were predicted as hydrophilic in nature and 39 proteins were found stable using ProtParam analysis. Our study provides insight into the distribution of ins peptides across different group of nematodes and this information could be useful for further experimental study. PMID:28356679

  19. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    PubMed Central

    Suh, Alexander; Witt, Christopher C.; Menger, Juliana; Sadanandan, Keren R.; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A.; Mudge, Joann; Edwards, Scott V.; Rheindt, Frank E.

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  20. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    PubMed Central

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S.; Gupta, Om P.; Dahuja, Anil; Jain, Pradeep K.; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes. PMID:28580003

  1. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.

    PubMed

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  2. Brugia pahangi: immunization with early L3 ES alters parasite migration, and reduces microfilaremia and lymphatic lesion formation in gerbils (Meriones unguiculatus).

    PubMed

    Zipperer, Ginger R; Arumugam, Sridhar; Chirgwin, Sharon R; Coleman, Sharon U; Shakya, Krishna P; Klei, Thomas R

    2013-10-01

    Previous studies have shown that intradermally (ID) injected Brugia pahangi L3 s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3 s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.

  3. Depression of endothelium-dependent relaxation in aorta from rats with Brugia pahangi lymphatic filariasis.

    PubMed

    Kaiser, L; Tithof, P K; Lamb, V L; Williams, J F

    1991-06-01

    A role for altered endothelial cell function is emerging in the pathogenesis of disease. We have previously demonstrated that Dirofilaria immitis, the canine heartworm, depresses endothelium-dependent responses and alters the mechanism of relaxation in the in vivo femoral artery of infected dogs. Exposure of rat aorta to the parasite or parasite-conditioned medium selectively depresses endothelium-dependent relaxation. D. immitis is closely related to the major human filarial pathogens. This study was designed to examine the effect of chronic infection with the filarial nematode Brugia pahangi on endothelium-mediated responses of the rat aorta in vitro. We tested the hypothesis that endothelium-dependent responses are depressed in the aorta from rats infected with B. pahangi. Rings of thoracic and abdominal aorta were suspended in muscle baths for measurement of isometric tension. Dose-response relations to norepinephrine, endothelium-dependent dilators (acetylcholine, histamine, and A23187), and nitroglycerin were done. In some experiments, inhibitors of cyclooxygenase (indomethacin and aspirin), guanylate cyclase (methylene blue), and nitric oxide formation (N-nitro-L-arginine methyl ester; L-NOARG) were used. No differences in vascular reactivity were detected in the thoracic aorta. In contrast, endothelium-dependent responses in abdominal aorta of Brugia-infected rats were significantly depressed when compared with control aorta from noninfected rats. Acetylcholine relaxation was further depressed by indomethacin and aspirin. After L-NOARG, acetylcholine relaxation in control abdominal aorta was completely abolished; however, in abdominal aorta of Brugia-infected rats, acetylcholine still caused relaxation. Methylene blue inhibited acetylcholine relaxation in both control and Brugia-infected abdominal aorta; however, relaxation in Brugia-infected aorta was significantly greater than control. This study demonstrates that endothelium-dependent relaxation can be

  4. The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes

    PubMed Central

    Hunt, Vicky L.; Tsai, Isheng J.; Coghlan, Avril; Reid, Adam J.; Holroyd, Nancy; Foth, Bernardo J.; Tracey, Alan; Cotton, James A.; Stanley, Eleanor J.; Beasley, Helen; Bennett, Hayley M.; Brooks, Karen; Harsha, Bhavana; Kajitani, Rei; Kulkarni, Arpita; Harbecke, Dorothee; Nagayasu, Eiji; Nichol, Sarah; Ogura, Yoshitoshi; Quail, Michael A.; Randle, Nadine; Xia, Dong; Brattig, Norbert W.; Soblik, Hanns; Ribeiro, Diogo M.; Sanchez-Flores, Alejandro; Hayashi, Tetsuya; Itoh, Takehiko; Denver, Dee R.; Grant, Warwick; Stoltzfus, Jonathan D.; Lok, James B.; Murayama, Haruhiko; Wastling, Jonathan; Streit, Adrian; Kikuchi, Taisei; Viney, Mark; Berriman, Matthew

    2016-01-01

    Soil transmitted nematodes, including Strongyloides, cause one of the most prevalent Neglected Tropical Diseases. Here we compare the genomes of four Strongyloides spp., including the human pathogen S. stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp). A significant paralogous expansion of key gene families – astacin-like and SCP/TAPS coding gene families – is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle we compare the transcriptome of its parasitic and free-living stages and find that these same genes are upregulated in the parasitic stages, underscoring their role in nematode parasitism. PMID:26829753

  5. Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes.

    PubMed

    Prosser, Sean W J; Velarde-Aguilar, Maria G; León-Règagnon, Virginia; Hebert, Paul D N

    2013-11-01

    Although nematodes are one of the most diverse metazoan phyla, species identification through morphology is difficult. Several genetic markers have been used for their identification, but most do not provide species-level resolution in all groups, and those that do lack primer sets effective across the phylum, precluding high-throughput processing. This study describes a cocktail of three novel primer pairs that overcome this limitation by recovering cytochrome c oxidase I (COI) barcodes from diverse nematode lineages parasitic on vertebrates, including members of three orders and eight families. Its effectiveness across a broad range of nematodes enables high-throughput processing. © 2013 John Wiley & Sons Ltd.

  6. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora.

    PubMed

    Noguez, Jaime H; Conner, Elizabeth S; Zhou, Yue; Ciche, Todd A; Ragains, Justin R; Butcher, Rebecca A

    2012-06-15

    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.

  7. Spatial distribution of plant-parasitic nematodes in semi-arid Vitis vinifera vineyards in Washington

    USDA-ARS?s Scientific Manuscript database

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical an...

  8. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes.

    PubMed

    Lahm, George P; Desaeger, Johan; Smith, Ben K; Pahutski, Thomas F; Rivera, Michel A; Meloro, Tony; Kucharczyk, Roman; Lett, Renee M; Daly, Anne; Smith, Brenton T; Cordova, Daniel; Thoden, Tim; Wiles, John A

    2017-04-01

    Fluazaindolizine is a new highly effective and selective product for the control of plant parasitic nematodes. Specificity for nematodes coupled with absence of activity against the target sites of commercial nematicides suggests that fluazaindolizine has a novel mode of action. The discovery, structure-activity development and biological properties for this new class of nematicides are presented.

  9. The plant-parasitic nematode collections of RRIP: The realization of an ISTC project

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic nematodes are important pests of agricultural and wild plants throughout Russia and the world. The best strategy for management of nematode damage is an integrated approach to the problem: i.e., the use of agrotechnological approaches (crop rotation, soil amendments, etc.), reasonabl...

  10. A survey of plant-parasitic nematodes associated with forage crops in Bingol, Turkey

    USDA-ARS?s Scientific Manuscript database

    During June 2011, a survey was conducted in four districts of Bingol Province, Turkey, to investigate the occurrence, population abundance and spatial distribution of plant-parasitic nematodes associated with pastures. A total of 24 soil samples were collected. Nematodes were extracted from soil by ...

  11. Role of nematode peptides and other small molecules in plant parasitism

    USDA-ARS?s Scientific Manuscript database

    Molecular, genetic, and biochemical studies are demonstrating an increasingly important role of peptide signaling in nematode parasitism of plants. To date, the majority of nematode-secreted peptides identified share similarity with plant CLAVATA3/ESR (CLE) peptides, but bioinformatics analyses of n...

  12. Transcript Analysis of Parasitic Females of the Sedentary Semi-Endoparasitic Nematode Rotylenchulus reniformis

    USDA-ARS?s Scientific Manuscript database

    The reniform nematode, Rotylenchulus reniformis Linford & Oliveira, is a sedentary semi-endoparasitic roundworm that infects the roots of many economically important plant species. Engineered resistance to plant-parasitic nematodes (PPNs) via RNA-interference (RNAi) has shown promise in providing h...

  13. Biotechnological application of functional genomics towards plant-parasitic nematode control.

    PubMed

    Li, Jiarui; Todd, Timothy C; Lee, Junghoon; Trick, Harold N

    2011-12-01

    Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup.

    PubMed

    Haegeman, Annelies; Vanholme, Bartel; Jacob, Joachim; Vandekerckhove, Tom T M; Claeys, Myriam; Borgonie, Gaetan; Gheysen, Godelieve

    2009-07-15

    Wolbachia is an endosymbiotic bacterium widely present in arthropods and animal-parasitic nematodes. Despite previous efforts, it has never been identified in plant-parasitic nematodes. Random sequencing of genes expressed by the burrowing nematode Radopholus similis resulted in several sequences with similarity to Wolbachia genes. The presence of a Wolbachia-like endosymbiont in this plant-parasitic nematode was investigated using both morphological and molecular approaches. Transmission electronmicroscopy, fluorescent immunolocalisation and staining with DAPI confirmed the presence of the endosymbiont within the reproductive tract of female adults. 16S rDNA, ftsZ and groEL gene sequences showed that the endosymbiont of R. similis is distantly related to the known Wolbachia supergroups. Finally, based on our initial success in finding sequences of this endosymbiont by screening an expressed sequence tag (EST) dataset, all nematode ESTs were mined for Wolbachia-like sequences. Although the retained sequences belonged to six different nematode species, R. similis was the only plant-parasitic nematode with traces of Wolbachia. Based on our phylogenetic study and the current literature we designate the endosymbiont of R. similis to a new supergroup (supergroup I) rather than considering it as a new species. Although its role remains unknown, the endosymbiont was found in all individuals tested, pointing towards an essential function of the bacteria.

  15. Plant-parasitic Nematode Distributions in an Alfalfa Field

    PubMed Central

    Goodell, P.; Ferris, H.

    1980-01-01

    A 7-ha alfalfa field (Medicago saliva L. cv Mesa Sirsa) was sampled systematically on a 6 x 6-m grid by removing individual cores (2.54 cm diam) to a depth of 45 cm from each of the 1,936 grid intersections. The soil was mainly coarse-textured with a fine-textured streak running centrally, north to south. Nematodes were extracted by a semiautomatic elutriator and sugar flotation-sieving technique. Five plant-parasitic species were consistently present: Meloidogyne arenaria, Pratylenchus minyus, Merlinius brevidens, Helicotylenchus digonicus, and Paratrichodorus minor. All species had a highly skewed nonnormal frequency distribution that departed significantly from randontness. Goodness-of-fit tests on the distribution of five populations in the entire field showed that three (Meloidogyne, Merlinius, and Helicotylenchus) were described by a negative binomial. When the samples were categorized by soil texture (coarse vs. fine-textured), all populations in the fine-textured areas, and three populations (Meloidogyne, Pratylenchus, and Merlinius) in the coarse areas, fitted a negative binomial distribution. Nearly all populations titted a negative binomial when the frequency distributions from randomly located one-meter-square areas were examined for each species. PMID:19300685

  16. Root-parasitic nematodes enhance soil microbial activities and nitrogen mineralization.

    PubMed

    Tu, C; Koenning, S R; Hu, S

    2003-07-01

    Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes ( Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg(-1) soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.

  17. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    PubMed

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  18. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi.

    PubMed

    Shahab, Mohd; Verma, Meenakshi; Pathak, Manisha; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-01-01

    Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.

  19. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita

    PubMed Central

    2010-01-01

    Background Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Results Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)n, (AG)n and (CT)n were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AAT)n and (ATT)n being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Conclusions Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related

  20. Detection of plant-parasitic nematode DNA in the gut of predatory and omnivorous nematodes

    USDA-ARS?s Scientific Manuscript database

    A protocol for molecular gut analysis of nematodes was developed to determine if predatory and omnivorous nematodes from five different guilds prey on Rotylenchulus reniformis, Meloidogyne incognita, and Radopholus similis. Mononchoides, Mononchus, Neoactinolaimus, Mesodorylaimus, and Aporcelaimell...

  1. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq.

    PubMed

    Grote, Alexandra; Voronin, Denis; Ding, Tao; Twaddle, Alan; Unnasch, Thomas R; Lustigman, Sara; Ghedin, Elodie

    2017-03-01

    Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode's development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies.

  2. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    PubMed Central

    Sapir, Amir; Dillman, Adler R.; Connon, Stephanie A.; Grupe, Benjamin M.; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A.; Baldwin, James G.; Orphan, Victoria J.; Sternberg, Paul W.

    2013-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere. PMID:24575084

  3. Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility.

    PubMed

    Criscione, Charles D; Anderson, Joel D; Raby, Kyle; Sudimack, Dan; Subedi, Janardan; Rai, Dev R; Upadhayay, Ram P; Jha, Bharat; Williams-Blangero, Sarah; Anderson, Timothy J C

    2007-06-01

    We describe 35 microsatellite markers from the human parasitic nematode Ascaris lumbricoides. We found 7 sex-linked markers and demonstrate that 26 autosomal loci can be scored reliably. These markers have high genetic variability and provide the tools to address multiple questions concerning the epidemiology, fine-scale genetic structure, host specificity, and mating systems of this parasite.

  4. Disease transmission in an extreme environment: nematode parasites infect reindeer during the Arctic winter.

    PubMed

    Carlsson, Anja M; Justin Irvine, R; Wilson, Kenneth; Piertney, Stuart B; Halvorsen, Odd; Coulson, Stephen J; Stien, Audun; Albon, Steve D

    2012-07-01

    Parasitic nematodes are found in almost all wild vertebrate populations but few studies have investigated these host-parasite relationships in the wild. For parasites with free-living stages, the external environment has a major influence on life-history traits, and development and survival is generally low at sub-zero temperatures. For reindeer that inhabit the high Arctic archipelago of Svalbard, parasite transmission is expected to occur in the summer, due to the extreme environmental conditions and the reduced food intake by the host in winter. Here we show experimentally that, contrary to most parasitic nematodes, Marshallagia marshalli of Svalbard reindeer is transmitted during the Arctic winter. Winter transmission was demonstrated by removing parasites in the autumn, using a novel delayed-release anthelmintic bolus, and estimating re-infection rates in reindeer sampled in October, February and April. Larval stages of nematodes were identified using molecular tools, whereas adult stages were identified using microscopy. The abundance of M. marshalli adult worms and L4s increased significantly from October to April, indicating that reindeer were being infected with L3s from the pasture throughout the winter. To our knowledge, this study is the first to experimentally demonstrate over-winter transmission of a gastro-intestinal nematode parasite in a wild animal. Potential mechanisms associated with this unusual transmission strategy are discussed in light of our knowledge of the life-history traits of this parasite.

  5. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea.

    PubMed

    Sapir, Amir; Dillman, Adler R; Connon, Stephanie A; Grupe, Benjamin M; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A; Baldwin, James G; Orphan, Victoria J; Sternberg, Paul W

    2014-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere.

  6. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism.

    PubMed

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-22

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.

  7. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

    PubMed Central

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-01

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310

  8. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis.

    PubMed Central

    Tan, T H; Edgerton, S A; Kumari, R; McAlister, M S; Roe, S M; Nagl, S; Pearl, L H; Selkirk, M E; Bianco, A E; Totty, N F; Engwerda, C; Gray, C A; Meyer, D J; Rowe, S M

    2001-01-01

    cDNAs were obtained for macrophage migration-inhibitory factor (MIF)/L-dopachrome methyl ester tautomerase homologues from the parasitic nematodes Trichinella spiralis (TsMIF) and Trichuris trichiura (TtMIF). The translated sequences, which were partly confirmed by sequencing of proteolytic fragments, show 42 and 44% identity respectively with human or mouse MIF, and are shorter by one C-terminal residue. Unlike vertebrate MIF and MIF homologues of filarial nematodes, neither TsMIF nor TtMIF contain cysteine residues. Soluble recombinant TsMIF, expressed in Escherichia coli showed secondary structure (by CD spectroscopy) and quaternary structure (by light-scattering and gel filtration) similar to that of the trimeric mammalian MIFs and D-dopachrome tautomerase. The catalytic specificity of recombinant TsMIF in the ketonization of phenylpyruvate (1.4x10(6) M(-1) x s(-1)) was comparable with that of human MIF, while that of p-hydroxyphenylpyruvate (9.1x10(4) M(-1) x s(-1)) was 71-fold lower. TsMIF showed high specificity in tautomerization of the methyl ester of L-dopachrome compared with non-esterified L-dopachrome (>87000-fold) and a high kcat (approximately 4x10(4) s(-1). The crystal structure, determined to 1.65 A (1 A=0.1 nm), was generally similar to that of human MIF, but differed in the boundaries of the putative active-site pocket, which can explain the low activity towards p-hydroxyphenylpyruvate. The central pore was blocked, but was continuous, with the three putative tautomerase sites. Recombinant TsMIF (5 ng/ml-5 pg/ml) inhibited migration of human peripheral-blood mononuclear cells in a manner similar to that shown by human MIF, but had no effect from 5 to 500 ng/ml on anti-CD3-stimulated murine T-cell proliferation. TsMIF was detected in supernatants of T. spiralis larvae cultured in vitro at 6 ng/ml (55 ng/mg total secreted protein). In conclusion TsMIF has structural, catalytic and cell-migration-inhibitory properties which indicate that it is

  9. In vitro proteolysis of nematode FLPs by preparations from the free-living nematode Panagrellus redivivus and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita)

    USDA-ARS?s Scientific Manuscript database

    Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the la...

  10. Effects of insect growth regulators on the mosquito-parasitic nematode Romanomermis iyengari.

    PubMed

    Suman, Devi Shankar; Brey, Christopher W; Wang, Yi; Sanad, Manar; Shamseldean, Muhammed S M; Gaugler, Randy

    2013-02-01

    Pyriproxyfen, a juvenile hormone analogue, diflubenzuron, a chitin synthesis inhibitor, and azadirachtin, an ecdysone agonist, are three insect growth regulators (IGRs) considered as selective and effective insecticides for mosquitoes. Romanomermis iyengari (Welch) is a mosquito-parasitic mermithid that can provide biological control against many medically important mosquito species. The compatibility of these two control tactics was tested by evaluating the sublethal effects of exposure to IGR on nematode developmental stages (preparasitic, parasitic, and preparasitic + parasitic) using Culex pipiens larvae as the host. Sublethal concentrations of IGRs were 90 % emergence inhibition of host mosquito. Preparasitic exposure to pyriproxyfen, azadirachtin, and diflurbenzuron had no effect on infectivity, parasite load, sex ratio, or male size but reduced nematode female length and increased male sex ratio at one parasite/larva. When IGRs treatments were made against the parasitic and preparasitic + parasitic stages, pyriproxyfen and azadirachtin reduced R. iyengari infectivity, parasite load, and male nematode length, whereas pyriproxyfen exposure increased male sex ratio and reduced the female R. iyengari length. Thus, IGRs have significant negative impacts on different stages of mosquito mermithid that can destabilize the balance of host-parasite population interaction. Therefore, IGRs should be used with caution in mosquito habitats where these parasites have established.

  11. Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments

    PubMed Central

    Renčo, M.; Kováčik, P.

    2012-01-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control. PMID:23482503

  12. Composition of the Cockroach Gut Microbiome in the Presence of Parasitic Nematodes

    PubMed Central

    Vicente, Cláudia S. L.; Ozawa, Sota; Hasegawa, Koichi

    2016-01-01

    Cockroaches are parasitized by thelastomatid nematodes, which live in an obligate manner in their hindgut and interact with the resident microbial community. In the present study, a composition analysis was performed on the gut microbiome of Periplaneta fuliginosa and P. americana to investigate natural and artificial infection by thelastomatid nematodes. Nine libraries of the 16S rRNA gene V3–V4 region were prepared for pyrosequencing. We examined the complete gut microbiome (fore-, mid-, and hindgut) of lab-reared P. fuliginosa naturally infected with the parasitic nematode Leidynema appendiculatum and those that were nematode-free, and complemented our study by characterizing the hindgut microbial communities of lab-reared P. americana naturally infected with Hammerschmidtiella diesingi and Thelastoma bulhoesi, artificially infected with L. appendiculatum, and those that were nematode-free. Our results revealed that the fore- and midgut of naturally infected and nematode-free P. fuliginosa have close microbial communities, which is in contrast with hindgut communities; the hindgut communities of both cockroaches exhibit higher microbial diversities in the presence of their natural parasites and marked differences were observed in the abundance of the most representative taxa, namely Firmicutes, Proteobacteria, and Bacteroidetes. Our results have provided basic information and encourage further studies on multitrophic interactions in the cockroach gut as well as the thelastomatid nematodes that play a role in this environment. PMID:27524304

  13. Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification.

    PubMed

    Maier, Tom R; Hewezi, Tarek; Peng, Jiqing; Baum, Thomas J

    2013-01-01

    Esophageal glands of plant-parasitic nematodes are highly specialized cells whose gene expression products include secreted effector proteins, which govern nematode parasitism of host plants. Therefore, elucidating the transcriptomes of esophageal glands with the goal of identifying nematode effectors is a promising avenue to understanding nematode parasitism and its evolutionary origins as well as to devising nematode control strategies. We have developed a method to separate and isolate individual esophageal gland cells from multiple species of plant-parasitic nematodes while preserving RNA quality. We have used such isolated gland cells for transcriptome analysis via high-throughput DNA sequencing. This method relies on the differential histochemical staining of the gland cells after homogenization of phytonematode tissues. Total RNA was extracted from whole gland cells isolated from eight different plant-parasitic nematode species. To validate this approach, the isolated RNA from three plant-parasitic nematode species-Globodera rostochiensis, Pratylenchus penetrans, and Radopholus similis-was amplified, gel purified, and used for 454 sequencing. We obtained 456,801 total reads with an average read length of 409 bp. Sequence analyses revealed the presence of homologs of previously known nematode effectors in these libraries, thus validating our approach. These data provide compelling evidence that this technical advance can be used to relatively easily and expediently discover effector repertoires of plant-parasitic nematodes.

  14. An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment.

    PubMed

    Vieira, Paulo; Kyndt, Tina; Gheysen, Godelieve; de Almeida Engler, Janice

    2013-06-01

    Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode's life cycle and reproduction.

  15. Ecological Study of Nematode Parasitism in Ips Beetles from California and Idaho

    PubMed Central

    Choo, Ho Yul; Kaya, Harry K.; Shea, Patrick; Noffsinger, E. Mae

    1987-01-01

    Nematodes found in Ips paraconfusus from ponderosa pine in California were an undescribed species of Parasitaphelenchus, Contortylenchus elongatus, C. reversus, and C. brevicomi. C. elongatus, the most commonly found contortylenchid, was present in 98.2% of the contortylenchid-parasitized beetles. Only one nematode parasite of the gut, a Parasitorhabditis sp., was isolated. Although significant differences in parasitism were observed, they were by collection sites, rather than by elevation or bole sources (slash or standing). Significant changes in parasitism between fall and spring collections were observed but not at every site. Nematode parasitism in the F₁ generation of I. paraconfusus by Parasitaphelenchus, Contortylenchus, or Parasitorhabditis increased or decreased from the parent generation depending upon the experiment. Nematode parasites from I. pini included an undescribed Parasitaphelenchus sp., two undescribed Contortylenchus spp., C. reversus and Parasitylenchus (= Neoparasitylenchus) ovarius from the hemocel, and Parasitorhabditis ipini from the gut. Parasitaphelenchus sp. was found in 99% and 45.3% of the beetles from Idaho and California, respectively. Of the 1,000 I. pini from Idaho and California, 157 were parasitized by the contortylenchid species or P. ovarius. PMID:19290176

  16. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism

    PubMed Central

    Opperman, Charles H.; Bird, David M.; Williamson, Valerie M.; Rokhsar, Dan S.; Burke, Mark; Cohn, Jonathan; Cromer, John; Diener, Steve; Gajan, Jim; Graham, Steve; Houfek, T. D.; Liu, Qingli; Mitros, Therese; Schaff, Jennifer; Schaffer, Reenah; Scholl, Elizabeth; Sosinski, Bryon R.; Thomas, Varghese P.; Windham, Eric

    2008-01-01

    We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution. PMID:18809916

  17. Nematode effector proteins: an emerging paradigm of parasitism

    USDA-ARS?s Scientific Manuscript database

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  18. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    PubMed

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes

    PubMed Central

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C. J.

    2015-01-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. PMID:25165149

  20. Community Analyses of Plant-Parasitic Nematodes in the Kalsow Prairie, Iowa

    PubMed Central

    Norton, Don C.; Schmitt, Donald P.

    1978-01-01

    Twenty-one species of plant-parasitic nematodes were recovered from 15 sites in the Kalsow Prairie, Iowa. Nematode communities were analyzed by prominence and importance values of the nematode species and also by diversity and concentration of dominance. The use of numbers and biomass were compared in indices of diversity and concentration of dominance. Tylenchorhynchus maximns ranked first in mean density/site, prominence value, and importance value, although it was not found as frequently as many other nematodes. Xiphinema americanum and T. maximus were among the dominant nematodes in 11 of 15 sites when biomass was used in the concentration-of-dominance index, but they were dominant in only five sites when numbers were used. PMID:19305833

  1. Plant-parasitic nematode infections in rice: molecular and cellular insights.

    PubMed

    Kyndt, Tina; Fernandez, Diana; Gheysen, Godelieve

    2014-01-01

    Being one of the major staple foods in the world, and an interesting model monocot plant, rice (Oryza sativa L.) has recently received attention from molecular nematologists studying the cellular and molecular aspects of the interaction between this crop and plant-parasitic nematodes. In this review, we highlight recent advances in this field, with a focus on the best-studied root-knot nematodes. Histological studies have revealed the cellular changes inside root-knot nematode-induced feeding sites, both in the compatible interaction with Oryza sativa and the incompatible interaction with the related species Oryza glaberrima. After comparing the published data from transcriptome analyses, mutant studies, and exogenous hormone applications, we provide a comprehensive model showing the role and interaction of plant hormone pathways in defense of this monocot crop against root nematodes, where jasmonate seems to play a key role. Finally, recent evidence indicates that effectors secreted from rice-infecting nematodes can suppress plant defense.

  2. Serological Differentiation of Plant-parasitic Nematode Species with Polyclonal and Monoclonal Antibodies.

    PubMed

    Schots, A; Gommers, F J; Bakker, J; Egberts, E

    1990-01-01

    Although several attempts have been made to differentiate nematode species with polyclonal antisera, these efforts thus far have met with limited success because of extensive crossreactivities of the sera. Since the hybridoma technique offers the opportunity to develop more specific serological reagents, some research groups have recently started to apply this technology to the problem of species identification in nematology. Monoclonal antibodies (MA) that differentiate the potato-cyst nematodes Globodera rostochiensis and G. pallida, as well as MA specific for Meloidogyne species, have been developed. The possibilities of developing serodiagnostic tools for identification of nematodes recovered from soil samples and the implications of such monitoring of nematode infestations in view of integrated control of plant-parasitic nematodes are discussed.

  3. Characterization of a beta-tubulin gene and a beta-tubulin gene products of Brugia pahangi.

    PubMed

    Guénette, S; Prichard, R K; Klein, R D; Matlashewski, G

    1991-02-01

    A genomic clone containing a beta-tubulin gene from the parasitic nematode Brugia pahangi was isolated. This gene was sequenced to determine its size, structural organization, and corresponding primary amino acid sequence. The coding sequence of the beta-tubulin gene spans 3.8 kb, is organized into 9 exons and expresses an mNRA of 1.8 kb which codes for a protein of 448 amino acids. The predicted beta-tubulin amino acid sequence is 89%, 94%, 90% and 88% identical to the chicken beta 2, and the Caenorhabditis elegans ben-1, tub-1 and mec-7 gene products, respectively. Southern hybridization analyses demonstrated that there is only one copy of this gene isotype but that other distinct beta-tubulin genes may exist in the Brugia pahangi genome. A nematode specific antipeptide rabbit antiserum raised against the predicted amino acid sequence of the extreme carboxy-terminal region of the B. pahangi beta-tubulin was used to identify beta-tubulin isoforms in adult nematodes and microfilariae. Isoforms detected by this nematode-specific antipeptide antiserum were identical in both adult worms and microfilariae and did not differ from the isoform patterns detected by a monoclonal antibody recognizing a conserved beta-tubulin epitope. This suggests that this carboxy-terminal peptide is highly represented in the beta-tubulin isoforms of B. pahangi.

  4. Effects of pyrrolizidine alkaloids on the performance of plant-parasitic and free-living nematodes.

    PubMed

    Thoden, Tim C; Boppré, Michael; Hallmann, Johannes

    2009-07-01

    Chemical nematicides such as methyl bromide have for decades played a significant role in the management of plant-parasitic nematodes. Their application is problematic because of negative environmental impacts, and therefore methyl bromide was phased out in Europe in 2005. A possible alternative to synthetically derived nematicides is seen in the use of plants and/or their secondary metabolites. These plants could either be used as nematicidal green manure or as a source for nematicidal extracts. This study aimed to evaluate the effects of 1,2-dehydropyrrolizidine alkaloids (PAs), a group of secondary plant metabolites found in hundreds of plant species throughout the world, on the performance of plant-parasitic and free-living nematodes. PAs induced nematicidal, ovicidal and repellent effects on different plant-parasitic and free-living nematodes. There was no conclusive ranking in toxicity for the different structural types of PAs tested. However, the effects were often more pronounced for the tertiary than for the oxidised form of PAs. Further, large differences were observed in the susceptibility of different nematode species to PAs. PAs do affect several performance parameters and developmental stages of nematodes. Therefore, PA-producing plants such as species of Crotalaria, Ageratum or Senecio might be promising candidates for nematode management strategies. [Correction made here after initial online publication]. (c) 2009 Society of Chemical Industry.

  5. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    PubMed Central

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also discussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents. PMID:19300701

  6. Entomopathogenic Nematodes Are Not an Alternative to Fenamiphos for Management of Plant-Parasitic Nematodes on Golf Courses in Florida

    PubMed Central

    Crow, WT; Porazinska, DL; Giblin-Davis, RM; Grewal, PS

    2006-01-01

    With the cancellation of fenamiphos in the near future, alternative nematode management tactics for plant-parasitic nematodes (PPN) on golf courses need to be identified. The use of entomopathogenic nematodes (EPN) has been suggested as one possible alternative. This paper presents the results of 10 experiments evaluating the efficacy of EPN at managing PPN on turfgrasses and improving turf performance. These experiments were conducted at various locations throughout Florida over the course of a decade. In different experiments, different EPN species were tested against different species of PPN. Separate experiments evaluated multiple rates and applications of EPN, compared different EPN species, and compared single EPN species against multiple species of PPN. In a few trials, EPN were associated with reductions in certain plant-parasite species, but in other trials were associated with increases. In most trials, EPN had no effect on plant parasites. Because EPN were so inconsistent in their results, we conclude that EPN are not acceptable alternatives to fenamiphos by most turf managers in Florida at this time. PMID:19259430

  7. Biological control of gastrointestinal parasitic nematodes using Duddingtonia flagrans in sheep under natural conditions in Mexico.

    PubMed

    Mendoza-De Gives, Pedro; Zapata Nieto, Claudia; Hernández, Enrique Liébano; Arellano, María Eugenia López; Rodríguez, David Herrera; Garduño, Roberto González

    2006-10-01

    This investigation was aimed to evaluate the use of an oral bio-preparation containing Duddingtonia flagrans chlamydospores for the control of sheep gastrointestinal parasitic nematodes under the Mexican cold high plateau conditions. Two groups of gastrointestinal parasitic nematode naturally infected sheep, were randomly selected and located into two free-gastrointestinal nematode larvae paddocks. Group 1 received once a week a supplement containing D. flagrans chlamydospores mixed with oats and molasses. Group 2 received a similar supplement without any fungal material. After 5 months grazing animals were discarded from the experiment and two groups of free-nematode "tracer" sheep were located into the same paddocks to collect larvae from the contaminated pastures. Animals were slaughtered and necropsied and the nematodes were obtained and counted. A screening of the number of gastrointestinal nematode larvae present on the grass was performed and compared between the two grazing areas. The results showed 56% reduction in the Ostertagia (Teladorsagia) circumcincta and 94% reduction in the Nematodirus sp. population of the "tracer" sheep who grazed on the D. flagrans-treated sheep area, compared to the nematode population in animals grazed on the non-treated area. The results of the number of larvae on the grazing pastures showed a 51.1% reduction for H. contortus, and 100% for Cooperia sp. in the area with fungi. In the case of Trichostrongylus sp. no reduction was observed, when compared to the control group.

  8. An insight into critical endocycle genes for plant-parasitic nematode feeding sites establishment

    PubMed Central

    Vieira, Paulo; Kyndt, Tina; Gheysen, Godelieve; Engler, Janice de Almeida

    2013-01-01

    Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode’s life cycle and reproduction. PMID:23518580

  9. A check-list of the nematode parasites of South African Serpentes (snakes) and Sauria (lizards).

    PubMed

    Hering-Hagenbeck, S F; Boomker, J

    2000-03-01

    Published records, in combination with own data have been brought together to provide data on parasite/host relationships of reptiles that occur in the Republic of South Africa. A total of 62 nematode species belonging to 23 genera and 11 families are recorded from 20 snake and 21 lizard species. The genera Kalicephalus, Spauligodon, Ophidascaris and Abbreviata are especially well represented with between five and eight species per genus. The most nematode species were recorded from the flap-neck chameleon, Chamaeleo dilepis (eight), the puff-adder, Bitis arietans (eight) and the water monitor, Varanus niloticus (seven). All synonyms of parasites and hosts are given.

  10. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to Plant-parasitic and Bacterial-feeding Nematodes

    PubMed Central

    Halbrendt, John M.; Carta, Lynn K.; Skantar, Andrea M.; Liu, Ting; Abdelnabby, Hazem M. E.; Vinyard, Bryan T.

    2009-01-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD50 of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance. PMID:22736826

  11. Fighting while Parasitized: Can Nematode Infections Affect the Outcome of Staged Combat in Beetles?

    PubMed Central

    Vasquez, David; Willoughby, Anna; Davis, Andrew K.

    2015-01-01

    The effects of non-lethal parasites may be felt most strongly when hosts engage in intense, energy-demanding behaviors. One such behavior is fighting with conspecifics, which is common among territorial animals, including many beetle species. We examined the effects of parasites on the fighting ability of a saproxylic beetle, the horned passalus (Odontotaenius disjunctus, Family: Passalidae), which is host to a non-lethal nematode, Chondronema passali. We pitted pairs of randomly-chosen (but equally-weighted) beetles against each other in a small arena and determined the winner and aggression level of fights. Then we examined beetles for the presence, and severity of nematode infections. There was a non-significant tendency (p = 0.065) for the frequency of wins, losses and draws to differ between beetles with and without C. passali; non-parasitized individuals (n = 104) won 47% of their fights while those with the parasite (n = 88) won 34%, a 13% difference in wins. The number of nematodes in a beetle affected the outcome of fights between infected and uninfected individuals in an unexpected fashion: fighting ability was lowest in beetles with the lowest (p = 0.033), not highest (p = 0.266), nematode burdens. Within-fight aggression was highest when both beetles were uninfected and lowest when both were infected (p = 0.034). Collectively, these results suggest the nematode parasite, C. passali, is associated with a modest reduction in fighting ability in horned passalus beetles, consistent with the idea that parasitized beetles have lower energy available for fighting. This study adds to a small but growing body of evidence showing how parasites negatively influence fighting behavior in animals. PMID:25830367

  12. Benthimermithid nematode parasites of the amphipod Hirondellea dubia in the Kermadec Trench.

    PubMed

    Leduc, Daniel; Wilson, James

    2016-04-01

    Parasitic nematodes have evolved to exploit a wide variety of hosts living in a range of marine environments. Benthimermithid nematodes occur deeper than any other nematode parasites (down to 5880 m depth) but are mostly known from free-living adult stages living in the sediments, and parasitic juveniles are seldom encountered. In the present study, the benthimermithid Trophomera cf. marionensis was discovered in the body cavity of the lysianassoid amphipod Hirondellea dubia sampled between 7018 and 10,005 m depths in the Kermadec Trench. The nematode specimens, which could be readily observed through the transparent exoskeleton of freshly caught amphipods, were up to twice the length of T. marionensis specimens described from the Atlantic and East Pacific Oceans but were otherwise morphologically identical. Because of its wide geographical and water depth distribution (almost 10,000 m), T. marionensis likely consists of several cryptic species. The prevalence of Trophomera parasites among the host population was estimated to be substantially less than 1 %; such a low proportion of parasitised hosts could help explain why so few Trophomera specimens have been obtained from their host so far. The present study demonstrates that parasites can occur throughout the entire ocean depth and that they likely occur in other hadal trenches where H. dubia and other lysianassoid amphipods also dominate.

  13. Parasitism of Molluscs by Nematodes: Types of Associations and Evolutionary Trends

    PubMed Central

    Grewal, P. S.; Grewal, S. K.; Tan, L.; Adams, B. J.

    2003-01-01

    Although there are no confirmed fossil records of mollusc parasitic nematodes, diverse associations of more than 108 described nematode species with slugs and snails provide a fertile ground for speculation of how mollusc parasitism evolved in nematodes. Current phylogenic resolution suggests that molluscs have been independently acquired as hosts on a number of occasions. However, molluscs are significant as hosts for only two major groups of nematodes: as intermediate hosts for metastrongyloids and as definitive hosts for a number of rhabditids. Of the 61 species of nematodes known to use molluscs as intermediate hosts, 49 belong to Metastrongyloidea (Order Strongylida); of the 47 species of nematodes that use molluscs as definitive hosts, 33 belong to the Order Rhabditida. Recent phylogenetic hypotheses have been unable to resolve whether metastrongyloids are sister taxa to those rhabditids that use molluscs as definitive hosts. Although most rhabditid nematodes have been reported not to kill their mollusc hosts prior to their reproduction, some species are pathogenic. In fact, infective juveniles of Phasmarhabditis hermaphrodita vector a lethal bacterium into the slug host in which they reproduce. This life cycle is remarkably similar to the entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae. Also, the discoveries of Alloionema and Pellioditis in slugs are interesting, as these species have been speculated to represent the ancestral forms of the entomopathogenic nematodes. Development of the infective stage appears to be an important step toward the acquisition of molluscs as definitive hosts, and the association with specific bacteria may have arisen in conjunction with the evolution of necromeny. PMID:19265989

  14. Serine Protease-mediated Host Invasion by the Parasitic Nematode Steinernema carpocapsae*

    PubMed Central

    Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V.; Simões, Nelson

    2010-01-01

    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 104 s−1 m−1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control. PMID:20656686

  15. Nematode parasite diversity in birds: the role of host ecology, life history and migration.

    PubMed

    Leung, Tommy L F; Koprivnikar, Janet

    2016-11-01

    Previous studies have found that migratory birds generally have a more diverse array of pathogens such as parasites, as well as higher intensities of infection. However, it is not clear whether this is driven by the metabolic and physiological demands of migration, differential selection on host life-history traits or basic ecological differences between migratory and non-migratory species. Parasitic helminths can cause significant pathology in their hosts, and many are trophically transmitted such that host diet and habitat use play key roles in the acquisition of infections. Given the concurrent changes in avian habitats and migratory behaviour, it is critical to understand the degree to which host ecology influences their parasite communities. We examined nematode parasite diversity in 153 species of Anseriformes (water birds) and Accipitriformes (predatory birds) in relation to their migratory behaviour, diet, habitat use, geographic distribution and life history using previously published data. Overall, migrators, host species with wide geographic distributions and those utilizing multiple aquatic habitats had greater nematode richness (number of species), and birds with large clutches harboured more diverse nematode fauna with respect to number of superfamilies. Separate analyses for each host order found similar results related to distribution, habitat use and migration; however, herbivorous water birds played host to a less diverse nematode community compared to those that consume some animals. Birds using multiple aquatic habitats have a more diverse nematode fauna relative to primarily terrestrial species, likely because there is greater opportunity for contact with parasite infectious stages and/or consumption of infected hosts. As such, omnivorous and carnivorous birds using aquatic habitats may be more affected by environmental changes that alter their diet and range. Even though there were no overall differences in their ecology and life history

  16. Interactions between gastrointestinal nematode parasites and diarrhoea in sheep: pathogenesis and control.

    PubMed

    Williams, Andrew R; Palmer, Dieter G

    2012-06-01

    Diarrhoea is a major impediment to profitable sheep production in many countries as it predisposes animals to blowfly strike and contaminates wool and meat carcasses. While it is accepted that nematode parasites are a major cause of diarrhoea in grazing animals, less is known about what facets of the host-parasite relationship lead to diarrhoea and what the most appropriate control strategies are. In this review, the relationship between gastrointestinal nematode infection and diarrhoea is discussed and it is concluded that in many cases, particularly in immunologically mature sheep, diarrhoea is not due to parasite infection per se but rather due to immunopathological processes. Mechanisms that lead to faecal softening in immune sheep are considered, and the question addressed as to whether anthelmintic treatment and selective breeding of naturally parasite-resistant sheep will effectively reduce the occurrence of diarrhoea.

  17. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes.

    PubMed

    Danchin, Etienne G J; Rosso, Marie-Noëlle; Vieira, Paulo; de Almeida-Engler, Janice; Coutinho, Pedro M; Henrissat, Bernard; Abad, Pierre

    2010-10-12

    Lateral gene transfer from prokaryotes to animals is poorly understood, and the scarce documented examples generally concern genes of uncharacterized role in the receiver organism. In contrast, in plant-parasitic nematodes, several genes, usually not found in animals and similar to bacterial homologs, play essential roles for successful parasitism. Many of these encode plant cell wall-degrading enzymes that constitute an unprecedented arsenal in animals in terms of both abundance and diversity. Here we report that independent lateral gene transfers from different bacteria, followed by gene duplications and early gain of introns, have shaped this repertoire. We also show protein immunolocalization data that suggest additional roles for some of these cell wall-degrading enzymes in the late stages of these parasites' life cycle. Multiple functional acquisitions of exogenous genes that provide selective advantage were probably crucial for the emergence and proficiency of plant parasitism in nematodes.

  18. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora

    PubMed Central

    Noguez, Jaime H.; Conner, Elizabeth S.; Zhou, Yue; Ciche, Todd A.; Ragains, Justin R.; Butcher, Rebecca A.

    2012-01-01

    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species. PMID:22444073

  19. The gastropod shell has been co-opted to kill parasitic nematodes.

    PubMed

    Rae, R

    2017-07-06

    Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.

  20. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes.

    PubMed

    Fairbairn, David J; Cavallaro, Antonino S; Bernard, Margaret; Mahalinga-Iyer, Janani; Graham, Michael W; Botella, José R

    2007-11-01

    Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

  1. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors

    PubMed Central

    Duguet, Thomas B.; Charvet, Claude L.; Forrester, Sean G.; Wever, Claudia M.; Dent, Joseph A.; Neveu, Cedric; Beech, Robin N.

    2016-01-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  2. Parasitic nematodes of Polychrus acutirostris (Polychrotidae) in the Caatinga biome, Northeastern Brazil.

    PubMed

    Araujo-Filho, J A; Ribeiro, S C; Brito, S V; Teles, D A; Sousa, J G G; Ávila, R W; Almeida, W O

    2014-11-01

    We present data on nematode infracommunity of the arboreal lizard Polycrhus acutirostris in the semiarid Caatinga biome, northeastern Brazil. Twenty- twolizard specimens collected in the municipality of Várzea Alegre in Ceará State and in the municipality of Exu in Pernambuco State were analyzed. Two species of nematodes were found, an Oxyuridae, Gynaecometra bahiensis, which had a mean intensity of infection 23.5 ± 5.8 (prevalence 22%) and a Physalopteridae, Physaloptera retusa which had infection intensity of 21 (prevalence 9%). There were no significant differences between the parasitism rates of male or female lizards. Polychrus acutirostris demonstrated low richness of nematode parasites, but high levels of infection with G. bahiensis. Polychrus acutirostrisis reported here as a new host for P. retusa.

  3. Tissue migration capability of larval and adult Brugia pahangi.

    PubMed

    Chirgwin, Sharon R; Coleman, Sharon U; Porthouse, Kristina H; Klei, Thomas R

    2006-02-01

    Infection with mosquito-born filarial nematodes occurs when hosts are bitten by a vector carrying the infective third stage larvae (L3) of the parasites. These larvae, deposited on the skin by the feeding mosquito, are presumed to enter the skin via the vector-induced puncture wound. Larvae of Brugia spp. must then migrate from the entry site, penetrate various skin layers, and locate a lymphatic vessel that leads to their lymphatic predilection site. We have recently established an intradermal (ID) infection model using B. pahangi and the Mongolian gerbil, allowing us to investigate the migratory capability ofB. pahangi. Larval and adult parasites recovered from the peritoneal cavities of gerbils were capable of establishing an infection following ID (larvae) or subcutaneous (adult) injection. Third and fourth stage larvae both migrated away from the injection site within hours, although data suggest they localize to different lymphatic tissues at 3 days postinfection (DPI). Immature adult (28 day) B. pahangi also migrated away from their SC inoculation site within 7 DPI. Mature (45 day) adult B. pahangi displayed little migration away from the SC infection site, suggesting tissue migration may be limited to developing stages of the parasite.

  4. Evaluation of Clonostachys rosea for control of plant-parasitic nematodes in soil and in roots of carrot and wheat.

    PubMed

    Iqbal, Mudassir; Dubey, Mukesh; McEwan, Kerstin; Menzel, Uwe; Andersson Franko, Mikael; Viketoft, Maria; Funck Jensen, Dan; Karlsson, Magnus

    2017-09-12

    Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73 % when C. rosea was applied, while genera of non-parasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24 %, respectively, while only shoot dry weight increased by 48 % in carrots. Light microscopy of in vitro C. rosea - nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity towards nematodes and immobilised 57, 62 and 100 % of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.

  5. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle

    PubMed Central

    Zhao, Lilin; Zhang, Xinxing; Wei, Yanan; Zhou, Jiao; Zhang, Wei; Qin, Peijun; Chinta, Satya; Kong, Xiangbo; Liu, Yunpeng; Yu, Haiying; Hu, Songnian; Zou, Zhen; Butcher, Rebecca A.; Sun, Jianghua

    2016-01-01

    Insect vectors are required for the transmission of many species of parasitic nematodes, but the mechanisms by which the vectors and nematodes coordinate their life cycles are poorly understood. Here, we report that ascarosides, an evolutionarily conserved family of nematode pheromones, are produced not only by a plant-parasitic nematode, but also by its vector beetle. The pinewood nematode and its vector beetle cause pine wilt disease, which threatens forest ecosystems world-wide. Ascarosides secreted by the dispersal third-stage nematode LIII larvae promote beetle pupation by inducing ecdysone production in the beetle and up-regulating ecdysone-dependent gene expression. Once the beetle develops into the adult stage, it secretes ascarosides that attract the dispersal fourth-stage nematode LIV larvae, potentially facilitating their movement into the beetle trachea for transport to the next pine tree. These results demonstrate that ascarosides play a key role in the survival and spread of pine wilt disease. PMID:27477780

  6. Potential of Foliar, Dip, and Injection Applications of Avermectins for Control of Plant-Parasitic Nematodes

    PubMed Central

    Jansson, Richard K.; Rabatin, Susan

    1998-01-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes. PMID:19274200

  7. Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes.

    PubMed

    Jansson, R K; Rabatin, S

    1998-03-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 mug/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.

  8. Purification and characterisation of tubulin from the parasitic nematode, Ascaridia galli.

    PubMed

    Dawson, P J; Gutteridge, W E; Gull, K

    1983-03-01

    We have developed a method for the purification of tubulin from a parasitic nematode using DEAE-Sephadex column chromatography and temperature-dependent assembly. The resulting microtubules were morphologically similar to those obtained from mammalian brain. The nematode tubulin showed similar properties to mammalian tubulin on one and two dimensional polyacrylamide gels, although certain electrophoretic conditions revealed a slight difference in the alpha-tubulins from mammals and nematodes. This was confirmed by limited proteolytic peptide mapping. The beta subunit of nematode tubulin appeared almost identical to that of mammals. Peptide maps of these tubulins were also compared with those of eukaryotic micro-organisms and these results interpreted in terms of the evolution of the tubulin polypeptides and the sensitivity of helminths to antimicrotubular agents.

  9. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis vinifera Vineyards in Washington.

    PubMed

    Howland, Amanda D; Schreiner, R Paul; Zasada, Inga A

    2014-12-01

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards.

  10. Plant-parasitic nematodes associated with olive trees in Al-Jouf region, north Saudi Arabia

    USDA-ARS?s Scientific Manuscript database

    A preliminary survey of plant-parasitic nematodes associated with olive was performed in Al-Jouf region, north Saudi Arabia. Olive is a newly introduced crop in this region, and is cultivated in the agricultural enterprises of some of the biggest Saudi agricultural companies. Seedlings are mostly im...

  11. Anaerobic Soil Disinfestation (ASD) and Steam As Alternatives For Parasitic Nematode Control In Florida Floriculture

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) and steam are being investigated for controlling a broad spectrum of pests, including parasitic nematodes and weeds. ASD is a biologically-based method that combines organic amendments and solar heat with water saturated soil to create oxygen-depleted soil co...

  12. B cells have distinct roles in host protection against different nematode parasites

    USDA-ARS?s Scientific Manuscript database

    B cells may mediate protective responses against nematode parasites by supporting Th2 cell development and/or by producing antibodies. To examine this, B cell-deficient mice were inoculated with Nippostrongylus brasiliensis (Nb) or Heligmosomoides polygyrus (Hp). B cell-deficient and wild type (WT...

  13. Differential behavioral responses of two plant-parasitic nematodes to biogenic amines

    USDA-ARS?s Scientific Manuscript database

    Hatching and infective juvenile (J2) behavior in two species of plant-parasitic nematodes, Heterodera glycines and Meloidogyne incognita, were affected by in vitro treatment with the biogenic amines dopamine, octopamine, and serotonin. While the overall responses of each species to amine exposures w...

  14. De novo transcriptome assembly of the plant-parasitic nematode Rotylenchulus reniformis

    USDA-ARS?s Scientific Manuscript database

    Rotylenchulus reniformis, commonly known as the reniform nematode, is a pathogen of cotton, soybean, and sweet potatoes in the Southeastern United States. An estimate of cotton production loss due to R. reniformis parasitism in the United States in 2011 was 279,000 bales. Here, we present a de novo...

  15. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis vinifera Vineyards in Washington

    PubMed Central

    Howland, Amanda D.; Schreiner, R. Paul; Zasada, Inga A.

    2014-01-01

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards. PMID:25580024

  16. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic

    USDA-ARS?s Scientific Manuscript database

    Climate warming is modifying host-parasite interactions in the Arctic. Invasion of an arctic island by protostrongylid nematodes appears mediated by sporadic dispersal of muskoxen and seasonal migration by caribou from the Canadian mainland. A newly permissive environment likely facilitated initial ...

  17. Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis.

    PubMed

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Anugraha, Gandhirajan; Kiran, Pote; Rao, Donthamsetty Nageswara; Reddy, Maryada Venkata Rami; Kaliraj, Perumal

    2010-07-12

    Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.

  18. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity

    PubMed Central

    Buck, Amy H.; Coakley, Gillian; Simbari, Fabio; McSorley, Henry J.; Quintana, Juan F.; Le Bihan, Thierry; Kumar, Sujai; Abreu-Goodger, Cei; Lear, Marissa; Harcus, Yvonne; Ceroni, Alessandro; Babayan, Simon A.; Blaxter, Mark; Ivens, Alasdair; Maizels, Rick M.

    2014-01-01

    In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species. PMID:25421927

  19. Host Suitability of the Olive Cultivars Arbequina and Picual for Plant-Parasitic Nematodes

    PubMed Central

    Nico, A. I.; Jiménez-Díaz, R. M.; Castillo, P.

    2003-01-01

    Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp. PMID:19265971

  20. Managing Plant-Parasitic Nematodes in Established Red Raspberry Fields

    USDA-ARS?s Scientific Manuscript database

    The efficacy and phytotoxicity of post-plant treatments to control root lesion [Pratylenchus penetrans (Cobb), Chitwood & Otiefa] and dagger (Xiphinema bakeri Williams) nematodes in red raspberry (Rubus idaeus L.) were evaluated in four field studies conducted over three years. Spring spray applicat...

  1. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    USDA-ARS?s Scientific Manuscript database

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  2. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism.

    PubMed

    Hewezi, Tarek; Howe, Peter; Maier, Tom R; Hussey, Richard S; Mitchum, Melissa Goellner; Davis, Eric L; Baum, Thomas J

    2008-11-01

    Plant-parasitic cyst nematodes secrete a complex of cell wall-digesting enzymes, which aid in root penetration and migration. The soybean cyst nematode Heterodera glycines also produces a cellulose binding protein (Hg CBP) secretory protein. To determine the function of CBP, an orthologous cDNA clone (Hs CBP) was isolated from the sugar beet cyst nematode Heterodera schachtii, which is able to infect Arabidopsis thaliana. CBP is expressed only in the early phases of feeding cell formation and not during the migratory phase. Transgenic Arabidopsis expressing Hs CBP developed longer roots and exhibited enhanced susceptibility to H. schachtii. A yeast two-hybrid screen identified Arabidopsis pectin methylesterase protein 3 (PME3) as strongly and specifically interacting with Hs CBP. Transgenic plants overexpressing PME3 also produced longer roots and exhibited increased susceptibility to H. schachtii, while a pme3 knockout mutant showed opposite phenotypes. Moreover, CBP overexpression increases PME3 activity in planta. Localization studies support the mode of action of PME3 as a cell wall-modifying enzyme. Expression of CBP in the pme3 knockout mutant revealed that PME3 is required but not the sole mechanism for CBP overexpression phenotype. These data indicate that CBP directly interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism.

  3. Transmission electron microscopic observation of body cuticle structures of phoretic and parasitic stages of Parasitaphelenchinae nematodes.

    PubMed

    Ekino, Taisuke; Yoshiga, Toyoshi; Takeuchi-Kaneko, Yuko; Kanzaki, Natsumi

    2017-01-01

    Using transmission electron microscopy, we examined the body cuticle ultrastructures of phoretic and parasitic stages of the parasitaphelenchid nematodes Bursaphelenchus xylophilus, B. conicaudatus, B. luxuriosae, B. rainulfi; an unidentified Bursaphelenchus species, and an unidentified Parasitaphelenchus species. Nematode body cuticles usually consist of three zones, a cortical zone, a median zone, and a basal zone. The phoretic stages of Bursaphelenchus spp., isolated from the tracheal systems of longhorn beetles or the elytra of bark beetles, have a thick and radially striated basal zone. In contrast, the parasitic stage of Parasitaphelenchus sp., isolated from bark beetle hemocoel, has no radial striations in the basal zone. This difference probably reflects the peculiar ecological characteristics of the phoretic stage. A well-developed basal radially striated zone, composed of very closely linked proteins, is the zone closest to the body wall muscle. Therefore, the striation is necessary for the phoretic species to be able to seek, enter, and depart from host/carrier insects, but is not essential for internal parasites in parasitaphelenchid nematodes. Phylogenetic relationships inferred from near-full-length small subunit ribosomal RNA sequences suggest that the cuticle structures of parasitic species have apomorphic characters, e.g., lack of striation in the basal zone, concurrent with the evolution of insect parasitism from a phoretic life history.

  4. New insights into the FLPergic complements of parasitic nematodes: Informing deorphanisation approaches.

    PubMed

    McCoy, Ciaran J; Atkinson, Louise E; Zamanian, Mostafa; McVeigh, Paul; Day, Tim A; Kimber, Michael J; Marks, Nikki J; Maule, Aaron G; Mousley, Angela

    2014-06-01

    FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flp and flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites.

  5. New insights into the FLPergic complements of parasitic nematodes: Informing deorphanisation approaches

    PubMed Central

    McCoy, Ciaran J.; Atkinson, Louise E.; Zamanian, Mostafa; McVeigh, Paul; Day, Tim A.; Kimber, Michael J.; Marks, Nikki J.; Maule, Aaron G.; Mousley, Angela

    2014-01-01

    FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flp and flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites. PMID:26366373

  6. Nematode parasites of fishes: recent advances and problems of their research.

    PubMed

    Moravec, F

    2007-09-01

    Although nematodes (Nematoda) belong to the most frequent and the most important parasites of fishes in the freshwater, brackish-water and marine environments throughout the world, the present knowledge of these parasites remains still incomplete, especially as to their biology and ecology, but also taxonomy, phylogeny, zoogeography, and the like. However, a certain progress in the research of fish nematodes has been achieved during recent years. An overview of some of the most important discoveries and results obtained is presented. As an example, existing problems in the taxonomy of these nematodes are shown in the dracunculoid family Philometridae (presently including 109 species in 9 genera), where they are associated mainly with some biological peculiarities of these mostly important tissue parasites. Nematodes of the Dracunculoidea as a whole remain poorly known; for example, of 139 valid species parasitizing fishes, 81 (58%) are known by females only and the males have not yet been described for members of 8 (27%) of genera. A taxonomic revision of this nematode group, based on detailed morphological, life history and molecular studies of individual species, is quite necessary; for the time being, Moravec (2006) has proposed a new classification system of dracunculoids, where, based on previous molecular studies, the Anguillicolidae is no longer listed in Dracunculoidea, but in an independent superfamily Anguillicoloidea. Important results have recently been achieved also in the taxonomy of fish nematodes belonging to other superfamilies, as well as in studies of their geographical distribution and diversity in different parts of the world and those of their biology. Opportunities for more detailed studies of fish nematodes have recently greatly improved with the use of some new methods, in particular SEM and DNA studies. There is a need to create a new classification system of these parasites reflecting phylogenetic relationships; a prerequisite for this is

  7. Nematode effector proteins: an emerging paradigm of parasitism.

    PubMed

    Mitchum, Melissa G; Hussey, Richard S; Baum, Thomas J; Wang, Xiaohong; Elling, Axel A; Wubben, Martin; Davis, Eric L

    2013-09-01

    Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Automated, high-throughput, motility analysis in Caenorhabditiselegans and parasitic nematodes: Applications in the search for new anthelmintics

    PubMed Central

    Buckingham, Steven D.; Partridge, Frederick A.; Sattelle, David B.

    2014-01-01

    The scale of the damage worldwide to human health, animal health and agricultural crops resulting from parasitic nematodes, together with the paucity of treatments and the threat of developing resistance to the limited set of widely-deployed chemical tools, underlines the urgent need to develop novel drugs and chemicals to control nematode parasites. Robust chemical screens which can be automated are a key part of that discovery process. Hitherto, the successful automation of nematode behaviours has been a bottleneck in the chemical discovery process. As the measurement of nematode motility can provide a direct scalar readout of the activity of the neuromuscular system and an indirect measure of the health of the animal, this omission is acute. Motility offers a useful assay for high-throughput, phenotypic drug/chemical screening and several recent developments have helped realise, at least in part, the potential of nematode-based drug screening. Here we review the challenges encountered in automating nematode motility and some important developments in the application of machine vision, statistical imaging and tracking approaches which enable the automated characterisation of nematode movement. Such developments facilitate automated screening for new drugs and chemicals aimed at controlling human and animal nematode parasites (anthelmintics) and plant nematode parasites (nematicides). PMID:25516833

  9. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control.

    PubMed

    Cao, Jing; Guenther, Richard H; Sit, Tim L; Lommel, Steven A; Opperman, Charles H; Willoughby, Julie A

    2015-05-13

    Plant parasitic nematodes are one of the world's major agricultural pests, causing in excess of $157 billion in worldwide crop damage annually. Abamectin (Abm) is a biological pesticide with a strong activity against a wide variety of plant parasitic nematodes. However, Abm's poor mobility in the soil compromises its nematicide performance because of the limited zone of protection surrounding the growing root system of the plant. In this study, we manipulated Abm's soil physical chemistry by encapsulating Abm within the Red clover necrotic mosaic virus (RCNMV) to produce a plant virus nanoparticle (PVN) delivery system for Abm. The transmission electron microscopic and dynamic light scattering characterization of Abm-loaded PVN (PVN(Abm)) indicated the resultant viral capsid integrity and morphology comparable to native RCNMV. In addition, the PVN(Abm) significantly increased Abm's soil mobility while enabling a controlled release strategy for Abm's bioavailability to nematodes. As a result, PVN(Abm) enlarged the zone of protection from Meloidogyne hapla root knot nematodes in the soil as compared to treating with free Abm molecules. Tomato seedlings treated with PVN(Abm) had healthier root growth and a reduction in root galling demonstrating the success of this delivery system for the increased efficacy of Abm to control nematode damage in crops.

  10. Nematode intestinal parasites of children in rural Guinea, Africa: prevalence and relationship to geophagia.

    PubMed

    Glickman, L T; Camara, A O; Glickman, N W; McCabe, G P

    1999-02-01

    Intestinal parasites are routinely found among children in developing countries, but the risk factors of such infection are poorly characterized. The stools of 286 randomly selected children aged 1-18 years from 3 rural villages in Guinea were examined. Data collected via questionnaire were then analyzed to assess the relationship between geophagia, the regular ingestion of soil, and infection with intestinal nematodes acquired through ingestion rather than through skin penetration. 53% of children were infected with at least 1 type of soil-transmitted nematode, and geophagia was reported by parents to occur in 57%, 53%, and 43% of children aged 1-5, 6-10, and 11-18 years, respectively. The pattern of geophagia by age and gender of the children more closely resembled the infection pattern for the 2 orally acquired and soil-transmitted nematodes Ascaris lumbricoides and Trichuris trichiura than it did the infection pattern for the 2 soil-transmitted nematodes which infect by penetrating the skin, hookworm and Strongyloides stercoralis. Geophagia is therefore an important risk factor for orally acquired nematode infections among African children, and education on geophagia prevention should be an integral component of all soil-transmitted parasite control programs.

  11. Sustainable approaches to the management of plant-parasitic nematodes and disease complexes.

    PubMed

    Westphal, Andreas

    2011-06-01

    Physical, chemical, and biological factors of soil may reduce damage caused by plant-parasitic nematodes. Suppression of plant-parasitic nematodes is particularly challenging in soils in which there are short crop sequences, sequential susceptible host crops, or infestations of multiple nematode species. In southern Indiana, a watermelon production system involving rotations with soybean and corn does not suppress Meloidogyne incognita, but several aspects of such systems can be modified to reduce nematode damage in an integrated management approach. Cash crops with resistance to M. incognita can be used to reduce population densities of M. incognita. Small grains as cover crops can be replaced by cover crops with resistance to M. incognita or by crops with biofumigation potential. Mycorrhizal fungal inoculations of potting mixes during transplanting production of watermelon seedlings may improve early crop establishment. Other approaches to nematode management utilize soil suppressiveness. One-year rotations of soybean with corn neither reduced the soil-borne complex of sudden death syndrome (SDS) nor improved soybean root health over that in soybean monoculture. Reduced tillage combined with crop rotation may reduce the activity of soil-borne pathogens in some soils. For example in a long-term trial, numbers of Heterodera glycines and severity of foliar SDS symptoms were reduced under minimum tillage. Thus, sustainable management strategies require holistic approaches that consider entire production systems rather than focus on a single crop in its year of production.

  12. RNA interference in plant parasitic nematodes: a summary of the current status.

    PubMed

    Lilley, C J; Davies, L J; Urwin, P E

    2012-04-01

    SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants.

  13. Parasitic nematode communities of the red kangaroo, Macropus rufus: richness and structuring in captive systems.

    PubMed

    Lott, M J; Hose, G C; Power, M L

    2015-08-01

    Captive management practices have the potential to drastically alter pre-existing host-parasite relationships. This can have profound implications for the health and productivity of threatened species in captivity, even in the absence of clinical symptoms of disease. Maximising the success of captive breeding programmes requires a detailed knowledge of anthropogenic influences on the structure of parasite assemblages in captive systems. In this study, we employed two high-throughput molecular techniques to characterise the parasitic nematode (suborder Strongylida) communities of the red kangaroo, Macropus rufus, across seven captive sites. The first was terminal restriction fragment length polymorphism (T-RFLP) analysis of a region of rDNA encompassing the internal transcribed spacers 1 (ITS1), the 5.8S rRNA gene and the internal transcribed spacer 2 (ITS2). The second was Illumina MiSeq next-generation sequencing of the ITS2 region. The prevalence, intensity of infection, taxonomic composition and comparative structure of strongylid nematode assemblages was assessed at each location. Prevalence (P = <0.001) and mean infection intensity (df = 6, F = 17.494, P = <0.001) differed significantly between the seven captive sites. Significant levels of parasite community structure were observed (ANOSIM, P = 0.01), with most of the variation being distributed within, rather than between, captive sites. The range of nematode taxa that occurred in captive red kangaroos appeared to differ from that of wild conspecifics, with representatives of the genus Cloacina, a dominant nematode parasite of the macropodid forestomach, being detected at only two of the seven study sites. This study also provides the first evidence for the presence of the genus Trichostrongylus in a macropodid marsupial. Our results demonstrate that contemporary species management practices may exert a profound influence on the structure of parasite communities in captive systems.

  14. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts

    PubMed Central

    Brown, Amanda M. V.; Wasala, Sulochana K.; Howe, Dana K.; Peetz, Amy B.; Zasada, Inga A.; Denver, Dee R.

    2016-01-01

    Wolbachia, one of the most widespread endosymbionts, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new Wolbachia strain (wPpe) in the plant-parasitic nematode Pratylenchus penetrans. Phylogenomic analyses placed wPpe as the earliest diverging Wolbachia, suggesting two evolutionary invasions into nematodes. The next branches comprised strains in sap-feeding insects, suggesting Wolbachia may have first evolved as a nutritional mutualist. Genome size, protein content, %GC, and repetitive DNA allied wPpe with mutualistic Wolbachia, whereas gene repertoire analyses placed it between parasite (A, B) and mutualist (C, D, F) groups. Conservation of iron metabolism genes across Wolbachia suggests iron homeostasis as a potential factor in its success. This study enhances our understanding of this globally pandemic endosymbiont, highlighting genetic patterns associated with host changes. Combined with future work on this strain, these genomic data could help provide potential new targets for plant-parasitic nematode control. PMID:27734894

  15. Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi

    PubMed Central

    Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag

    2013-01-01

    Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity

  16. Assay Strategies for the Discovery and Validation of Therapeutics Targeting Brugia pahangi Hsp90

    PubMed Central

    Taldone, Tony; Gillan, Victoria; Sun, Weilin; Rodina, Anna; Patel, Pallav; Maitland, Kirsty; O'Neill, Kerry; Chiosis, Gabriela; Devaney, Eileen

    2010-01-01

    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target. PMID:20559560

  17. Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber.

    PubMed

    Poinar, George; Buckley, Ron

    2006-09-01

    The present report describes a mermithid nematode (Nematoda: Mermithidae) and a gordiid hairworm (Nematomorpha: Chordodidae) from Early Cretaceous Burmese amber dated at 100-110 million years. The mermithid, Cretacimermis protus sp. n., is emerging from a biting midge (Diptera: Ceratopogonidae) while the hairworm, Cretachordodes burmitis, gen. n., sp. n. had already emerged from its host. These rare specimens represent the first fossil mermithid parasite of a ceratopogonid midge and second oldest described nematode and the earliest known and only Mesozoic fossil of the phylum Nematomorpha. A list of previously described fossil mermithids is included.

  18. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes

    PubMed Central

    Stirling, Graham R.; Rames, Emily; Stirling, A. Marcelle; Hamill, Sharon

    2011-01-01

    Observations in three Australian sugarcane fields suggested that the soil just under the trash blanket (the covering of crop residue that remains on the soil surface after crops are harvested) was suppressive to plant-parasitic nematodes. Roots were concentrated in this upper layer of soil but plant-parasitic nematode populations were relatively low and roots showed few signs of nematode damage. Root biomass was much lower 15 cm further down the soil profile, where root health was poor and populations of plant-parasitic nematodes were 3-5 times higher than near the soil surface. A bioassay in which Radopholus similis (a nematode that does not occur in sugarcane soils) was inoculated into heat-sterilized and untreated soils, confirmed that biological factors were limiting nematode populations in some of the soils, with soil from 0-2 cm much more suppressive than soil from 15-17 cm. Surface soil from one site was highly suppressive, as only 16% of R. similis recoverable from heated soil were retrieved from this soil after 8 days. Numerous soil chemical, biochemical, and biological properties were measured, and non-linear regression analysis identified two major groups of factors that were significantly associated with suppressiveness. One group reflected the amount of organic matter in soil (total C, total N, and labile C) and the other was associated with the size of the free-living nematode community (total numbers of free-living nematodes, and numbers of plant associates, bacterial feeders, fungal feeders, and carnivores). These results suggested that suppressiveness was biologically mediated and was sustained by C inputs from crop residues and roots. Since nematode-trapping fungi in the test soils could not be quantified using traditional dilution plating methods, their possible role as suppressive agents was assessed by generating TRFLP profiles with Orbiliales-specific primers, and by sequencing cloned PCR products. Although the molecular data were obtained

  19. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes.

    PubMed

    Stirling, Graham R; Rames, Emily; Stirling, A Marcelle; Hamill, Sharon

    2011-09-01

    Observations in three Australian sugarcane fields suggested that the soil just under the trash blanket (the covering of crop residue that remains on the soil surface after crops are harvested) was suppressive to plant-parasitic nematodes. Roots were concentrated in this upper layer of soil but plant-parasitic nematode populations were relatively low and roots showed few signs of nematode damage. Root biomass was much lower 15 cm further down the soil profile, where root health was poor and populations of plant-parasitic nematodes were 3-5 times higher than near the soil surface. A bioassay in which Radopholus similis (a nematode that does not occur in sugarcane soils) was inoculated into heat-sterilized and untreated soils, confirmed that biological factors were limiting nematode populations in some of the soils, with soil from 0-2 cm much more suppressive than soil from 15-17 cm. Surface soil from one site was highly suppressive, as only 16% of R. similis recoverable from heated soil were retrieved from this soil after 8 days. Numerous soil chemical, biochemical, and biological properties were measured, and non-linear regression analysis identified two major groups of factors that were significantly associated with suppressiveness. One group reflected the amount of organic matter in soil (total C, total N, and labile C) and the other was associated with the size of the free-living nematode community (total numbers of free-living nematodes, and numbers of plant associates, bacterial feeders, fungal feeders, and carnivores). These results suggested that suppressiveness was biologically mediated and was sustained by C inputs from crop residues and roots. Since nematode-trapping fungi in the test soils could not be quantified using traditional dilution plating methods, their possible role as suppressive agents was assessed by generating TRFLP profiles with Orbiliales-specific primers, and by sequencing cloned PCR products. Although the molecular data were obtained

  20. Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi

    PubMed Central

    Tzertzinis, George; Egaña, Ana L.; Palli, Subba Reddy; Robinson-Rechavi, Marc; Gissendanner, Chris R.; Liu, Canhui; Unnasch, Thomas R.; Maina, Claude V.

    2010-01-01

    Background Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). Methods and Findings We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. Conclusions Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that

  1. Stage- and Gender-Specific Proteomic Analysis of Brugia malayi Excretory-Secretory Products

    PubMed Central

    Moreno, Yovany; Geary, Timothy G.

    2008-01-01

    Introduction While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. Methodology/Principal Findings To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. Conclusions/Significance A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host–parasite interaction. PMID:18958170

  2. Genetic identification of five strongyle nematode parasites in wild african elephants (Loxodonta africana).

    PubMed

    McLean, E R; Kinsella, J M; Chiyo, P; Obanda, V; Moss, C; Archie, E A

    2012-07-01

    African savannah elephants (Loxodonta africana) are an ecologically and economically important species in many African habitats. However, despite the importance of elephants, research on their parasites is limited, especially in wild populations. Currently, we lack genetic tools to identify elephant parasites. We present genetic markers from ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) to identify five elephant-specific nematode parasites in the family Strongylidae: Murshidia linstowi, Murshidia longicaudata, Murshidia africana, Quilonia africana, and Khalilia sameera. We collected adult nematodes from feces deposited by wild elephants living in Amboseli National Park, Kenya. Using both morphologic and genetic techniques, we found that the internal transcribed spacer (ITS) region in rDNA provides a reliable marker to distinguish these species of strongyles. We found no evidence for cryptic genetic species within these morphologic species according to the cox-1 region of mtDNA. Levels of genetic diversity in strongyles from elephants were consistent with the genetic diversity seen within other strongyle species. We anticipate that these results will be a useful tool for identifying gastrointestinal nematode parasites in elephants.

  3. The Transcriptome of Nacobbus aberrans Reveals Insights into the Evolution of Sedentary Endoparasitism in Plant-Parasitic Nematodes

    PubMed Central

    Eves-van den Akker, Sebastian; Lilley, Catherine J.; Danchin, Etienne G. J.; Rancurel, Corinne; Cock, Peter J. A.; Urwin, Peter E.; Jones, John T.

    2014-01-01

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, “specific” have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. PMID:25123114

  4. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes.

    PubMed

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Danchin, Etienne G J; Rancurel, Corinne; Cock, Peter J A; Urwin, Peter E; Jones, John T

    2014-08-13

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    PubMed Central

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  6. Trichinella spiralis: Adaptation and parasitism.

    PubMed

    Zarlenga, Dante; Wang, Zhengyuan; Mitreva, Makedonka

    2016-11-15

    Publication of the genome from the clade I organism, Trichinella spiralis, has provided us an avenue to address more holistic problems in parasitology; namely the processes of adaptation and the evolution of parasitism. Parasitism among nematodes has evolved in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and adaptation in nematodes; however, data is now coming available to investigate adaptation, host switching and parasitism at the genomic level. Herein we compare proteomic data from the clade I parasite, Trichinella spiralis with data from Brugia malayi (clade III), Meloidogyne hapla and Meloidogyne incognita (clade IV), and free-living nematodes belonging to the genera Caenorhabditis and Pristionchus (clade V). We explore changes in protein family birth/death and expansion/reduction over the course of metazoan evolution using Homo sapiens, Drosophila melanogaster and Saccharomyces cerevisiae as outgroups for the phylum Nematoda. We further examine relationships between these changes and the ability and/or result of nematodes adapting to their environments. Data are consistent with gene loss occurring in conjunction with nematode specialization resulting from parasitic worms acclimating to well-defined, environmental niches. We observed evidence for independent, lateral gene transfer events involving conserved genes that may have played a role in the evolution of nematode parasitism. In general, parasitic nematodes gained proteins through duplication and lateral gene transfer, and lost proteins through random mutation and deletions. Data suggest independent acquisition rather than ancestral inheritance among the Nematoda followed by selective gene loss over evolutionary time. Data also show that parasitism and adaptation affected a broad range of proteins

  7. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  8. The influence of Amylostereum areolatum diversity and competitive interations on the fitness of the Sirex parasitic nematode Deladenus siricidicola

    Treesearch

    B.P. Hurley; H.J. Hatting; M.J. Wingfield; Kier Klepzig; B. Slippers

    2012-01-01

    The Sirex noctilio (woodwasp - Amylostereum areolatum (fungus) complex has caused substantial losses to pine industries in its introduced range. The nematode Deladenus siricidicola that parasitizes S. noctilio and feeds on A. areolatum is widely used as a biological control...

  9. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE)-like effector proteins. These proteins act as ligand mimics of plant CLE peptides and are required for successful nematode infection. Previously, we showed that CLV2 and CORYNE (CRN), a heterodimer recept...

  10. Curtisia dentata (Cornaceae) leaf extracts and isolated compounds inhibit motility of parasitic and free-living nematodes.

    PubMed

    Shai, L J; Bizimenyera, E S; Bagla, V; McGaw, L J; Eloff, J N

    2009-06-01

    Haemonchus contortus and Trichostrongylus colubriformis are among the most important parasitic nematodes of small ruminants. Caenorhabditis elegans, a free-living nematode, is used as a model for evaluating anthelmintic activity of a variety of test substances. Extracts of several medicinal plants are useful in vitro and in vivo against nematode development. Extracts of Curtisia dentata, a South African medicinal plant, and compounds isolated from leaves of this plant were investigated for anthelmintic activity against T. colubriformis, H. contortus and C. elegans. The acetone and dichloromethane extracts were active against all nematodes at concentrations as low as 160 microg/ml. Betulinic acid and lupeol were active against the parasitic nematodes only at the high concentrations of 1000 and 200 microg/ml, respectively. All compounds were effective against C. elegans with active concentrations as low as 8 microg/ml. Betulinic acid was less active than lupeol and ursolic acid against C. elegans. The acetone and dichloromethane extracts were also active against C. elegans with a concentration of 0.31 mg/ml resulting in almost 80% inhibition of larval motility. The use of free-living nematodes may provide information on the activity of potential anthelmintics against parasitic nematodes. Extracts of various medicinal plant species may provide solutions to ill-health of small ruminants caused by parasitic nematodes in poor communities of southern Africa.

  11. Chorismate mutase: an alternatively spliced parasitism gene and a diagnostic marker for three important Globodera nematode species

    USDA-ARS?s Scientific Manuscript database

    The chorismate mutase gene is widely distributed in both cyst and root-knot nematode species and believed to play a critical role in nematode parasitism. In this study, we cloned a new chorismate mutase gene (Gt-cm-1) from Globodera tabacum and further characterized the gene structure in both G. tab...

  12. Plant-parasitic Nematodes Associated with Cherry Rootstocks in Michigan

    PubMed Central

    Melakeberhan, H.; Bird, G. W.; Perry, R.

    1994-01-01

    In two field trials, 10-year-old sweet and tart cherry rooted on 'Mazzard', 'Mahaleb', 'MXM 2', 'MXM 14', 'MXM 39', 'MXM 60', 'MXM 97', and 'Colt' showed 10-203 Pratylenchus penetrans per g fresh root from all tart rootstocks, and up to 46 Pratylenchus, Criconemella, and Xiphinema spp. per 100 cm³ soil. Infestation of soil containing 1-year-old Mazzard, Mahaleb, MXM 60, 'GI148-1', and 'G1148-8' with 625/100 cm³ soil of either P. penetrans or C. xenoplax resulting in final nematode population densities of 123-486 and 451-2,496/g fresh root plus 100 cm³ soil, respectively, and had little effect on plant height or dry weight after 157 days in a greenhouse. Population densities of neither nematode differed among the five rootstocks. In a second greenhouse experiment, soil containing the same rootstocks was infested with P. penetrans (1,250/100 cm³ soil), maintained for 8 months in a greenhouse, 4 months in a cold room (2-4 C), and 3 additional months in a greenhouse. The number of P. penetrans recovered at the end of 475 days was approximately 10% of those recovered in the first experiment, probably due to the cold treatment. The ability of P. penetrans and C. xenoplax to infect the cherry rootstocks may be of concern in cherry management programs. PMID:19279962

  13. Plant-parasitic Nematodes Associated with Cherry Rootstocks in Michigan.

    PubMed

    Melakeberhan, H; Bird, G W; Perry, R

    1994-12-01

    In two field trials, 10-year-old sweet and tart cherry rooted on 'Mazzard', 'Mahaleb', 'MXM 2', 'MXM 14', 'MXM 39', 'MXM 60', 'MXM 97', and 'Colt' showed 10-203 Pratylenchus penetrans per g fresh root from all tart rootstocks, and up to 46 Pratylenchus, Criconemella, and Xiphinema spp. per 100 cm(3) soil. Infestation of soil containing 1-year-old Mazzard, Mahaleb, MXM 60, 'GI148-1', and 'G1148-8' with 625/100 cm(3) soil of either P. penetrans or C. xenoplax resulting in final nematode population densities of 123-486 and 451-2,496/g fresh root plus 100 cm(3) soil, respectively, and had little effect on plant height or dry weight after 157 days in a greenhouse. Population densities of neither nematode differed among the five rootstocks. In a second greenhouse experiment, soil containing the same rootstocks was infested with P. penetrans (1,250/100 cm(3) soil), maintained for 8 months in a greenhouse, 4 months in a cold room (2-4 C), and 3 additional months in a greenhouse. The number of P. penetrans recovered at the end of 475 days was approximately 10% of those recovered in the first experiment, probably due to the cold treatment. The ability of P. penetrans and C. xenoplax to infect the cherry rootstocks may be of concern in cherry management programs.

  14. Vaccination with a genetically modified Brugia malayi cysteine protease inhibitor-2 reduces adult parasite numbers and affects the fertility of female worms following a subcutaneous challenge of Mongolian gerbils (Meriones unguiculatus) with B. malayi infective larvae.

    PubMed

    Arumugam, Sridhar; Wei, Junfei; Ward, Danielle; Abraham, David; Lustigman, Sara; Zhan, Bin; Klei, Thomas R

    2014-09-01

    Vaccination of Mongolian gerbils with Brugia malayi cysteine protease inhibitor-2 in which the amino acid Asn66 was mutated to Lys66 (Bm-CPI-2M) resulted in reduced parasite numbers of 48.6% and 48.0% at 42 and 90 days p.i. with B. malayi L3s. Fertility of female worms was also affected at 90 days p.i. In vitro killing of L3s observed in the presence of gerbil peritoneal exudate cells and anti-Bm-CPI-2M sera suggests antibody-dependent cell-mediated cytotoxicity as a putative protective mechanism. These observations suggest that Bm-CPI-2M is a promising prophylactic and anti-fecundity vaccine candidate.

  15. Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis

    PubMed Central

    Safer, Daniel; Brenes, Mario; Dunipace, Seth; Schad, Gerhard

    2007-01-01

    Host-seeking behavior by parasitic nematodes relies heavily on chemical cues emanating from potential hosts. Nonspecific cues for Strongyloides stercoralis, a nematode that infects humans and a few other mammals, include carbon dioxide and sodium chloride; however, the characteristic species specificity of this parasite suggested the existence of other, more specific cues. Here we show that the infective larva of S. stercoralis is strongly attracted to an extract of mammalian skin and that the active component in this skin extract is urocanic acid. Urocanic acid, a histidine metabolite, is particularly abundant in mammalian skin and skin secretions, suggesting that it serves as an attractant specific to mammalian hosts. The attractant activity of urocanic acid is suppressed by divalent metal ions, suggesting a possible strategy for preventing infection. PMID:17234810

  16. Host age, sex, and reproductive seasonality affect nematode parasitism in wild Japanese macaques.

    PubMed

    MacIntosh, Andrew J J; Hernandez, Alexander D; Huffman, Michael A

    2010-10-01

    Parasites are characteristically aggregated within hosts, but identifying the mechanisms underlying such aggregation can be difficult in wildlife populations. We examined the influence of host age and sex over an annual cycle on the eggs per gram of feces (EPG) of nematode parasites infecting wild Japanese macaques (Macaca fuscata yakui) on Yakushima Island. Five species of nematode were recorded from 434 fecal samples collected from an age-structured group of 50 individually recognizable macaques. All parasites exhibited aggregated EPG distributions. The age-infection profiles of all three directly transmitted species (Oesophagostomum aculeatum, Strongyloides fuelleborni, and Trichuris trichiura) exhibited convex curves, but concavity better characterized the age-infection curves of the two trophically transmitted species (Streptopharagus pigmentatus and Gongylonema pulchrum). There was a male bias in EPG and prevalence of infection with directly transmitted species, except in the prevalence of O. aculeatum, and no sex bias in the other parasites. Infection with O. aculeatum showed a female bias in prevalence among young adults, and additional interactions with sex and seasonality show higher EPG values in males during the mating season (fall) but in females during the birth season (spring). These patterns suggest that an immunosuppressive role by reproductive hormones may be regulating direct, but not indirect, life-cycle parasites. Exposure at an early age may trigger an immune response that affects all nematodes, but trophically transmitted species appear to accumulate thereafter. Although it is difficult to discern clear mechanistic explanations for parasite distributions in wildlife populations, it is critical to begin examining these patterns in host species that are increasingly endangered by anthropogenic threats.

  17. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants

    PubMed Central

    Siddique, Shahid; Radakovic, Zoran S.; De La Torre, Carola M.; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G.; Grundler, Florian M. W.

    2015-01-01

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction. PMID:26417108

  18. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    PubMed

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  19. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards.

    PubMed

    Aballay, E; Prodan, S; Zamorano, A; Castaneda-Alvarez, C

    2017-07-01

    The action of metabolites and exoenzymes from rhizobacteria on different plant-parasitic nematodes has an influence on the nematicidal efficacy of the microbe. Seven rhizobacteria, divided into two bacterial groups, were evaluated in vitro for nematicidal activity on Meloidogyne ethiopica and Xiphinema index. The direct effect of their filtrates on egg hatching and juveniles of M. ethiopica as well as mobile stages of X. index was evaluated during a 72-h period. The production of four exoenzymes and two metabolites associated with nematode mortality was investigated. Molecular characterization of three isolates was performed, and the physiological profiles and lipase activity of all isolates were obtained using the BIOLOG EcoPlate system. While chitinase and collagenase were measured using the BIOLOG MT2 plate system, protease, hydrogen cyanide and hydrogen sulphide were directly determined in Petri dishes. Nematode mobile stages exposure to the bacterial filtrate revealed a nematicidal effect up to 93.7% on X. Index and up to 83.3% on M. ethiopica. The control of egg hatching varied between 35 and 85%. A positive correlation was found between the mortality of both nematode mobile stages and the concerted activities of the bacterial enzymes as well as the level of the volatile metabolites. The nematicidal effect of rhizobacteria strains varies by nematode genera and among the developmental stages evaluated.

  20. Active uptake of cyst nematode parasitism proteins into the plant cell nucleus.

    PubMed

    Elling, Axel A; Davis, Eric L; Hussey, Richard S; Baum, Thomas J

    2007-09-01

    Cyst nematodes produce parasitism proteins that contain putative nuclear localisation signals (NLSs) and, therefore, are predicted to be imported into the nucleus of the host plant cell. The in planta localisation patterns of eight soybean cyst nematode (Heterodera glycines) parasitism proteins with putative NLSs were determined by producing these proteins as translational fusions with the GFP and GUS reporter proteins. Two parasitism proteins were found to be imported into the nuclei of onion epidermal cells as well as Arabidopsis protoplasts. One of these two parasitism proteins was further transported into the nucleoli. Mutations introduced into the NLS domains of these two proteins abolished nuclear import and caused a cytoplasmic accumulation. Furthermore, we observed active nuclear uptake for three additional parasitism proteins, however, only when these proteins were synthesised as truncated forms. Two of these proteins were further transported into nucleoli. We hypothesise that nuclear uptake and nucleolar localisation are important mechanisms for H. glycines to modulate the nuclear biology of parasitised cells of its host plant.

  1. New Plant-Parasitic Nematode from the Mostly Mycophagous Genus Bursaphelenchus Discovered inside Figs in Japan

    PubMed Central

    Kanzaki, Natsumi; Tanaka, Ryusei; Giblin-Davis, Robin M.; Davies, Kerrie A.

    2014-01-01

    A new nematode species, Bursaphelenchus sycophilus n. sp. is described. The species was found in syconia of a fig species, Ficus variegata during a field survey of fig-associated nematodes in Japan. Because it has a well-developed stylet and pharyngeal glands, the species is considered an obligate plant parasite, and is easily distinguished from all other fungal-feeding species in the genus based upon these characters. Although B. sycophilus n. sp. shares an important typological character, male spicule possessing a strongly recurved condylus, with the “B. eremus group” and the “B. leoni group” of the genus, it was inferred to be monophyletic with the “B. fungivorus group”. The uniquely shaped stylet and well-developed pharyngeal glands is reminiscent of the fig-floret parasitic but paraphyletic assemblage of “Schistonchus”. Thus, these morphological characters appear to be an extreme example of convergent evolution in the nematode family, Aphelenchoididae, inside figs. Other characters shared by the new species and its close relatives, i.e., lack of ventral P1 male genital papilla, female vulval flap, and papilla-shaped P4 genital papillae in males, corroborate the molecular phylogenetic inference. The unique biological character of obligate plant parasitism and highly derived appearance of the ingestive organs of Bursaphelenchus sycophilus n. sp. expands our knowledge of the potential morphological, physiological and developmental plasticity of the genus Bursaphelenchus. PMID:24940595

  2. Use of fluorescent lectin binding to distinguish eggs of gastrointestinal nematode parasites of sheep.

    PubMed

    Umair, S; McMurtry, L W; Knight, J S; Simpson, H V

    2016-02-15

    The binding of a panel of 19 lectins to carbohydrates on the eggs of economically important nematode parasites of sheep has been assessed as the basis of a rapid test to distinguish parasite eggs, at least at the genus level. A total of six lectins can be used to identify eggs of six nematode parasites: peanut agglutinin (PNA) for Haemonchus contortus; Lens culinaris agglutinin (LCA) for Teladorsagia sp; Aleuria aurantia agglutinin (AAL) for Trichostrongylus sp; Psophocarpus tetragonolobus‑II (PTLII) for Nematodirus sp; Lotus tetragonolobus lectin (LTL) for Cooperia sp and wheat germ agglutinin (WGA) for Chabertia ovina. For WGA, LCA and LTL, weak binding was also observed to H. contortus and Teladorsagia sp, Trichostrongylus sp and C. ovina eggs, respectively. Nematode eggs in two faecal samples were identically identified by both lectin binding and PCR, except for PCR identification of the eggs of Nematodirus sp, as these did not lyse. Lectins bound best to H. contortus eggs extracted from fresh faecal samples or after storage at room temperature or 4 °C for up to 24 h, but eggs stored at -20 °C or -80 °C did not bind PNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The impact of global climate change on the spread of parasitic nematodes

    PubMed

    Okulewicz, Anna

    Climate changes may influence the frequency, intensity and geographical distribution of parasites, directly affecting their dispersive stages in the environment (eggs, larvae) and, indirectly, the larvae living mainly in invertebrate intermediate hosts. In biologically diverse nematodes climate warming contributes to the increase in the range of distribution, colonization of new hosts and modification of their development cycles. This is particularly acute in the Arctic and pertains, for instance, to nematodes Ostertagia gruehneri and Setaria tundra parasitizing reindeer Rangifer tarandus and Umingmakstrongylus pallikuukensis in musk oxen (Ovibos moschatus). Increase in range expansion of mosquitoes Culicidae caused that nematodes of the genus Dirofilaria, especially D. repens, have been listed in autochthonous invasions even in the northern and eastern European countries. In addition, extended range of occurrence is also shown by Ancylostoma braziliense – a parasite of carnivores in the tropical and subtropical countries. In recent years over 20 cases of autochthonous creeping eruption (CE) caused by cutanea larva migrans (CLM) A. braziliense were detected in people in southern Europe (Italy, Spain, France, Germany).

  4. New plant-parasitic nematode from the mostly mycophagous genus Bursaphelenchus discovered inside figs in Japan.

    PubMed

    Kanzaki, Natsumi; Tanaka, Ryusei; Giblin-Davis, Robin M; Davies, Kerrie A

    2014-01-01

    A new nematode species, Bursaphelenchus sycophilus n. sp. is described. The species was found in syconia of a fig species, Ficus variegata during a field survey of fig-associated nematodes in Japan. Because it has a well-developed stylet and pharyngeal glands, the species is considered an obligate plant parasite, and is easily distinguished from all other fungal-feeding species in the genus based upon these characters. Although B. sycophilus n. sp. shares an important typological character, male spicule possessing a strongly recurved condylus, with the "B. eremus group" and the "B. leoni group" of the genus, it was inferred to be monophyletic with the "B. fungivorus group". The uniquely shaped stylet and well-developed pharyngeal glands is reminiscent of the fig-floret parasitic but paraphyletic assemblage of "Schistonchus". Thus, these morphological characters appear to be an extreme example of convergent evolution in the nematode family, Aphelenchoididae, inside figs. Other characters shared by the new species and its close relatives, i.e., lack of ventral P1 male genital papilla, female vulval flap, and papilla-shaped P4 genital papillae in males, corroborate the molecular phylogenetic inference. The unique biological character of obligate plant parasitism and highly derived appearance of the ingestive organs of Bursaphelenchus sycophilus n. sp. expands our knowledge of the potential morphological, physiological and developmental plasticity of the genus Bursaphelenchus.

  5. Distribution and Prevalence of Parasitic Nematodes of Cowpea (Vigna unguiculata) in Burkina Faso

    PubMed Central

    Sawadogo, A.; Thio, B.; Kiemde, S.; Drabo, I.; Dabire, C.; Ouedraogo, J.; Mullens, T. R.; Ehlers, J. D.

    2009-01-01

    A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus. PMID:22661784

  6. Distribution and Prevalence of Parasitic Nematodes of Cowpea (Vigna unguiculata) in Burkina Faso.

    PubMed

    Sawadogo, A; Thio, B; Kiemde, S; Drabo, I; Dabire, C; Ouedraogo, J; Mullens, T R; Ehlers, J D; Roberts, P A

    2009-06-01

    A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus.

  7. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    PubMed

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer.

    PubMed

    Body, Guillaume; Ferté, Hubert; Gaillard, Jean-Michel; Delorme, Daniel; Klein, François; Gilot-Fromont, Emmanuelle

    2011-11-01

    The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

  9. A phylogenetic test of the Red Queen Hypothesis: outcrossing and parasitism in the Nematode phylum.

    PubMed

    Gibson, Amanda Kyle; Fuentes, Jesualdo Arturo

    2015-02-01

    Sexual outcrossing is costly relative to selfing and asexuality, yet it is ubiquitous in nature, a paradox that has long puzzled evolutionary biologists. The Red Queen Hypothesis argues that outcrossing is maintained by antagonistic interactions between host and parasites. Most tests of this hypothesis focus on the maintenance of outcrossing in hosts. The Red Queen makes an additional prediction that parasitic taxa are more likely to be outcrossing than their free-living relatives. We test this prediction in the diverse Nematode phylum using phylogenetic comparative methods to evaluate trait correlations. In support of the Red Queen, we demonstrate a significant correlation between parasitism and outcrossing in this clade. We find that this correlation is driven by animal parasites, for which outcrossing is significantly enriched relative to both free-living and plant parasitic taxa. Finally, we test hypotheses for the evolutionary history underlying the correlation of outcrossing and animal parasitism. Our results demonstrate that selfing and asexuality are significantly less likely to arise on parasitic lineages than on free-living ones. The findings of this study are consistent with the Red Queen Hypothesis. Moreover, they suggest that the maintenance of genetic variation is an important factor in the persistence of parasitic lineages.

  10. A phylogenetic test of the Red Queen Hypothesis: Outcrossing and parasitism in the Nematode phylum

    PubMed Central

    Gibson, Amanda Kyle; Fuentes, Jesualdo Arturo

    2017-01-01

    Sexual outcrossing is costly relative to selfing and asexuality, yet it is ubiquitous in nature, a paradox that has long puzzled evolutionary biologists. The Red Queen Hypothesis argues that outcrossing is maintained by antagonistic interactions between host and parasites. Most tests of this hypothesis focus on the maintenance of outcrossing in hosts. The Red Queen makes an additional prediction that parasitic taxa are more likely to be outcrossing than their free-living relatives. We test this prediction in the diverse Nematode phylum using phylogenetic comparative methods to evaluate trait correlations. In support of the Red Queen, we demonstrate a significant correlation between parasitism and outcrossing in this clade. We find that this correlation is driven by animal parasites, for which outcrossing is significantly enriched relative to both free-living and plant parasitic taxa. Finally, we test hypotheses for the evolutionary history underlying the correlation of outcrossing and animal parasitism. Our results demonstrate that selfing and asexuality are significantly less likely to arise on parasitic lineages than on free-living ones. The findings of this study are consistent with the Red Queen Hypothesis. Moreover, they suggest that the maintenance of genetic variation is an important factor in the persistence of parasitic lineages. PMID:25403727

  11. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans

    PubMed Central

    Desjardins, Christopher A.; Cerqueira, Gustavo C.; Goldberg, Jonathan M.; Hotopp, Julie C. Dunning; Haas, Brian J.; Zucker, Jeremy; Ribeiro, Jose’ M.C.; Saif, Sakina; Levin, Joshua Z.; Fan, Lin; Zeng, Qiandong; Russ, Carsten; Wortman, Jennifer R.; Fink, Doran L.; Birren, Bruce W.

    2014-01-01

    Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, Loa loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4 Mb genome of Loa loa, and the genome of the related filarial parasite Wuchereria bancrofti, and predict 14,907 Loa loa genes based on microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to several other nematode genomes, we demonstrate synteny among filariae but not with non-parasitic nematodes. The Loa loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for humans. Despite lacking Wolbachia, Loa loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role played by Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and non-parasitic nematodes. PMID:23525074

  12. [Main evolution lines of plant parasitic nematodes of the order Aphelenchida siddiqi, 1980].

    PubMed

    Ryss, A Iu

    2007-01-01

    Phylogenic models for each aphelenchid family and phylogeny of the order Aphelenchida as a whole were developed on the base of detailed comparative morphological and bionomical analysis of the order. Bionomical and morphological characters having a phylogenetic significance were selected. Classification proposed by Hunt, 1993 was used as the starting-point of the study. Life cycles and their evolution in Aphelenchida were analyzed on the base of phylogenetic trees. It is concluded, that aphelenchid ancestors combined mycophagy, plant parasitic, and partly predaceous feeding. Relations of the primitive Aphelenchida with their symbionts developed from the spots of the fungal organic matter decomposition in the "nema- tode-fungi" associations, followed by a transition to the temporary endoparasitic habit omitting ectoparasitism. With a complication of the nematodes' life cycles, the insect vector (detritophagous or pollinator) transformed into the real insect host of the parasitic nematode in the 2-host life cycle (with the plant and insect hosts) or in the obligate 1-host entomoparasitic life cycle of the aphelenchid nematodes. Specialization of the aphelenchid life cycles to insect vectors followed two main ways. In the first way, the resistant to unfavorable environmental conditions nematode juveniles, known already for the primitive aphelenchids transformed into dispersal juveniles, and later into parasitic juveniles. In the second evolution line the dispersal function were laid on inseminated but non-gravid (not egg-producing) females. Both above-mentioned trends of parasitic specialization were arisen independently in different phylogenetic lines of the Aphelenchida. In each line of the parasitic development in different nematode families, the highly specialized ectoparasites, as well as endoparasites on insects, were formed. In the evolution of life cycle of parasitic nematodes, a tendency to decrease the body size took place. The function of dispersion shifted

  13. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community

    PubMed Central

    Su, Lanxi; Ruan, Yunze; Yang, Xiujuan; Wang, Kang; Li, Rong; Shen, Qirong

    2015-01-01

    Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method. Results showed that a mixture (LAB) of lime (L) and ammonium bicarbonate (AB) in suitable additive amounts (0.857 g kg−1 of L and 0.428 g kg−1 of AB) showed stronger nematicidal ability than did the use of AB alone or the use of ammonium hydroxide (AH) and calcium cyanamide (CC) with an equal nitrogen amount. The nematode community was altered by the different fumigants, and LAB showed an excellent plant-parasitic nematicidal ability, especially for Meloidogyne and Rotylenchulus, as revealed by morphology and feeding-habit based classification, and for Meloidogyne, as revealed by the PCR-DGGE method. Fungivores and omnivore-predators were more sensitive to the direct effects of the chemicals than bacterivores. This study explored a novel fumigation agent for controlling plant-parasitic nematodes based on LAB and provides a potential strategy to ensure the worldwide development of the banana industry. PMID:26621630

  14. Chip Technologies for Screening Chemical and Biological Agents Against Plant-Parasitic Nematodes.

    PubMed

    Beeman, Augustine Q; Njus, Zach L; Pandey, Santosh; Tylka, Gregory L

    2016-12-01

    Plant-parasitic nematodes cause substantial damage to agricultural crops worldwide. Long-term management of these pests requires novel strategies to reduce infection of host plants. Disruption of nematode chemotaxis to root systems has been proposed as a potential management approach, and novel assays are needed to test the chemotactic behavior of nematodes against a wide range of synthetic chemicals and root exudates. Two microfluidic chips were developed that measure the attraction or repulsion of nematodes to chemicals ("chemical chip") and young plant roots ("root chip"). The chip designs allowed for chemical concentration gradients to be maintained up to 24 h, the nematodes to remain physically separate from the chemical reservoirs, and for images of nematode populations to be captured using either a microscope or a flatbed scanner. In the experiments using the chemical chips, seven ionic solutions were tested on second-stage juveniles (J2s) of Meloidogyne incognita and Heterodera glycines. Results were consistent with previous reports of repellency of M. incognita to a majority of the ionic solutions, including NH4NO3, KNO3, KCl, MgCl2, and CaCl2. H. glycines was found to be attracted to both NH4NO3 and KNO3, which has not been reported previously. A software program was written to aid in monitoring the location of nematodes at regular time intervals using the root chip. In experiments with the root chip, H. glycines J2s were attracted to roots of 3-day-old, susceptible (cultivar Williams 82) soybean seedlings, and attraction of H. glycines to susceptible soybean was similar across the length of the root. Attraction to resistant (cultivar Jack) soybean seedlings relative to the water only control was inconsistent across runs, and H. glycines J2s were not preferentially attracted to the roots of resistant or susceptible cultivars when both were placed on opposite sides of the same root chip. The chips developed allow for direct tests of plant-parasitic

  15. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects.

    PubMed

    Tian, Baoyu; Yang, Jinkui; Zhang, Ke-Qin

    2007-08-01

    As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses.

  16. Plant-parasitic Nematode Communities and Their Associations with Soil Factors in Organically Farmed Fields in Minnesota

    PubMed Central

    Chen, S. Y.; Sheaffer, C. C.; Wyse, D. L.; Nickel, P.; Kandel, H.

    2012-01-01

    A survey was conducted to determine the assemblage and abundance of plant-parasitic nematodes and their associations with soil factors in organically farmed fields in Minnesota. A total of 31 soil samples were collected from southeast (SE), 26 samples from southwest (SW), 28 from west-central (WC), and 23 from northwest (NW) Minnesota. The assemblage and abundance of plant-parasitic nematodes varied among the four regions. The soybean cyst nematode, Heterodera glycines, the most destructive pathogen of soybean, was detected in 45.2, 88.5, 10.7, and 0% of organically farmed fields with relative prominence (RP) values of 10.3, 26.5, 0.6, and 0 in the SE, SW, WC, and NW regions, respectively. Across the four regions, other common genera of plant-parasitic nematodes were Helicotylenchus (42.6, RP value, same below), Pratylenchus (26.9), Tylenchorhynchus and related genera (9.4), Xiphinema (5.6), and Paratylenchus (5.3). Aphelenchoides, Meloidogyne, Hoplolaimus, Mesocriconema, and Trichodorus were also detected at low frequencies and/or low population densities. The similarity index of plant-parasitic nematodes between two regions ranged from 0.44 to 0.71 and the similarity increased with decreasing distance between regions. The densities of most plant-parasitic nematodes did not correlate with measured soil factors (organic matter, pH, texture). However, the densities of Pratylenchus correlated negatively with % sand, and Xiphinema was correlated negatively with soil pH. PMID:23482641

  17. Plant-parasitic nematodes: towards understanding molecular players in stress responses.

    PubMed

    Gillet, François-Xavier; Bournaud, Caroline; Antonino de Souza Júnior, Jose Dijair; Grossi-de-Sa, Maria Fatima

    2017-03-01

    Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.

  18. Plant-parasitic nematodes: towards understanding molecular players in stress responses

    PubMed Central

    Bournaud, Caroline; Antonino de Souza Júnior, Jose Dijair

    2017-01-01

    Background Plant–parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant–nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. Scope Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1, which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. Conclusion DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches. PMID:28087659

  19. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle

    PubMed Central

    Robertson, A. P.; Buxton, S. K.; Martin, R. J.

    2013-01-01

    Lymphatic filariasis is a debilitating disease caused by clade III parasites like Brugia malayi and Wuchereria bancrofti. Current recommended treatment regimen for this disease relies on albendazole, ivermectin and diethylcarbamazine, none of which targets the nicotinic acetylcholine receptors in these parasitic nematodes. Our aim therefore has been to develop adult B. malayi for electrophysiological recordings to aid in characterizing the ion channels in this parasite as anthelmintic target sites. In that regard, we recently demonstrated the amenability of adult B. malayi to patch-clamp recordings and presented results on the single-channel properties of nAChR in this nematode. We have built on this by recording whole-cell nAChR currents from adult B. malayi muscle. Acetylcholine, levamisole, pyrantel, bephenium and tribendimidine activated the receptors on B. malayi muscle, producing robust currents ranging from > 200 pA to ~1.5 nA. Levamisole completely inhibited motility of the adult B. malayi within 10 min and after 60 min, motility had recovered back to control values. PMID:23562945

  20. Characterization of the Pratylenchus penetrans transcriptome including data mining of putative nematode genes involved in plant parasitism

    USDA-ARS?s Scientific Manuscript database

    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...

  1. Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

    PubMed

    Porazinska, Dorota L; Morgan, Matthew J; Gaspar, John M; Court, Leon N; Hardy, Christopher M; Hodda, Mike

    2014-07-01

    Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis

  2. Tv-RIO1 - an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus.

    PubMed

    Hu, Min; Laronde-Leblanc, Nicole; Sternberg, Paul W; Gasser, Robin B

    2008-09-22

    Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  3. Assessment of anthelmintic resistance in nematode parasites of sheep and goats owned by smallholder farmers in eastern Ethiopia.

    PubMed

    Sissay, M M; Asefa, A; Uggla, A; Waller, P J

    2006-04-01

    The anthelmintic resistance status was investigated of nematode parasites of sheep and goats owned by smallholder farmers in communities that received breeding stock from a source where a high level of anthelmintic resistance has been reported. The investigation used the faecal egg count reduction technique, whereby suitable animals within each of eight separate communities were pooled to achieve the numbers required to conduct separate tests for both sheep and goats. Anthelmintics tested were albendazole (ABZ), tetramisole (TET), a combination (ABZ + TET) and ivermectin (IVM), at the manufacturers' recommended dose rates. Results showed that there was no evidence of anthelmintic resistance in nematode parasites of either sheep an goats in any community. This indicates that dilution of resistant parasites imported with introduced breeding stock, and the low selection pressure imposed by the smallholder farmers themselves, has prevented anthelmintic resistance from emerging in nematode parasites of small ruminants in these communities.

  4. Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis.

    PubMed

    Haegeman, Annelies; Vanholme, Bartel; Gheysen, Godelieve

    2009-05-01

    Plant-parasitic nematodes have developed an arsenal of enzymes to degrade the rigid plant cell wall. In this article, we report the presence of a putative endoxylanase in the migratory endoparasitic nematode Radopholus similis. This enzyme is thought to facilitate the migration of the nematode, as it breaks down xylan, the major component of hemicellulose. The corresponding gene (Rs-xyl1) was cloned and the sequence revealed three small introns. Interestingly, the position of all three introns was conserved in a putative endoxylanase from Meloidogyne hapla, and the position of one intron was conserved in two endoxylanases from Meloidogyne incognita, which suggests a common ancestral gene. The spatial and temporal expression of the Rs-xyl1 gene was examined by in situ hybridization and semi-quantitative reverse transcriptase-polymerase chain reaction. The putative protein consists of a signal peptide, a catalytic domain and a carbohydrate-binding module (CBM). The catalytic domain showed similarity to both glycosyl hydrolase family 5 (GHF5) and GHF30 enzymes. Using Hidden Markov Model profiles and phylogenetic analysis, we were able to show that Rs-XYL1 and its closest homologues are not members of GHF5, as suggested previously, but rather form a subclass within GHF30. Silencing the putative endoxylanase by double-stranded RNA targeting of the CBM region resulted in an average decrease in infection of 60%, indicating that the gene is important for the nematode to complete its life cycle.

  5. Distribution of Selected Plant Parasitic Nematodes Relative to Vegetation and Edaphic Factors

    PubMed Central

    Norton, D. C.; Hoffmann, J. K.

    1974-01-01

    The occurrence of selected plant-parasitic nematodes in the hemlock-hardwood-white pine, boreal forest, tundra, and oak-hickory associations in some northern states was compared. Helicotylenchus platyurus and Xiphinema americanum were not found in the boreal forest and tundra, and occurred infrequently in the hemlock-hardwood-white pine areas. They were found frequently, however, in the oak-hickory forest of Iowa. It is questioned that vegetational differences among the areas account directly for the major differences in nematode occurrence. Presence and absence of nematodes and their numbers in the oak-hickory association were clustered by similarity coefficients by sites and correlated with soil pH, percentage organic matter, percentage sand-silt-clay, and field capacity. Of the soil factors measured, pH gave the strongest correlations with nematode numbers. Xiphinema chambersi was found only in soils with a pH between 4.5 and 6.4 while the largest numbers of H. platyurus, H. pseudorobustus, and X. americanum occurred in soil above pH 6.0. PMID:19319372

  6. Effects of soil solarization on nematodes parasitic to chickpea and pigeonpea.

    PubMed

    Sharma, S B; Nene, Y L

    1990-10-01

    Solarization by covering the soil with transparent polyethylene sheets during the summer months (April, May, June) in 1984 and 1985 significantly (P = 0.01) reduced the population densities of nematodes (Heterodera cajani, Rotylenchulus reniformis, Helicotylenchus retusus, Pratylenchus sp., and Tylenchorhynchus sp.) parasitic to chickpea and pigeonpea. Population density reductions of 93% of Heterodera cajani eggs and juveniles, 99% ofHelicotylenchus retusus, 98% of Pratylenchus sp., and 100% of R. reniformis were achieved by solarization in 1984. Irrigation before covering soil with polyethylene improved (P = 0.01) the effects of solarization in reducing the population densities of Heterodera cajani. Similar trends in population density reductions were observed in 1985, but the solarization effects were not the same. Nematode population reductions in the 1984-85 season were evident until near crop harvest, but in the 1985-86 season the effects on nematode populations were not as great and did not last until harvest. Factors such as rains during the solarization, duration of solarization, and sunshine hours may have influenced the efficacy of solarization. Solarization for two seasons reduced the population densities each year about the same as single season solarization, and residual effects of solarization on nematode populations did not last for more than a crop season.

  7. Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae)

    USDA-ARS?s Scientific Manuscript database

    Nematodes are roundworms in the phylum Nematoda. Although most are free-living, some nematodes are parasites of plants, humans, or livestock. Entomopathogenic nematodes in the families Steinernematidae & Heterorhabditidae only parasitize insects. These nematodes are used as environmentally friend...

  8. Curative and Residual Efficacy of Injection Applications of Avermectins for Control of Plant-parasitic Nematodes on Banana

    PubMed Central

    Jansson, Richard K.; Rabatin, Susan

    1997-01-01

    Studies were conducted to determine the curative and residual efficacy of avermectins at controlling plant-parasitic nematodes when injected into the pseudostem of banana, Musa acuminata cv. Cavendish. In addition, we determined the lowest concentration of avermectins that provided satisfactory efficacy as protectants when injected into banana pseudostems. Experiments were conducted with a root-knot nematode, Meleidogyne javanica, and the burrowing nematode, Radopholus similis. Injections (1 ml) of ≥ 100 μg a.i./plant of abamectin into pseudostems were effective at controlling M. javanica and R. similis, and were comparable to control achieved with a conventional chemical nemaficide, fenamiphos, in a protectant assay. Abamecfin injections of 250 and 500 μg a.i./plant were effective at reducing nematode infections 28 to 56 days after inoculation. Abamectin was more effective than ivermectin at controlling nematodes after nematode populations were established in banana roots. Injections of between 100 and 1,000 μg a.i./plant were effective at controlling nematodes for at least 56 days after treatment. These studies confirmed earlier results and demonstrated that abamecfin has potential for controlling nematode parasites on banana when injected into the pseudostem. PMID:19274271

  9. Curative and Residual Efficacy of Injection Applications of Avermectins for Control of Plant-parasitic Nematodes on Banana.

    PubMed

    Jansson, R K; Rabatin, S

    1997-12-01

    Studies were conducted to determine the curative and residual efficacy of avermectins at controlling plant-parasitic nematodes when injected into the pseudostem of banana, Musa acuminata cv. Cavendish. In addition, we determined the lowest concentration of avermectins that provided satisfactory efficacy as protectants when injected into banana pseudostems. Experiments were conducted with a root-knot nematode, Meleidogyne javanica, and the burrowing nematode, Radopholus similis. Injections (1 ml) of >/= 100 mug a.i./plant of abamectin into pseudostems were effective at controlling M. javanica and R. similis, and were comparable to control achieved with a conventional chemical nemaficide, fenamiphos, in a protectant assay. Abamecfin injections of 250 and 500 mug a.i./plant were effective at reducing nematode infections 28 to 56 days after inoculation. Abamectin was more effective than ivermectin at controlling nematodes after nematode populations were established in banana roots. Injections of between 100 and 1,000 mug a.i./plant were effective at controlling nematodes for at least 56 days after treatment. These studies confirmed earlier results and demonstrated that abamecfin has potential for controlling nematode parasites on banana when injected into the pseudostem.

  10. Four transthyretin-like genes of the migratory plant-parasitic nematode Radopholus similis: members of an extensive nematode-specific family.

    PubMed

    Jacob, Joachim; Vanholme, Bartel; Haegeman, Annelies; Gheysen, Godelieve

    2007-11-01

    Screening 1154 ESTs from the plant-parasitic nematode Radopholus similis resulted in seven tags coding for proteins holding a transthyretin-like domain (PF01060). The seven ESTs corresponded to four different genes which were cloned from a cDNA library (accession numbers AM691117, AM691118, AM691119, AM691120). Transthyretin-like genes belong to a large family, different from the transthyretin and the transthyretin-related genes with whom they share some sequence similarity at the protein level. This similarity has caused an inconsistent use of different names and abbreviations in the past. To avoid further confusion, we introduce a standardized nomenclature for this gene family, and chose to name this barely characterized gene family ttl (as for transthyretin-like). Further examination of the identified genes, named Rs-ttl-1 to -4, showed that they are expressed in both juveniles and adults, but not in young embryos. Whole mount in situ hybridization revealed a distinct spatial expression pattern for two of the genes: Rs-ttl-1 is expressed in the tissues surrounding the vulva, whereas Rs-ttl-2 is expressed in the ventral nerve cord. The deduced protein sequences contain a putative signal peptide for secretion, pointing to an extracellular function of the mature proteins. Database screens showed that the ttl family is restricted to nematodes. Moreover, a HMMER search revealed that ESTs derived from ttl genes are more abundant in parasitic nematode libraries, with a bias towards the parasitic stages. Despite their abundance in nematodes, including the extensively studied model organism Caenorhabditis elegans, the function of TTL proteins remains obscure. Our data suggest a role in the nervous system. Even without insight into their biological function, the nematode-specific nature of this gene family makes it a promising target for nematicides or RNAi mediated control strategies against parasitic nematodes.

  11. Competition between the Plant-parasitic Nematodes Pratylenchus neglectus and Meloidogyne chitwoodi

    PubMed Central

    Umesh, Kodira C.; Ferris, Howard; Bayer, David E.

    1994-01-01

    In experiments on competition between Pratylenchus neglectus and Meloidogyne chitwoodi in barley, the species that parasitized the roots first inhibited penetration by the latter species. Prior presence of P. neglectus impeded the development of M. chitwoodi. Pratylenchus neglectus reduced egg production, final population levels, and reproductive index of M. chitwoodi. The reduction was linearly related to initial population densities of P. neglectus. Initial population densities of M. chitwoodi had no effect on final population levels of P. neglectus. Carbon assimilation by barley plants was reduced when either nematode species was present alone, but not when both were present together. Both nematode species assimilated lower amounts of carbon when present together than when present alone. A split-root experiment demonstrated that translocatable chemicals were not involved in the competition between the two species. PMID:19279894

  12. Nutrition-parasite interactions in goats: is immunoregulation involved in the control of gastrointestinal nematodes?

    PubMed

    Hoste, H; Torres-Acosta, J F J; Aguilar-Caballero, A J

    2008-02-01

    Compared to sheep, goats seem to develop a low immune response against the parasitic nematodes of the gastrointestinal tract. Nevertheless, some variability in the host response has been observed either at the individual level or depending on internal (genetic) or external (physiological status, nutrition) factors suggesting the possibility to exploit and manipulate this response. There is good evidence from field studies to suggest that a better plane of nutrition might contribute to improve goat resilience. However, the effects on immunoregulation and host resistance remain less clear. Due to their peculiarities in feeding behaviour ('intermediate browser'), goats represent a valuable model to explore the relationships between the three possible strategies to control nematode infection through nutrition: (i) by increasing the immune response; (ii) by avoiding the infective larvae; and (iii) by selecting plants with direct anthelmintic properties (self medication).

  13. Reevaluation of efficacy against nematode parasites and pharmacokinetics of topical eprinomectin in cattle.

    PubMed

    Rehbein, Steffen; Visser, Martin; Kellermann, Michael; Letendre, Laura

    2012-09-01

    A study was conducted to confirm the efficacy of topical eprinomectin against nematodes and to evaluate the pharmacokinetics in cattle prevented from having physical contact with other cattle and from self-grooming. Sixteen male Brown Swiss calves were infected with larvae of recently isolated nematode parasites. Inoculation was scheduled so that the nematodes were expected to be adults at the time of treatment. Animals were blocked based on pretreatment body weight and randomly allocated to the untreated control group or the group treated with EPRINEX® Pour-On (Merial; 0.5 mg eprinomectin per kilogram body weight). Plasma samples were collected prior to and between 1 and 21 days following treatment and analysed for eprinomectin (B1a component) concentrations. For parasite recovery, identification and counting, animals were humanely euthanized 21 days after treatment. Calves treated with eprinomectin had significantly (p < 0.05) fewer (>99 % reduction) adult Dictyocaulus viviparus, Bunostomum phlebotomum, Cooperia oncophora, Cooperia surnabada, Cooperia punctata, Nematodirus helvetianus, Oesophagostomum radiatum, Ostertagia ostertagi, Ostertagia lyrata, and Trichostrongylus axei and inhibited fourth-stage Nematodirus and Ostertagia larvae than the controls. The main pharmacokinetic parameters of eprinomectin B1a were: AUC(inf), 124 ± 24 day ng/mL; T (1/2), 5.2 ± 0.9 days; and C (max), 9.7 ± 2.2 ng/mL. Individual maximal concentrations were observed 3-7 days after treatment. This study confirmed the continued high level of efficacy of topically administered eprinomectin against a wide range of recently isolated nematodes. In addition, this study demonstrates that oral ingestion is not required to achieve adequate exposure for efficacy following topical administration of eprinomectin.

  14. Nematodes (Mermithidae) parasitizing grasshoppers (Orthoptera: Acrididae) in the Pampean region, Argentina.

    PubMed

    Rusconi, J M; Camino, N B; Achinelly, M F

    2016-07-04

    This work provides the results of a survey of entomonematodes parasites of grasshoppers in grasslands of the Pampean Region, Argentina. Nymphs of Staurorhectus longicornis Giglio-Tos, Laplatacris dispar Rhen, 1939, Dichroplus elongatus Giglio-Tos, 1894 and Metaleptea brevicornis (L.) (Orthoptera: Acrididae) were collected. Mermithidae was the only family registered with seven species: Agamermis decaudata Cobb, Steiner and Christie, 1923, Amphimermis bonaerensis Miralles and Camino, 1983, Amphimermis dichroplusi Camino and Lange, 1997, Amphimermis ronderosi Camino and Lange, 1997, Hexamermis coclhearius Stock and Camino, 1992, Hexamermis ovistriata Stock and Camino, 1992, and Longimermis acridophila Camino and Stock, 1989. The values of parasitism ranged between 1-12%, and intensity not overcome the number of 5.0 nematodes per larva. The nematodes observed showed specificity, not registering the same species of parasite in more than one host species. The Pampean region constituted an area with high diversity of mermithids where new species could be consider as bioregulator agents of this troublesome insect pests in agricultural areas of Argentina.

  15. Growth of the Sirex-parasitic nematode Deladenus siricidicola on the white rot fungus Amylostereum.

    PubMed

    Caetano, Isis A L; Morris, E Erin; Hajek, Ann E

    2016-02-01

    The Kamona strain of the nematode Deladenus siricidicola has been extensively used as a biological control agent against invasive Sirex noctilio woodwasps in the Southern Hemisphere, where it sterilizes female hosts. In North America, a non-sterilizing (NS) strain of D. siricidicola, thought to have been introduced with S. noctilio, is commonly found parasitizing this invasive woodwasp. Species of Deladenus that parasitize Sirex have a parasitic form, as well as a mycophagous form. The mycophagous form feeds on Sirex fungal symbionts in the genus Amylostereum. The goal of this study was to compare reproduction of NS and Kamona D. siricidicola when feeding on four isolates of Amylostereum areolatum (three introduced and one native in North America) and one native strain of Amylostereum chailletii isolated from Sirex nigricornis. Mycophagous forms of the two D. siricidicola strains displayed relatively similar production of offspring when feeding on most of the A. areolatum found associated with S. noctilio in this continent, except for strain BD on which NS produced more offspring than the biological control strain Kamona. Growth of both nematodes was greater on the introduced versus the native A. areolatum isolates.

  16. [Nematode parasites of rodents in Malaysia. II. Trichostrongyloidea].

    PubMed

    Ow Yang, C K; Durette-Desset, M C; Ohbayashi, M

    1983-01-01

    Many trichostrongyloid species parasitizing rodents in Malaysia were described in 1967 in a thesis that was never published. Some of these species have since been redescribed sometimes with, sometimes without reference to the thesis. The remaining species are redescribed using information given in the thesis and certain additional morphological data (in particular, the synlophe) taken from study of the paratypes. The species are reclassified according to criteria established in the most recent classification. The following genera are proposed: Brevistriatinae: - Macrostrongylus n. gen. characterized by a caudal bursa of Calypsostrongylus type and absence of synlophe. Nippostrongylinae: - Malaistrongylus n. gen. characterized by a synlophe of Heligmonoides type but with a larger number of ridges and by the fusion of rays 4 and 5 in the caudal bursa. - Rattus strongylus n. gen. characterized by small, subequal dorsal left ridges and a total number of ridges less than 20. - Sabanema n. gen. characterized by small subequal dorsal left ridges and a total number of ridges greater than 30. The species under consideration are the following: Hepatojarakus malayae Yeh, 1955; Pithecostrongylus bicapitatus n. sp. (= P. bicapitatus Ow Yang, 1967, in litt); Macrostrongylus ratti n. gen., n. sp. (= Macrostrongylus ratti Ow Yang, 1967, in litt.); Calypsostrongylus malayensis Durette-Desset, 1976 (= Brevistriata malayensis Ow Yang, 1967, in litt); Fissicauda callosciuri (Supperer et Kutzer, 1964); Fissicauda brevispicula n. sp. (= Brevistriata brevispicula Ow Yang, 1967, in litt.); Nippostrongylus brasiliensis (Travassos, 1914); Orientostrongylus tenorai Durette-Desset, 1970 (= Longistriata selangora Ow Yang, 1967, in litt.); O. krishnansamyi Durette-Desset et Lim-Boo-Liat, 1974 (= Longistriata malaccae Ow Yang, 1967, in litt.); Heligmonoides bulbosus n. sp. (= Heligmonina (Heligmonoides) bulbosa Ow Yang, 1967, in litt.); Heligmonoides lanceolatus n. sp. (= Heligmonina

  17. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects

    PubMed Central

    Wondafrash, Mesfin; Van Dam, Nicole M.; Tytgat, Tom O. G.

    2013-01-01

    Insects and nematodes are the most diverse and abundant groups of multicellular animals feeding on plants on either side of the soil–air interface. Several herbivore-induced responses are systemic, and hence can influence the preference and performance of organisms in other plant organs. Recent studies show that plants mediate interactions between belowground plant parasitic nematodes (PPNs) and aboveground herbivorous insects. Based on the knowledge of plant responses to pathogens, we review the emerging insights on plant systemic responses against root-feeding nematodes and shoot-feeding insects. We discuss the potential mechanisms of plant-mediated indirect interactions between both groups of organisms and point to gaps in our knowledge. Root-feeding nematodes can positively or negatively affect shoot herbivorous insects, and vice versa. The outcomes of the interactions between these spatially separated herbivore communities appear to be influenced by the feeding strategy of the nematodes and the insects, as well as by host plant susceptibility to both herbivores. The potential mechanisms for these interactions include systemic induced plant defense, interference with the translocation and dynamics of locally induced secondary metabolites, and reallocation of plant nutritional reserves. During evolution, PPNs as well as herbivorous insects have acquired effectors that modify plant defense responses and resource allocation patterns to their advantage. However, it is also known that plants under herbivore attack change the allocation of their resources, e.g., for compensatory growth responses, which may affect the performance of other organisms feeding on the plant. Studying the chemical and molecular basis of these interactions will reveal the molecular mechanisms that are involved. Moreover, it will lead to a better understanding of the ecological relevance of aboveground–belowground interactions, as well as support the development of sustainable pest

  18. Prevalence of common gastrointestinal nematode parasites in scavenging pigs of different ages and sexes in eastern centre province, Burkina Faso.

    PubMed

    Tamboura, H H; Banga-Mboko, H; Maes, D; Youssao, I; Traore, A; Bayala, B; Dembele, M A

    2006-03-01

    The range and infestation intensities of gastrointestinal parasitic nematode species depend on the type of swine production system. The present study focused mainly on nematodes of veterinary importance in scavenging pigs in Burkina Faso, and aimed at determining the prevalence of gastro-intestinal nematode parasites by means of faecal egg per gram (EPG) counts. Between November 2001 and October 2002, faecal samples from 383 pigs of different sexes and ages (< 5 months, 5-12 months and > 12 months) were collected from the rectum and examined for gastrointestinal nematodes parasites using the Mc Master method. Of the 383 pigs examined, 91% were infected by one or more parasites. Ascaris suum (40%; 100-1 400 EPG) was the most prevalent parasite followed by Strongyloides ransomi (21%; 100-4200 EPG), Oesophagostomum spp. (18%; 100-1000 EPG), Hyostrongylus rubidus (11%; 100-1 800 EPG), Globocephalus spp. (10%; 100-400 EPG) and Trichuris suis (1 %; 100-200 EPG). The prevalence was significantly higher in female pigs (n = 239) than in males. In addition, females excreted significantly (P < 0.05) more eggs in their faeces than males, except in the case of Globocephalus spp. The age of the animal had no effect on the prevalence of A. suum whereas there were significant differences in age categories concerning S. ransomi, H. rubidus, Oesophagostumum spp. and Globocephalus spp. Unexpectedly, the high prevalence of these common parasites was not accompanied by elevated EPG values, which suggests the existence of moderate infestations. The present work indicates that the common nematode infestations in pigs do not necessarily need a systematic herd anthelmintic treatment, as only a small number of worms is required to induce immunity. A further study is needed to formulate appropriate and cost-effective strategies for the control of gastro-intestinal nematode parasites in pigs in Burkina Faso.

  19. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective.

    PubMed

    Roeber, Florian; Jex, Aaron R; Gasser, Robin B

    2013-05-27

    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases.

  20. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective

    PubMed Central

    2013-01-01

    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases. PMID:23711194

  1. Design and evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of plant parasitic and fungivorous nematode communities.

    PubMed

    Kushida, Atsuhiko

    2013-01-01

    A PCR-DGGE primer pair, Tyl2F-Tyl4R, specific to plant parasitic and fungivorous nematodes was designed based on the 18S rRNA gene. The results of community analysis using the primers showed that they are specific to the order Tylenchida. This primer pair detected species belonging to Tylenchida with high sensitivity and high resolution. The number of detected species of plant parasitic and fungivorous nematodes and their band intensity were much improved compared with PCR-DGGE analysis using the SSU18A-SSU9R primer, which is commonly used for nematode community analysis. It was confirmed that using a group-specific primer was effective for nematode community analysis with PCR-DGGE.

  2. No evidence for behavioural adaptations to nematode parasitism by the fly Drosophila putrida.

    PubMed

    Debban, C L; Dyer, K A

    2013-08-01

    Behavioural adaptations of hosts to their parasites form an important component of the evolutionary dynamics of host-parasite interactions. As mushroom-feeding Drosophila can tolerate deadly mycotoxins, but their Howardula nematode parasites cannot, we asked how consuming the potent mycotoxin α-amanitin has affected this host-parasite interaction. We used the fly D. putrida and its parasite H. aoronymphium, which is both highly virulent and at high prevalence in some populations, and investigated whether adult flies utilize food with toxin to prevent infection in the next generation or consume the toxin to reduce the virulence of an already established infection. First, we found that uninfected females did not prefer to eat or lay their eggs on toxic food, indicating that selection has not acted on the flies to alter their behaviour towards α-amanitin to prevent their offspring from becoming infected by Howardula. However, we cannot rule out that flies use an alternate cue that is associated with toxin presence in the wild. Second, we found that infected females did not prefer to eat food with α-amanitin and that consuming α-amanitin did not cure or reduce the virulence of the parasite in adults that were already infected. In sum, our results indicate there are no direct effects of eating α-amanitin on this host-parasite interaction, and we suggest that toxin tolerance is more likely maintained by selection due to competition for resources than as a mechanism to avoid parasite infection or to reduce the virulence of infection.

  3. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq

    PubMed Central

    Voronin, Denis; Ding, Tao; Twaddle, Alan; Unnasch, Thomas R.; Lustigman, Sara; Ghedin, Elodie

    2017-01-01

    Background Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies. PMID:28358880

  4. In planta processing and glycosylation of a nematode CLE effector and its interaction with a CLV2-like receptor to promote parasitism

    USDA-ARS?s Scientific Manuscript database

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ESR (CLE)-like proteins have been identified in several cyst nematodes including the potato cyst nematode (PCN); however, th...

  5. Intestinal Transcriptomes of Nematodes: Comparison of the Parasites Ascaris suum and Haemonchus contortus with the Free-living Caenorhabditis elegans

    PubMed Central

    Yin, Yong; Martin, John; Abubucker, Sahar; Scott, Alan L.; McCarter, James P.; Wilson, Richard K.; Jasmer, Douglas P.; Mitreva, Makedonka

    2008-01-01

    Background The nematode intestine is a major organ responsible for nutrient digestion and absorption; it is also involved in many other processes, such as reproduction, innate immunity, stress responses, and aging. The importance of the intestine as a target for the control of parasitic nematodes has been demonstrated. However, the lack of detailed knowledge on the molecular and cellular functions of the intestine and the level of its conservation across nematodes has impeded breakthroughs in this application. Methods and Findings As part of an extensive effort to investigate various transcribed genomes from Ascaris suum and Haemonchus contortus, we generated a large collection of intestinal sequences from parasitic nematodes by identifying 3,121 A. suum and 1,755 H. contortus genes expressed in the adult intestine through the generation of expressed sequence tags. Cross-species comparisons to the intestine of the free-living C. elegans revealed substantial diversification in the adult intestinal transcriptomes among these species, suggesting lineage- or species-specific adaptations during nematode evolution. In contrast, significant conservation of the intestinal gene repertories was also evident, despite the evolutionary distance of ∼350 million years separating them. A group of 241 intestinal protein families (IntFam-241), each containing members from all three species, was identified based on sequence similarities. These conserved proteins accounted for ∼20% of the sampled intestinal transcriptomes from the three nematodes and are proposed to represent conserved core functions in the nematode intestine. Functional characterizations of the IntFam-241 suggested important roles in molecular functions such as protein kinases and proteases, and biological pathways of carbohydrate metabolism, energy metabolism, and translation. Conservation in the core protein families was further explored by extrapolating observable RNA interference phenotypes in C. elegans to

  6. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes.

    PubMed

    Sultana, Tahera; Kim, Jiyeon; Lee, Sang-Hwa; Han, Hyerim; Kim, Sanghee; Min, Gi-Sik; Nadler, Steven A; Park, Joogn-Ki

    2013-01-18

    The nematode infraorder Tylenchomorpha (Class Chromadorea) includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea) includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea) and Pratylenchus vulnus (Tylenchoidea). The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8) encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most closely related to Tylenchomorpha (Tylenchoidea

  7. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes

    PubMed Central

    2013-01-01

    Background The nematode infraorder Tylenchomorpha (Class Chromadorea) includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea) includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea) and Pratylenchus vulnus (Tylenchoidea). Results The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8) encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most closely related to

  8. Biogeography of Parasitic Nematode Communities in the Galápagos Giant Tortoise: Implications for Conservation Management

    PubMed Central

    Fournié, Guillaume; Goodman, Simon J.; Cruz, Marilyn; Cedeño, Virna; Vélez, Alberto; Patiño, Leandro; Millins, Caroline; Gibbons, Lynda M.; Fox, Mark T.; Cunningham, Andrew A.

    2015-01-01

    The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host. PMID:26332126

  9. Biogeography of Parasitic Nematode Communities in the Galápagos Giant Tortoise: Implications for Conservation Management.

    PubMed

    Fournié, Guillaume; Goodman, Simon J; Cruz, Marilyn; Cedeño, Virna; Vélez, Alberto; Patiño, Leandro; Millins, Caroline; Gibbons, Lynda M; Fox, Mark T; Cunningham, Andrew A

    2015-01-01

    The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host.

  10. Nematode parasites of some reptiles (Sauria: Testudines: Ophidia) from the northern and Western Cape Provinces, South Africa.

    PubMed

    McAllister, Chris T; Bursey, Charles R; Freed, Paul S

    2010-10-01

    One hundred and seven reptiles (11 families, 32 species) from the Northern and Western Cape Provinces of South Africa were examined for helminths. Twenty-three (22%) individual reptiles were found to harbor at least 1 species of nematode; 3 (7%) reptiles harbored multiple infections of 2 nematode species. Eight species within 5 families of Nematoda were found in the reptiles surveyed including 1 atractid, 1 diaphanocephalid, 1 heterakid, 3 pharyngodonids, and 2 physalopterans. Ten new host records are reported. A summary of the nematode parasites identified from South African reptiles is provided.

  11. Robust in vitro assay system for quantitative analysis of parasitic root-knot nematode infestation using Lotus japonicus.

    PubMed

    Amin, Arshana N N; Hayashi, Shuhei; Bartlem, Derek G

    2014-08-01

    Root-knot nematodes are sedentary endoparasites that induce permanent infestation sites inside the roots of a broad range of crop plants. The development of effective control strategies require understanding the root-knot nematode parasitic process, however, the key molecular determinants for host manipulation during infestation remain elusive. One limiting factor has been the lack of a standardized conventional method for quantitative measurement of host parasitism by root-knot nematodes, particularly one that enables efficient downstream analyses and is free from other biological sources of variability. We report here a robust, highly reproducible system for quantitative analysis of all stages of root-knot nematode infestation using the legume Lotus japonicus as the plant host. This system provides a high quality nematode inoculum that maintains consistency in juvenile age and viability even between independently prepared populations. An optimized root transformation protocol was also developed for L. japonicus to facilitate downstream molecular studies in conjunction with the quantitative assay. Hairy root transformation efficiencies up to 91% were achieved. Root-knot nematodes formed egg masses at the root surface of both intact plants and transgenic hairy root cultures within eight weeks, confirming the assay conditions support an efficient completion of the infestation cycle. The in vitro assay system described here is compatible with other plant hosts and will benefit agricultural biotechnology research as it now enables specific high-throughput screening of nematode resistance traits together with subsequent mechanistic elucidation of the causative factors.

  12. Effect of moisture on efficiency of microwaves to control plant--parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2011-01-01

    Laboratory studies were conducted to evaluate effect of microwave irradiation of sandy loam soil on thermal energy absorption and control of plant-parasitic nematodes when air dry soil layers were placed on top of less moist, moist, and wet soil layers. The soil was packed in 12 cm high and 10 cm dia columns to a bulk density of 1.4 g/cm3. Moisture contents of air dry, less moist, moist, and wet soils were 0.75, 4.50, 6.00, and 10.30%, respectively, on dry mass basis. The top air dry soil was 4.0 cm thick and the bottom layer was 8.0 cm thick. Temperature measurements and thermal radiation absorption data were monitored in both soil layers and showed that the use of a top dry soil both increased depth of penetration of microwave radiation and it provided insulation for better absorption of thermal energy in the lower layer of soil. An exposure of 65 seconds resulted in soil temperatures high enough to cause significant decrease in nematode population in soil infested with Rotylenchulus reniformis nematodes. No such effect was observed in combination where dry soil layer was placed over dry soil at the bottom. These results are helpful in sterilizing soil used for greenhouses and nurseries.

  13. Rates of development in male and female Wood Frogs and patterns of parasitism by lung nematodes.

    PubMed

    Dare, O K; Forbes, M R

    2008-03-01

    Researchers are becoming interested in testing whether investment in growth and/or development trades off against investment in parasite defence. We tested this idea by examining relations between development of Wood Frogs (Rana sylvatica) and susceptibility to lung nematodes (Rhabdias ranae). Male and female frogs reared in outdoor mesocosms were the same length and mass at metamorphosis. However, males metamorphosed sooner than females. Lung nematodes were no more likely to penetrate male versus female metamorphs following controlled exposures, but males had higher intensities of adult female worms and the largest worms per host were, on average, of larger size in male metamorphs. Males that took longer to metamorphose carried higher numbers of worms in their lungs than males that metamorphosed early. In comparison, females that developed faster harboured more worms in their lungs than females that took longer to reach metamorphosis. Our results suggest that variation in susceptibility to lung nematodes is influenced by host sex and possibly also by sex-specific relations with developmental rate. Further, male hosts might prove to be a more important source of infective stages of worms than female hosts.

  14. Occurrence of plant parasitic nematodes (Tylenchina) in sugar beet fields in Fars province, Iran.

    PubMed

    Ebrahimi, N; Kheiri, A; Pakniat, M

    2004-01-01

    On a survey of plant parasitic nematode fauna, belonging to the suborder Tylenchina, about 110 soil and root samples were collected from different sugar beet field in fars Province in Iran. The samples were washed and the nematodes were extracted by Centrifugal Flotation Technique according to the modified method by De Grisse, 1969. They were fixed and transferred to glycerine, then permanent slides were mounted. Morphological and morphometrical characters of collected species were carefully studied and the characters were compared with the original descriptions and differences were discussed. In this study 18 species belonging to 11 different genera of subordes Tylenchina were identified as follows. Boleodorus thylactus, Ditylenchus destructor, D. dipsaci Geocenamus brevidens, G. rugosus, Helicotylenchus digonicus, H. pseudorobustus, H. vulgaris, Heterodera filipjevi, H. schachtii, Pratylenchus neglectus, P. thornei, Psilenchus hilarulus, P. hilarus, Stictylus mucronatus, Tylenchorhynchus ventrosinatus, Tylenchus davainei and Zygotylenchus guevarai. The species of the genera Ditylenchus, Heterodera, Pratylenchus and Psilenchus were comparatively more distributed than the others. This investigation revealed that sugar beet cyst nematode (Heterodera schachti) was found already in most sugar beet fields in this Province. Fathabod, Marvdasht and Tasuj-kwar were the most infested areas. Cysts collected from 100 gr. Of soil samples were 120 to 121 in number and the eggs and second stage larvae in each gr. of soil were 104.1 to 104.5 respectively.

  15. The Potential of Thiarubrine C as a Nematicidal Agent against Plant- parasitic Nematodes

    PubMed Central

    Sánchez deViala, Susanna; Brodie, Bill B.; Rodriguez, Eloy; Gibson, Donna M.

    1998-01-01

    Thiarubrine C, a polyacetylenic 1,2-dithiin isolated from the roots of Rudbeckia hirta (Asteraceae), exhibited strong nematicidal activity in in vitro and growth chamber assays. Thiarubrine C was toxic, in the absence of light, to the plant-parasitic nematodes Meloidogyne incognita and Pratylenchus penetrans at LC₅₀s of 12.4 ppm and 23.5 ppm, respectively. A minimum exposure time between 12 and 24 hours was the critical period for nematode mortality due to thiarubrine C. Although thiarubrine C was not totally dependent on light for toxicity, activity was enhanced in the presence of light, especially with the microbivorous nematode, Teratorhabditis dentifera. Upon exposure of M. incognita juveniles to 20 ppm thiarubrine C for 1 hour, infection of tomato plants was greatly reduced compared to untreated checks. Thiarubrine C was also effective in reducing plant infection when mixed with soil 24 hours prior to or at planting, unlike other related compounds such as δ-terthienyl. PMID:19274210

  16. Sample Optimization for Five Plant-Parasitic Nematodes in an Alfalfa Field

    PubMed Central

    Goodell, P. B.; Ferris, H.

    1981-01-01

    A data base representing nematode counts and soil weight from 1,936 individual soil cores taken from a 7-ha alfalfa field was used to investigate sample optimization for five plant-parasitic nematodes: Meloidogyne arenaria, Pratylenchus minyus, Merlinius brevidens, Helicotylenchus digonicus, and Paratrichodorus minor. Sample plans were evaluated by the accuracy and reliability of their estimation of the population and by the cost of collecting, processing, and counting the samples. Interactive FORTRAN programs were constructed to simulate four collecting patterns: random; division of the field into square sub-units (cells); and division of the field into rectangular sub-traits (strips) running in two directions. Depending on the pattern, sample numbers varied from 1 to 25 with each sample representing from 1 to 50 cores. Each pattern, sample, and core combination was replicated 50 times. Strip stratification north/south was the most optimal sampling pattern in this field because it isolated a streak of fine-textured soil. The mathematical optimmn was not found because of data range limitations. When practical economic time constraints (5 hr to collect, process, and count nematode samples) are placed on the optimization process, all species estimates deviate no more than 25 % from the true mean. If accuracy constraints are placed on the process (no more than 15% deviation from true field mean), all species except Merlinius required less than 5 hr to complete the sample process. PMID:19300768

  17. Chemoattraction and host preference of the gastropod parasitic nematode Phasmarhabditis hermaphrodita.

    PubMed

    Rae, Robbie G; Robertson, Jamie F; Wilson, Michael J

    2009-06-01

    Phasmarhabditis hermaphrodita is a parasitic nematode that has been formulated into a biological control agent for slugs. The nematode responds to slug-associated cues such as mucus and feces in order to locate potential hosts. We assessed the olfactory response of P. hermaphrodita to mucus from 9 species of slugs, 2 snails, and 2 earthworms (non-hosts). We then examined the susceptibility of each invertebrate test species to high doses of P. hermaphrodita to determine whether susceptible species are more attractive than non-susceptible species to the nematode. We also studied the numbers of infective juveniles produced in each test species, as well as infectivity. Phasmarhabditis hermaphrodita showed strong attraction to mucus from the non-susceptible slug Arion subfuscus, the snail Helix aspersa, and the highly susceptible slug Deroceras reticulatum. In reproduction experiments, P. hermaphrodita produced the highest number of infective juveniles in D. reticulatum and Deroceras panormitanum; however, there was no significant relationship with attraction. Phasmarhabditis hermaphrodita caused significant mortality in 5-11 gastropod species tested (and showed no chemotactic preference for susceptible or non-susceptible species). There was a significant positive relationship between numbers of P. hermaphrodita penetrating into non-susceptible species and chemotaxis response. These necromenic species represent ideal hosts for P. hermaphrodita in terms of providing protection against abiotic and biotic factors as well as transport to many diverse areas.

  18. Potential of microwaves to control plant-parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2008-01-01

    Microwave radiation of 2450 MHz frequency was used to irradiate sandy loam soil placed in 12 cm high and 10 cm dia columns as a function of exposure times of 30, 45, 60, and 120 s. This was done to evaluate the effect of radiation on the highest soil temperature attained and subsequent temperature patterns in relation to time. Soil columns were packed to a field bulk density of approximately 1.4 g/cm3, and treatments consisted of moist soil, dry soil, and layers of moist and dry soil of varying thicknesses. Moisture contents of moist and dry soil were 10% and 2%, respectively, on a dry mass basis. An exposure time of 45 seconds was the most efficient in yielding soil temperatures high enough to kill plant-parasitic nematodes. Irradiation of soil infested with Rotylenchulus reniform nematodes for 45 seconds resulted in a 99% extermination of the organisms in all treatments. However, radiation proved to be most effective in nematode control with 6.0 cm dry soil placed over 6.0 cm moist soil.

  19. RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways

    PubMed Central

    Stoltzfus, Jonathan D.; Minot, Samuel; Berriman, Matthew; Nolan, Thomas J.; Lok, James B.

    2012-01-01

    The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species

  20. Control of gastrointestinal parasitism with nematodes in dairy goats by treating the host category at risk.

    PubMed

    Hoste, Hervé; Chartier, Christophe; Le Frileux, Yves

    2002-01-01

    Infections of the gastrointestinal tract with parasitic nematodes remain one of the main limiting factors in grazing dairy goats. The usual mode of control of these parasitic diseases has up to now been based on the repeated use of anthelmintics. However, the prevalence rates of anthelmintic resistances, in particular to benzimidazoles, are now particularly high in the French dairy goat production. This situation makes it mandatory to reconsider the usual mode of control of these nematodes and to look for short term, alternative solutions which combine the control of gastrointestinal infections and management of anthelmintic resistances. One of the possible options is to leave a part of the flock without treatment during the grazing season in order to maintain alleles of susceptibility to anthelmintics within the worm populations. Previous epidemiological observations identifying the categories of host populations at risk are presented which provide the rationale for targeted applications of treatments. The results of assays on experimental flocks and from farm surveys examining the advantages and drawbacks of selective treatments are presented. The value of these results in combination with other alternative solutions of control are discussed in order to use minimum treatments with maximum benefits.

  1. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  2. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism.

    PubMed

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita.

  3. Efficiency of feeding Duddingtonia flagrans chlamydospores to grazing ewes on reducing availability of parasitic nematode larvae on pasture.

    PubMed

    Fontenot, M E; Miller, J E; Peña, M T; Larsen, M; Gillespie, A

    2003-12-30

    Gastrointestinal nematodes are of concern in sheep production because of production and economic losses. Control of these nematodes is primarily based on the use of anthelmintic treatment and pasture management. The almost exclusive use of anthelmintic treatment has resulted in development of anthelmintic resistance which has led to the need for other parasite control options to be explored. The blood sucking abomasal parasitic nematode Haemonchus contortus causes severe losses in small ruminant production in the warm, humid sub-tropic and tropics. This study evaluated the effectiveness of a nematode trapping fungus, Duddingtonia flagrans, in reducing availability of parasitic nematode larvae, specifically H. contortus, on pasture. Chlamydospores of D. flagrans were mixed with a supplement feed which was fed daily to a group of crossbred ewes for the duration of the summer grazing season. A control group was fed the same supplement feed without chlamydospores. A reduction in infective larval numbers was observed in fecal cultures of the fungus-fed group. Herbage samples from the pasture grazed by the fungus-fed group also showed a reduction in infective larvae. There were no significant (P > 0.05) differences in overall fecal egg count, packed cell volume or animal weight between fungus-fed and control groups. Tracer animals were placed on the study pastures at the end of the study to assess pasture infectivity. Although tracer animals were only two per group, those that grazed with the fungus-fed group had substantially reduced (96.8%) nematode burdens as compared to those from the control group pasture. Results demonstrated that the fungus did have activity against nematode larvae in the feces which reduced pasture infectivity and subsequently nematode burdens in tracer animals. This study showed that D. flagrans, fed daily to grazing ewes, was an effective biological control agent in reducing a predominantly H. contortus larval population on pasture.

  4. Use of hot formaldehyde fixative in processing plant-parasitic nematodes for electron microscopy.

    PubMed

    Zeikus, J A; Aldrich, H C

    1975-07-01

    A preparative technique is formulated for processing plant-parasitic nematodes of the order Tylenchida for electron microscopy. A population of Dolichodorus heterocephalus is used as test objects. One and a half grams of paraformaldehyde are dissolved in 25 ml of water at 60 C. Five drops of 1 N sodium hydroxide are added to clear the solution, which is then cooled to room temperature. Two and a half milliliters of 25% glutaraldehyde are added with 23 ml 0.1 M phosphate buffer, pH 7.3, and 0.2 M with respect to sucrose. The final solution contains 3% formaldehyde and 1% glutaraldehyde and is pH 7.2. It is heated to 70 C, poured over specimens, and allowed to cool to 4 C in 2 hr. The nematodes are then incised in a fixative containing 2% glutaraldehyde and 5% dimethyl sulfoxide at 4 C for 16-24 hr. Five milliliters of 25% glutaraldehyde and 2.5 ml of dimethyl sulfoxide are combined in 17.5 ml of water. Twenty-five milliliters of phosphate buffer (supplemented as above) are added. The final pH is 7.2. The glutaraldehyde, aided by dimethyl sulfoxide, uniformly and permanently fixes the nematode tissues. The specimens are embedded in agar. Following a 30-min buffer wash (4 C) they are postfixed in buffered 2% osmium tetroxide for 2 hr at room temperature, washed, and dehydrated through an ethanol series and two acetone baths. Dehydration includes a 2-hr stop in 75% ethanol containing 2% uranyl acetate. After embedding in Spurr's epoxy resin, specimens are sectioned and poststained in 0.5% aqueous acetate for 6 min and saturated aqueous lead citrate 3--4 min. This technique reduces killing time to less than 2 sec, straightens specimens for easier orientation, and eliminates the typically high internal pressure of nematodes which causes displacement of internal structures observed with other fixation techniques.

  5. An expressed, endogenous Nodavirus-like element captured by a retrotransposon in the genome of the plant parasitic nematode Bursaphelenchus xylophilus

    PubMed Central

    Cotton, James A.; Steinbiss, Sascha; Yokoi, Toshiro; Tsai, Isheng J.; Kikuchi, Taisei

    2016-01-01

    Recently, nematode viruses infecting Caenorhabditis elegans have been reported from the family Nodaviridae, the first nematode viruses described. Here, we report the observation of a novel endogenous viral element (EVE) in the genome of Bursaphelenchus xylophilus, a plant parasitic nematode unrelated to other nematodes from which viruses have been characterised. This element derives from a different clade of nodaviruses to the previously reported nematode viruses. This represents the first endogenous nodavirus sequence, the first nematode endogenous viral element, and significantly extends our knowledge of the potential diversity of the Nodaviridae. A search for endogenous elements related to the Nodaviridae did not reveal any elements in other available nematode genomes. Further surveillance for endogenous viral elements is warranted as our knowledge of nematode genome diversity, and in particular of free-living nematodes, expands. PMID:28004836

  6. Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: a review.

    PubMed

    Moravec, Frantisek

    2007-11-01

    About 300 species belonging to four superfamilies (Gnathostomatoidea, Habronematoidea, Physalopteroidea and Thelazioidea) of the nematode suborder Spirurina are known as the adult parasites of freshwater, brackish-water and marine fishes. They are placed in four families, of which the Gnathostomatidae, including Echinocephalus with a few species and the monotypic Metaleptus, are parasites of elasmobranchs, whereas Ancyracanthus contains one species in teleosts; the Physalopteridae is represented in fish by four genera, Bulbocephalus, Heliconema, Paraleptus and Proleptus, each with several species in both elasmobranchs and teleosts. The majority of fish spirurines belongs to the Rhabdochonidae, which includes 10 genera (Beaninema, Fellicola, Hepatinema, Heptochona, Johnstonmawsonia, Megachona, Pancreatonema, Prosungulonema, Rhabdochona and Vasorhabdochona) of species parasitizing mainly teleosts, rarely elasmobranchs, and the Cystidicolidae with about 23 genera (Ascarophis, Caballeronema, Capillospirura, Comephoronema, Crenatobronema, Cristitectus, Ctenascarophis, Cyclozone, Cystidicola, Cystidicoloides, Johnstonmawsonoides, Metabronema, Moravecnema, Neoascarophis, Parascarophis, Prospinitectus, Pseudascarophis, Pseudoproleptus, Salvelinema, Similascarophis, Spinitectoides, Spinitectus, Sterliadochona), with many species parasitic in teleosts only. Because of difficulties in studying fish spirurines, associated with their morphological and biological peculiarities, most species of these parasites are poorly known. It is apparent that their present classification system does not reflect phylogenetic relationships and a taxonomic revision of this nematode group, based on detailed morphological (including SEM and TEM), life history and molecular studies of individual species, is quite necessary. In Cystidicolidae, several genera have been based on details in the cephalic structures visible only with the aid of SEM, but it will be evident whether or not these tiny

  7. Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities

    PubMed Central

    Avramenko, Russell W.; Redman, Elizabeth M.; Lewis, Roy; Yazwinski, Thomas A.; Wasmuth, James D.; Gilleard, John S.

    2015-01-01

    Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal “nemabiome”. The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the ‘nemabiome’ have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions

  8. Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus.

    PubMed

    Portillo, Virginia; Jagannathan, Suchitra; Wolstenholme, Adrian J

    2003-07-21

    Glutamate-gated chloride channels (GluCl) are related to gamma-aminobutyric acid-A (GABA(A)) receptors and are the target sites for the avermectin/milbemycin (A/M) anthelmintics, drugs that cause paralysis of the somatic and pharyngeal muscles in nematodes. We have previously identified four GluCl subunits, HcGluClalpha, HcGluClbeta, HcGluClalpha3A, and HcGluClalpha3B from the sheep parasite Haemonchus contortus. We raised specific antisera against all of these subunits and used them in immunofluorescence experiments on adult parasites. All of the subunits were expressed in the motor nervous system, especially motor neuron commissures. Double-immunostaining experiments suggested that HcGluClalpha and HcGluClbeta were expressed on the same commissures; these were also stained with an anti-GABA antibody, suggesting that they may be inhibitory motor neurons. The HcGluClbeta subunit was also detected in lateral and sublateral nerve cords. The HcGluClalpha3A and -B subunits, products of an alternatively spliced gene, were expressed in different neurons. We found HcGluClalphaA in a pair of sensory, possibly amphid, neurons in the head, in addition to the motor neuron commissures. HcGluClalpha3B was detected in three cell bodies, probably of pharyngeal neurons, and to ventral and lateral cords. These results indicate that the GluCl are widely distributed in the H. contortus nervous system and suggest that they have critical roles controlling locomotion, pharyngeal function, and possibly sensory processing in parasitic nematodes. They also provide an explanation for the observed effects of the A/M anthelmintics. Copyright 2003 Wiley-Liss, Inc.

  9. Rapid method for recovery of strongylid third stage larvae of parasitic nematodes from small soil samples.

    PubMed

    Knapp-Lawitzke, Friederike; von Samson-Himmelstjerna, Georg; Demeler, Janina

    2014-07-01

    Livestock with access to pasture is generally exposed to infections with parasitic nematode species by uptake of infective third stage larvae (L3) with the grass. L3 can survive on pasture and particularly also in the soil up to several months and sometimes even longer, depending on temperature and humidity. As indicators for health and productivity of grazing animals it is important to determine the intensity and species spectrum of parasitic nematode larvae by analysing grass as well as soil samples. A rapid method for the recovery of L3 using a centrifugal-flotation technique from soil samples of 50-500 g was developed. The method takes advantage of the low specific weight of larvae to separate them from equal sized soil and debris particles by centrifuging them in a saturated sugar solution. A stack of differently sized sieves is used to achieve elimination of larger particles, dust and sugar from the sample to enable easy counting of larvae. Independent of the number of larvae used for inoculation of the samples a mean recovery of 75.3% was obtained. The recovery rates obtained ranged between 60.8% and 88.0% which demonstrates a considerably lower variability compared to earlier approaches and therefore a more precise estimation of the actual numbers of parasite larvae in soil is achieved. Further advantages over already developed methods are the use of easy, affordable and eco-friendly materials, the simplicity of the procedure and a faster processing time with the possibility to examine up to 20 samples per day. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Applications of single-strand conformation polymorphism (SSCP) to taxonomy, diagnosis, population genetics and molecular evolution of parasitic nematodes.

    PubMed

    Gasser, R B; Chilton, N B

    2001-11-22

    The analysis of genetic variation in parasitic nematodes has important implications for studying aspects of taxonomy, diagnosis, population genetics, drug resistance and molecular evolution. This article highlights some applications of PCR-based single-strand conformation polymorphism (SSCP) for the analysis of sequence variation in individual parasites (and their populations) to address some of these areas. It also describes the principles and advantages of SSCP, and provides some examples for future applications in parasitology.

  11. Diversity of parasitic fungi from soybean cyst nematode associated with long-term continuous cropping of soybean

    USDA-ARS?s Scientific Manuscript database

    The soybean cyst nematode (SCN) is a major yield-limiting pest of soybean. In this study, experiments were conducted to examine the parasitic fungi from SCN associated with disease-suppressive and non-suppressive soil fields in Northeast China. Soil samples were collected from three fields under dif...

  12. Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response

    USDA-ARS?s Scientific Manuscript database

    Infection with the parasitic nematode Nippostrongylus brasiliensis induces a potent Th2 response; however little is known about early stages of the innate response that may contribute to protective immunity. To examine early events in this response, chemokine expression in the draining lymph node w...

  13. Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with a chronic low grade inflammation characterized by high level of pro-inflammatory cytokines and mediators implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been shown to modulate immune-based pathol...

  14. Nematotoxicity of drupacine and a Cephalotaxus alkaloid preparation against the plant-parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus

    USDA-ARS?s Scientific Manuscript database

    Species of Cephalotaxus (the plum yews) produce nematotoxic compounds of unknown identity. Consequently, bioassay-guided fractionation was employed to identify the compound(s) in Cephalotaxus fortunei twigs and leaves with activity against plant-parasitic nematodes. A crude alkaloid extract, particu...

  15. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    PubMed Central

    2014-01-01

    Background Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens. PMID:24580726

  16. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot

    PubMed Central

    Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke

    2016-01-01

    The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana. PMID:27910895

  17. A lymphatic dwelling filarioid nematode, Rumenfilaria andersoni (Filarioidea; Splendidofilariinae), is an emerging parasite in Finnish cervids.

    PubMed

    Laaksonen, Sauli; Oksanen, Antti; Hoberg, Eric

    2015-04-16

    Recent studies revealed expansion of filarioid nematodes into northern Finland. In addition to Setaria tundra, an abundant filarioid, Rumenfilaria andersoni, was found inhabiting the lymphatic vessels of reindeer. Our study explores the dynamics of the rapid geographic expansion of R. andersoni, defining prevalence and density of microfilariae among 4 new cervid host species in Finland while developing a context for host-parasite ecology in Fennoscandia and more broadly in the Arctic and boreal regions. Blood samples were evaluated for presence of microfilariae from 1576 semi-domesticated reindeer, 8 captive reindeer, and free-ranging cervids including 105 wild forest reindeer, 862 moose, 114 white tailed deer and 73 roe deer in 2003-2006 (-2010). Additionally, the prepatent period and the efficacy of ivermectin treatment were investigated. Rumenfilaria andersoni was found to be a common and abundant parasite in reindeer (0-90%) and wild forest reindeer (41-100%). Also moose (0-12%), white-tailed deer (15-22%) and roe deer (3%) were revealed as definitive hosts. Ivermectin was not effective against adult parasites. The prepatent period was estimated to be about five months. Rumenfilaria andersoni was identified in 3 endemic cervid species and the introduced white-tailed deer, all constituting previously unrecognized host species in the Palearctic. Among moose, the prevalence and intensity were substantially lower than levels observed among subspecies of reindeer. White-tailed deer had a relatively high prevalence and density of R. andersoni microfilariae (rmf), whereas our limited data for roe deer indicated that the nematode may not have been abundant. Density and prevalence of rmf in moose and white tailed deer suggests the nematode may be adapted to these species, and that these cervids may be among the primary hosts of R. andersoni and reservoirs for transmission in Finland. Our current data suggest that R. andersoni became established in Finland recently

  18. Molecular and Morphological Characterization and Biological Control Capabilities of a Pasteuria ssp. Parasitizing Rotylenchulus reniformis, the Reniform Nematode

    PubMed Central

    Schmidt, Liesbeth M.; Hewlett, Thomas E.; Green, April; Simmons, Lee J.; Kelley, Karen; Doroh, Mark; Stetina, Salliana R.

    2010-01-01

    Rotylenchulus reniformis is one of 10 described species of reniform nematodes and is considered the most economically significant pest within the genus, parasitizing a variety of important agricultural crops. Rotylenchulus reniformis collected from cotton fields in the Southeastern US were observed to have the nematode parasitic bacterium Pasteuria attached to their cuticles. Challenge with a Pasteuria-specific monoclonal antibody in live immuno-fluorescent assay (IFA) confirmed the discovery of Pasteuria infecting R. reniformis. Scanning and transmission electron microscopy were employed to observe endospore ultrastructure and sporogenesis within the host. Pasteuria were observed to infect and complete their life-cycle in juvenile, male and female R. reniformis. Molecular analysis using Pasteuria species-specific and degenerate primers for 16s rRNA and spoII, and subsequent phylogenetic assessment, placed the Pasteuria associated with R. reniformis in a distinct clade within established assemblages for the Pasteuria infecting phytopathogenic nematodes. A global phylogenetic assessment of Pasteuria 16s rDNA using the Neighbor-Joining method resulted in a clear branch with 100% boot-strap support that effectively partitioned the Pasteuria infecting phytopathogenic nematodes from the Pasteuria associated with bacterivorous nematodes. Phylogenetic analysis of the R. reniformis Pasteuria and Pasteuria spp. parasitizing a number of economically important plant parasitic nematodes revealed that Pasteuria with different host specificities are closely related and likely constitute biotypes of the same species. This suggests host preference, and thus effective differentiation and classification are most likely predicated by an influential virulence determinant(s) that has yet to be elucidated. Pasteuria Pr3 endospores produced by in vitro fermentation demonstrated efficacy as a commercial bionematicide to control R. reniformis on cotton in pot tests, when applied as a seed

  19. Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes.

    PubMed

    Rai, Krishan Mohan; Balasubramanian, Vimal Kumar; Welker, Cassie Marie; Pang, Mingxiong; Hii, Mei Mei; Mendu, Venugopal

    2015-08-01

    The plant cell wall serves as a primary barrier against pathogen invasion. The success of a plant pathogen largely depends on its ability to overcome this barrier. During the infection process, plant parasitic nematodes secrete cell wall degrading enzymes (CWDEs) apart from piercing with their stylet, a sharp and hard mouthpart used for successful infection. CWDEs typically consist of cellulases, hemicellulases, and pectinases, which help the nematode to infect and establish the feeding structure or form a cyst. The study of nematode cell wall degrading enzymes not only enhance our understanding of the interaction between nematodes and their host, but also provides information on a novel source of enzymes for their potential use in biomass based biofuel/bioproduct industries. Although there is comprehensive information available on genome wide analysis of CWDEs for bacteria, fungi, termites and plants, but no comprehensive information available for plant pathogenic nematodes. Herein we have performed a genome wide analysis of CWDEs from the genome sequenced phyto pathogenic nematode species and developed a comprehensive publicly available database. In the present study, we have performed a genome wide analysis for the presence of CWDEs from five plant parasitic nematode species with fully sequenced genomes covering three genera viz. Bursaphelenchus, Glorodera and Meloidogyne. Using the Hidden Markov Models (HMM) conserved domain profiles of the respective gene families, we have identified 530 genes encoding CWDEs that are distributed among 24 gene families of glycoside hydrolases (412) and polysaccharide lyases (118). Furthermore, expression profiles of these genes were analyzed across the life cycle of a potato cyst nematode. Most genes were found to have moderate to high expression from early to late infectious stages, while some clusters were invasion stage specific, indicating the role of these enzymes in the nematode's infection and establishment process

  20. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic.

    PubMed

    Kutz, Susan J; Checkley, Sylvia; Verocai, Guilherme G; Dumond, Mathieu; Hoberg, Eric P; Peacock, Rod; Wu, Jessica P; Orsel, Karin; Seegers, Karin; Warren, Amy L; Abrams, Arthur

    2013-11-01

    Climate warming is occurring at an unprecedented rate in the Arctic and is having profound effects on host-parasite interactions, including range expansion. Recently, two species of protostrongylid nematodes have emerged for the first time in muskoxen and caribou on Victoria Island in the western Canadian Arctic Archipelago. Umingmakstrongylus pallikuukensis, the muskox lungworm, was detected for the first time in 2008 in muskoxen at a community hunt on the southwest corner of the island and by 2012, it was found several hundred kilometers east in commercially harvested muskoxen near the town of Ikaluktutiak. In 2010, Varestrongylus sp., a recently discovered lungworm of caribou and muskoxen was found in muskoxen near Ikaluktutiak and has been found annually in this area since then. Whereas invasion of the island by U. pallikuukensis appears to have been mediated by stochastic movement of muskoxen from the mainland to the southwest corner of the island, Varestrongylus has likely been introduced at several times and locations by the seasonal migration of caribou between the island and the mainland. A newly permissive climate, now suitable for completion of the parasite life cycles in a single summer, likely facilitated the initial establishment and now drives range expansion for both parasites.

  1. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta.

    PubMed

    Tzelos, Thomas; Matthews, Jacqueline B; Buck, Amy H; Simbari, Fabio; Frew, David; Inglis, Neil F; McLean, Kevin; Nisbet, Alasdair J; Whitelaw, C Bruce A; Knox, David P; McNeilly, Tom N

    2016-05-15

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Morphology and taxonomic status of two little-known nematode species parasitizing North American fishes.

    PubMed

    Moravec, František; Levron, Céline; de Buron, Isaure

    2011-04-01

    Examination of some freshwater and brackishwater (estuarine) fishes in South Carolina in October 2009 yielded, in addition to other parasites, 2 little-known nematode species identified as Dichelyne fastigatus Chandler, 1935 (Cucullanidae), from the red drum, Sciaenops ocellatus (Linnaeus), from an estuary, and Rhabdochona ovifilamenta Weller, 1938 (Rhabdochonidae), from the shorthead redhorse, Moxostoma macrolepidotum (Lesueur), from Lake Moultrie. Light and scanning electron microscopy (the latter used for the first time for these species) made it possible to describe several important, but previously unreported, taxonomic features in D. fastigatus, such as the location of the excretory pore and deirids, the shape of deirids and a gubernaculum, the shape and size of eggs, the presence of precloacal ventral oblique muscle bands, and 11 pairs of caudal papillae and a pair of phasmids. It distinctly differs from the most similar Dichelyne cotylophora (Ward and Magath, 1917), a parasite of North American freshwater percids, in the number and arrangement of postanal papillae and by a markedly elevated cloacal region. Records of Dichelyne lintoni Barreto, 1922, from S. ocellatus probably concern D. fastigatus. Examination of R. ovifilamenta revealed a high degree of morphologic and biometric variability in this species. Based on our analysis, Rhabdochona laurentiana Lyster, 1940 , Rhabdochona milleri Choquette, 1951, and Rhabdochona catostomi Kayton, Kritsky, and Tobias, 1979, are synonymized with R. ovifilamenta Weller, 1938, typically a parasite of North American catostomids.

  3. Parasite Manipulation of Its Host's Physiological Reaction to Acute Stress: Experimental Results from a Natural Beetle-Nematode System.

    PubMed

    Davis, Andrew K; Vasquez, David; LeFeuvre, Jake; Sims, Stuart; Craft, Meghan; Vizurraga, Anna

    All animals, whether vertebrate or invertebrate, must be capable of reacting to acute stressors, such as escaping from predators, and most do so with a suite of transient physiological changes that temporarily enhance survival. Some of these changes include mobilization of immune cells and increased cardiac output. A small but growing number of studies have begun to show that certain parasites appear capable of modifying such responses. We addressed this topic using a natural host and parasite system, that is, a nematode (Chondronema passali) that parasitizes horned passalus beetles, Odontotaenius disjunctus (family Passalidae), of the eastern United States. With a series of experiments, we sought to determine whether this parasite affects (1) the immune reaction to stress, (2) the output of stress-induced alarm calls, or (3) the increase in heart rate that occurs in response to acute stressors, with the stressors being mechanical or thermal. Results showed that hemocyte density increased after both stressors in nonparasitized beetles but did not increase in parasitized beetles. While mobilization of immune cells would enhance host immunity during stress, this would also be damaging to the nematode, so this scenario appears to benefit the parasite. We found no evidence that the nematode suppresses the overall reaction to stress (or prevents stress from occurring), since parasitized beetles did not differ from nonparasitized ones in alarm call rates or in heart beat frequency after exposure to mechanical stressors. Suppression of the host's normal immune reaction to stressful stimuli could translate to delayed or even reduced wound healing or pathogen resistance during these events. This project is a rare demonstration of parasite manipulation of host immune response to acute stress and should stimulate further investigations into the interactive nature of stress and parasites.

  4. Canine and feline cardiopulmonary parasitic nematodes in Europe: emerging and underestimated

    PubMed Central

    2010-01-01

    Cardiopulmonary nematodes of dogs and cats cause parasitic diseases of central relevance in current veterinary practice. In the recent past the distribution of canine and feline heartworms and lungworms has increased in various geographical areas, including Europe. This is true especially for the metastrongyloids Aelurostrongylus abstrusus, Angiostrongylus vasorum and Crenosoma vulpis, the filarioid Dirofilaria immitis and the trichuroid Eucoleus aerophilus (syn. Capillaria aerophila). The reasons of this emergence are little known but many drivers such as global warming, changes in vector epidemiology and movements in animal populations, may be taken into account. The purpose of this article is to review the knowledge of the most important heartworm and lungworm infections of dogs and cats in Europe. In particular recent advances in epidemiology, clinical and control are described and discussed. PMID:20653938

  5. Genetic resistance to gastrointestinal nematode parasites in Polish long-wool sheep.

    PubMed

    Bouix, J; Krupinski, J; Rzepecki, R; Nowosad, B; Skrzyzala, I; Roborzynski, M; Fudalewicz-Niemczyk, W; Skalska, M; Malczewski, A; Gruner, L

    1998-11-01

    A study was undertaken from 1991 to 1994 on a farm in southern Poland to evaluate the genetic parameters of resistance to gastrointestinal nematodes. The predominant species were Teladorsagia circumcincta and Haemonchus contortus. A total of 32 sires were evaluated, around 15 per year. Faecal egg counts were measured twice during the 4-month grazing season for lambs (total 659 lambs) and three times for their mothers (total 327 ewes). Infection levels were high during the first 2 years and low during the last 2 years. Using an animal model, the heritability of log10(epg+25) increased from 0.20 in August to 0.33 in September for lambs, and from 0.18 in May to 0.25 in September for ewes. The repeatability of ewe faecal egg count between years was 0.25. A genetic correlation of 0.58 was found between faecal egg count in ewes and in 6-7-month-old lambs. A negative genetic correlation (-0.61) was estimated between faecal egg count in September and daily weight gain of lambs from 70 days of age to the end of grazing season (7 months of age). The results confirm the feasibility of genetic selection of sheep for resistance to nematode parasites in an environment where T. circumcincta and H. contortus are the dominant species.

  6. Plant-Parasitic Nematodes Associated with Grapevines, Vitis vinifera, in Oregon Vineyards

    PubMed Central

    Pinkerton, J. N.; Forge, T. A.; Ivors, K. L.; Ingham, R. E.

    1999-01-01

    A survey of vineyards in western Oregon was conducted in 1994 and 1995 to determine the association of plant-parasitic nematodes with vine health. Seventy vineyards in four regions of western Oregon (16 to 21 vineyards per region) were sampled. The regions were the northern, middle, and southern Willamette Valley, and southern Oregon. Vineyards were selected and partitioned into blocks by variety, age of planting, crop history, and soil characteristics. Mesocriconema xenoplax, Xiphinema americanum, Pratylenchus spp., and Paratylenchus spp. were recovered from more than 85% of the vineyards; only 10% of vineyards had detectable populations of Meloidogyne hapla. Mesocriconema xenoplax and X. americanum were found in 20% and 8% of vineyard blocks, respectively, at population densities reported to cause moderate yield loss in California. Mesocriconema xenoplax was found at greatest population densities in vineyards older than 10 years and on former Prunus orchard sites in the northern Willamette Valley. Populations of Mesocriconema xenoplax and X. americanum were associated with both healthy and stunted vines. The long-term impact of M. xenoplax, X. americanum, and other nematodes on Oregon vineyard production has not yet been determined. PMID:19270927

  7. Characterization of a platelet-activating factor acetylhydrolase secreted by the nematode parasite Nippostrongylus brasiliensis.

    PubMed Central

    Grigg, M E; Gounaris, K; Selkirk, M E

    1996-01-01

    Nippostrongylus brasiliensis, a small nematode parasite of the gastrointestinal tract of rodents, secretes an enzyme that cleaves the proinflammatory molecule platelet-activating factor to its inactive lyso-form. The enzyme activity of Ca(2+)-dependent and does not exhibit interfacial activation. It does not require the addition of reducing agents for maximal activity, and is not inhibited by thiol-active reagents. Sensitivity of inhibitors suggests the involvement of serine and histidine residues in the enzyme activity. As described for other platelet-activating factor acetylhydrolases, it cannot cleave, nor is it inhibited by, long-chain diacyl phospholipids that are typical substrates for phospholipases A2. The purified enzyme was resolved by SDS/PAGE as a heterodimer composed of two protein subunits with apparent molecular masses of 38 and 25 kDa. The properties of the nematode enzyme thus differ from those described for the mammalian enzymes, but are more closely related to those of an acetylhydrolase than a phospholipase. PMID:8713083

  8. Management of gastrointestinal nematode parasites on sheep farms in New Zealand.

    PubMed

    Lawrence, K E; Lethwick, D M; Rhodes, A P; Jackson, R; Heuer, C; Pomroy, W E; West, D M; Waghorn, T S; Moffat, J R

    2007-10-01

    To report current farmer opinions and farming practices relating to control of gastrointestinal nematodes and anthelmintic resistance on sheep farms in New Zealand. An interview-based cross-sectional study of grazing management and anthelmintic usage was conducted by veterinarians on 80 randomly selected sheep farms in New Zealand. Useable data were returned by 74/80 (92%) farmers who participated in the study. However, despite contacting 400 farmers the target sample size of 100 farms was not reached. The results indicated that only 31% of farms had previously tested for drench resistance, that effective quarantine-drenching of imported stock was not always carried out, and that farmers were more likely to integrate cattle than ewes into their grazing management of lambs. Furthermore, the number of drenches given to lambs had changed little in 25 years. The use of faecal egg counting by farmers has increased. Dependence on anthelmintics continues to be high on sheep farms in New Zealand. Whilst the number of drench treatments has changed little, there is more widespread use of persistent or long-acting treatments. Farmers need to be encouraged to monitor the resistance status of nematode populations on their farms and use this information to develop strategies aimed at maintaining susceptible alleles within the parasite populations and conserving the efficacy of existing drug families.

  9. Effect of Compost and Maize Cultivars on Plant-parasitic Nematodes

    PubMed Central

    McSorley, R.; Gallaher, R. N.

    1997-01-01

    Effects of yard waste compost and maize (Zea mays) cultivar on population densities of plant-parasitic nematodes were examined in four experiments in north Florida. In one experiment, eight maize cultivars were evaluated; the other three experiments involved split-plot designs with compost treatments as main plots and maize cultivars as subplots. The three compost treatments used in these experiments were: 269 mt/ha of a yard-waste compost applied to the soil surface as a mulch, 269 mt/ha of compost incolporated into the soil, and an unamended control. No interactions between compost treatment and cultivar occurred in any experiment. Effects of compost treatment on Mesocriconema spp., Meloidogyne incognita, and Pratylenchus spp. were inconsistent, whereas significant effects of compost on population densities of Paratrichodorus minor were found on four of six sampling occasions. Cultivar affected final population densities (Pf) of M. incognita. In two tests, Pf of M. incognita on a Florida subtropical experimental hybrid (Howard III) were only 36% and 23% of Pf on the standard tropical hybrid (Pioneer Brand X304C). In an integrated approach to management of nematodes in maize, the effects of compost amendment and culfivar choice acted independently. Apparently, cultivar choice is more important than amendment with yard waste compost for management of M. incognita population levels in a maize rotation crop. PMID:19274277

  10. Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic.

    PubMed

    Nermuť, Jiří; Půža, Vladimír; Mekete, Tesfamariam; Mráček, Zdeněk

    2016-10-31

    Phasmarhabditis bonaquaense n. sp. is described and illustrated from the body of Malacolimax tenellus, from the locality of České Švýcary near the village of Dobrá Voda, the Czech Republic. Females are characterized by a body length of 2349 (1878-2626) µm and a cupola shaped tail with a long hyaline hair-like tail tip. Extremely prominent papilla-like phasmids present. Males 1829 (1414-2121) µm long. Peloderan bursa with nine pairs of rays (papillae), 1/1/1/2/1/3. One non-paired apparent papilla-like structure located near the ventral appendage anterior to the cloaca. Prominent papilla-like phasmids located close to the tail tip. Small subunit (18S), ITS, and D2-D3 expansion segments of the large subunit of ribosomal DNA were used to analyze the phylogenetic relationships of sequenced species in the genus Phasmarhabditis and other closely related species. Phasmarhabditis bonaquaense n. sp. varied from other related nematodes both in morphological characterizations and phylogenetic analysis. The life cycle of the newly described species is not well known but it is probably a facultative, mollusc-parasitic nematode able to survive permanently in the saprobic phase on decaying organic matter.

  11. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism.

    PubMed

    Aranda-Martinez, Almudena; Lenfant, Nicolas; Escudero, Nuria; Zavala-Gonzalez, Ernesto A; Henrissat, Bernard; Lopez-Llorca, Luis V

    2016-11-01

    Pochonia chlamydosporia is a soil fungus with a multitrophic lifestyle combining endophytic and saprophytic behaviors, in addition to a nematophagous activity directed against eggs of root-knot and other plant parasitic nematodes. The carbohydrate-active enzymes encoded by the genome of P. chlamydosporia suggest that the endophytic and saprophytic lifestyles make use of a plant cell wall polysaccharide degradation machinery that can target cellulose, xylan and, to a lesser extent, pectin. This enzymatic machinery is completed by a chitin breakdown system that involves not only chitinases, but also chitin deacetylases and a large number of chitosanases. P. chlamydosporia can degrade and grow on chitin and is particularly efficient on chitosan. The relevance of chitosan breakdown during nematode egg infection is supported by the immunolocalization of chitosan in Meloidogyne javanica eggs infected by P. chlamydosporia and by the fact that the fungus expresses chitosanase and chitin deacetylase genes during egg infection. This suggests that these enzymes are important for the nematophagous activity of the fungus and they are targets for improving the capabilities of P. chlamydosporia as a biocontrol agent in agriculture.

  12. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes

    PubMed Central

    Perfus-Barbeoch, Laetitia; Da Rocha, Martine; Sallet, Erika; Bailly-Bechet, Marc; Castagnone-Sereno, Philippe; Flot, Jean-François; Kozlowski, Djampa K.; Cazareth, Julie; Couloux, Arnaud; Da Silva, Corinne; Guy, Julie; Kim-Jo, Yu-Jin; Rancurel, Corinne; Abad, Pierre; Wincker, Patrick

    2017-01-01

    Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE

  13. Sex-dependent genetic effects on immune responses to a parasitic nematode.

    PubMed

    Hayes, Kelly S; Hager, Reinmar; Grencis, Richard K

    2014-03-14

    Many disease aetiologies have sex specific effects, which have important implications for disease management. It is now becoming increasingly evident that such effects are the result of the differential expression of autosomal genes rather than sex-specific genes. Such sex-specific variation in the response to Trichuris muris, a murine parasitic nematode infection and model for the human parasitic nematode T. trichiura, has been well documented, however, the underlying genetic causes of these differences have been largely neglected. We used the BXD mouse set of recombinant inbred strains to identify sex-specific loci that contribute to immune phenotypes in T. muris infection. Response phenotypes to T. muris infection were found to be highly variable between different lines of BXD mice. A significant QTL on chromosome 5 (TM5) associated with IFN-γ production was found in male mice but not in female mice. This QTL was in the same location as a suggestive QTL for TNF-α and IL-6 production in male mice suggesting a common control of these pro-inflammatory cytokines. A second QTL was identified on chromosome 4 (TM4) affecting worm burden in both male and female cohorts. We have identified several genes as potential candidates for modifying responses to T. muris infection. We have used the largest mammalian genetic model system, the BXD mouse population, to identify candidate genes with sex-specific effects in immune responses to T. muris infection. Some of these genes may be differentially expressed in male and female mice leading to the difference in immune response between the sexes reported in previous studies. Our study further highlights the importance of considering sex as an important factor in investigations of immune response at the genome-wide level, in particular the bias that can be introduced when generalizing results obtained from only one sex or a mixed sex population. Rather, analyses of interaction effects between sex and genotype should be part of

  14. The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides.

    PubMed

    Riga, Ekaterini

    2011-06-01

    Brassica plants once incorporated into soil as green manures have recently been shown to have biofumigant properties and have the potential of controlling plant-parasitic nematodes. In Washington State, plant-parasitic nematodes are successfully managed with synthetic nematicides. However, some of the synthetic nematicides became unavailable recently or their supply is limited leaving growers with few choices to control plant-parasitic nematodes. The objective of this project was to evaluate the effects of Brassica green manures on their own and in combination with reduced rates of synthetic nematicides on plant-parasitic nematodes and free living nematodes. In a greenhouse experiment and field trials in three seasons, Brassica green manures in combination with half the recommended rate of 1,3-dichloropropene (1,3-D, Telone) reduced root knot nematode, Meloidogyne chitwoodi to below detection levels, and reduced lesion nematodes, Pratylenchus penetrans and stubby root nematodes, Paratrichodorus allius, to below economic thresholds. The combination treatments did not affect the beneficial free-living nematode populations and the non-pathogenic Pseudomonas. The total cost of growing and soil-incorporating Brassica crops as green manures in combination with reduced rates of 1,3-D was approximately 35% lower than the present commercial costs for application for the full rate of this fumigant. Integrating conventional management practices with novel techniques fosters sustainability of production systems and can increase economic benefit to producers while reducing chemical input.

  15. A novel approach to identify plant parasitic nematodes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Perera, Modika R; Vanstone, Vivien A; Jones, Michael G K

    2005-01-01

    Plant parasitic nematodes are difficult to identify because different species are morphologically similar, and this makes their control more difficult. The aim of this work was to develop a rapid, simple method to identify plant parasitic nematodes, based on analysis of protein profiles of nematodes generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Two methods have been used: grinding and direct analysis of intact nematodes. Both methods were standardised using the nematode Anguina tritici (wheat seed-gall nematode) as a model. Development of the approach involved optimisation of experimental parameters to generate reproducible diagnostic protein profiles for plant parasitic nematodes. With alpha-cyano-4-hydroxycinnamic acid (CHCA) as the matrix, the most effective solvent extraction was with 90% acetone. With sinapinic acid (SA) as matrix, 90% ethanol was most effective. When intact nematodes were analysed directly by mixing with the matrix solution, 40 min extraction with CHCA matrix solution generated the best protein profiles. The standardised methods were applied to analyse the seed-gall nematodes A. tritici and A. funesta and to the root-knot nematode, Meloidogyne javanica, which infects many horticultural crops. Typical protein profiles and diagnostic peaks were identified for these nematode species and for mixtures of Anguina species. The results provide 'proof-of-concept' that these nematode species can be identified by protein profiling using MALDI-TOFMS. This new approach could be extended to identify other plant and non-plant parasitic nematodes. Copyright 2005 John Wiley & Sons, Ltd

  16. Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner

    PubMed Central

    Schroeder, Jan-Hendrik; McCarthy, David; Szestak, Tadge; Cook, Darren A.; Taylor, Mark J.; Craig, Alister G.; Lawson, Charlotte; Lawrence, Rachel A.

    2017-01-01

    Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf) of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low) flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators. PMID:28481947

  17. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness

    PubMed Central

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R.; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  18. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    PubMed

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.

  19. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: a review.

    PubMed

    Ali, Nadine; Chapuis, Elodie; Tavoillot, Johannes; Mateille, Thierry

    2014-01-01

    The olive tree (Olea europaea ssp. europaea.) is one of the most ancient cultivated trees. It is an emblematic species owing to its ecological, economic and cultural importance, especially in the Mediterranean Basin. Plant-parasitic nematodes are major damaging pests on olive trees, mainly in nurseries. They significantly contribute to economic losses in the top-ten olive-producing countries in the world. However, the damages they induce in orchards and nurseries are specifically documented only in a few countries. This review aims to update knowledge about the olive-nematode pathosystem by: (1) updating the list of plant-parasitic nematodes associated with olive trees; (2) analysing their diversity (taxonomic level, trophic groups, dominance of taxa), which allowed us (i) to assess the richness observed in each country, and (ii) to exhibit and describe the most important taxa able to induce damages on olive trees such as: Meloidogyne, Pratylenchus, Helicotylenchus, Xiphinema, Tylenchulus, Rotylenchulus, Heterodera (distribution especially in the Mediterranean Basin, pathogenicity and reactions of olive trees); (3) describing some management strategies focusing on alternative control methods; (4) suggesting new approaches for controlling plant-parasitic nematodes based on the management of the diversity of their communities, which are structured by several environmental factors such as olive diversity (due to domestication of wild olive in the past, and to breeding now), cropping systems (from traditional to high-density orchards), irrigation, and terroirs.

  20. Incidence and Pathogenicity of Plant-Parasitic Nematodes Associated with Blueberry (Vaccinium spp.) Replant Disease in Georgia and North Carolina

    PubMed Central

    Jagdale, Ganpati B.; Holladay, Ted; Brannen, P. M.; Cline, W. O.; Agudelo, P.; Nyczepir, A. P.; Noe, J. P.

    2013-01-01

    Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum

  1. Incidence and Pathogenicity of Plant-Parasitic Nematodes Associated with Blueberry (Vaccinium spp.) Replant Disease in Georgia and North Carolina.

    PubMed

    Jagdale, Ganpati B; Holladay, Ted; Brannen, P M; Cline, W O; Agudelo, P; Nyczepir, A P; Noe, J P

    2013-06-01

    Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum

  2. Humans from Wuchereria bancrofti endemic area elicit substantial immune response to proteins of the filarial parasite Brugia malayi and its endosymbiont Wolbachia.

    PubMed

    Jha, Ruchi; Gangwar, Mamta; Chahar, Dhanvantri; Setty Balakrishnan, Anand; Negi, Mahendra Pal Singh; Misra-Bhattacharya, Shailja

    2017-01-24

    In the past, immune responses to several Brugia malayi immunodominant antigens have been characterized in filaria-infected populations; however, little is known regarding Wolbachia proteins. We earlier cloned and characterized few B. malayi (trehalose-6-phosphate phosphatase, Bm-TPP and heavy chain myosin, BmAF-Myo) and Wolbachia (translation initiation factor-1, Wol Tl IF-1 and NAD(+)-dependent DNA ligase, wBm-LigA) proteins and investigated the immune responses, which they triggered in animal models. The current study emphasizes on immunological characteristics of these proteins in three major categories of filarial endemic zones: endemic normal (EN, asymptomatic, amicrofilaraemic; putatively immune), microfilariae carriers (MF, asymptomatic but microfilaraemic), and chronic filarial patients (CP, symptomatic and mostly amicrofilaraemic). Immunoblotting and ELISA were carried out to measure IgG and isotype antibodies against these recombinant proteins in various clinical categories. Involvement of serum antibodies in infective larvae killing was assessed by antibody-dependent cellular adhesion and cytotoxicity assay. Cellular immune response was investigated by in vitro proliferation of peripheral blood mononuclear cells (PBMCs) and reactive oxygen species (ROS) generation in these cells after stimulation. Immune responses of EN and CP displayed almost similar level of IgG to Wol Tl IF-1 while other three proteins had higher serum IgG in EN individuals only. Specific IgA, IgG1, IgG3 and IgM to Bm-TPP were high in EN subjects, while BmAF-Myo additionally showed elevated IgG2. Enhanced IgA and IgG3 were detected in both EN and CP individuals in response to Wol Tl IF-1 antigen, but IgG1 and IgM were high only in EN individuals. wBm-LigA and BmAF-Myo exhibited almost similar pattern of antibody responses. PBMC isolated from EN subjects exhibited higher proliferation and ROS generation when stimulated with all three proteins except for Wol Tl IF-1. Overall, these

  3. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes

    PubMed Central

    Manzanilla-López, Rosa H.; Esteves, Ivania; Finetti-Sialer, Mariella M.; Hirsch, Penny R.; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-01-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  4. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato.

    PubMed

    Gal, Tali Z; Aussenberg, Elitsur R; Burdman, Saul; Kapulnik, Yoram; Koltai, Hinanit

    2006-06-01

    A group of plant proteins, expansins, have been identified as wall-loosening factors and as facilitators of cell expansion in vivo. The root knot nematode Meloidogyne javanica establishes a permanent feeding site composed of giant cells surrounded by gall tissue. We used quantitative PCR and in situ localization to demonstrate the induction of a tomato (Lycopersicon esculentum cv. VF36) expansin (LeEXPA5) expression in gall cells adjacent to the nematode feeding cells. To further characterize the biological role of LeEXPA5 we have generated LeEXPA5-antisense transgenic roots. The ability of the nematode to establish a feeding site and complete its life cycle, the average root cell size and the rate of root elongation were determined for the transgenic roots, as well as the level of LeEXPA5 expression in non-infected and nematode-infected roots. Our results demonstrated that a decrease of LeEXPA5 expression reduces the ability of the nematode to complete its life cycle in transgenic roots. We suggest that a plant-originated expansin is necessary for a successful parasitic nematode-plant interaction.

  5. Comparative analysis of macrophage migration inhibitory factors (MIFs) from the parasitic nematode Onchocerca volvulus and the free-living nematode Caenorhabditis elegans.

    PubMed

    Ajonina-Ekoti, Irene; Kurosinski, Marc Andre; Younis, Abuelhassan Elshazly; Ndjonka, Dieudonne; Tanyi, Manchang Kingsley; Achukwi, Mbunkah; Eisenbarth, Albert; Ajonina, Caroline; Lüersen, Kai; Breloer, Minka; Brattig, Norbert W; Liebau, Eva

    2013-09-01

    The macrophage migration inhibitory factors (MIFs) from the filarial parasite Onchocerca volvulus (OvMIF) were compared to the MIFs from the free-living nematode Caenorhabditis elegans (CeMIF) with respect to molecular, biochemical and immunological properties. Except for CeMIF-4, all other MIFs demonstrated tautomerase activity. Surprisingly, OvMIF-1 displayed oxidoreductase activity. The strongest immunostaining for OvMIF-1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis; moderate immunostaining was observed in the uterine wall. The generation of a strong humoral immune response towards OvMIF-1 and reduced reactivity to OvMIF-2 was indicated by high IgG levels in patients infected with O. volvulus and cows infected with the closely related Onchocerca ochengi, both MIFs revealing identical amino acid sequences. Using Litomosoides sigmodontis-infected mice, a laboratory model for filarial infection, MIFs derived from the tissue-dwelling O. volvulus, the rodent gut-dwelling Strongyloides ratti and from free-living C. elegans were recognized, suggesting that L. sigmodontis MIF-specific IgM and IgG1 were produced during L. sigmodontis infection of mice and cross-reacted with all MIF proteins tested. Thus, MIF apparently functions as a target of B cell response during nematode infection, but in the natural Onchocerca-specific human and bovine infection, the induced antibodies can discriminate between MIFs derived from parasitic or free-living nematodes.

  6. The Wolbachia endosymbiont as an anti-filarial nematode target

    PubMed Central

    Taylor, Mark J.; Foster, Jeremy M.

    2010-01-01

    Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship. PMID:20730111

  7. Description of two new nematode species, parasites of the Mississippi paddlefish Polyodon spathula (Acipenseriformes: Polyodontidae).

    PubMed

    Moravec, František; Kuchta, Roman

    2013-08-01

    Two new nematode species are described from the paddlefish Polyodon spathula (Walbaum) (Polyodontidae, Acipenseriformes) from the Mississippi River drainage, United States, based on specimens previously deposited in the U.S. National Parasite Collection. Those specimens were Camallanus polyodontis n. sp. (Camallanidae) from the host (site of infection not given) collected in the Yellowstone River, Montana in 1974 and Syngnathinema chitwoodi n. sp. (Daniconematidae) from the body cavity of fish collected in Mississippi in 1926. Camallanus polyodontis (male and female) is mainly characterized by the presence of a conspicuously large, oval, sclerotized formation at the base of tridents on the buccal capsule, by which it distinctly differs from all congeners. It also differs from other North American species of the genus by additional features such as the body size, the length of spicules, or the length of the female tail. Syngnathinema chitwoodi (a single subgravid female) differs from the only other congener, Syngnathinema californiense Moravec, Spangenberg and Frasca, 2001, a parasite of the circulatory system of the pipefish in California and British Columbia, mainly in that the posterior end of the muscular esophagus is not submerged into the anterior end of the glandular esophagus. Previous reports of Camallanus oxycephalus Ward and Magath, 1917 in P. spathula may be misidentifications of C. polyodontis.

  8. Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism.

    PubMed

    Grunewald, Wim; van Noorden, Giel; Van Isterdael, Gert; Beeckman, Tom; Gheysen, Godelieve; Mathesius, Ulrike

    2009-09-01

    The plant rhizosphere harbors many different microorganisms, ranging from plant growth-promoting bacteria to devastating plant parasites. Some of these microbes are able to induce de novo organ formation in infected roots. Certain soil bacteria, collectively called rhizobia, form a symbiotic interaction with legumes, leading to the formation of nitrogen-fixing root nodules. Sedentary endoparasitic nematodes, on the other hand, induce highly specialized feeding sites in infected plant roots from which they withdraw nutrients. In order to establish these new root structures, it is thought that these organisms use and manipulate the endogenous molecular and physiological pathways of their hosts. Over the years, evidence has accumulated reliably demonstrating the involvement of the plant hormone auxin. Moreover, the auxin responses during microbe-induced de novo organ formation seem to be dynamic, suggesting that plant-associated microbes can actively modify their host's auxin transport. In this review, we focus on recent findings in auxin transport mechanisms during plant development and on how plant symbionts and parasites have evolved to manipulate these mechanisms for their own purposes.

  9. Characterization of effector mechanisms at the host:parasite interface during the immune response to tissue-dwelling intestinal nematode parasites

    PubMed Central

    Patel, Nirav; Kreider, Timothy; Urban, Joseph F.; Gause, William C.

    2010-01-01

    The protective immune response that develops following infection with many tissue-dwelling intestinal nematode parasites is characterized by elevations in IL-4 and IL-13 and increased numbers of CD4+ T cells, granulocytes and macrophages. These cells accumulate at the site of infection and in many cases can mediate resistance to these large multicellular pathogens. Recent studies suggest novel potential mechanisms mediated by these immune cell populations through their differential activation and ability to stimulate production of novel effector molecules. These newly discovered protective mechanisms may provide novel strategies to develop immunotherapies and vaccines against this group of pathogens. In this review, we will examine recent studies elucidating mechanisms of host protection against three widely-used experimental murine models of tissue-dwelling intestinal nematode parasites: Heligmosomoides polygyrus, Trichuris muris and Trichinella spiralis. PMID:18804113

  10. In vitro comparison of protease activities in preparations from free-living (Panagrellus redivivus) and plant-parasitic (Meloidogyne incognita) nematodes using FMRFa and FMRFa-like peptides as substrates

    USDA-ARS?s Scientific Manuscript database

    Extracts prepared from the free-living nematode Panagrellus redivivus and the plant-parasitic nematode Meloidogyne incognita were each capable of degrading a broad range of nematode FMRFamide-like peptides (FLPs), key regulatory messengers of nematode growth and development. Clear quantitative diffe...

  11. Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release

    PubMed Central

    McCoy, Ciaran J.; Reaves, Barbara J.; Giguère, Steeve; Coates, Ruby; Rada, Balázs

    2017-01-01

    Background Wuchereria bancrofti, Brugia malayi and Brugia timori infect over 100 million people worldwide and are the causative agents of lymphatic filariasis. Some parasite carriers are amicrofilaremic whilst others facilitate mosquito-based disease transmission through blood-circulating microfilariae (Mf). Recent findings, obtained largely from animal model systems, suggest that polymorphonuclear leukocytes (PMNs) contribute to parasitic nematode-directed type 2 immune responses. When exposed to certain pathogens PMNs release extracellular traps (NETs) in the form of chromatin loaded with various antimicrobial molecules and proteases. Principal findings In vitro, PMNs expel large amounts of NETs that capture but do not kill B. malayi Mf. NET morphology was confirmed by fluorescence imaging of worm-NET aggregates labelled with DAPI and antibodies to human neutrophil elastase, myeloperoxidase and citrullinated histone H4. A fluorescent, extracellular DNA release assay was used to quantify and observe Mf induced NETosis over time. Blinded video analyses of PMN-to-worm attachment and worm survival during Mf-leukocyte co-culture demonstrated that DNase treatment eliminates PMN attachment in the absence of serum, autologous serum bolsters both PMN attachment and PMN plus peripheral blood mononuclear cell (PBMC) mediated Mf killing, and serum heat inactivation inhibits both PMN attachment and Mf killing. Despite the effects of heat inactivation, the complement inhibitor compstatin did not impede Mf killing and had little effect on PMN attachment. Both human PMNs and monocytes, but not lymphocytes, are able to kill B. malayi Mf in vitro and NETosis does not significantly contribute to this killing. Leukocytes derived from presumably parasite-naïve U.S. resident donors vary in their ability to kill Mf in vitro, which may reflect the pathological heterogeneity associated with filarial parasitic infections. Conclusions/Significance Human innate immune cells are able to

  12. Population genomics of the filarial nematode parasite Wuchereria bancrofti from mosquitoes.

    PubMed

    Small, Scott T; Reimer, Lisa J; Tisch, Daniel J; King, Christopher L; Christensen, Bruce M; Siba, Peter M; Kazura, James W; Serre, David; Zimmerman, Peter A

    2016-04-01

    Wuchereria bancrofti is a parasitic nematode and the primary cause of lymphatic filariasis--a disease specific to humans. W. bancrofti currently infects over 90 million people throughout the tropics and has been acknowledged by the world health organization as a vulnerable parasite. Current research has focused primarily on the clinical manifestations of disease and little is known about the evolutionary history of W. bancrofti. To improve upon knowledge of the evolutionary history of W. bancrofti, we whole genome sequenced 13 W. bancrofti larvae. We circumvent many of the difficulties of multiple infections by sampling larvae directly from mosquitoes that were experimentally inoculated with infected blood. To begin, we used whole genome data to reconstruct the historical population size. Our results support a history of fluctuating population sizes that can be correlated with human migration and fluctuating mosquito abundances. Next, we reconstructed the putative pedigree of W. bancrofti worms within an infection using the kinship coefficient. We deduced that there are full-sib and half-sib relationships residing within the same larval cohort. Through combined analysis of the mitochondrial and nuclear genomes we concluded that this is likely a results of polyandrous mating, the first time reported for W. bancrofti. Lastly, we scanned the genomes for signatures of natural selection. Annotation of putative selected regions identified proteins that may have aided in a parasitic life style or may have evolved to protect against current drug treatments. We discuss our results in the greater context of understanding the biology of an animal with a unique life history and ecology. © 2016 John Wiley & Sons Ltd.

  13. The impact of Cu, Zn and Cr salts on the relationship between insect and plant parasitic nematodes: a reduction in biocontrol efficacy

    USDA-ARS?s Scientific Manuscript database

    The goal of the present study was to investigate the effects of excessive fertilizer application on the accumulation of potential toxic elements in greenhouse soil, and the direct effects on beneficial organisms (specifically, the insect parasitic nematodes known as entomopathogenic nematodes, EPN)....

  14. Spot drip application of dimethyl disulfide as post-planting treatment for the control of plant-parasitic nematodes and soilborne pathogens in grape production

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Plant-parasitic nematodes and soilborne pathogens can reduce the overall productivity in grape production. Not all grape growers apply soil fumigants before planting and there is no single rootstock resistant to all nematode species. The aim of this investigation was to evaluate the effe...

  15. Screening of the 'Open Scaffolds' collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber's pole worm and other parasitic nematodes.

    PubMed

    Preston, Sarah; Jiao, Yaqing; Baell, Jonathan B; Keiser, Jennifer; Crawford, Simon; Koehler, Anson V; Wang, Tao; Simpson, Moana M; Kaplan, Ray M; Cowley, Karla J; Simpson, Kaylene J; Hofmann, Andreas; Jabbar, Abdul; Gasser, Robin B

    2017-05-28

    The discovery and development of novel anthelmintic classes is essential to sustain the control of socioeconomically important parasitic worms of humans and animals. With the aim of offering novel, lead-like scaffolds for drug discovery, Compounds Australia released the 'Open Scaffolds' collection containing 33,999 compounds, with extensive information available on the physicochemical properties of these chemicals. In the present study, we screened 14,464 prioritised compounds from the 'Open Scaffolds' collection against the exsheathed third-stage larvae (xL3s) of Haemonchus contortus using recently developed whole-organism screening assays. We identified a hit compound, called SN00797439, which was shown to reproducibly reduce xL3 motility by ≥ 70%; this compound induced a characteristic, "coiled" xL3 phenotype (IC50 = 3.46-5.93 μM), inhibited motility of fourth-stage larvae (L4s; IC50 = 0.31-12.5 μM) and caused considerable cuticular damage to L4s in vitro. When tested on other parasitic nematodes in vitro, SN00797439 was shown to inhibit (IC50 = 3-50 μM) adults of Ancylostoma ceylanicum (hookworm) and first-stage larvae of Trichuris muris (whipworm) and eventually kill (>90%) these stages. Furthermore, this compound completely inhibited the motility of female and male adults of Brugia malayi (50-100 μM) as well as microfilariae of both B. malayi and Dirofilaria immitis (heartworm). Overall, these results show that SN00797439 acts against genetically (evolutionarily) distant parasitic nematodes i.e. H. contortus and A. ceylanicum [strongyloids] vs. B. malayi and D. immitis [filarioids] vs. T. muris [enoplid], and, thus, might offer a novel, lead-like scaffold for the development of a relatively broad-spectrum anthelmintic. Our future work will focus on assessing the activity of SN00797439 against other pathogens that cause neglected tropical diseases, optimising analogs with improved biological activities and characterising their targets

  16. Management of pest mole crickets in Florida and Puerto Rico with a nematode and parasitic wasp

    SciTech Connect

    Leppla, N.C.; Frank, J.H.; Adjei, M.B.; Vicente, N.E.

    2007-03-15

    Non-indigenous invasive mole crickets, Scapteriscus vicinus Scudder (Orthoptera: Gryllotalpidae) in Florida and S. didactylus (Latreille) (the 'changa') in Puerto Rico, are being managed with an entomopathogenic nematode, Steinernema scapterisci (Nguyen and Smart) (Rhabditida: Steinernematidae), and a parasitic wasp, Larra bicolor L. (Hymenoptera: Sphecidae). Pest mole cricket populations have declined by 95% in north central Florida since these specialist natural enemies were released and established in the 1980s. Commercial production of the nematode was initiated, nearly 70 billion were applied in 34 Florida counties, and their establishment, spread, and impact on mole crickets were monitored. The infected mole crickets dispersed the nematode rapidly, so that within 6 months these parasites were present in most of the insects trapped in experimental pastures. Three years later, mole cricket populations were reduced to acceptable levels and the bahiagrass had recovered. The nematode was released for the first time in Puerto Rico during 2001 and has persisted; the wasp was introduced in the late 1930s. The geographical distribution of the wasp is being expanded in Florida and Puerto Rico by planting plots of Spermacoce verticillata (L.), a wildflower indigenous to Puerto Rico and widely distributed in southern Florida. Pastures, sod farms, golf courses, landscapes, and vegetable farms in Florida and Puerto Rico are benefiting from biological control of invasive mole crickets. (author) [Spanish] Los grillotopos invasores no indigenas, Scapteriscus vicinus (Orthoptera: Gryllotalpidae) en el estado de Florida y S. didactylus ('changa') en Puerto Rico, estan siendo manejados por el nematodo entomopathogeno, Steinernema scapterisci (Rhabditida: Steinernematidae) y la avispa parasitica, Larra bicolor (Hymenoptera: Sphecidae). Las poblaciones de los grillotopo plagas han declinado un 95% en el norte central de la Florida desde que estos enemigos naturales especialistas

  17. First Report of Korean Cyst Nematode, Heterodera koreana, Parasitic on Bamboo, Phyllostachys nigra, from Iran.

    PubMed

    Maafi, Zahra Tanha; Taheri, Zahra Majd

    2015-09-01

    Bamboo is grown sporadically in the north of Iran and is confined to very limited areas. The history of growing bamboo was to some extent simultaneous with the entrance, commencement, and growth of the tea industry in the north about a century ago. The bamboo was used for making baskets to transfer the harvested tea foliage from farm to the factory and other linked functions. A main area allocated for bamboo growing is located in Lahidjan Agricultural Research Station (LARS) in the north of Iran, where several species of bamboo were cultivated in an area of 5 ha. The species include five species of Phyllostachys (viz., P. aurea, P. bambusoides, P. decora, P. nigra, P. vivax) and one species of Arundinaria gigantean, Pleioblastus fortune, and Semiarundinaria fastuosa; however, only P. aurea and P. nigra have been precisely identified. A survey on plant parasitic nematodes associated with bamboo mainly on P. nigra in LARS revealed second-stage juveniles of cyst forming nematode in soil samples. Further analysis of root and soil samples led to recovery of a cyst nematode belonging to the genus Heterodera and the Afenestrata group. Cysts, vulval cone, and second-stage juveniles were studied for morphological and morphometric features. The classical identification was followed by amplification of the ribosomal RNA-ITS region and the D2-D3 expansion segments of 28S large-subunit rRNA gene; the amplified fragments were sequenced, edited, and compared with those of the corresponding published gene sequences. New D2-D3 and rRNA-ITS gene sequences were deposited in the GenBank database under the accession numbers KR818910 and KR818911, respectively. Based on the morphological and molecular data, the species of the cyst-forming nematode was identified as H. koreana (Vovlas et al., 1992; Mundo-Ocampo et al., 2008). The body contour of cysts was mainly subspherical, vey often with irregular shape (Fig. 1A), yellowish to light brown, thin cuticle with fine zigzag pattern

  18. Transcriptomic response of red grouse to gastro-intestinal nematode parasites and testosterone: implications for population dynamics.

    PubMed

    Webster, L M I; Paterson, S; Mougeot, F; Martinez-Padilla, J; Piertney, S B

    2011-03-01

    A central issue in ecology is in understanding the relative influences of intrinsic and extrinsic effects on population regulation. Previous studies on the cyclic population dynamics of red grouse (Lagopus lagopus scoticus) have emphasized the destabilizing effects of either nematode parasites or territorial behaviour and aggression. The potential interacting effects of these processes, mediated through density-dependent, environmentally induced alterations of host immunocompetence influencing susceptibility to parasites have not been considered. Male red grouse at high density are more aggressive, associated with increased testosterone, which potentially could lead to reduced immunocompetence at a stage when parasites are most prevalent. This could depress individual condition, breeding performance and survival and thus drive or contribute to overall reductions in population size. Here, we characterize the transcriptomic response of grouse to nematode parasite infection and investigate how this is subsequently affected by testosterone, using a microarray approach contrasting red grouse with high and low parasite load at both high and low testosterone titre. A suite of 52 transcripts showed a significant level of up-regulation to either chronic parasite load or experimental parasite infection. Of these, 51 (98%) showed a reduced level of expression under conditions of high parasite load and high testosterone. The genes up-regulated by parasites and then down-regulated at high testosterone titre were not necessarily associated with immune response, as might be intuitively expected. The results are discussed in relation to the fitness and condition of individual red grouse and factors influencing the regulation of abundance in natural populations. © 2010 Blackwell Publishing Ltd.

  19. Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites

    PubMed Central

    Kuhn, Thomas; García-Màrquez, Jaime; Klimpel, Sven

    2011-01-01

    Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area. PMID:22180787

  20. What constitutes a population for the plant parasitic nematode Globodera pallida in its native area (Peru)?

    PubMed

    Picard, Damien; Plantard, Olivier

    2006-01-01

    Although numerous species are distributed in discrete populations easily recognised by geographical barriers, continuous populations are a common feature of plants or marine organisms. This is particularly true for soil organisms as their habitat is continuous and their range cannot easily be assessed as they are buried below ground. In the case of organisms for which standard methods such as Capture/Mark/Recapture cannot be used, population genetics provide a straightforward approach to delimitate populations. In this study, we have pursued this topic with a soil-dwelling nematode (Globodera pallida), which parasitises potato roots and is indigenous to South America. Potential barriers to gene flow were identified using the analysis of the F(ST)/(1-F(ST)) ratio against geographical distance and spatial autocorrelation combined with model-based clustering algorithm. Inside regions, neither genetic differentiation nor isolation by distance (IBD) occur among fields less than 50 km distant. We hypothesise that the large amount of gene flow revealed by the absence of genetic structure of this organism could be due to large passive dispersion inside an agronomic area where G. pallida has a continuous distribution and is found at high density. The first evidence of genetic differentiation appeared when a field was separated from others by an area free of farms (where G. pallida is absent or rare). Among regions, a high genetic structure coupled with an IBD pattern occurs as the consequences of the limitations of passive dispersal across deep valleys or high mountains. To our knowledge, this is the first study identifying the spatial limit of a population for a plant nematode parasite.

  1. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites.

    PubMed

    Kuhn, Thomas; García-Màrquez, Jaime; Klimpel, Sven

    2011-01-01

    Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.

  2. Meloidogyne paranaensis n. sp. (Nemata: Meloidogynidae), a Root-Knot Nematode Parasitizing Coffee in Brazil

    PubMed Central

    Carneiro, R. M. D. G.; Carneiro, R. G.; Abrantes, I. M. O.; Santos, M. S. N. A.; Almeida, M. R. A.

    1996-01-01

    A root-knot nematode parasitizing coffee in Paran  State, Brazil, is described as Meloidogyne paranaensis n. sp. The suggested common name is Paraná coffee root-knot nematode. The perineal pattern is similar to that of M. incognita; the labial disc and medial lips of the female are fused and asymmetric and rectangular; the lateral lips are small, triangular, and fused laterally with the head region. The female stylet is 15.0-17.5 μm long, with broad, distinctly set-off knobs; the distance from the dorsal esophageal gland orifice (DGO) to the stylet base is 4.2-5.5 μm. Males have a high, round head cap continuous with the body contour. The labial disc is fused with the medial lips to form an elongate lip structure. The head region is frequently marked by an incomplete annulation. The stylet is robust, 20-27 μm long, usually with round to transversely elongate knobs, sometimes with one or two projections protruding from the shaft. The stylet length of second-stage juveniles is 13-14 μm, the distance of the DGO to the stylet base is 4.0-4.5 μm, and the tail length is 48-51 μm. Biochemically, the esterase (F₁) and malate dehydrogenase (N₁) phenotypes are the most useful characters to differentiate M. paranaensis from other species. However, the esterase phenotype appears similar to that of M. konaensis. Reproduction is by mitotic parthenogenesis, 3n = 50-52. In differential host tests, tobacco, watermelon, and tomato were good hosts, whereas cotton, pepper, and peanut were nonhosts. PMID:19277133

  3. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    PubMed

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  4. Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloidogyne incognita.

    PubMed

    Zasada, I A; Meyer, S L F; Morra, M J

    2009-09-01

    Brassicaceous seed meals are the residual materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that potentially degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassica juncea 'Pacific Gold', B. napus 'Dwarf Essex' and 'Sunrise', and Sinapis alba 'IdaGold', against mixed stages of Pratylenchus penetrans and Meloidogyne incognita second-stage juveniles (J2). The brassicaceous seed meals were applied to soil in laboratory assays at rates ranging from 0.5 to 10.0% dry w/w with a nonamended control included. Nematode mortality was assessed after 3 days of exposure and calculated as percentage reduction compared to a nonamended control. Across seed meals, M. incognita J2 were more sensitive to the brassicaceous seed meals compared to mixed stages of P. penetrans. Brassica juncea was the most nematode-suppressive seed meal with rates as low as 0.06% resulting in > 90% suppression of both plant-parasitic nematodes. In general B. napus 'Sunrise' was the least nematode-suppressive seed meal. Intermediate were the seed meals of S. alba and B. napus 'Dwarf Essex'; 90% suppression was achieved at 1.0% and 5.0% S. alba and 0.25% and 2.5% B. napus 'Dwarf Essex', for M. incognita and P. penetrans, respectively. For B. juncea, seed meal glucosinolate-degradation products appeared to be responsible for nematode suppression; deactivated seed meal (wetted and heated at 70 °C for 48 hr) did not result in similar P. penetrans suppression compared to active seed meal. Sinapis alba seed meal particle size also played a role in nematode suppression with ground meal resulting in 93% suppression of P. penetrans compared with 37 to 46% suppression by pelletized S. alba seed meal. This study demonstrates that all seed meals are not equally suppressive to nematodes and that care should be taken when selecting a source of brassicaceous seed meal

  5. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi.

    PubMed

    Moreno, Yovany; Nabhan, Joseph F; Solomon, Jonathan; Mackenzie, Charles D; Geary, Timothy G

    2010-11-16

    Ivermectin (IVM) is a broad-spectrum anthelmintic used in filariasis control programs. By binding to nematode glutamate-gated chloride channels (GluCls), IVM disrupts neurotransmission processes regulated by GluCl activity. IVM treatment of filarial infections is characterized by an initial dramatic drop in the levels of circulating microfilariae, followed by long-term suppression of their production, but the drug has little direct effect on microfilariae in culture at pharmacologically relevant concentrations. We localized Brugia malayi GluCl expression solely in a muscle structure that surrounds the microfilarial excretory-secretory (ES) vesicle, which suggests that protein release from the ES vesicle is regulated by GluCl activity. Consistent with this hypothesis, exposure to IVM in vitro decreased the amount of protein released from microfilariae. To better understand the scope of IVM effects on protein release by the parasite, three different expression patterns were identified from immunolocalization assays on a representative group of five microfilarial ES products. Patterns of expression suggest that the ES apparatus is the main source of regulated ES product release from microfilariae, as it is the only compartment that appears to be under neuromuscular control. Our results show that IVM treatment of microfilariae results in a marked reduction of protein release from the ES apparatus. Under in vivo conditions, the rapid microfilarial clearance induced by IVM treatment is proposed to result from suppression of the ability of the parasite to secrete proteins that enable evasion of the host immune system.

  6. Molecular genomics resource for the parasitic nematode Spirocerca lupi: Identification of 149 microsatellite loci using FIASCO and next generation sequencing.

    PubMed

    Reid, Kerry; Mitha, Janishtha R; Greeff, Jaco M; de Waal, Pamela J

    2015-01-01

    Understanding genetic diversity and movement patterns in parasitic organisms is paramount to establish control and management strategies. In this study we developed a microsatellite resource as well as a diagnostic multiplex for the cosmopolitan parasitic nematode Spirocerca lupi, known to cause spirocercosis in canids. A combination of microsatellite enrichment and 454 sequencing was used to identify 149 unique microsatellite loci in S. lupi. Twenty loci were characterized further in two sampling sites in South Africa, with 10 loci identified as polymorphic (allele ranges from 4 to 17). These loci were designed into a single diagnostic multiplex suitable for species identification and population genetics studies. The markers were also successful in cross-species amplification in Cylicospirura felineus, Philonema oncorhynchi and Gongylonema pulchrum. Our resource provides a large set of candidate loci for a number of nematode studies as well as loci suitable for diversity and population genetics studies of S. lupi within the South African context as well as globally.

  7. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    PubMed Central

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  8. Epidemiological observations and heterosis analysis of gastrointestinal nematode parasitism in Suffolk, Gulf Coast Native, and crossbred lambs.

    PubMed

    Li, Y; Miller, J E; Franke, D E

    2001-07-27

    A crossbreeding program was conducted to evaluate the resistant status to gastrointestinal nematode parasite infection in crossbred (F1) lambs and their Suffolk and Gulf Coast Native (Native) breed counterparts. A total of 253 lambs were included in the study over 2 years. Fecal egg count (FEC) and blood packed cell volume (PCV) of 18-20 monitor lambs of each breed group in each year were collected every other week from birth to 24-30 weeks of age. The FEC and PCV of all lambs were determined at weaning (11-12 weeks of age) and at three subsequent times when anthelmintic treatment was administered. Nematode counts of wether lambs were obtained at 30 weeks of age in the first year. The epidemiological patterns of FEC and PCV of each breed group were similar in both years. The Suffolk group consistently showed the highest FEC and the lowest PCV. Conversely, the Native group had the lowest FEC and highest PCV. For the most part, all parameters for the F1 group fell intermediate to the Native and Suffolk groups. Nematode count followed the same pattern. Heterosis analysis showed that FEC, PCV, nematode count and weight gain of the F1 group favored the Native group. These results suggested that crossbreeding Suffolk to Native sheep may be a suitable way to produce lambs with improved resistance to gastrointestinal nematode infection, but production may be compromised.

  9. Comparative transcriptomics of two pathogenic pinewood nematodes yields insights into parasitic adaptation to life on pine hosts.

    PubMed

    Yan, Xia; Cheng, Xin-Yue; Wang, Yun-Sheng; Luo, Ji; Mao, Zhen-Chuan; Ferris, Virginia R; Xie, Bing-Yan

    2012-08-15

    Bursaphelenchus xylophilus and Bursaphelenchus mucronatus are migratory endoparasitic nematodes that live in pine trees. To gain insight into their molecular similarities and differences, transcriptomes of the two nematodes were analysed. A total of 23,765 and 21,782 contigs (>300 bp) were obtained from B. xylophilus and B. mucronatus, respectively. More than 80% of the contigs could map to each other's transcriptome reciprocally. A total of 23,467 and 21,370 Open Reading Frames were predicted, respectively. Besides those known parasitism-related proteins, six new venom allergen-like proteins (VAPs) were found, which were not homologous to known VAPs. Enzymes involved in xenobiotic biodegradation were abundant in the two transcriptomes based on KEGG functional annotation. Metabolism of xenobiotics by cytochrome P450 comprised the main detoxification pathways. The mRNA expression levels of detoxification genes in nematodes living in the host were higher than those in nematodes feeding on fungus. However, there were fewer enzymes involved in the α-pinene degradation. Our results indicate that the two pinewood nematodes have evolved similar molecular mechanisms to adapt to life on pine hosts. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Genetic structure and parasitization-related ability divergence of a nematode fungal pathogen Hirsutella minnesotensis following founder effect in China.

    PubMed

    Shu, Chi; Jiang, Xianzhi; Cheng, Xiaoli; Wang, Niuniu; Chen, Senyu; Xiang, Meichun; Liu, Xingzhong

    2015-08-01

    The fungal parasitoid, Hirsutella minnesotensis, is a dominant parasitoid of the soybean cyst nematode, which is a destruction pest of soybean crops. We investigated population structure and parasitism pattern in samples of H. minnesotensis in China to reveal the spreading pattern of this fungal species and the underlying mechanism generating the parasitization-related ability variability in Chinese population. In cross-inoculation experiments using different combinations of H. minnesotensis and soybean cyst nematode samples from China, most H. minnesotensis isolates fitted the criterion for "local versus foreign" parasitism profile, exhibiting local adaptation pattern to the SCN host. However, the genetic analysis of the single nucleotide polymorphisms with clone-corrected samples based on ten DNA fragments in 56 isolates of H. minnesotensis from China revealed that the Chinese H. minnesotensis population was a clonal lineage that underwent a founder event. The results demonstrated that the Chinese H. minnesotensis population had generated parasitization-related ability diversity after a founder event through individual variation or phenotypic plasticity other than local adaptation. The rapid divergence of parasitization-related abilities with simple genetic structure in Chinese H. minnesotensis population indicates a fundamental potential for the establishment of invasive fungal species, which is a prerequisite for biological control agents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Gnathostomatidae nematode parasite of Colomesus psittacus (Osteichthyes, Tetraodontiformes) in the Ilha de Marajó, Brazilian Amazon.

    PubMed

    Pinheiro, Raul Henrique da Silva; Santana, Ricardo Luís Sousa; Melo, Francisco Tiago Vasconcelos; Santos, Jeannie Nascimento Dos; Giese, Elane Guerreiro

    2017-01-01

    The genus Gnathostoma comprises 17 species, whose adult specimens are found in the stomach serosa of animals that consume raw fish; some species of the genus are zoonotic agents. The present study describes the presence of a nematode (Gnathostomatidae) parasitizing the digestive tract of Colomesus psittacus in the Ilha de Marajó in the eastern Brazilian Amazon. Thirty specimens of C. psittacus were collected in the municipality of Soure, Ilha de Marajó, state of Pará, Brazil, transported to the laboratory, necropsied and the helminths were collected and fixed. Of the 30 fish that were studied, 16.67% were parasitized with nematodes. The nematode larvae found encysted in the intestinal serosa have anterior region with two lips, each with a pair of papillae; a cephalic bulb armed with six rows of discontinuous spines; four cervical sacs; a claviform esophagus; cuticular striations along the body; a simple excretory pore; and a short tail ending in a mucron. These morphological structures are diagnostic characters of the genus Gnathostoma, whose adults parasitize the stomach of carnivorous mammals and, rarely, the stomach of fish. However, fish, amphibians, reptiles, and birds are intermediate hosts of the third-stage larvae (L3), and humans may act as accidental hosts.

  12. How to become a parasite without sex chromosomes: a hypothesis for the evolution of Strongyloides spp. and related nematodes.

    PubMed

    Streit, Adrian

    2014-09-01

    Parasitic lifestyles evolved many times independently. Just within the phylum Nematoda animal parasitism must have arisen at least four times. Switching to a parasitic lifestyle is expected to lead to changes in various life history traits including reproductive strategies. Parasitic nematode worms of the genus Strongyloides represent an interesting example to study these processes because they are still capable of forming facultative free-living generations in between parasitic ones. The parasitic generation consists of females only, which reproduce parthenogenetically. The sex in the progeny of the parasitic worms is determined by environmental cues, which control a, presumably ancestral, XX/XO chromosomal sex determining system. In some species the X chromosome is fused with an autosome and one copy of the X-derived sequences is removed by sex-specific chromatin diminution in males. Here I propose a hypothesis for how today's Strongyloides sp. might have evolved from a sexual free-living ancestor through dauer larvae forming free-living and facultative parasitic intermediate stages.

  13. Effect of forage legumes and anthelmintic treatment on the performance, nutritional status and nematode parasites of grazing lambs.

    PubMed

    Marley, C L; Fraser, M D; Fychan, R; Theobald, V J; Jones, R

    2005-08-10

    Recent studies in New Zealand and the UK have shown that certain forages reduce parasitic infection in sheep. The aim of this experiment was to investigate the effects of legume forages compared to ryegrass on interactions between production, nutritional status and nematodes in grazing lambs. Twenty-four male lambs per forage treatment, half of which were treated with anthelmintics on Day 0, grazed monocultures of lucerne (Medicago sativa), red clover (Trifolium pratense) and white clover (Trifolium repens) and were compared with lambs grazing perennial ryegrass (Lolium perenne). Individual faecal egg counts (FEC) and liveweight were determined every 7 days for 56 days, after which half the lambs were slaughtered to determine total nematode intensities (TNI). Results showed that lambs grazed on red or white clover, but not lucerne, had lower pooled mean FEC and improved liveweight performance compared to lambs grazing ryegrass. Lambs treated with anthelmintics had higher TNI compared to lambs not treated, due to a trend for more adult nematodes in lambs grazing lucerne and treated with anthelmintics than all other lambs, except those grazing red clover and also given anthelmintics. Lambs grazing white clover tended to have fewer adult nematodes than lambs grazing other forages. Examination of the nematode species showed a change in female T. circumcincta occurred in all lambs following anthelmintic treatment and that the forage species grazed by lambs affected individual parasite species. Lambs grazing white clover had fewer male and adult T. circumcincta compared to lambs grazing other forages, and lambs grazing lucerne had fewer adult T. circumcincta compared to lambs grazing ryegrass or red clover. Data on small intestine TNI showed that lambs grazing lucerne and given anthelmintics had more male adult nematodes than other lambs, except those grazing red clover and treated with anthelmintics. Results indicate that lucerne and red clover both increase the re

  14. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    PubMed

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  15. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence.

    PubMed

    Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T

    2016-06-10

    The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.

  16. Estimated prevalence of nematode parasitism among pet cats in the United States.

    PubMed

    De Santis, Andrea C; Raghavan, Malathi; Caldanaro, Richard J; Glickman, Nita W; Moore, George E; Lewis, Hugh B; Schantz, Peter M; Glickman, Lawrence T

    2006-03-15

    To estimate prevalences of roundworm, hookworm, and whipworm infections in pet cats in the United States and identify risk factors for parasitism. Retrospective period prevalence survey. 356,086 cats examined at 359 private veterinary hospitals during 2003. Electronic medical records were searched to identify cats for which fecal flotation tests had been performed and to determine proportions of test results positive for roundworms, hookworms, and whipworms. Potential risk factors for roundworm and hookworm infection were identified by means of multivariate logistic regression analysis. A total of 80,278 tests were performed on fecal samples from 66,819 cats. Calculated prevalences of roundworm, hookworm, and whipworm infection were 2.92%, 0.63%, and 0.031%, respectively. Age, reproductive status, breed, and season were significant risk factors for roundworm infection, with cats < 4 years old; sexually intact cats; mixed-breed cats; and cats examined during the summer, fall, or winter more likely to be infected. Age, reproductive status, and season were significant risk factors for hookworm infection, with cats < 1 year old, sexually intact cats, and cats examined during the summer more likely to be infected. Regional differences in prevalences of roundworm and hookworm infection were found. Results suggest that prevalences of nematode infections among pet cats in the United States may be lower than previously suspected on the basis of prevalences reported among cats in humane shelters and those reported in more geographically focused studies.

  17. Cholinesterase in the parasitic nematode, Stephanurus dentatus. Characterization and sex dependence of a secretory cholinesterase.

    PubMed

    Rhoads, M L

    1981-09-10

    An antigenic secretory protein with cholinesterase activity was isolated from the excretory gland cells of Stephanurus dentatus and was purified by gel filtration and ion exchange chromatography. The antigenicity of the cholinesterase was demonstrated by an esterase-active immunoprecipitate formed with S. dentatus antiserum and by the ability of the antiserum to protect the enzyme from heat inactivation. The enzyme was found to be secreted by the adult nematodes during in vitro cultivation. The level of cholinesterase activity and its release from the excretory gland cells of the parasite were 27-fold greater in the male than in the female. Ninety per cent of the enzyme activity was localized in the soluble fraction of the gland cells. The molecular weight of the enzyme, estimated by sucrose density gradient centrifugation, was 100,000. Two molecular forms were separated by isoelectrofocusing, with isoelectric points of 7.0 and 6.9. At optimum substrate concentrations, the rate of hydrolysis of acetylthiocholine was 8 times greater than that of butyrylthiocholine; the Michaelis constants were 560 microM and 81 microM for acetylthiocholine and butyrylthiocholine, respectively. The enzyme exhibited substrate inhibition at substrate concentrations greater than 10 mM and was inhibited by eserine sulfate, 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide, Tris, and acetone. The enzyme was highly unstable in dilute protein solutions.

  18. Copepods and larvae of nematodes parasitizing (correction of parasiting) the white mullet Mugil curema (Valenciennes, 1836): indicators of anthropogenic impacts in tropical coastal lagoons?

    PubMed

    Fajer-Avila, E J; García-Vásquez, A; Plascencia-González, H; Ríos-Sicairos, J; García-De La Parra, L M; Betancourt-Lozano, M

    2006-11-01

    The relationship between parasites and environmental stress were studied in two tropical coastal lagoons of Northwest Mexico: Urias estuary (highly polluted) and Teacapan estuary (slightly polluted). Metazoan parasites were examined in 292 white mullet (Mugil curema) specimens collected bimonthly during a year from both systems. Haliotrema mugilinus, Metamicrocotyla macracantha, Ergasilus sp., Caligus sp., Holobomolochus sp., and Lernaeopodidae were found in gills, while Contracaecum sp. larvae III was found liver, hepatic portal vein and kidneys. Ecological indices were influenced by the slightly higher number of parasitic species in Urias compared to Teacapan, as well as the clear dominance of two species: Ergasilus sp. and Contracaecum sp. in both systems. In fact, Ergasilus sp. showed considerably higher abundance in Urias, possibly indicating that its success was a result of adverse conditions affecting the host, while Contracaecum sp showed higher abundances in Teacapan, suggesting that the environmental conditions occurring in Urias could have produced negative impacts on the nematode's infective potential.

  19. Gimme shelter--the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change.

    PubMed

    Molnár, Péter K; Dobson, Andrew P; Kutz, Susan J

    2013-11-01

    Climate change is expected to alter the dynamics of host-parasite systems globally. One key element in developing predictive models for these impacts is the life cycle of the parasite. It is, for example, commonly assumed that parasites with an indirect life cycle would be more sensitive to changing environmental conditions than parasites with a direct life cycle due to the greater chance that at least one of their obligate host species will go extinct. Here, we challenge this notion by contrasting parasitic nematodes with a direct life cycle against those with an indirect life cycle. Specifically, we suggest that behavioral thermoregulation by the intermediate host may buffer the larvae of indirectly transmitted parasites against temperature extremes, and hence climate warming. We term this the 'shelter effect'. Formalizing each life cycle in a comprehensive model reveals a fitness advantage for the direct life cycle over the indirect life cycle at low temperatures, but the shelter effect reverses this advantage at high temperatures. When examined for seasonal environments, the models suggest that climate warming may in some regions create a temporal niche in mid-summer that excludes parasites with a direct life cycle, but allows parasites with an indirect life cycle to persist. These patterns are amplified if parasite larvae are able to manipulate their intermediate host to increase ingestion probability by definite hosts. Furthermore, our results suggest that exploiting the benefits of host sheltering may have aided the evolution of indirect life cycles. Our modeling framework utilizes the Metabolic Theory of Ecology to synthesize the complexities of host behavioral thermoregulation and its impacts on various temperature-dependent parasite life history components in a single measure of fitness, R0 . It allows quantitative predictions of climate change impacts, and is easily generalized to many host-parasite systems.

  20. Pan-phylum Comparison of Nematode Metabolic Potential

    PubMed Central

    Tyagi, Rahul; Rosa, Bruce A.; Lewis, Warren G.; Mitreva, Makedonka

    2015-01-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in

  1. Pan-phylum Comparison of Nematode Metabolic Potential.

    PubMed

    Tyagi, Rahul; Rosa, Bruce A; Lewis, Warren G; Mitreva, Makedonka

    2015-05-01

    Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite Brugia malayi. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in

  2. The Cyst Nematode Effector Protein 10A07 Targets and Recruits Host Posttranslational Machinery to Mediate Its Nuclear Trafficking and to Promote Parasitism in Arabidopsis

    PubMed Central

    Hewezi, Tarek; Juvale, Parijat S.; Piya, Sarbottam; Maier, Tom R.; Rambani, Aditi; Rice, J. Hollis; Mitchum, Melissa G.; Davis, Eric L.; Hussey, Richard S.; Baum, Thomas J.

    2015-01-01

    Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants. PMID:25715285

  3. Hsp12.6 Expression Is Inducible by Host Immunity in Adult Worms of the Parasitic Nematode Nippostrongylus brasiliensis

    PubMed Central

    Arizono, Naoki; Yamada, Minoru; Tegoshi, Tatsuya; Takaoka, Yutaka; Ohta, Mika; Sakaeda, Toshiyuki

    2011-01-01

    Heat shock proteins (Hsp) are a family of stress-inducible molecular chaperones that play multiple roles in a wide variety of animals. However, the roles of Hsps in parasitic nematodes remain largely unknown. To elucidate the roles of Hsps in the survival and longevity of nematodes, particularly at the 2 most critical stages in their lifecycle, the infective-L3 stage and adult stage, which is subjected to host-derived immunological pressure, we examined the temporal gene transcription patterns of Hsp12.6, Hsp20, Hsp70, and Hsp90 throughout the developmental course of the nematode Nippostrongylus brasiliensis by reverse transcriptase real-time PCR. Nb-Hsp70 and Nb-Hsp90 expression were observed throughout the nematode's lifecycle, while the expression of Nb-Hsp20 was restricted to adults. Interestingly, Nb-Hsp12.6 showed a biphasic temporal expression pattern; i.e., it was expressed in infective-L3 larvae and in adults during worm expulsion from immunocompetent rats. However, the activation of Nb-Hsp12.6 in adult worms was aborted when they infected permissive athymic-rnu/rnu rats and was only marginal when they infected mast-cell-deficient Ws/Ws rats, which exhibited a low response of rat mast cell protease (RMCP) II and resistin-like molecule (Relm)- β expression compared to those observed in immunocompetent rats. Moreover, the activation of Nb-Hsp12.6 was reversed when adult worms were transplanted into the naive rat intestine. These features of Nb-Hsp12.6, the expression of which is not only stage-specific in infective-L3, but is also inducible by mucosal immunity in adults, have implications for the survival strategies of parasitic nematodes in deleterious environmental conditions both outside and inside the host. PMID:21448458

  4. Genetic diversity and infection levels of anisakid nematodes parasitic in fish and marine mammals from Boreal and Austral hemispheres.

    PubMed

    Mattiucci, Simonetta; Nascetti, Giuseppe

    2007-08-19

    Anisakid nematodes have complex life-cycles that include invertebrate and vertebrate hosts at various levels of the marine food chain. Different types of habitat disturbances of the marine ecosystem (pollution, overfishing, by-catch) could impoverish the host population size, resulting in concomitant and detrimental effects on parasitic nematode populations. This in turn would lead to the loss of genetic diversity of these parasites at both the species and population levels. In order to test for a correlation existing between the genetic diversity of anisakid nematodes and habitat disturbance, the genetic variability, estimated by nuclear markers (19 allozyme loci), was evaluated among several anisakid populations from fish and marine mammals in various areas of the Boreal and Austral regions. Antarctic and sub-antarctic populations showed significantly (P<0.001) higher levels of genetic diversity (on average, He=0.23) than those from the Arctic and sub-Arctic populations and species (on average, He=0.07). Correlations between the degree of genetic variability and the levels of parasitic infections within their hosts were considered. Data revealed higher intensities in anisakid infections in Antarctic and sub-Antarctic hosts, presumably resulting from a lower degree of habitat disturbance in less stressed areas. The absence of disturbance presumably allowed anisakid species to reach a larger population size, with a reduced probability of genetic drift in their gene pools. This suggests that anisakid nematodes, and their levels of genetic diversity may be suitable indicators of the integrity of marine food webs and of the general biodiversity of a marine ecosystem.

  5. Conserved miRNAs Are Candidate Post-Transcriptional Regulators of Developmental Arrest in Free-Living and Parasitic Nematodes

    PubMed Central

    Ahmed, Rina; Chang, Zisong; Younis, Abuelhassan Elshazly; Langnick, Claudia; Li, Na; Chen, Wei; Brattig, Norbert; Dieterich, Christoph

    2013-01-01

    Animal development is complex yet surprisingly robust. Animals may develop alternative phenotypes conditional on environmental changes. Under unfavorable conditions, Caenorhabditis elegans larvae enter the dauer stage, a developmentally arrested, long-lived, and stress-resistant state. Dauer larvae of free-living nematodes and infective larvae of parasitic nematodes share many traits including a conserved endocrine signaling module (DA/DAF-12), which is essential for the formation of dauer and infective larvae. We speculated that conserved post-transcriptional regulatory mechanism might also be involved in executing the dauer and infective larvae fate. We used an unbiased sequencing strategy to characterize the microRNA (miRNA) gene complement in C. elegans, Pristionchus pacificus, and Strongyloides ratti. Our study raised the number of described miRNA genes to 257 for C. elegans, tripled the known gene set for P. pacificus to 362 miRNAs, and is the first to describe miRNAs in a Strongyloides parasite. Moreover, we found a limited core set of 24 conserved miRNA families in all three species. Interestingly, our estimated expression fold changes between dauer versus nondauer stages and infective larvae versus free-living stages reveal that despite the speed of miRNA gene set evolution in nematodes, homologous gene families with conserved “dauer-infective” expression signatures are present. These findings suggest that common post-transcriptional regulatory mechanisms are at work and that the same miRNA families play important roles in developmental arrest and long-term survival in free-living and parasitic nematodes. PMID:23729632

  6. A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi.

    PubMed

    Morris, C Paul; Bennuru, Sasisekhar; Kropp, Laura E; Zweben, Jesse A; Meng, Zhaojing; Taylor, Rebekah T; Chan, King; Veenstra, Timothy D; Nutman, Thomas B; Mitre, Edward

    2015-01-01

    Filarial worms are parasitic nematodes that cause devastating diseases such as lymphatic filariasis (LF) and onchocerciasis. Filariae are nematodes with complex anatomy including fully developed digestive tracts and reproductive organs. To better understand the basic biology of filarial parasites and to provide insights into drug targets and vaccine design, we conducted a proteomic analysis of different anatomic fractions of Brugia malayi, a causative agent of LF. Approximately 500 adult female B. malayi worms were dissected, and three anatomical fractions (body wall, digestive tract, and reproductive tract) were obtained. Proteins from each anatomical fraction were extracted, desalted, trypsinized, and analyzed by microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry. In total, we identified 4,785 B. malayi proteins. While 1,894 were identified in all three anatomic fractions, 396 were positively identified only within the digestive tract, 114 only within the body wall, and 1,011 only within the reproductive tract. Gene set enrichment analysis revealed a bias for transporters to be present within the digestive tract, suggesting that the intestine of adult filariae is functional and important for nutrient uptake or waste removal. As expected, the body wall exhibited increased frequencies of cytoskeletal proteins, and the reproductive tract had increased frequencies of proteins involved in nuclear regulation and transcription. In assessing for possible vaccine candidates, we focused on proteins sequestered within the digestive tract, as these could possibly represent "hidden antigens" with low risk of prior allergic sensitization. We identified 106 proteins that are enriched in the digestive tract and are predicted to localize to the surface of cells in the the digestive tract. It is possible that some of these proteins are on the luminal surface and may be accessible by antibodies ingested by the worm. A subset of 27 of these proteins appear

  7. Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora

    USDA-ARS?s Scientific Manuscript database

    Cooperia oncophora and Ostertagia ostertagi are among the most important gastrointestinal nematodes of cattle worldwide. The economic losses caused by these parasites are on the order of hundreds of millions of dollars per year. Conventional treatment of these parasites is through anthelmintic drug...

  8. The identification of cattle nematode parasites resistant to multiple classes of anthelmintics in a commercial cattle population in the US.

    PubMed

    Gasbarre, Louis C; Smith, Larry L; Lichtenfels, J Ralph; Pilitt, Patricia A

    2009-12-23

    Resistance to modern anthelmintics by ruminant nematode parasites is an increasing problem throughout the world. To date the problem has largely been reported in parasites of small ruminants, but there are increasing reports of such resistance in nematodes recovered from cattle. Until now there have been no published reports of drug resistant parasites from cattle in North America. In 2002 a producer in the upper Midwest who backgrounds young cattle acquired from the southeastern US experienced lower than expected weight gain as well as apparent parasitic gastroenteritis in his cattle during the fall. Fecal sample results supported the suspicion that decreased productivity and diarrhea were the result of GI nematode parasitism. The operation used intensive grazing management and practiced strategically timed deworming for >17 year. In 2003, all animals were dewormed the first week of May with Ivomec Plus, then with Dectomax Injectable on 4 June and 17 July. On 31 July, 10 randomly taken fecal samples showed EPG values from 0 to 55. To assess whether the apparent decreased drug efficacy was the result of drug resistance in the nematode population, on 18 August approximately 150 heads, previously strategic timed dewormed, of 9-11 month old cattle from one pasture were selected for study. The calves were randomly assigned to 1 of 6 treatment groups: untreated (U), ivermectin injectable (I), moxidectin pour-on (M), doramectin injectable (D), eprinomectin pour-on (E), albendazole oral (A). Cattle were weighed prior to treatment and the drug was dosed according to label directions. Seven days later, 3 calves from each group were slaughtered for worm recovery. Fecal samples taken from the remaining animals at 14 days after treatment showed that the reduction of mean fecal EPG value for each group was: U-46%, I-52%, M-72%, D-61%, E-8%, and A-68%. Worm recovery from the slaughter calves showed that all groups harbored significant numbers of Haemonchus placei and H

  9. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.

    PubMed

    Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane

    2016-08-12

    Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both

  10. Modelling variability in lymphatic filariasis: macrofilarial dynamics in the Brugia pahangi--cat model.

    PubMed Central

    Michael, E; Grenfell, B T; Isham, V S; Denham, D A; Bundy, D A

    1998-01-01

    A striking feature of lymphatic filariasis is the considerable heterogeneity in infection burden observed between hosts, which greatly complicates the analysis of the population dynamics of the disease. Here, we describe the first application of the moment closure equation approach to model the sources and the impact of this heterogeneity for macrofilarial population dynamics. The analysis is based on the closest laboratory equivalent of the life cycle and immunology of infection in humans--cats chronically infected with the filarial nematode Brugia pahangi. Two sets of long-term experiments are analysed: hosts given either single primary infections or given repeat infections. We begin by quantifying changes in the mean and aggregation of adult parasites (inversely measured by the negative binomial parameter, kappa in cohorts of hosts using generalized linear models. We then apply simple stochastic models to interpret observed patterns. The models and empirical data indicate that parasite aggregation tracks the decline in the mean burden with host age in primary infections. Conversely, in repeat infections, aggregation increases as the worm burden declines with experience of infection. The results show that the primary infection variability is consistent with heterogeneities in parasite survival between hosts. By contrast, the models indicate that the reduction in parasite variability with time in repeat infections is most likely due to the 'filtering' effect of a strong, acquired immune response, which gradually acts to remove the initial variability generated by heterogeneities in larval mortality. We discuss this result in terms of the homogenizing effect of host immunity-driven density-dependence on macrofilarial burden in older hosts. PMID:9474798

  11. Nematodes parasites of the gray fox (Urocyon cinereoargenteus Schreber, 1775) in the seasonally dry tropical highlands of central Mexico.

    PubMed

    Hernández-Camacho, Norma; Pineda-López, Raul; López-González, Carlos A; Jones, Robert W

    2011-06-01

    The gray fox (Urocyon cinereoargenteus Schreber, 1775) is the most abundant and opportunistic wild canid in Mexico. However, the parasites of this canid in Mexico are poorly known, and an intensive parasite survey is lacking. A survey of gray fox parasitological feces was conducted in El Cimatario National Park, a protected area representative of the seasonally dry, tropical highlands of Mexico. Feces were collected in six 1-km-length transects during the summer of 2003 and spring of 2004. The coproparasitoscopical survey registered nine species of nematodes, typical of wild and domestic canids such as Strongyloides stercoralis, Uncinaria stenocephala, Toxocara canis, Toxascaris leonina, Dioctophyme renale, Trichuris vulpis, Trichuris sp., and Capillaria sp. Ecological factors such as temperature and humidity appear to play a more important role in the establishment of these species of parasites in this protected area than the presence of domestic dogs.

  12. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes.

    PubMed

    Paganini, Julien; Campan-Fournier, Amandine; Da Rocha, Martine; Gouret, Philippe; Pontarotti, Pierre; Wajnberg, Eric; Abad, Pierre; Danchin, Etienne G J

    2012-01-01

    Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of

  13. Parasitic Nematode-Induced Modulation of Body Weight and Associated Metabolic Dysfunction in Mouse Models of Obesity

    PubMed Central

    Yang, Zhonghan; Grinchuk, Viktoriya; Smith, Allen; Qin, Bolin; Bohl, Jennifer A.; Sun, Rex; Notari, Luigi; Zhang, Zhongyan; Sesaki, Hiromi; Urban, Joseph F.; Shea-Donohue, Terez

    2013-01-01

    Obesity is associated with a chronic low-grade inflammation characterized by increased levels of proinflammatory cytokines that are implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been explored to treat autoimmune diseases. We investigated the effects of nematode infection against obesity and the associated metabolic dysfunction. Infection of RIP2-Opa1KO mice or C57BL/6 mice fed a high-fat diet (HFD) with Nippostrongylus brasiliensis decreased weight gain and was associated with improved glucose metabolism. Infection of obese mice fed the HFD reduced body weight and adipose tissue mass, ameliorated hepatic steatosis associated with a decreased expression of key lipogenic enzymes/mediators, and improved glucose metabolism, accompanied by changes in the profile of metabolic hormones. The infection resulted in a phenotypic change in adipose tissue macrophages that was characterized by upregulation of alternative activation markers. Interleukin-13 (IL-13) activation of the STAT6 signaling pathway was required for the infection-induced attenuation of steatosis but not for improved glucose metabolism, whereas weight loss was attributed to both IL-13/STAT6-dependent and -independent mechanisms. Parasitic nematode infection has both preventive and therapeutic effects against the development of obesity and associated features of metabolic dysfunction in mice. PMID:23509143

  14. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer.

    PubMed

    Boze, Broox G V; Moore, Janice

    2014-07-01

    Dung beetles (genus Phanaeus) consume feces in both their larval and adults forms and because of their unique dietary niche, and behaviors associated with the burial of feces, are considered ecosystem engineers. In addition, because these insects subsist on a diet composed exclusively of feces, it is likely they encounter parasitic propagules more frequently than other animals do. Parasites often alter their host's behavior, so we set out to test whether Physocephalus sexalatus (a cosmopolitan nematode parasite of ungulates) does so in ways that affect the dung beetle's role as an ecosystem engineer and/or its predator-prey relationships (transmission of the parasite). Classic tests of anti-predator behavior did not reveal behavioral differences based on the beetles' infection status. However, this parasite did alter the beetles' behaviors in ways that could be critical for its role in fecal processing and therefore ecosystem engineering. Infected beetles exhibited anorexic behavior and consumed only half the amount of feces ingested by similar uninfected beetles. Infected beetles also buried less feces and did so in tunnels that were significantly shorter than those created by uninfected beetles. Fecal burial is naturally beneficial because it aerates the soil, incorporates nitrogenous compounds, and increases the flow of water thereby making soil and pastureland more productive. We showed that the nematode parasite P. sexalatus itself becomes an ecosystem engineer as it modifies the behavior of its already influential intermediate host. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Experimental and modeling approaches to evaluate different aspects of the efficacy of Targeted Selective Treatment of anthelmintics against sheep parasite nematodes.

    PubMed

    Gaba, S; Cabaret, J; Sauvé, C; Cortet, J; Silvestre, A

    2010-08-04

    Maintaining a refugia i.e. a proportion of the population that is not exposed to selection by treatments has been suggested as an alternative to mass treatment in the management of nematode parasites of sheep. Three refugia have been identified: nematodes in untreated hosts, encysted larvae and free-living stages on pastures. Here we tested whether Targeted Selective Treatments (TST) could be relevant in controlling nematode infections and delaying anthelmintic resistance selection. We first conducted a one grazing season experiment to compare all flock treatment (the whole flock was treated monthly) and TST based on monthly excretion eggs and daily weight gain. Nematode burden was higher in TST group, but anthelmintic susceptibility of nematodes was preserved. We then used an individual-based model to evaluate the sustainability of TST on a longer period. The simulation approach indicated that TST20% and TST30% of the flock were efficient both at maintaining resistance at a low level and controlling nematode parasite infections on a mid-term period (i.e. simulation of five grazing seasons). However for an efficient TST, these percentages of treated hosts should be adapted to flock size since the number of nematode parasites exposed to selection increases in large flocks. Our results also showed a high dependence on the timing of treatment i.e. on the size of the refugia constituted by the free-living stages on the pasture.

  16. Duplications and Positive Selection Drive the Evolution of Parasitism-Associated Gene Families in the Nematode Strongyloides papillosus

    PubMed Central

    Baskaran, Praveen; Jaleta, Tegegn G.; Streit, Adrian

    2017-01-01

    Gene duplication is a major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families. To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages and sexes. Overall, we found that the majority of genes are developmentally regulated and have one-to-one orthologs in the diverged S. ratti genome. Together with the finding of similar expression profiles between S. papillosus and S. ratti, these results indicate a strong evolutionary constraint acting against change at sequence and expression levels. However, the comparison between parasitic and free-living females demonstrates a quite divergent pattern that is mostly due to the previously mentioned expansion in the Astacin and CAP gene families. More detailed phylogenetic analysis of both gene families shows that most members date back to single expansion events early in the Strongyloides lineage and have undergone subfunctionalization resulting in clusters that are highly expressed either in infective larvae or in parasitic females. Finally, we found increased evidence for positive selection in both gene families relative to the genome-wide expectation. In summary, our study reveals first insights into the developmental transcriptomes of S. papillosus and provides a detailed analysis of sequence and expression evolution in parasitism-associated gene families. PMID:28338804

  17. Duplications and positive selection drive the evolution of parasitism associated gene families in the nematode Strongyloides papillosus.

    PubMed

    Baskaran, Praveen; Jaleta, Tegegn G; Streit, Adrian; Rödelsperger, Christian

    2017-03-02

    Gene duplication is one major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families.To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages and sexes. Overall, we found that the majority of genes are developmentally regulated and have one-to-one orthologs in the diverged S. ratti genome. Together with the finding of similar expression profiles between S. papillosus and S. ratti, these results indicate a strong evolutionary constraint acting against change at sequence and expression levels. However, the comparison between parasitic and free-living females demonstrates a quite divergent pattern that is mostly due to the previously mentioned expansion in the Astacin and CAP gene families. More detailed phylogenetic analysis of both gene families shows that most members date back to single expansion events early in the Strongyloides lineage and have undergone subfunctionalization resulting in clusters that are highly expressed either in infective larvae or in parasitic females. Finally, we found increased evidence for positive selection in both gene families relative to the genome-wide expectation.In summary, our study reveals first insights into the developmental transcriptomes of S. papillosus and provides a detailed analysis of sequence and expression evolution in parasitism associated gene families.

  18. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation*

    PubMed Central

    Ahmed, Umul Kulthum; Maller, N. Claire; Iqbal, Asif J.; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G.

    2016-01-01

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  19. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation.

    PubMed

    Ahmed, Umul Kulthum; Maller, N Claire; Iqbal, Asif J; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G

    2016-05-27

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.

  20. Copromicroscopic and molecular assays for the detection of cancer-causing parasitic nematode Spirocerca lupi.

    PubMed

    Traversa, Donato; Avolio, Stefania; Modrý, David; Otranto, Domenico; Iorio, Raffaella; Aroch, Itamar; Cringoli, Giuseppe; Milillo, Piermarino; Albrechtová, Katka; Mihalca, Andrei D; Lavy, Eran

    2008-10-20

    Spirocerca lupi (Nematoda, Spirurida) is a life-threatening parasitic nematode of dogs that is presently emerging in several countries. Nonetheless, canine spirocercosis is neglected and underestimated, mainly due to diagnostic limitations inherent to clinico-pathologic, diagnostic imaging and laboratory methodologies. Given the significant benefit of improved diagnosis, the present work evaluated the reliability of a recently described copromicroscopic approach, the FLOTAC technique, as well as a PCR-based assay with that of traditional coproscopic techniques to diagnose S. lupi infection. Ninety-four faecal field samples were collected from two endemic areas (i.e. 29 and 65 from Kenya and Israel, respectively) and processed using different coproscopic examination techniques. In particular, set I (Kenyan samples) comprised the modified flotation with Sheather's sugar solution and merthiolate-iodine-formalin technique, while set II (Israeli samples) comprised a flotation technique with zinc sulphate solution, a modified sugar flotation procedure and the FLOTAC method. All samples were also subjected to a semi-nested PCR protocol specific for a region internal to the mitochondrial cytochrome c oxidase subunit 1 gene of S. lupi. The coproscopic examinations showed low sensitivity and high variability, demonstrating the unreliability of the conventional methods for detecting S. lupi eggs. Nonetheless, the FLOTAC technique scored the highest number of positives and significantly higher number of S. lupi eggs per microscopic field compared to the other coproscopic methods. Additionally, of the coproscopically negative samples, 9 (45%) Kenyan and 21 (38.2%) Israeli samples scored molecularly positive using the PCR-based approach. The potential implications and perspectives for canine spirocercosis of these coproscopic and molecular diagnostic methodologies evaluated herein are discussed.

  1. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus.

    PubMed

    McCavera, Samantha; Rogers, Adrian T; Yates, Darran M; Woods, Debra J; Wolstenholme, Adrian J

    2009-06-01

    Nematode glutamate-gated chloride channels are targets of the macrocyclic lactones, the most important group of anthelmintics available. In Xenopus laevis oocytes, channels formed by the GluClalpha3B subunit from the parasite Haemonchus contortus were more sensitive to l-glutamate (EC(50) = 27.6 +/- 2.7 microM) than those formed by the homologous subunit from Caenorhabditis elegans (EC(50) = 2.2 +/- 0.12 mM). Ibotenate was a partial agonist (EC(50) = 87.7 +/- 3.5 microM). The H. contortus channels responded to low concentrations of ivermectin (estimated EC(50) = approximately 0.1 +/- 1.0 nM), opening slowly and irreversibly in a highly cooperative manner: the rate of channel opening was concentration-dependent. Responses to glutamate and ivermectin were inhibited by picrotoxinin and fipronil. Mutating an N-terminal domain amino acid, leucine 256, to phenylalanine increased the EC(50) for l-glutamate to 92.2 +/- 3.5 microM, and reduced the Hill number from 1.89 +/- 0.35 to 1.09 +/- 0.16. It increased the K(d) for radiolabeled ivermectin binding from 0.35 +/- 0.1 to 2.26 +/- 0.78 nM. Two other mutations (E114G and V235A) had no effect on l-glutamate activation or ivermectin binding: one (T300S) produced no detectable channel activity, but ivermectin binding was similar to wild-type. The substitution of any aromatic amino acid for Leu256 had similar effects in the radioligand binding assay. Molecular modeling studies suggested that the GluCl subunits have a fold similar to that of other Cys-loop ligand-gated ion channels and that amino acid 256 was unlikely to play a direct role in ligand binding but may be involved in mediating the allosteric properties of the receptor.

  2. Biological control of nematode parasites of small ruminants in Malaysia using the nematophagous fungus Duddingtonia flagrans.

    PubMed

    Chandrawathani, P; Jamnah, O; Waller, P J; Larsen, M; Gillespie, A T; Zahari, W M

    2003-11-14

    Control of nematode parasites of small ruminants in a wet, tropical environment using the nematophagous fungus, Duddingtonia flagrans, was assessed in this study. Two methods of fungal delivery were tested, namely as a daily feed supplement, or incorporated into feed blocks. Initially, pen trials were conducted with individually penned groups of sheep and goats at dose rates of 125,000 spores and 250,000 spores/kg live weight per day. At the lower dose rate this reduction was between 80 and 90% compared with the pre-treatment levels. At the higher dose rate, there was virtually complete suppression (>99% reduction) of larval recovery. Trials using the fungal feed blocks, showed that when animals were individually penned, they consumed only small amounts of the block (particularly goats), hence little effect on larval recovery in faecal cultures was observed. Grouping animals according to species and dose rate induced satisfactory block consumption and subsequent high levels of larval reduction in faecal cultures. These larval reductions were mirrored by the presence of fungus in faecal cultures. This work was followed by a small paddock trial, whereby three groups of sheep were fed either a feed supplement without fungal spores, supplement with spores, or offered fungal blocks. The dose rate of spores in the latter two groups was 500,000 spores/kg live weight per day. Egg counts were significantly reduced in the two fungal groups, compared with the control group and the latter required two salvage anthelmintic treatments to prevent mortality due to haemonchosis. Pasture larval numbers on the two fungal group plots were also much lower than on the control plot.

  3. Diversity and Occurrence of Plant-parasitic Nematodes Associated with Golf Course Turfgrasses in North and South Carolina, USA

    PubMed Central

    Zeng, Yongsan; Ye, Weimin; Bruce Martin, S.; Martin, Matt; Tredway, Lane

    2012-01-01

    One hundred and eleven golf courses from 39 counties in the Carolinas were surveyed for plant-parasitic nematodes. Species diversity within habitats was analyzed with five diversity indices including Diversity index (H’), Evenness (J’), Richness (SR), Dominance (λ) and Diversity (H2). The results revealed a remarkably high diversity of 24 nematode species belonging to 19 genera and 11 families. Of those, 23 species were found in SC, 19 species in NC, and 18 species were detected in both states. Helicotylenchus dihystera, Mesocriconema xenoplax, Hoplolaimus galeatus, Tylenchorhynchus claytoni, Belonolaimus longicaudatus, Meloidogyne graminis and Paratrichodorus minor were the most prevalent and abundant species in golf course turfgrasses in both states. Twelve species were new records of plant parasitic nematodes in turfgrasses in both NC and SC. The results also revealed effects of different habitats on diversity of nematode species in turfgrass ecosystem. H’ and SR values were higher in SC than in NC. H’, J’ and H2 values were significantly higher in sandy than in clay soil in NC, but no significant differences between sand and clay soil were detected in SC or in pooled data from both states. There were no significant differences for all indices among the management zones (putting green, fairway and tee) in NC. However, in SC and pooled data, H’, SR and H2 were significantly higher in putting greens than in fairways and tees. Significant differences from different grass species (bermudagrass, creeping bentgrass and zoysiagrass) were detected only in H’, which was significantly higher in zoysiagrass than in bentgrass or bermudagrass in NC. In pooled data, H’ was significantly higher in zoysiagrass samples than in creeping bentgrass samples but was not significantly different from bermudagrass samples. PMID:23482422

  4. Parasites, stress and reindeer: infection with abomasal nematodes is not associated with elevated glucocorticoid levels in hair or faeces

    PubMed Central

    Carlsson, A. M.; Mastromonaco, G.; Vandervalk, E.; Kutz, S.

    2016-01-01

    Stress hormones (glucocorticoids), incorporated into hair/fur and faeces, have been proposed as biomarkers of overall health in wildlife. Although such biomarkers may be helpful for wildlife conservation and management, their use has rarely been validated. There is a paucity of studies examining the variation of stress hormones in mammals and how they relate to other health measures, such as parasitism. Parasites are ubiquitous in wildlife and can influence the fitness of individual animals and populations. Through a longitudinal experiment using captive reindeer (Rangifer tarandus tarandus), we tested whether animals infected with Ostertagia gruehneri, a gastrointestinal nematode with negative impacts on fitness of the host, had higher stress levels compared with those that had been treated to remove infection. Faecal samples were collected weekly for 12 weeks (June–September) and hair was collected at the start and end of the study; glucocorticoids were quantified using enzyme immunoassays. Contrary to what was expected, infected reindeer had similar levels of cortisol in hair and slightly lower glucocorticoid metabolites in faeces compared with uninfected reindeer. Faecal corticosterone levels were higher than faecal cortisol levels, and only corticosterone increased significantly after a handling event. These results suggest that reindeer may use a tolerance strategy to cope with gastrointestinal nematodes and raise the question as to whether moderate infection intensities with nematodes are beneficial to the host. By removing nematodes we may have altered the gut microbiota, leading to the observed elevated faecal glucocorticoid metabolite levels in the treated reindeer. These findings demonstrate the importance of considering both cortisol and corticosterone in physiological studies, as there is mounting evidence that they may have different functionalities. PMID:27957334

  5. Effect of immunostimulatory oligodeoxynucleotides on host responses and the establishment of Brugia pahangi in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Chirgwin, Sharon R; Nowling, Jena M; Coleman, Sharon U; Klei, Thomas R

    2003-06-01

    Infection of humans with filarial parasites has long been associated with the maintenance of a dominant Th2-type host immune response. This is reflected by increases in interleukin (IL)-4- and IL-5-producing T cells, elevated immunoglobulin (Ig)E and IgG4 levels, and a pronounced eosinophilia. The Mongolian gerbil (Meriones unguiculatus) is permissive for the filarial nematodes Brugia malayi and B. pahangi. As in humans, persistent microfilaremic infections of gerbils with Brugia spp. results in increases in Th2 cytokines such as IL-4 and IL-5. The association of dominant Th2 cytokine profiles with the maintenance of infection suggests that the introduction of Brugia spp. into a strongly Th1-biased environment may adversely affect parasite establishment. Indeed, studies conducted in mice with B. malayi suggest that depleting Th1 effectors such as interferon (IFN)-gamma and nitric oxide results in increased worm recoveries. In the present studies, the Mongolian gerbil was used as a model to investigate the effect of a dominant Th1 cytokine environment on the establishment of B. pahangi. Intraperitoneal (i.p.) administration of immunostimulatory oligodeoxynucleotide (IS ODN) induced the production of IFN-gamma in the peritoneal exudate cells and spleen of gerbils. The presence of IFN-gamma at the time of B. pahangi infection did result in an altered host immune response to B. pahangi. Gerbils that received IS ODN before i.p. B. pahangi infections showed lower levels of the Th2-type cytokines IL-4 and IL-5, compared with animals that received B. pahangi alone (0 + Bp). This alteration in cytokine profile, however, did not alter the establishment or development of B. pahangi in the peritoneal cavity. Furthermore, there was no difference in the granulomatous response of gerbils to soluble adult B. pahangi antigen bound to beads embolized in their lungs, regardless of treatment group, suggesting that IL-4 and IL-5 are not essential contributors to the systemic host

  6. Effects of grafted heirloom tomatoes on parasitic nematode populations in an organic production system

    USDA-ARS?s Scientific Manuscript database

    Grafting vegetable crops has shown potential to contribute to root-knot nematode management alone and in combination with chemical treatments. In organic production, there are extremely limited options currently available to growers for control of phytoparasitic nematodes. Grafting desirable tomat...

  7. Extensive mitochondrial gene rearrangement in a genus of plant parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    The nematodes Globodera pallida and G. rostochiensis are two of the only animals known to have multipartite mitochondrial genomes. In such genomes, mitochondrial genes are distributed on multiple circles. The entire sequence of a nematode (Radopholus similis) that belongs to the same superfamily (...

  8. Some taxonomic and phylogenetic trends for free-living and plant-parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    The information, techniques and strategies used by nematode taxonomists have improved in major ways over the last 15 years. New methods of specimen preparation, new microscopic procedures, and new morphological and molecular characters have improved the quality of nematode descriptions. Testing taxo...

  9. Anthelmintic resistance of nematode parasites of small ruminants in eastern Ethiopia: exploitation of refugia to restore anthelmintic efficacy.

    PubMed

    Sissay, Menkir M; Asefa, Asmare; Uggla, Arvid; Waller, Peter J

    2006-02-18

    Faecal egg count reduction tests (FECRT) were conducted in May 2003 to determine the efficacy of anthelmintics used for treatment against nematode parasites in separately managed sheep and goat flocks at Alemaya University in eastern Ethiopia. These tests revealed high levels of anthelmintic resistance to albendazole, tetramisole, the combination of these two drugs, and to ivermectin in the goat flock (predominantly infected by Haemonchus contortus and Trichostrongylus spp.), whereas all drugs were highly efficacious in the sheep flock. A second FECRT confirmed these observations. Following this, a new management system was implemented on the goat flock for a period of 9 months (January-September 2004) in an attempt to restore the anthelmintic efficacy. This involved a combination of measures: eliminating the existing parasite infections in the goats, exclusion from the traditional goat pastures, and introducing communal grazing of the goats with the university sheep flock and livestock owned by neighbouring small-holder farmers. A second series of FECRTs (Tests 3 and 4) conducted 7 months after this change in management, showed high levels of efficacy to all three drugs (albendazole, tetramisole and ivermectin) in the goat flock. This is the first field study to demonstrate that anthelmintic efficacy in the control of nematode parasites of small ruminants can be restored by exploiting refugia.

  10. Distribution of plant-parasitic nematodes on sugarcane in louisiana and efficacy of nematicides.

    PubMed

    Bond, J P; McGawley, E C; Hoy, J W

    2000-12-01

    A survey conducted from May 1995 through August 1998 revealed diverse nematode communities in Louisiana sugarcane fields. High populations of Mesocriconema, Paratrichodorus, Pratylenchus, and Tylenchorhynchus were widespread in nine sugarcane production parishes. Comparisons of plant cane and ratoon sugarcane crops indicated that nematode community levels increase significantly in successive ratoon crops. Nematicide trials evaluated the efficacy of aldicarb, ethoprop, and phorate against indigenous nematode populations. Aldicarb consistently increased the number of millable stalks, cane tonnage, and yield of sucrose in soils with a high sand content. Yield increases were concomitant with reductions in the density of the nematode community shortly after planting and at harvest. In soils with a higher clay content, the chemicals were less effective in controlling nematode populations and, as a result, yield increases were minimal.

  11. The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi

    PubMed Central

    O’Neill, Maeghan; Burkman, Erica; Zaky, Weam I.; Xia, Jianguo; Moorhead, Andrew; Williams, Steven A.; Geary, Timothy G.

    2016-01-01

    Background Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. Methodology/Principal Findings Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. Conclusions/Significance These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped. PMID:26727204

  12. A New Root-Knot Nematode Parasitizing Sea Rocket from Spanish Mediterranean Coastal Dunes: Meloidogyne dunensis n. sp. (Nematoda: Meloidogynidae)

    PubMed Central

    Palomares Rius, J. E.; Vovlas, N.; Troccoli, A.; Liébanas, G.; Landa, B. B.; Castillo, P.

    2007-01-01

    High infection rates of European sea rocket feeder roots by an unknown root-knot nematode were found in a coastal dune soil at Cullera (Valencia) in central eastern Spain. Morphometry, esterase and malate dehydrogenase electrophoretic phenotypes and phylogenetic trees demonstrated that this nematode species differs clearly from other previously described root-knot nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European sea rocket plants and in artificially inoculated tomato (cv. Roma) and chickpea (cv. UC 27) plants. The species is herein described and illustrated and named as Meloidogyne dunensis n. sp. The new root-knot nematode can be distinguished from other Meloidogyne spp. by: (i) perineal pattern rounded-oval, formed of numerous fine dorsal and ventral cuticle striae and ridges, lateral fields clearly visible; (ii) female excretory pore at the level of stylet knobs, EP/ST ratio 1.6; (iii) second-stage juveniles with hemizonid located 1 to 2 annuli anteriorly to excretory pore and long, narrow, tapering tail; and (iv) males with lateral fields composed of four incisures anteriorly and posteriorly, while six distinct incisures are observed for large part at mid-body. Phylogenetic trees derived from distance and maximum parsimony analyses based on 18S, ITS1–5.8S-ITS2 and D2-D3 of 28S rDNA showed that M. dunensis n. sp. can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance in morphology, such as M. duytsi, M. maritima, M. mayaguensis and M. minor. PMID:19259488

  13. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis.

    PubMed

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Dong-Wei; Xu, Chun-Ling; Huang, Xin; Wu, Wen-Jia; Li, Dan-Lei

    2015-01-01

    Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes.

  14. StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes.

    PubMed

    Hu, Chunxiao; Kearn, James; Urwin, Peter; Lilley, Catherine; O' Connor, Vincent; Holden-Dye, Lindy; Morgan, Hywel

    2014-07-21

    Plant parasitic nematodes (PPNs) infest the roots of crops and cause global losses with a severe economic impact on food production. Current chemical control agents are being removed from use due to environmental and toxicity concerns and there is a need for new approaches to crop protection. A key feature of parasitic behaviour for the majority of PPNs is a hollow stomastyle or odontostyle required for interaction with the host plant and feeding. This lance-like microscopic structure, often called a stylet, protrudes from the mouth of the worm and thrusts in a rhythmic manner to stab the host root. Studying stylet activity presents technical challenges and as a consequence the underlying biology is poorly understood. We have addressed this by designing a microfluidic chip which traps the PPN Globodera pallida and permits the recording of an electrophysiological signal concomitant with stylet thrusting. The PDMS chip incorporates a precisely designed aperture to trap the nematode securely around a mid-point of its body. It is fabricated using a novel combination of conventional photolithography and two photon polymerization. The chip incorporates valves for rapid application of test compounds and integral electrodes to facilitate acquisition of electrical signals. We show that stylet thrusting can be induced by controlled application of 5-HT (serotonin) to the worm. Each thrust and retraction produces an electrical waveform that characterises the physiological activity associated with the worm's behaviour. The ability to reproducibly record the stylet activity of PPNs provides a new platform for nematicide screening that specifically focuses on a behaviour that is integral to the parasite host interaction. This is the first report of a microfluidic chip capable of electrophysiological recording from nematodes other than Caenorhabditis elegans. The unique approach is optimised for trapping and recording from smaller worms or worms with distinct anterior body shapes

  15. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Dong-Wei; Xu, Chun-Ling; Huang, Xin; Wu, Wen-Jia; Li, Dan-Lei

    2015-01-01

    Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes. PMID:26221074

  16. Hystrignathus dearmasi sp. n. (Oxyurida, Hystrignathidae), first record of a nematode parasitizing a Panamanian Passalidae (Insecta, Coleoptera)

    PubMed Central

    Morffe, Jans; García, Nayla

    2010-01-01

    Abstract Hystrignathus dearmasi sp. n. (Oxyurida: Hystrignathidae) is described from an unidentified passalid beetle (Coleoptera: Passalidae) from Panama. It resembles Hystrignathus cobbi Travassos & Kloss, 1957 from Brazil, by having a similar form of the cephalic end, extension of cervical spines and absence of lateral alae. It differs from the latter species by having the body shorter, the oesophagus and tail comparatively larger, the vulva situated more posterior and the eggs ridged. This species constitutes the first record of a nematode parasitizing a Panamanian passalid. PMID:21594186

  17. Helminth parasites of Pseudacris hypochondriaca (Anura: Hylidae) from Baja California, Mexico, with the description of two new species of nematodes.

    PubMed

    Martínez-Salazar, Elizabeth A; Falcón-Ordaz, Jorge; González-Bernal, Edna; Parra-Olea, Gabriela; de León, Gerardo Pérez-Ponce

    2013-12-01

    The helminth parasite fauna of the hylid frog Pseudacris hypochondriaca in several localities along the Baja California Peninsula in northwestern Mexico is presented. The helminth fauna consists of 4 species of nematodes (Oswaldocruzia pipiens, a larval form of an Ascaridid, 2 new species belonging to the genera Rhabdias and Cosmocercoides), and 1 species of digenean ( Gorgoderina sp.). The new species of Rhabdias represents the 88th species assigned to the genus and the third species described from Mexican anurans. Also, the species of Cosmocercoides represents the 20th species assigned to the genus and the first representative of this genus described from Mexico.

  18. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi

    PubMed Central

    Stadler, Marc; Richert-Poeggeler, Katja R.; Dababat, Abdelfattah A.; Maier, Wolfgang

    2017-01-01

    Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae), encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal and nematode

  19. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes.

    PubMed

    Marek, Martin; Zouhar, Miloslav; Douda, Ondřej; Maňasová, Marie; Ryšánek, Pavel

    2014-03-01

    The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).

  20. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production.

    PubMed

    Cabrera, J Alfonso; Wang, Dong; Gerik, James S; Gan, Jay

    2014-07-01

    Plant parasitic nematodes and soilborne pathogens can reduce the overall productivity in grape production. Not all grape growers apply soil fumigants before planting, and there is no single rootstock resistant to all nematode species. The aim of this investigation was to evaluate the effect of dimethyl disulfide (DMDS) applied at 112, 224, 448 and 897 kg ha(-1) as a post-plant treatment against soilborne plant parasitic nematodes and pathogens on the grape yield in established grapevines. In microplot and field trials, post-plant fumigation with DMDS controlled citrus (Tylenchulus semipenetrans), root-knot (Meloidogyne spp.), pin (Paratylenchus spp.) and ring (Mesocriconema xenoplax) nematodes in established Thomson Seedless grapevines. However, DMDS did not control the soilborne pathogens Pythium ultimum and Fusarium oxysporum. No indications of phytotoxicity were detected after post-plant fumigation with DMDS. In the field trial, grape yield was significantly higher with the lowest DMDS rate, but no difference among other rates was observed in comparison with the untreated control. Post-plant fumigation with DMDS controlled plant parasitic nematodes in established grapevines but was less efficacious against soilborne pathogens. Low rates of DMDS were sufficient for nematode control and increased the grape yield, probably without affecting beneficial soil organisms. Further research on evaluating the potential effect of DMDS against beneficial soil organisms is needed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Multichannel microfluidic chip for rapid and reliable trapping and imaging plant-parasitic nematodes

    NASA Astrophysics Data System (ADS)

    Amrit, Ratthasart; Sripumkhai, Witsaroot; Porntheeraphat, Supanit; Jeamsaksiri, Wutthinan; Tangchitsomkid, Nuchanart; Sutapun, Boonsong

    2013-05-01

    Faster and reliable testing technique to count and identify nematode species resided in plant roots is therefore essential for export control and certification. This work proposes utilizing a multichannel microfluidic chip with an integrated flow-through microfilter to retain the nematodes in a trapping chamber. When trapped, it is rather simple and convenient to capture images of the nematodes and later identify their species by a trained technician. Multiple samples can be tested in parallel using the proposed microfluidic chip therefore increasing number of samples tested per day.

  2. Control of nematode parasites with agents acting on neuro-musculature systems: lessons for neuropeptide ligand discovery.

    PubMed

    Martin, Richard J; Robertson, Alan P

    2010-01-01

    There are a number of reasons why the development of novel anthelmintics is very necessary. In domestic animals, parasites cause serious loss of production and are a welfare concern. The control of these parasites requires changes in management practices to reduce the spread of infection and the use of therapeutic agents to treat affected animals. The development of vaccines against parasites is desirable but their development so far has been very limited. One notable exception is the vaccination of calves against infection by Dictyocaulus viviparous (lungworm) which has proved to be very effective. In domestic animals, the total market for anti-parasitic agents (both ecto- and endo-parasites) is in excess of a billion U.S. dollars. In humans there are serious problems ofmorbidity and mortality associated with parasite infections. 1.6 billion People throughout the world are infected with ascariasis (Fig. 1A) and/or hookworm. Approximately one-third of the world's population is suffering from the effects of intestinal nematode parasites, causing low growth-rates in infants, ill-thrift, diarrhea and in 2% of cases, loss of life. Despite the huge number of affected individuals, the market for anti-parasitic drugs for humans is not big enough to foster the development of anthelmintics because most infestations that occur are in undeveloped countries that lack the ability to pay for the development of these drugs. The major economic motivator then, is for the development of animal anthelmintics. In both domestic animals and now in humans, there is now a level of resistance to the available anthelmintic compounds. The resistance is either: constitutive, where a given species of parasite has never been sensitive to the compound; or acquired, where the resistance has developed through Darwinian selection fostered by the continued exposure to the anti-parasitic drugs. The continued use of all anthelmintics has and will, continue to increase the level of resistance. Cure

  3. In vitro proteolysis of nematode FMRFamide-like peptides (FLPs) by preparations from a free-living nematode (Panagrellus redivivus) and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita).

    PubMed

    Masler, E P

    2012-03-01

    Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the large FMRF-amide like peptide (FLP) family in nematodes. Overall protease activity in P. redivivus was four- to fivefold greater than in either of the parasites, a result that might reflect developmental differences. Digestion of the M. incognita FLP KHEFVRFa (substrate Abz-KHEFVRF-Y(3-NO2)a) by M. incognita extract was sevenfold greater than with H. glycines extract and twofold greater than P. redivivus, suggesting species-specific preferences. Additional species differences were revealed upon screening 12 different protease inhibitors. Two substrates were used in the screen, Abz-KHEFVRF-Y(3-NO2)a and Abz-KPSFVRF-Y(3-NO2)a), which was digested equally by all three species. The effects of various inhibitor, substrate and extract source combinations on substrate digestion suggest that M. incognita differs significantly from P. redivivus and H. glycines in its complement of cysteine proteases, particularly cathepsin L-type protease.

  4. Crop Rotation and Herbicide Effects on Population Densities of Plant-Parasitic Nematodes

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Hauser, E. W.

    1975-01-01

    The influence of herbicides and mono- and multicropping sequences on population densities of nematode species common in corn, cotton, peanut, and soybean fields in the southeastern United States was studied for 4 years. Each experimental plot was sampled at monthly intervals. The application of herbicides did not significantly affect nematode population densities. Meloidogyne incognita and Trichodorus christiei increased rapidly on corn and cotton, but were suppressed by peanut and soybean. More Pratylenchus spp. occurred on corn and soybean than on cotton and peanut. Criconemoides ornatus increased rapidly on corn and peanut, but was suppressed by cotton and soybean. Helicotylenchus dihystera was more numerous on cotton and soybean than on corn and peanut. Numbers of Xiphinema americanum remained low on all crops. The peanut sequence was the most effective monocrop system for suppressing most nematode species. Multi-crop systems, corn-peanut-cotton-soybean and cotton-soybean-corn-peanut, were equally effective in suppressing nematode densities. PMID:19308149

  5. Economic value and course of infection after treatment of cattle having a low level of nematode parasitism.

    PubMed

    Leland, S E; Davis, G V; Caley, H K; Arnett, D W; Ridley, R K

    1980-04-01

    To determine whether it is economically advantageous to treat calves having inapparent parasitism, we conducted experiments from 1971 to 1976, involving more than 1,800 calves from 30 pens or lots, using formulations of thiabendazole, levamisole, and crufomate (ruelene). Differential egg counts, cultured larvae, and cultured parasitic stages were used to estimate the kind and degree of nematode parasitism. Differentiation of infective larvae consistently established Cooperia as the predominating (%) genus in all fecal samplings. Bunostomum, when initially present, decreased or disappeared, whereas Trichostrongylus increased; other genera fluctuated less consistently. These qualitative generic fluctuations were not primarily the result of treatment, but more likely were seasonal variation. Judged by average daily gain (ADG), anthelmintic treatment was statistically advantageous at one or more points during the observation periods in 10 of 13 treated groups. In seven treated groups, the observation periods were concluded with statistical advantage in ADG, whereas in three groups, compensatory gain by corresponding controls had neutralized earlier advantages. The comparative influence of the various anthelmintics was not consistent from year to year. When total cost/kilogram gain was calculated from feed efficiency measuremnts and other costs, economic treatment advantage was evident in seven of 11 tests (7 of 10 treatment groups) from 1973 through 1976. This financial advantage, due primarily to feed efficiency and noted after 28 to 51 days, justified anthelmintic treatment. This advantage was not likely lost by the animals in subsequent periods (to 218 days) on pasture or in lots, since ADG indicated the treated calves performed either as well as, or better than, the nontreated controls. Considering all aspects of the study, the results indicate calves coming into Kansas from southern states and weighing 184 to 267 kg may possess a level of subclinical (symptomless

  6. Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy

    PubMed Central

    2014-01-01

    Background Gastrointestinal nematodes (GINs) are one of the main constraints to ruminant production worldwide. Anthelmintic resistance (AR) has been reported in goats throughout Europe, yet little is known about the AR status in Italy. The aims of the study were: i) determine the frequency of AR in GINs in goat flocks in Northern Italy, Italy, ii) survey goat farmers on the current practices of parasite control, iii) update the species composition of the gastrointestinal helminthofauna. Thirty three flocks were enrolled and 1288 individual fecal samples were collected. Based on the egg per gram (EPG), 15 flocks were selected to evaluate the presence of AR in GINs with the Fecal Egg Count Reduction Test (FECRT). A questionnaire surveyed 110 dairy goat farmers to acquire information about farm management and drenching practices against GINs. Further, the gastrointestinal tracts of 42 goats were analyzed. Results The FECRs indicated that five of the 15 flocks had problems of AR, which was identified in all two of the anthelmintic classes tested. Resistance and suspected resistance was found in 40% of the flocks selected for AR testing that were treated with benzimidazoles while 20% of the flocks treated with eprinomectin had resistant GINs. Teladorsagia/Trichostrongylus L3 were isolated from the post-treatment coprocultures of all flocks with resistance but not from the flock with suspected oxfendazole resistance. Treatments against helminths were performed once annually in 73.63% of the flocks, but 20.00% of farmers declared not regularly treating their goats every year. Annual treatments usually occurred in autumn or winter at dose rate for sheep. Te. circumcincta, H. contortus, Tr. colubriformis, Skrjabinema caprae and Oesophagostomum venulosum were the most abundant and prevalent species of the gastrointestinal tract. Conclusions Strategies to prevent the development of AR should be widely adopted in Northern Italy. Further, farmers and practitioners should be

  7. Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy.

    PubMed

    Zanzani, Sergio Aurelio; Gazzonis, Alessia Libera; Di Cerbo, Annarita; Varady, Marian; Manfredi, Maria Teresa

    2014-05-19

    Gastrointestinal nematodes (GINs) are one of the main constraints to ruminant production worldwide. Anthelmintic resistance (AR) has been reported in goats throughout Europe, yet little is known about the AR status in Italy. The aims of the study were: i) determine the frequency of AR in GINs in goat flocks in Northern Italy, Italy, ii) survey goat farmers on the current practices of parasite control, iii) update the species composition of the gastrointestinal helminthofauna. Thirty three flocks were enrolled and 1288 individual fecal samples were collected. Based on the egg per gram (EPG), 15 flocks were selected to evaluate the presence of AR in GINs with the Fecal Egg Count Reduction Test (FECRT). A questionnaire surveyed 110 dairy goat farmers to acquire information about farm management and drenching practices against GINs. Further, the gastrointestinal tracts of 42 goats were analyzed. The FECRs indicated that five of the 15 flocks had problems of AR, which was identified in all two of the anthelmintic classes tested. Resistance and suspected resistance was found in 40% of the flocks selected for AR testing that were treated with benzimidazoles while 20% of the flocks treated with eprinomectin had resistant GINs. Teladorsagia/Trichostrongylus L3 were isolated from the post-treatment coprocultures of all flocks with resistance but not from the flock with suspected oxfendazole resistance. Treatments against helminths were performed once annually in 73.63% of the flocks, but 20.00% of farmers declared not regularly treating their goats every year. Annual treatments usually occurred in autumn or winter at dose rate for sheep. Te. circumcincta, H. contortus, Tr. colubriformis, Skrjabinema caprae and Oesophagostomum venulosum were the most abundant and prevalent species of the gastrointestinal tract. Strategies to prevent the development of AR should be widely adopted in Northern Italy. Further, farmers and practitioners should be educated about the importance of

  8. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    PubMed

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    deciduous forest, but definitive glacial refugia for this group of plant parasitic nematodes have yet to be identified. Unlike agricultural pest species of plant-parasitic nematodes, there is little evidence of long-distance dispersal in Lobocriconema as revealed by haplotype distribution. Most haplotype groups were characterized by low levels of intragroup genetic variation and large genetic distances between haplotype groups. The localization of nematode haplotypes together with their characteristic plant communities could provide insight into the historical formation of these belowground biotic communities.

  9. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis.

    PubMed

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50-100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional

  10. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis

    PubMed Central

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    2016-01-01

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional

  11. Needles in the EST haystack: large-scale identification and analysis of excretory-secretory (ES) proteins in parasitic nematodes using expressed sequence tags (ESTs).

    PubMed

    Nagaraj, Shivashankar H; Gasser, Robin B; Ranganathan, Shoba

    2008-09-24

    Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets. In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong "loss-of-function" phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family "transthyretin-like" and "chromadorea ALT," considered as vaccine candidates against filariasis in humans. We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology

  12. Needles in the EST Haystack: Large-Scale Identification and Analysis of Excretory-Secretory (ES) Proteins in Parasitic Nematodes Using Expressed Sequence Tags (ESTs)

    PubMed Central

    Nagaraj, Shivashankar H.; Gasser, Robin B.; Ranganathan, Shoba

    2008-01-01

    Background Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets. Methods and Findings In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans. Conclusions We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a

  13. An Aphelenchoides sp. nematode Parasitic of Polianthes tuberosa in the Mekong Delta

    PubMed Central

    Thi Thu Cuc, Nguyen; Pilon, Marc

    2007-01-01

    Polianthes tuberosa is a commercially valuable flower crop in the Mekong Delta of Vietnam that is propagated by the harvesting and planting of bulbs. The cultivation of P. tuberosa is complicated by an endemic nematode infection that damages a high proportion of the plants. Based on morphological criteria and ribosomal RNA gene sequencing, we have determined that the infection is caused by an Aphelenchoides sp. nematode and is most likely Aphelenchoides besseyi. By scoring various parts of harvested plants with flowers for the presence of viable nematodes over a period of six months, we determined that the nematode is an ectoparasite that can survive the intercrop periods, especially in the bulbs that are used to plant new crops. A comparison of farming practices in the Mekong Delta failed to identify useful control methods, but rather indicated that fields that have cultivated P. tuberosa for the longest periods suffer the worst damage from the nematode infection. Finally, we demonstrated that the nematode is capable of infecting 30 rice cultivars but does not cause the white tip disease usually associated with A. besseyi infection. PMID:19259495

  14. Inter and intra-specific diversity of parasites that cause lymphatic filariasis

    PubMed Central

    McNulty, Samantha N.; Mitreva, Makedonka; Weil, Gary J.; Fischer, Peter U.

    2013-01-01

    Lymphatic filariasis is caused by three closely related nematode parasites: Wuchereria bancrofti, Brugia malayi and Brugia timori. These species have many ecological variants that differ in several aspects of their biology such as mosquito vector species, host range, periodicity, and morphology. Although the genome of B. malayi (the first genome sequenced from a parasitic nematode) has been available for more than five years, very little is known about genetic variability among the lymphatic dwelling filariae. The genetic diversity among these worms is not only interesting from a biological perspective, but it may have important practical implications for the Global Program to Eliminate Lymphatic Filariasis, as the parasites may respond differently to diagnostic tests and/or medical interventions. Therefore, better information on their genetic variability is urgently needed. With improved methods for nucleic acid extraction and recent advances in sequencing chemistry and instrumentation, this gap can be filled relatively inexpensively. Improved information on filarial genetic diversity may increase the chances of success for lymphatic filariasis elimination programs. PMID:23201850

  15. Effects of potato-cotton cropping systems and nematicides on plant-parasitic nematodes and crop yields.

    PubMed

    Crow, W T; Weingartner, D P; Dickson, D W

    2000-09-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.

  16. Host ABC transporter proteins may influence the efficacy of ivermectin and possibly have broader implications for the development of resistance in parasitic nematodes.

    PubMed

    Dooley, L A; Froese, E A; Chung, Y T; Burkman, E J; Moorhead, A R; Ardelli, B F

    2015-10-01

    ABC transporter proteins function to extrude compounds from the cell. These proteins present an obstacle for treatment and for overcoming drug resistance as they are expressed by both host and parasite, and function similarly. The contribution of host ABC proteins to drug efficacy was examined using ivermectin and a Brugia malayi model system. Parallel in vitro and in vivo experiments were conducted using equal concentrations of ivermectin. The motilities and fecundity of B. malayi exposed to ivermectin in vitro were significantly lower than those treated in vivo. The higher motilities were correlated with low concentrations of ivermectin in worms extracted from treated hosts. The expression of ABC proteins was significantly higher in worms treated in vitro compared to those treated in vivo as well as in gerbils treated with ivermectin than in non-treated controls. The results suggest that host ABC transporters may influence the efficacy of ivermectin. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi

    PubMed Central

    O’Neill, Maeghan; Mansour, Abdelmoneim; DiCosty, Utami; Geary, James; Dzimianski, Michael; McCall, Scott D.; McCall, John W.; Mackenzie, Charles D.; Geary, Timothy G.

    2016-01-01

    Current control strategies for onchocerciasis and lymphatic filariasis (LF) rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ), a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6–24 hr) to pharmacologically relevant concentrations (100 nM—10 μM) in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment. PMID:27145083

  18. 'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes.

    PubMed

    Noel, Gregory R; Atibalentja, Ndeme

    2006-07-01

    Bacteria-like endosymbionts of females of the plant-parasitic nematodes Globodera rostochiensis and Heterodera goettingiana and juveniles of Heterodera glycines were first observed during transmission electron microscopy (TEM) studies conducted in the 1970s. These organisms were characterized as being rod-shaped, ranging in size from 0.3 to 0.5 microm in diameter and 1.8 to 3 microm in length and containing structures labelled as striated inclusion bodies or tubular structures. A population of H. glycines was obtained from the soybean field where infected nematodes were first discovered in order to conduct TEM studies of females and males and to determine the phylogenetic position of the H. glycines endosymbiont among bacteria by studying the 16S rRNA and gyrB gene sequences. The bacterium was observed in the pseudocoelom and intestine of juveniles, females and males, in hypodermal chords of juveniles and males, in ovary walls and in oocytes and spermatozoa. The bacterium was polymorphic, measuring 0.4-0.8 x 2.5-4.5 microm, and many specimens contained an array of microfilament-like structures similar to those observed in "Candidatus Cardinium hertigii", the endosymbiont of Encarsia spp. wasps. Phylogenetic analysis of the 16S rRNA and gyrB genes of the H. glycines-infecting bacterium revealed 93 % and 81 % sequence identity, respectively, to the homologous genes in "Candidatus C. hertigii". Thus, the name "Candidatus Paenicardinium endonii" is proposed for the bacterial endosymbiont of the plant-parasitic nematode H. glycines.

  19. Prevalence and seasonal incidence of nematode parasites and fluke infections of sheep and goats in eastern Ethiopia.

    PubMed

    Sissay, Menkir M; Uggla, Arvid; Waller, Peter J

    2007-10-01

    A 2-year abattoir survey was carried out to determine the prevalence, abundance and seasonal incidence of gastro-intestinal (GI) nematodes and trematodes (flukes) of sheep and goats in the semi-arid zone of eastern Ethiopia. During May 2003 to April 2005, viscera including liver, lungs and GI tracts were collected from 655 sheep and 632 goats slaughtered at 4 abattoirs located in the towns of Haramaya, Harar, Dire Dawa and Jijiga in eastern Ethiopia. All animals were raised in the farming areas located within the community boundaries for each town. Collected materials were transported within 24 h to the parasitology laboratory of Haramaya University for immediate processing. Thirteen species belonging to 9 genera of GI nematodes (Haemonchus contortus, Trichostrongylus axei, T. colubriformis, T. vitrinus, Nematodirus filicollis, N. spathiger Oesopha-gostomum columbianum, O. venulosum, Strongyloides papillosus, Bunostomum trigonocephalum, Trichuris ovis, Cooperia curticei and Chabertia ovina), and 4 species belonging to 3 genera of trematodes (Fasciola hepatica, F. gigantica, Paramphistomum {Calicohoron} microbothrium and Dicrocoelium dendriticum) were recorded in both sheep and goats. All animals in this investigation were infected with multiple species to varying degrees. The mean burdens of adult nematodes were generally moderate in both sheep and goats and showed patterns of seasonal abundance that corresponded with the bi-modal annual rainfall pattern, with highest burdens around the middle of the rainy season. In both sheep and goats there were significant differences in the mean worm burdens and abundance of the different nematode species between the four geographic locations, with worm burdens in the Haramaya and Harar areas greater than those observed in the Dire Dawa and Jijiga locations. Similar seasonal variations were also observed in the prevalence of flukes. But there were no significant differences in the prevalence of each fluke species between the

  20. A Deep Sequencing Approach to Comparatively Analyze the Transcriptome of Lifecycle Stages of the Filarial Worm, Brugia malayi

    PubMed Central

    Choi, Young-Jun; Ghedin, Elodie; Berriman, Matthew; McQuillan, Jacqueline; Holroyd, Nancy; Mayhew, George F.; Christensen, Bruce M.; Michalski, Michelle L.

    2011-01-01

    Background Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. Methodology/Principal Findings Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. Conclusions/Significance Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of