Science.gov

Sample records for parent material soil

  1. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote

  2. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  3. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  4. Climatic controls on soil hydraulic properties along soil chronosequences on volcanic parent material

    NASA Astrophysics Data System (ADS)

    Beal, L. K.; Lohse, K. A.; Godsey, S.; Huber, D. P.

    2013-12-01

    . We observe that θ decreases with age, and α occurs at higher tensions. Soil horizons are developed dominantly on the cinder cones. These model estimates appear to match well with preliminary field measurements. Tropical climates enhance the weathering of basaltic parent material. The mean annual precipitation in the Hawaiian site is 2500 mm, and 310 mm at COTM. Accumulation of rainfall increases the weathering rate of the parent material. Using previous work characterizing the physical characteristics of soil across the Hawaii chronosequence to model the contrasting soils, we found that the 0.3 and 20 ka Hawaii soils had similar hydraulic properties; θ values were approximately 0.45 cm3/cm3 and Ks values were 6 cm/hr. However, these Hawaiian soils contrasted and were quantitatively lower than the entire COTM chronosequence. At the 2.1 ka COTM soil, Ks was 17 cm/hr and θ was 0.52-0.65 cm3/cm3 whereas at the 13.9 ka soil, Ks was 12 cm/hr and θ was 0.52 cm3/cm3. The 0.3 ka Hawaiian soil had a 20-30% higher silt content than the 2.1 ka COTM soil. Our models help quantify rates of soil development and hydraulic properties developed through time on volcanic parent materials.

  5. Nature and Properties of Lateritic Soils Derived from Different Parent Materials in Taiwan

    PubMed Central

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca2+ and Mg2+. Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils. PMID:24883366

  6. Nature and properties of lateritic soils derived from different parent materials in Taiwan.

    PubMed

    Ko, Tzu-Hsing

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca(2+) and Mg(2+). Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils.

  7. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  8. Soil deepening by trees and the effects of parent material

    NASA Astrophysics Data System (ADS)

    Shouse, Michael; Phillips, Jonathan

    2016-09-01

    In some cases biomechanical effects of individual trees may locally deepen or thicken regolith, especially in relatively shallow soils. This biogeomorphic ecosystem engineering phenomenon is at least partly contingent on the geological setting. The purpose of this research was to gain further insight into the biogeomorphic phenomenon, and to assess the relative importance of biomechanical and geological effects. Earlier studies in the Ouachita Mountains of Arkansas showed that individual trees locally thicken the regolith via mechanisms associated with root penetration of bedrock. However, that work was conducted mainly in areas of strongly dipping and contorted rock, where joints and bedding planes susceptible to root penetration were thought to be common and accessible. This project extended the research to the Cumberland Plateau region of Kentucky, where flat, level-bedded sedimentary rocks are dominant. Soil depth beneath trees was compared to that of non-tree sites by measuring depth to bedrock beneath rotted tree stumps and at adjacent sites with 1.0 m. While soil thickness beneath stumps was greater in the Ouachita Mountains compared to the Kentucky sites, in both regions soils beneath stumps are significantly deeper than adjacent soils. Further, there were no statistically significant differences in the difference between stump and adjacent sites between the two regions. This suggests the local deepening effects of trees occur in flat-bedded as well as steeply dipping lithologies.

  9. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  10. Fe-C interactions and soil organic matter stability in two tropical soils of contrasting parent materials

    NASA Astrophysics Data System (ADS)

    Coward, E.; Thompson, A.; Plante, A. F.

    2014-12-01

    The long residence time of soil organic matter (SOM) is a dynamic property, reflecting the diversity of stabilization mechanisms active within the soil matrix. Climate and ecosystem properties act at the broadest scale, while biochemical recalcitrance, physical occlusion and mineral association drive stability at the microscale. Increasing evidence suggests that the stability of SOM is dominated by organo-mineral interactions. However, the 2:1 clays that provide much of the stabilization capacity in temperate soils are typically absent in tropical soils due to weathering. In contrast, these soils may contain an abundance of iron and aluminium oxides and oxyhydroxides, known as short-range-order (SRO) minerals. These SRO minerals are capable of SOM stabilization through adsorption or co-precipitation, a faculty largely enabled by their high specific surface area (SSA). As such, despite their relatively small mass, SRO minerals may contribute substantially to the SOM stabilization capacity of tropical soils. The objective of this work is to characterize and quantify these Fe-C interactions. Surface (0-20 cm) soil samples were taken from 20 quantitative soil pits dug within the Luquillo Critical Zone Observatory in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials. Four extraction procedures were used to isolate three different forms of Fe-C interactions: sodium pyrophosphate to isolate organo-metallic complexes, hydroxylamine and oxalate to isolate SRO Fe- and Al-hydroxides, and dithionite to isolate crystalline Fe-oxyhydroxides. Extracts were analysed for DOC and Fe and Al concentrations to estimate the amount of SOM associated with each mineral type. Soils were subjected to SSA and solid-phase C analyses before and after extraction to determine the contribution of the various Fe mineral types to soil SSA, and therefore to potential stabilization capacity through organo-mineral complexation. Preliminary results

  11. Shrubby Reed-Mustard Habitat: Parent Material, Soil, and Landscape Characteristics

    NASA Astrophysics Data System (ADS)

    Kelly, L. S.; Boettinger, J. L.

    2012-12-01

    Shrubby reed-mustard (Glaucocarpum suffrutescens, a.k.a. Schoenocrambe suffrutescens, Glaucocarpum suffrutescens, or Hesperidanthus suffrutescens) is an endangered perennial shrub endemic to the southern Uinta Basin in northeast Utah. Only seven populations of shrubby reed-mustard have been identified. The arid area where the plant grows is rich in natural gas and oil deposits, as well as oil shale. Oil wells already dot the landscape, and there is significant concern that further development of these resources will threaten the continued existence of shrubby reed-mustard. Determination of the parent material, soil and landscape characteristics associated with shrubby reed-mustard habitat is imperative to facilitate conservation management. Shrubby reed-mustard grows where little else does and, based on field observations and remotely sensed spectral data, appears to occur in a particular type of strata. Our objective is to identify the physical and chemical characteristics of shrubby reed-mustard's environment. Site characteristics such as parent material and associated vegetation have been identified and documented. Soil properties such as water-soluble and total leachable elements, particle-size distribution, organic carbon, cation exchange capacity, total nitrogen, and available phosphorus and potassium are being determined. During the course of this investigation, soils within four shrubby reed-mustard habitat areas were sampled. Soils from non-shrubby reed-mustard areas adjacent to the four shrubby reed-mustard populations were also sampled. Soil samples were collected from a total of twenty-five shrubby reed-mustard soil pits and twenty-four non-shrubby reed-mustard soil pits. The soil horizons of each pedon were delineated, and samples were collected from each horizon. Field data indicate that shrubby reed-mustard occurs exclusively in shale-derived, shallow soils on bedrock-controlled uplands. Although there is some overlap of plant species on both types

  12. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils

    USGS Publications Warehouse

    Bern, C.R.; Townsend, A.R.; Farmer, G.L.

    2005-01-01

    Controls over nutrient supply are key to understanding the structure and functioning of terrestrial ecosystems. Conceptual models once held that in situ mineral weathering was the primary long-term control over the availability of many plant nutrients, including the base cations calcium (Ca), magnesium (Mg), and potassium (K). Recent evidence has shown that atmospheric sources of these "rock-derived" nutrients can dominate actively cycling ecosystem pools, especially in systems on highly weathered soils. Such studies have relied heavily on the use of strontium isotopes as a proxy for base-cation cycling. Here we show that vegetation and soil-exchangeable pools of strontium in a tropical rainforest on highly weathered soils are still dominated by local rock sources. This pattern exists despite substantial atmospheric inputs of Sr, Ca, K, and Mg, and despite nearly 100% depletion of these elements from the top 1 m of soil. We present a model demonstrating that modest weathering inputs, resulting from tectonically driven erosion, could maintain parent-material dominance of actively cycling Sr. The majority of tropical forests are on highly weathered soils, but our results suggest that these forests may still show considerable variation in their primary sources of essential nutrients. ?? 2005 by the Ecological Society of America.

  13. Geological controls on soil parent material geochemistry along a northern Manitoba-North Dakota transect

    USGS Publications Warehouse

    Klassen, R.A.

    2009-01-01

    As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

  14. Impact of terrain attributes, parent material and soil types on gully erosion

    NASA Astrophysics Data System (ADS)

    Chaplot, Vincent

    2013-03-01

    Gully erosion is a worldwide matter of concern because of the irreversible losses of fertile land, which often have severe environmental, economic and social consequences. While most of the studies on the gullying process have investigated the involved mechanisms (either overland flow incision, seepage or piping erosion), only few have been conducted on the controlling factors of gully wall retreat, an important, if not the dominant, land degradation process and sediment source in river systems. In a representative 4.4 km2 degraded area of the Drakensberg foothills (South Africa) the main objective of this study was to evaluate the relationship between the rate of gully bank retreat (GBR) and parent material, soil types and selected terrain attributes (elevation, specific drainage area, mean slope gradient, slope length factor, stream power index, compound topographic index and slope curvatures). The survey of gully bank retreat was performed during an entire hydrological year, from September 2007 to September 2008, using a network of pins (n = 440 from 110 pits). Both the gully contours and pin coordinates were determined, using a GPS with a 0.5 m horizontal accuracy (n = 20,120). The information on the parent material and the soil types was obtained from field observations complemented by laboratory analysis, while terrain attributes were extracted from a 20 m DEM generated from 5 m interval contour lines. The average GBR value for the 6512 m of gully banks found in the area was 0.049 ± 0.0013 m y- 1, which, considering bank height and soil bulk density, corresponded to an erosion rate of 2.30 ton ha- 1 y- 1. There was no significant difference in GBR between sandstone and dolerite and between Acrisols and Luvisols. Despite a weak one-to-one correlation with the selected terrain attributes (r < 0.2), a principal component analysis (PCA), the first two axes of which explained 68% of the data variability, pointed out that GBR was the highest at hillslope inflexion

  15. Regional mapping of soil parent material by machine learning based on point data

    NASA Astrophysics Data System (ADS)

    Lacoste, Marine; Lemercier, Blandine; Walter, Christian

    2011-10-01

    A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km 2 study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too

  16. Unexpected Dominance of Parent-Material Strontium in a Tropical Forest on Highly Weathered Soils.

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Townsend, A. R.; Farmer, G. L.

    2003-12-01

    Controls over nutrient supplies influence the basic structure and function of terrestrial ecosystems. Major plant nutrients supplied by mineral weathering (Ca, Mg, K) can be severely depleted in the highly weathered soils found in the tropics. Some recent studies have shown that as pools of rock-derived nutrients diminish, a transition occurs in which nutrients supplied by dust and precipitation become increasingly important. A state of near complete reliance on the atmosphere can occur on soils after as little as one million years of development. Such studies have relied heavily on strontium as a proxy for the nutrient elements of interest. We investigated sources of nutrients to a tropical forest in Costa Rica growing on a highly weathered soil derived from basaltic parent material 50-70 Ma in age. Base cations, including the strontium tracer, are severely depleted in the bulk and exchange pools of the upper soil profile. The close proximity of the ocean and rainfall in excess of 5m per year provide substantial inputs of atmospheric nutrients. Despite this, isotope ratios (87Sr/86Sr) indicate that >90% of actively cycling Sr is rock-derived. This result cannot be explained by inputs of continental dust, Central American tephra, or decoupling of Sr from the elements it is intended to trace. It places our sites on the opposite end of the transition from what previous studies would predict. Although the precise mechanisms responsible are currently unknown, our data suggest that variations in geomorphological and biological processes across systems with broadly similar climate and geology may lead to considerable variation in the dominant sources of key nutrients.

  17. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  18. Parent material, vegetation or slope position - which soil-forming factor controls the intensity of podzolization process in the soils of the Sudety Mountains montane zone?

    NASA Astrophysics Data System (ADS)

    Musielok, Łukasz

    2016-04-01

    Climatic conditions, parent material and vegetation type are considered to be the main soil-forming factors controlling podzolization process advancement. Moreover, in hilly and mountainous areas properties of soils that are undergoing podzolization process are influenced significantly by its location on a slope, due to lateral translocation of soil solutions. The Sudety Mts. are a medium-high mountain range characterized by geological mosaic with many different sedimentary, igneous and metamorphic rocks, mostly poor in alkali elements. Most of the Sudety Mts. area lies in a lower montane zone, where the dominant natural vegetation were temperate mixed and deciduous forests. However, since 18th century natural vegetation was significantly transformed by widespread introduction of spruce monocultures. These distinguishing features of the Sudety Mts. natural environment are considered to be responsible for prevalence of podzolized soil in this area, however the intensity of podzolization process is very differentiated. The aim of presented research was to determine the influence of varying parent material, different vegetation types and different slope positions the on the soil properties variability, and thus, to answer the question which of the analyzed soil-forming factors is controlling the podzolization process advancement in the Sudety Mountains montane zone? Data from A, E, Bs and C horizons of 16 soil profiles developed from different parent materials (granite, sandstone, andesites and mica schists), located under various types of vegetation (spruce and beech forests) and in different slope positions (upper, middle and lower parts of the slopes) were taken into the analysis. All analyzed soil profiles were located in lower montane zone between 550 and 950 m a. s. l. to avoid the influence of varying climatic conditions. One-way ANOVA and Principal Components Analysis (PCA) were used to analyze differentiation of soil texture, pH, organic carbon and nitrogen

  19. The importance of parent material information derived from globally available small scale legacy data for soil mapping at medium scale

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Günther, A.; Willer, J.; Pickert, E.; Asch, K.; Baritz, R.

    2012-04-01

    Up to now, harmonized global soil information is solely available from the FAO-Unesco Soil map of the world at 1:5M scale (FAO-Unesco 1974-1981). However, for monitoring global environmental changes and sustainable land resource management, higher resolution soil maps are urgently needed. At the global scale, the soil forming factors climate, soil parent material (SPM) and topography can be considered the most important parameters for spatial prediction of soil associations and their properties. While topographic and climatic information is available at high spatial resolutions, SPM information can only be derived from small-scale geological maps or soil maps. The objective of this study is to investigate the potential of commonly available SPM data derived from small scale soil and geological maps for soil mapping at the 1:250k scale. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Additionally, SPM maps were derived from a reclassification of the geological overview map of Germany at 1:1M scale, and the European Soil database. The proposed SPM classification, developed in the framework of the EU-FP7 eSOTER project, is based on the degree of SPM consolidation, its geochemical character, and the major bedrock types. In addition, SPM-related surface processes are characterized since SPM is defined here as the original lithological material before the onset of weathering and soil formation processes. To assess the potential of SPM data for the spatial delineation of soil associations, random forest-based predictions of soils and its properties were carried out using relief attributes from digital elevation model data. Model runs were performed (i) with and (ii) without spatial information on SPM properties. The outputs were compared with independent soil information of model validation areas. Training and validation point data was selected from a comprehensive dataset representing more than 14

  20. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis.

    PubMed

    Yarwood, Stephanie; Wick, Abbey; Williams, Mark; Daniels, W Lee

    2015-02-01

    The process of pedogenesis and the development of biological communities during primary succession begin on recently exposed mineral surfaces. Following 30 years of surface exposure of reclaimed surface mining sites (Appalachian Mountains, USA), it was hypothesized that microbial communities would differ between sandstone and siltstone parent materials and to a lesser extent between vegetation types. Microbial community composition was examined by targeting bacterial and archaeal (16S ribosomal RNA (rRNA)) and fungal (internal transcribed spacer (ITS)) genes and analyzed using Illumina sequencing. Microbial community composition significantly differed between parent materials and between plots established with tall fescue grass or pitch x loblolly pine vegetation types, suggesting that both factors are important in shaping community assembly during early pedogenesis. At the phylum level, Acidobacteria and Proteobacteria differed in relative abundance between sandstone and siltstone. The amount of the heavy fraction carbon (C) was significantly different between sandstone (2.0 mg g(-1)) and siltstone (5.2 mg g(-1)) and correlated with microbial community composition. Soil nitrogen (N) cycling was examined by determining gene copy numbers of ureC, archaeal amoA, and bacterial amoA. Gene quantities tended to be higher in siltstone compared to sandstone but did not differ by vegetation type. This was consistent with differences in extractable ammonium (NH4 (+)) concentrations between sandstone and siltstone (16.4 vs 8.5 μg NH4 (+)-N g(-1) soil), suggesting that nitrification rates may be higher in siltstone. Parent material and early vegetation are important determinants of early microbial community assembly and could be drivers for the trajectory of ecosystem development over longer time scales.

  1. Dynamics of soil organic carbon fractions in olive groves in Andalusia (Southern Spain) in soils with contrasted parent material and under different management practices

    NASA Astrophysics Data System (ADS)

    Vicente-Vicente, Jose Luis; García-Ruiz, Roberto; Calero, Julio; Aranda, Victor

    2016-04-01

    Spain has 2.5 million hectares of olive groves, 60 % of which are situated in Andalusia (Southern Spain). The most common agricultural management consist of a conventional or reduced tillage combined with herbicides to eliminate weeds. This might lead to some ecological problems (e.g. erosion, soil nutrient and organic carbon losses). The recommended management consist of a plant cover of spontaneous herbaceous plant in the inter row of olive oil orchards which are usually mowed early in spring. In this study, we assessed the influence of: i) two soil managements: non-covered and weed-covered, and ii) soil parent material (carbonated and siliceous), on soil organic carbon (SOC) fractions. In addition, we assessed the existence of a saturation limit for the different SOC fractions by including calcareous and siliceous soils under natural vegetation. Weed-covered soils accumulated more total SOC than soils under the non-covered management and this was independent on the parent material type. Same was true for most of the SOC fractions. However, the relative proportion of the SOC fractions was not affected by the presence of weeds, but it was due to the parent material type; carbonated soils had more unprotected and physically protected SOC, whereas the siliceous soils were relatively enriched in biochemically protected pool. Otherwise, table 1 shows that the chemically protected SOC pool was best fit to a saturation function, especially in the siliceous plots. The other fractions were best fit to a linear function. Therefore, these results suggest that chemically protected pools are the only protected fractions which can be saturated considering the SOC in the natural vegetation soils as the SOC limit. Considering SOC levels in the weed-covered and non-covered managements of all protected fractions and their respective limits of total SOC, saturation deficits in the non-covered and weed-covered plots were 75% and 60% of total SOC, respectively. Table 1. Significance

  2. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China.

    PubMed

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia

    2015-12-01

    The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R(2) = 0.939-0.998, P < 0.05). Notably, Al oxides played a more crucial role (R(2) = 0.89, P<0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As.

  3. A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material

    SciTech Connect

    Horn, L.L. . Dept. of Geology); Hall, R.D. . Dept. of Geology)

    1993-04-01

    Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

  4. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  5. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  6. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  7. Applying a new procedure to assess the controls on aggregate stability - including soil parent material and soil organic carbon concentrations - at the landscape scale

    NASA Astrophysics Data System (ADS)

    Turner, Gren; Rawlins, Barry; Wragg, Joanna; Lark, Murray

    2014-05-01

    sampling locations were selected based on the quantities of SOC from previous analysis (on samples collected at sites across the entire region). We chose the samples to encompass a wide range of SOC concentrations (1.2-7%) within each of six strongly contrasting soil parent material (PM) groups (sandstone, mudstone, clay, chalk, limestone and marine alluvium). The DR values (calculated using re-scaled size distributions for particle diameters < 500 µm) ranged from 17 to 151 µm. The co-efficient of variation for DR analyses using fourteen aliquots of the RM was reasonably small (21 %). The PM groups accounted for a larger proportion of the variation in DR than SOC concentrations; together they accounted for around 50% of the variation in DR values. There was no evidence to include an interaction term between PM and SOC concentration. The proportion of clay-sized particles in the material after sonication was not a statistically significant predictor of DR. Pre-wetting the aggregates typically resulted in substantially smaller values of DR by comparison to using air-dried aggregates in our test. We suggest that the effects of differential clay swelling as a disruptive force during the wetting stage are greater than those associated with slaking (fragmentation due to trapped air). We believe this rapid (duration after the wetting procedure is 10 minutes), reproducible test could could be an effective means to monitor changes in this important soil property and improve predictions of soil erosion. Reference: Rawlins, B. G., Wragg, J. & Lark, R. M. 2012. Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. European Journal of Soil Science, 64, 92-103.

  8. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis–NIR Spectroscopy

    PubMed Central

    Xu, Shengxiang; Shi, Xuezheng; Wang, Meiyan; Zhao, Yongcun

    2016-01-01

    Assessment and monitoring of soil organic matter (SOM) quality are important for understanding SOM dynamics and developing management practices that will enhance and maintain the productivity of agricultural soils. Visible and near-infrared (Vis–NIR) diffuse reflectance spectroscopy (350–2500 nm) has received increasing attention over the recent decades as a promising technique for SOM analysis. While heterogeneity of sample sets is one critical factor that complicates the prediction of soil properties from Vis–NIR spectra, a spectral library representing the local soil diversity needs to be constructed. The study area, covering a surface of 927 km2 and located in Yujiang County of Jiangsu Province, is characterized by a hilly area with different soil parent materials (e.g., red sandstone, shale, Quaternary red clay, and river alluvium). In total, 232 topsoil (0–20 cm) samples were collected for SOM analysis and scanned with a Vis–NIR spectrometer in the laboratory. Reflectance data were related to surface SOM content by means of a partial least square regression (PLSR) method and several data pre-processing techniques, such as first and second derivatives with a smoothing filter. The performance of the PLSR model was tested under different combinations of calibration/validation sets (global and local calibrations stratified according to parent materials). The results showed that the models based on the global calibrations can only make approximate predictions for SOM content (RMSE (root mean squared error) = 4.23–4.69 g kg−1; R2 (coefficient of determination) = 0.80–0.84; RPD (ratio of standard deviation to RMSE) = 2.19–2.44; RPIQ (ratio of performance to inter-quartile distance) = 2.88–3.08). Under the local calibrations, the individual PLSR models for each parent material improved SOM predictions (RMSE = 2.55–3.49 g kg−1; R2 = 0.87–0.93; RPD = 2.67–3.12; RPIQ = 3.15–4.02). Among the four different parent materials, the largest R2

  9. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  10. Focus on Parents: The Parenting Materials Information Center.

    ERIC Educational Resources Information Center

    Espinoza, Renato

    To bridge the gap between producers of parenting materials and potential users, the National Institute of Education funded the Southwest Educational Laboratory to design, develop, and research the effectiveness of a model Parenting Materials Information Center. During the last 2 years this model has been developed to include more than 1400…

  11. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    NASA Astrophysics Data System (ADS)

    Deeb, Maha; Grimaldi, Michel; Lerch, Thomas Z.; Pando, Anne; Gigon, Agnès; Blouin, Manuel

    2016-04-01

    There is no information on how organisms influence hydrostructural properties of constructed Technosols and how such influence will be affected by the parent-material composition factor. In a laboratory experiment, parent materials, which were excavated deep horizons of soils and green waste compost (GWC), were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, but not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass, resulting in positive effects on available water in macropores. Organisms and their interaction with parent materials positively affected the hydrostructural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  12. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    PubMed

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.

  13. Infrared optical properties of Mars soil analog materials: Palagonites

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    1992-01-01

    The globally distributed bright soils on Mars represent products of chemical alteration of primary igneous materials. As such, understanding the chemistry and mineralogy of these soils provides clues about the nature of the parent materials and the type, duration, and extent of the chemical weathering environments on Mars. Such clues are key in developing an understanding of the interior and surficial processes that have operated throughout Mars' history to yield the surface as it is currently observed. The generally homogeneous nature of these soils is illustrated by a variety of observational data. These data include (1) direct determination of elemental abundances by the X-ray fluorescence instruments on both Viking Landers, (2) Earth-based telescopic observations, and (3) space-based observations. Based on their spectral properties in the visible and near-infrared, terrestrial palagonitic soils have been suggested as analogs for the bright regions on Mars. Palagonites represent the weathering products of basaltic glass and as such are composed of a variety of minerals/materials. In order to gain an understanding regarding the chemical, mineralogical, and spectral properties of a broad suite of palagonites, several samples were collected from the eastern and central regions of the island of Hawaii.

  14. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    SciTech Connect

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stress and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.

  15. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  16. Developmental effects of parental exposure to soil contaminated with urban metals.

    PubMed

    Garcia, Edariane Menestrino; da Silva Junior, Flavio Manoel Rodrigues; Soares, Maria Cristina Flores; Muccillo-Baisch, Ana Luiza

    2015-07-01

    Soil is a highly complex material, and because of rapid population growth, intense industrial activity and petrochemical development, it has suffered from contamination with substances of various origins. These environmental contaminants may have detrimental effects on human health, particularly during development. Due to the ability to transmit contaminants to the fetus, evaluating the effects of exposure of pregnant women on the psychomotor development of their offspring is of particular interest. Therefore, this study aimed to investigate the effects of exposure of female rats to an urban soil influenced by the dispersion of air contaminants during periods of pre-pregnancy, pregnancy and lactation on offspring development. Using physiological, behavioral and hematological parameters, deleterious effects on offspring were assessed. In behavioral parameters, parental exposure during pregnancy and lactation resulted in no significant differences in the evaluated parameters when compared to the control group. In contrast, pups from the pre-pregnancy group displayed decreased locomotor and exploratory activity in addition to increased levels of anxiety. Furthermore, offspring of rats exposed to contaminated urban soil during pre-pregnancy demonstrated significant changes in weight gain and development length and a reduction in the number of platelets compared to controls. Significantly, pups born to mothers exposed to contaminated urban soil during the pregnancy displayed changes in birth weight, weight gain during the growth, development length, incisor eruption and opening of the ears in addition to a reduction in their physical performance and a change in the number of lymphocytes. These results clearly show the negative influence of parental exposure to contaminated urban soil on the general development of the rats during the periods studied. These data indicate that developing organisms are highly sensitive to external factors. Further, they demonstrate the

  17. Teacher-Parent Communication and Parents' Ability to Select Reading Material: A Study of a Baggy Book Program

    ERIC Educational Resources Information Center

    Lorenz, Kelley M.

    2013-01-01

    This study examined the effects of a home-reading program on parent-teacher communication and on the ability of parents to select reading material for their children. In this qualitative case study, parents of 4th grade students participated in a reading homework program with their children. Using constructivist theories, the study's…

  18. Materials Evaluated as Potential Soil Stabilizers

    DTIC Science & Technology

    1977-09-01

    21.0 168 270 +153 Lithium hydroxide 0.59 20.8 168 198 +85 Sodium sulfite 1.0 21.2 168 322 +200 Sodium carbonate 1.0 20.5 168 375 +250 Sodium bicarbonate...fluoride, sodium 1.0, and 2.0% rates fluoborate , and sodium tetraborate Mixing Material Form* Type of Soil Treated Capability Powder Silt Good Effective...used (sodiun fluosilicate, sodium fluoride, sodium fluoborate , ET-218, and sodium tetraborate) were either detrimental when added to the cement or no

  19. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    NASA Astrophysics Data System (ADS)

    Deeb, M.; Grimaldi, M.; Lerch, T. Z.; Pando, A.; Gigon, A.; Blouin, M.

    2015-12-01

    Constructed Technosols provide an opportunity to recycle urban waste, and are an alternative to the uptake of topsoil from the countryside. Despite potential problems of erosion, compaction or water holding capacity, their physical properties and the resulting water regulation services are poorly documented. In a laboratory experiment, excavated deep horizons of soils and green waste compost (GWC) were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass and the resulting positive effects on available water in macropores. Organisms and their interaction with parent materials thus positively affected the hydro-structural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  20. Parenting

    MedlinePlus

    ... parents, people are always ready to offer advice. Parenting tips, parents' survival guides, dos, don'ts, shoulds ... right" way to be a good parent. Good parenting includes Keeping your child safe Showing affection and ...

  1. Multi-Elemental Nuclear Analysis of soil reference material

    NASA Astrophysics Data System (ADS)

    Metairon, S.; Zamboni, C. B.; Medeiros, I. M. M. Amaral; Menezes, M. À. B. C.

    2011-08-01

    The elements concentration in the soil reference material (IAEA/SOIL-7) was obtained using the parametric Neutron Activation Analysis technique in the IEA-R1 nuclear reactor at IPEN (CNEN-SP). The results obtained were in good agreement with the respective nominal values from this reference material suggesting the viability of using this parametric procedure for environmental investigations.

  2. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

  3. [Effects of parent rock and land use pattern on soil fertility in Karst region of Northwest Guangxi].

    PubMed

    Yang, Shan; He, Xun-Yang; Su, Yi-Rong; Zhang, Wei; Wang, Ke-Lin

    2010-06-01

    Taking the soils developed on limestone and sandstone and with typical land use patterns in Karst region of Northwest Guangxi as test objects, this paper studied their soil fertility under effects of parent rock and land use pattern. A total of eleven soil fertility variables were selected for factor analysis, and the component score for each sampling site was assessed by using principal component analysis (PCA) sequencing and clustering diagram. The factor analysis indicated that the eleven variables could be reduced to four components, i.e., overall soil fertility, soil pH and total phosphorus, soil available phosphorus, and soil total potassium. The PCA sequencing and clustering analysis showed that the overall soil fertility was mainly affected by land use pattern, being the highest in abandoned farmland. Soil pH and total phosphorus content were mainly affected by parent rock. The pH value and total phosphorus content in the red soil developed on sandstone were much lower than those in the calcareous soil developed on limestone. Soil available phosphorus and total potassium contents were significantly affected by fertilization. The available phosphorus and total potassium contents in Karst calcareous soil and red soil were lower than the average level of China soils. Therefore, the Karst calcareous soil should be fertilized with ammonium nitrogen fertilizer to improve its phosphorus availability, while the Karst red soil should be amended with lime to increase its available phosphorus content. In addition, potassium fertilizer should be applied to the two soil types to improve their soil fertility.

  4. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Merkli, Christian; Sartori, Giacomo; Mirabella, Aldo; Plötze, Michael

    2008-05-01

    A toposequence of Holocene soils located between 1100-2400 m asl in the Italian Alps served as the basis for the following analyses: the weathering of limestone and dolomite, the calculation of mass balances, understanding the formation of pedogenic Fe and Al, the determination of soil mineral and clay mineral reactions and transformation and the measurement of accumulation and stabilisation mechanisms of soil organic matter. Leaching of carbonates is most intense at the lower elevations, although calcite and dolomite have a higher solubility at low temperatures. The pCO 2 in the soil is higher at lower elevations and weathering is driven mainly by carbonic acids. At higher elevations, organic acids appear to determine the mineral transformations and weathering reactions to a greater extent. This suggests that two very different weathering regimes (carbonic and organic acid weathering) exist along the toposequence. The transformation of mica into vermiculite is the main process in both the clay and fine-earth fraction. Weathering of silicate minerals started even before the carbonates had been completely removed from the soils. The transformation mechanisms of silicate minerals in the A and O horizon at higher elevations was at least as intensive as that at the climatically warmer sites. The neoformation of pedogenetic clays at climatically cooler sites was slightly greater than that at the warmer sites. However, the formation rate of secondary Fe and Al phases was more pronounced at lower elevation, which means that this process seemed to be driven dominantly by carbonic acid (weathering of primary minerals). Soil organic matter (SOM) abundance in the mineral soil is nearly 15 kg/m 2 at all sites and, surprisingly, no climate-driven effect could be detected. In general, the preservation and stabilisation of SOM was due to poorly crystalline Al and Fe phases and vermiculite, regardless of some variations in the composition of the parent material (varying calcite

  5. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first

  6. Contrasting environmental memories by ancient soils on different parent rocks in the South-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno

    2014-05-01

    Ancient soils (pre-Holocenic paleosols and vetusols) are uncommon on the Alps, because of the extensive Pleistocenic glaciations which erased most of the previously existing soils, the slope steepness and climatic conditions favoring soil erosion. However, in few sites, particularly in the outermost sections of the Alpine range, Pleistocene glaciers covered only small and scattered surfaces because of the low altitude reached in the basins, and ancient soils could be preserved for long periods of time on particularly stable surfaces. We described and sampled soils on 11 stable surfaces in the Upper Tanaro valley, Ligurian Alps (Southwestern Piemonte, Italy). The sampling sites were characterized by low steepness and elevation between 600 to 1600 m, under present day lower montane Castanea sativa/Ostrya carpinifolia forests, montane Fagus sylvatica and Pinus uncinata forests or montane heath/grazed grassland, on different substrata. In particular, we sampled soils developed on dolomite, limestone, quartzite, gneiss and shales. The soils were always well representative of the pedogenic trends active on the respective parent materials, i.e. the skeletal fraction in each soil was always composed of just one rock type, despite the proximity of lithological boundaries and the small dimensions of the different outcrops, often coexisting on the same stable surface. All the considered profiles showed signs of extremely long pedogenesis and/or different phases of intense pedogenesis interrupted by the deposition of periglacial cover beds in the steepest sites. Up to four phases of intense pedogenesis were recognized where cover beds were developed, presumably during cold Pleistocene phases, as present-day climate is not cold enough to create such periglacial morphologies. In such cases, each cover bed underwent similar pedogenesis, strongly dependent on the parent material: on quartzite, podzols with thick E horizons and well developed placic ones were formed in all phases

  7. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  8. Artificial soil formation and stabilization of material cycles in closed ecological systems for Mars habitats

    NASA Astrophysics Data System (ADS)

    Borchardt, Joshua D.

    Scientists are increasingly pressured to investigate novel ways in which to feed astronauts for the first mission to Mars in the 2030s. It is the aim of this thesis to conduct a preliminary investigation for soil formation of NASA JSC Mars-1A Regolith Simulant in an environmentally closed ecosystem to simulate plant growth within these initial habitats, and the prospect of soil formation from a Mars parent material for agricultural purposes. The rhizosphere and plant stress will be the main regions of research focus. It is hypothesized rhizosphere activity will determine the rate of stable soil formation adequate to support the agricultural needs of Mars's first human inhabitants. A Brassica rapa (Wisconsin FastPlant(TM)) was grown on several different substrates, and evaluated for plant stress, elemental analysis, soil fertility, and mineralogical analysis to identify the biogeochemical factors related to areas inside and outside of the rhizosphere, which affect soil formation. In addition, multiple plant generations were grown to investigate bioavailability of nutrients within the system, and lay down preliminary approaches for mathematical model development in order to predict & evaluate future conditions and applications under reduced resource availability situations. Overall, the story of early soil formation from a Mars regolith simulant is further defined to aid in the success of our first human adventurers to the red planet.

  9. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario.

    PubMed

    Limay-Rios, Victor; Forero, Luis Gabriel; Xue, Yingen; Smith, Jocelyn; Baute, Tracey; Schaafsma, Arthur

    2016-02-01

    Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem.

  10. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  11. Bibliotherapy for Children with Anxiety Disorders Using Written Materials for Parents: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Rapee, Ronald M.; Abbott, Maree J.; Lyneham, Heidi J.

    2006-01-01

    The current trial examined the value of modifying empirically validated treatment for childhood anxiety for application via written materials for parents of anxious children. Two hundred sixty-seven clinically anxious children ages 6-12 years and their parents were randomly allocated to standard group treatment, wait list, or a bibliotherapy…

  12. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2007-08-01

    We studied pavement seam material. This is the soil substrate in joints of pervious pavements in urban areas. It is mostly 1 cm thick and develops from the original seam filling by depositions of all kinds of urban residues, including anthropogenic organic substances. It was investigated, how this unique form of organic matter influences the filter properties of seam material and how the seam material influences heavy metal transport through the pavement. The seam material is characterised by a darker munsell colour, higher organic carbon content, higher surface areas, higher cation exchange capacities, but a lower fraction of high adsorption energy sites compared to the original seam filling. The deposited anthropogenic organic matter itself could be characterised as particulate and non-polar. Compared to natural soils, it has a small surface area and a low surface charge density resulting in a small cation exchange capacity of only 75 cmol(+) kg-1C. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material towards Pb is similar, towards Cd it is much smaller compared to natural soils. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb. For Cd the infiltration from ponds can lead to a displacement of Cd during only one decade.

  13. Evaluation of soils for use as liner materials: a soil chemistry approach.

    PubMed

    DeSutter, Tom M; Pierzynski, Gary M

    2005-01-01

    Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).

  14. The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region

    NASA Astrophysics Data System (ADS)

    Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.

    2012-03-01

    The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.

  15. Bottom-up effects of geologic parent material through ecological interaction webs

    NASA Astrophysics Data System (ADS)

    Bradley, R.

    2012-04-01

    Community ecologists study the interactions between species to understand what controls the distribution and abundance of different populations. Communities are thus portrayed as "interaction webs", in which different species exert reciprocal pressures on each other. In the case of one population being a resource for which another population is the consumer (i.e. food-web), reciprocal pressures are commonly referred to as "bottom-up" vs. "top-down" effects. The starting point for studying bottom-up effects is usually the vegetation (primary producers), and its end-point the decomposer community responsible for breaking down detrital matter from each trophic level. In my presentation, I will present results from three former graduate students, to argue that the starting point for studying bottom-up effects should be the geologic parent material (GPM), whose importance has often been overlooked by community ecologists. For example, our data show that GPM had a stronger effect on forest floor nutrient budgets than the identity or successional stage of the vegetation. Likewise, GPM had a strong effect on the structure of forest floor microbial communities, as well as their resistance to, and resilience from, disturbance. GPM also had a significant effect on the richness and diversity of understory plant communities from similar forest stands. Finally, we present evidence that soil fertility controls the resistance and tolerance of certain plant species to selective browsing, thereby affecting the composition of the dominant plant cover and the feeding patterns of large herbivores.

  16. Comparison of phosphate materials for immobilizing cadmium in soil.

    PubMed

    Hong, Chang Oh; Chung, Doug Young; Lee, Do Kyoung; Kim, Pil Joo

    2010-02-01

    A study was conducted to compare the effects of phosphate (P) materials in reducing cadmium extractability. Seven P materials (commercial P fertilizers--fused phosphate (FP), 'fused and superphosphate' [FSP], and rock phosphate [RP]; P chemicals--Ca[H(2)PO(4)](2).H(2)O, [NH(4)](2)HPO(4), KH(2)PO(4), and K(2)HPO(4)) were selected for the test. The selected P source was mixed with Cd-contaminated soil at the rate of 0, 200, 400, 800, and 1,600 mg P kg(-1) under controlled moisture conditions at 70% of water holding capacity, then incubated for 8 weeks. FP, Ca(H(2)PO(4))(2) H(2)O, KH(2)PO(4), and K(2)HPO(4) significantly decreased NH(4)OAc-extractable Cd (plant-available form) concentrations with increasing application rates. Compared to other phosphate materials used, K(2)HPO(4) was found to be the most effective in reducing the plant-available Cd concentration in soil, mainly due to the negative charge increase caused by soil pH and phosphate adsorption. Contrary to the general information, FSP and (NH(4))(2)HPO(4) increased Cd extractability at low levels of P application (<400 mg kg(-1)), and thereafter Cd extractability decreased significantly with increasing application rate. RP scarcely had an effect on reducing Cd extractability. Ion activity products of CdHPO(4), Cd(OH)(2), and CdCO(3) analyzed by the MINTEQ program were significantly increased by K(2)HPO(4) addition, but the effect of Cd-P compound formation on reducing Cd extractability was negligible. Conclusively, the P-induced alleviation of Cd extractability can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd-P precipitation, and therefore, alkaline P materials such as K(2)HPO(4) are effective for immobilizing soil Cd.

  17. Extralunar materials in cone-crater soil 14141.

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Chou, C.-L.; Bild, R. W.; Baedecker, P. A.

    1973-01-01

    Radiochemical neutron activation analysis has been used to determine Ni, Zn, Ga, Ge, Cd, In, Ir, and Au in duplicate samples of lunar soil 14141 and in one additional replicate each of soils 14163 and 14259. The concentrations of extralunar trace elements Ni, Ge, Ir, and Au in 14141 and 14163 are, respectively, about 69 and 82% as high as those in 14259. Although most of the mass of 14141 appears to be ejecta from Cone Crater, a sizable contamination by mature Fra Mauro soil such as 14259 is also present. The siderophilic-element concentrations of the subregolith Fra Mauro materials are estimated to be 25 plus or minus 25% of those observed in 14259.

  18. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2008-04-01

    Depositions of all kinds of urban dirt and dust including anthropogenic organic substances like soot change the filter properties of the seam filling material of pervious pavements and lead to the formation of a new soil substrate called seam material. In this study, the impact of the particular urban form of organic matter (OM) on the seam materials CECpot, the specific surface area (As), the surface charge density (SCD), the adsorption energies (Ea) and the adsorption of Cd and Pb were assessed. The Cd and Pb displacement through the pavement system has been simulated in order to assess the risk of soil and groundwater contamination from infiltration of rainwater in paved urban soils. As, Ea and SCD derived from water vapor adsorption isotherms, CECpot, Pb and Cd adsorption isotherms where analyzed from adsorption experiments. The seam material is characterized by a darker munsell-color and a higher Corg (12 to 48g kg-1) compared to the original seam filling. Although, the increased Corg leads to higher As (16m2g-1) and higher CECpot (0.7 to 4.8cmolckg-1), with 78cmolckg-1C its specific CECpot is low compared to OM of non-urban soils. This can be explained by a low SCD of 1.2×10-6molc m-2 and a low fraction of high adsorption energy sites which is likely caused by the non-polar character of the accumulated urban OM in the seam material. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material for Pb is similar, for Cd it is much smaller compared to natural sandy soils with similar Corg concentrations. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb . For Cd the infiltration from puddles can lead to a breakthrough of Cd through the pavement system during only one decade. Although they contain contaminations itself, the accumulated forms of urban OM lead to improved filter properties of the seam material and

  19. Sulphate release from construction and demolition material in soils

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Wessolek, Gerd

    2013-04-01

    In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.

  20. On identifying parent plutonic rocks from lunar breccia and soil fragments

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Lindstrom, David J.

    1988-01-01

    Breccia fragments expected from a well-studied boulder of Stillwater anorthosite have been modeled to test the ability to identify parental rock types from examination of breccia and soil fragments. Depending on their size, the boulder fragments give distributions that suggest mixtures of rock types, including monominerallic anorthosite with subordinant amounts of more gabbroic anorthosite, anorthosite, and gabbro for small fragments. The distribution of FeO in samples of lunar ferroan anorthosite (FAN) indicates that FAN has a heterogeneous distribution of mafic minerals like the boulder.

  1. Parenting.

    ERIC Educational Resources Information Center

    Ziff, Barry, Ed.; Hostettler, Karen, Ed.

    1989-01-01

    The newsletter of the California Association for the Gifted includes the following brief articles on parenting: "Your Challenge, Their Lives" (Barry Ziff); "Courage to Be Who I Am, Unafraid" (Elizabeth Meckstroth); "Attribution: A Key to Encouraging More Responsible Behavior in the Gifted" (Saundra Sparling); "A Parent's Perspective" (Carolyn…

  2. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  3. Bibliotherapy for children with anxiety disorders using written materials for parents: A randomized controlled trial.

    PubMed

    Rapee, Ronald M; Abbott, Maree J; Lyneham, Heidi J

    2006-06-01

    The current trial examined the value of modifying empirically validated treatment for childhood anxiety for application via written materials for parents of anxious children. Two hundred sixty-seven clinically anxious children ages 6-12 years and their parents were randomly allocated to standard group treatment, waitlist, or a bibliotherapy version of treatment for childhood anxiety. In general, parent bibliotherapy demonstrated benefit for children relative to waitlist but was not as efficacious as standard group treatment. Relative to waitlist, use of written materials for parents with no therapist contact resulted in around 15% more children being free of an anxiety disorder diagnosis after 12 and 24 weeks. These results have implications for the dissemination and efficient delivery of empirically validated treatment for childhood anxiety.

  4. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  5. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  6. Microbiological destruction of composite polymeric materials in soils

    NASA Astrophysics Data System (ADS)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  7. Impacts of Marital Status and Parental Presence on the Material Hardship of Families with Children.

    ERIC Educational Resources Information Center

    Lerman, Robert I.

    This study investigated how marriage, cohabitation, single parenthood, and the presence of biological parents affected the incomes and material hardships of children. Data from the 1997 and 1999 National Survey of America's Families were used to examine recent changes in the marital status and household structure of families with children, how…

  8. Challenging Ideological Exclusion of Curriculum Material: Rights of Students and Parents.

    ERIC Educational Resources Information Center

    Stern, Nat

    1979-01-01

    Argues that, as a matter of constitutional law, public school boards of education do not possess unrestricted authority to exclude material from the curriculum on the basis of ideological content, and explores the rights of students and parents to challenge such exclusions. Available from Harvard Civil Rights-Civil Liberties Law Review, Harvard…

  9. Parenting.

    ERIC Educational Resources Information Center

    Spock, Benjamin; And Others

    Various aspects of child-rearing are covered in this transcript of a program broadcast in the National Public Radio weekly series, "Options in Education." Authors of current popular books on parenting are interviewed. Benjamin Spock discusses changes (including sex role revisions) in his "Baby and Child Care" since the 1946…

  10. Parenting.

    ERIC Educational Resources Information Center

    Jochim, Lisa; Mueller, Andrea

    This guide contains 15 learning activities that can be used in parenting classes, especially for adults with limited literacy skills. Activities include quotations for discussion and suggestions for conducting group discussions and writing lessons. The following activities are included: interpreting quotations about raising children; positive…

  11. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  12. Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report.

    SciTech Connect

    Stein, Joshua S.; Webb, Stephen Walter

    2005-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

  13. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption →change in activity) and substrate (adsorption →change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid

  14. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  15. Laboratory evaluation of frozen soil target materials with a fused interface.

    SciTech Connect

    Bronowski, David R.; Lee, Moo Yul

    2004-10-01

    To investigate the performance of artificial frozen soil materials with a fused interface, split tension (or 'Brazilian') tests and unconfined uniaxial compression tests were carried out in a low temperature environmental chamber. Intact and fused specimens were fabricated from four different soil mixtures (962: clay-rich soil with bentonite; DNA1: clay-poor soil; DNA2: clay-poor soil with vermiculite; and DNA3: clay-poor soil with perlite). Based on the 'Brazilian' test results and density measurements, the DNA3 mixture was selected to closely represent the mechanical properties of the Alaskan frozen soil. The healed-interface by the same soil layer sandwiched between two blocks of the same material yielded the highest 'Brazilian' tensile strength of the interface. Based on unconfined uniaxial compression tests, the frictional strength of the fused DNA3 specimens with the same soil appears to exceed the shear strength of the intact specimen.

  16. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease

  17. Soils regulate and mitigate climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods: The interaction of soil science and ecology can be traced back to the origins of soil science as an independent discipline within the natural sciences. Vasili Dokuchaev, the founder of modern soil science, identified five soil forming factors: parent material, climate, o...

  18. As(V) and P Competitive Sorption on Soils, By-Products and Waste Materials

    PubMed Central

    Rivas-Pérez, Ivana María; Paradelo-Núñez, Remigio; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    Batch-type experiments were used to study competitive As(V) and P sorption on various soils and sorbent materials. The materials assayed were a forest soil, a vineyard soil, pyritic material, granitic material, coarsely and finely ground mussel shell, calcinated mussel shell ash, pine sawdust and slate processing fines. Competition between As(V) and P was pronounced in the case of both soils, granitic material, slate fines, both shells and pine sawdust, showing more affinity for P. Contrary, the pyritic material and mussel shell ash showed high and similar affinity for As(V) and P. These results could be useful to make a correct use of the soils and materials assayed when focusing on As and P removal in solid or liquid media, in circumstances where both pollutants may compete for sorption sites. PMID:26690456

  19. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    SciTech Connect

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  20. Workshop on Parent-Body and Nebular Modification of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E. (Editor); Krot, A. N. (Editor); Scott, E. R. D. (Editor)

    1997-01-01

    Topics considered include: thermal Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes of Phyllosilicates; use of Oxygen Isotopes to Constrain the Nebular and Asteroidal Modification of Chondritic Materials; effect of Revised Nebular Water Distribution on Enstatite Chondrite Formation; interstellar Hydroxyls in Meteoritic Chondrules: Implications for the Origin of Water in the Inner Solar System; theoretical Models and Experimental Studies of Gas-Grain Chemistry in the Solar Nebula; chemical Alteration of Chondrules on Parent Bodies; thermal Quenching of Silicate Grains in Protostellar Sources; an Experimental Study of Magnetite Formation in the Solar Nebula; the Kaidun Meteorite: Evidence for Pre- and Postaccretionary Aqueous Alteration; a Transmission Electron Microscope Study of the Matrix Mineralogy of the Leoville CV3 (Reduced-Group) Carbonaceous Chondrite: Nebular and Parent-Body Features; rubidium-Strontium Isotopic Systematic of Chondrules from the Antarctic CV Chondrites Yamato 86751 and Yamato 86009: Additional Evidence for Late Parent-Body Modification; oxygen-Fugacity Indicators in Carbonaceous Chondrites: Parent-Body Alteration or High-Temperature Nebular Oxidation; thermodynamic Modeling of Aqueous Alteration in CV Chondrites; asteroidal Modification of C and O Chondrites: Myths and Models; oxygen Fugacity in the Solar Nebular; and the History of Metal and Sulfides in Chondrites.

  1. Soils and Fertilizers. Competency Based Teaching Materials in Horticulture.

    ERIC Educational Resources Information Center

    Legacy, Jim; And Others

    This competency-based curriculum unit on soils and fertilizers is one of four developed for classroom use in teaching the turf and lawn services area of horticulture. The four sections are each divided into teaching content (in a question-and-answer format) and student skills that outline taking soil samples, testing samples, preparing soil for…

  2. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of

  3. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  4. Growth of barley exposed to solvent refined coal (SRC) materials added to soil

    SciTech Connect

    Cline, J.F.; Rickard, W.H.; Thiede, M.E.

    1980-01-01

    The growth of barley plants (Hordeum vulgare) grown in Ritzville silt loam soil, treated with solvent refined coal material, SRC solid (SRC I) and SRC liquid (SRC II) was examined. Although the SRC materials will not be introduced to soil or surface waters in normal uses, they could be spilled during transportation. Such spills could contaminate surface waters and agricultural, rangeland and forest soils, possibly causing acute or chronic damage to plants and also provide a way for certain inorganic and organic materials to enter food chains.

  5. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    EPA Pesticide Factsheets

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  6. Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.

    SciTech Connect

    Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

    2004-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

  7. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  8. [Delphi method to identify education material on healthy food for teachers, school-age children and their parents].

    PubMed

    Vio, Fernando; Lera, Lydia; Fuentes-García, Alejandra; Salinas, Judith

    2012-09-01

    Delphi method to identify education material on healthy food for teachers, school-age children and their parents. Delphi method applied to get expert consensus about healthy food topics to include in educational materials for preschool and school-age children, their parents and teachers is described. The questionnaire was developed with the results of surveys and focus groups in children, parents and teachers made previously. The questionnaire was mailed to 54 experts in nutrition, education and communication in a first round. The results were analyzed and forwarded in a second round with the subjects without consensus. The cycle was completed by a validation conducted with teachers and parents and were prioritized by audiovisual educational materials on the writings, favoring participatory activities such as cooking workshops, games, activities over the passive (information at parent meetings, delivery of educational materials and conferences of experts). There was consensus on education in health behaviors such as not giving them money to carry to school, make healthy food choices on family outings and recreational activities associated with healthy eating during weekends; prefer healthy food prepared at home instead of the processed food; restrict eating out candy and prefer family meals without watching TV and food instead of taking a snack in the evening. These results are critical to design educational materials on healthy eating plans to change current eating habits that are contributing significantly to increase the childhood obesity.

  9. Detection of tritium sorption on four soil materials.

    PubMed

    Teng, Yanguo; Zuo, Rui; Wang, Jinsheng; Hu, Qinhong; Sun, Zongjian; Zeng, Ni

    2011-02-01

    In order to measure groundwater age and design nuclear waste disposal sites, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried out using four soils from China: silty clays from An County and Jiangyou County in Sichuan Province, both of which could be considered candidate sites for Very Low Level Waste disposal; silty sand from Beijing; and loess from Yuci County in Shanxi Province, a typical Chinese loess region. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. The average distribution coefficient from all of these influencing factors was about 0.1-0.2 mL/g for the four types of soil samples. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment.

  10. Trace elements in soil and biota in confined disposal facilities for dredged material.

    PubMed

    Beyer, W N; Miller, G; Simmers, J W

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.

  11. Trace elements in soil and biota in confined disposal facilities for dredged material

    USGS Publications Warehouse

    Beyer, W.N.; Miller, G.; Simmers, J.W.

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.

  12. Income Is Not Enough: Incorporating Material Hardship Into Models of Income Associations With Parenting and Child Development

    PubMed Central

    Gershoff, Elizabeth T.; Aber, J. Lawrence; Raver, C. Cybele; Lennon, Mary Clare

    2010-01-01

    Although research has clearly established that low family income has negative impacts on children’s cognitive skills and social – emotional competence, less often is a family’s experience of material hardship considered. Using the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999 (N = 21,255), this study examined dual components of family income and material hardship along with parent mediators of stress, positive parenting, and investment as predictors of 6-year-old children’s cognitive skills and social – emotional competence. Support was found for a model that identified unique parent-mediated paths from income to cognitive skills and from income and material hardship to social – emotional competence. The findings have implications for future study of family income and child development and for identification of promising targets for policy intervention. PMID:17328694

  13. Minimizing soil remediation volume through specification of excavation and materials handling procedures

    SciTech Connect

    Oresik, W.L.S.; Otten, M.T.; Nelson, M.D.

    1994-12-31

    The technologies currently available for treating soils contaminated with the explosives 2,4,6-trinitroluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX) are both limited and expensive. Therefore, an important consideration in soils remediation is the preparation of construction specifications and contract drawings which limit the volume of soil that will be required to undergo treatment. Construction specifications and contract drawings were developed for the Contaminated Soil Remediation of the Explosives Washout Lagoons at Umatilla Depot Activity (UMDA) with the following primary objectives: (1) limit the volume of soil excavated from the Explosives Washout Lagoons and Explosives Washout Plant Areas, (2) minimize materials handling, and (3) reduce the excavated volume of soil which will undergo treatment.

  14. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Santosh, Panda; Butler, Kenna; Baltensperger, Andrew P.

    2016-01-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  15. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Panda, Santosh; Butler, Kenna D.; Baltensperger, Andrew P.

    2016-12-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  16. Dissolved Organic Matter Composition of Arctic Rivers: Linking Permafrost, Parent Material, and Groundwater to Riverine Carbon

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Aiken, G.; Butler, K. D.; Swanson, D. K.

    2015-12-01

    Recent warming in the Arctic is modifying the chemical composition of riverine dissolved organic matter (DOM) through changes in growing season length, wildfire, and permafrost thaw. In arctic rivers, DOM composition is an important control on nutrient availability, trace metal mobilization, and greenhouse gas emissions. As a result, shifts in DOM associated with a changing arctic landscape may alter how aquatic ecosystems function in this region. Here, we examined spatial variation in DOM composition in 72 rivers in the Brooks Range and Seward Peninsula of northern Alaska. We characterized DOM using a suite of techniques, including dissolved organic carbon (DOC) concentration, absorbance spectra, fluorescence, and chemical fractionation. Watersheds were classified based on traits that influence subsurface hydrology, including parent material (volcanic deposits, loess, sand, glacial moraine, bedrock) and permafrost extent (continuous vs. discontinuous zone) and state (ice-rich vs. ice-poor). We observed considerable variability in DOM composition across rivers. DOC concentrations were lowest in rivers influenced by glacial deposits (<2 mgC L-1) and highest in rivers draining lowland tundra or extensive wetlands (>10 mgC L-1). Specific ultraviolet absorbance (SUVA254), which serves as an index of DOM aromaticity, was also variable across rivers; spring-fed mountain streams had the lowest SUVA254 values (<1.5 L mgC-1 m-1), whereas tundra and wetland-dominated streams had the highest values (>4 L mgC-1 m-1). While hydrophobic organic acids were the dominant DOM fraction in all rivers, we observed a significant increase in the proportion of hydrophilic compounds during winter flow and in groundwater-fed systems. We also observed variation in DOM composition with permafrost extent and ground ice distribution across the region. Model projections over the next century suggest a heterogeneous response of DOM to thaw, likely mediated by spatial variations in ground ice and

  17. [Enhanced fixation of phenanthrene in soils amended with exotic organic materials].

    PubMed

    Ren, Li-Li; Ling, Wan-Ting; Gao, Yan-Zheng

    2008-03-01

    This paper studied the enhanced fixation of phenanthrene in clay loam soil, sandy silt soil, and silt loam soil under effects of exotic organic materials (EOMs) commercial organic fertilizer and peat. The results showed that after the addition of EOMs, the adsorption isotherms of phenanthrene in test soils were still linear, and distribution was the predominant mechanism for phenanthrene adsorption by soil. The adsorption of phenanthrene was significantly enhanced by the addition of EOMs, and the enhancement of distribution constant (Kd) was positively correlated with the content of soil organic carbon (foc), indicating that the higher the soil foc, the more significant the promotion effect of EOMs addition on phenanthrene adsorption. On the contrary, the desorption of phenanthrene was obviously inhibited by the addition of EOMs. After 64 days of EOMs addition, the extractable amount of phenanthrene was decreased significantly, compared with the control. Since the organic matter content of peat was higher than that of commercial organic fertilizer, the decrease of extractable phenanthrene in soils added with peat was more significant. In addition, the higher the soil foc, the stronger inhibition effect of EOMs on extractability of phenanthrene. On the whole, exotic EOMs could promote the adsorption, while inhibit the desorption and reduce the extractability of phenanthrene in soils.

  18. Economic Development Planning for Single Parents. Curriculum Materials for Vocational Teachers of Adolescents and Single Parents. Special Emphasis on Meeting the Needs of the Teen Parent.

    ERIC Educational Resources Information Center

    Simpson, Kawanna J.; And Others

    This guide is intended for use in school-based intervention programs intended to help single parents (particularly teenagers who are expecting or already have a child) master basic money management and consumer skills. The guide is divided into sections dealing with the following topics: interpersonal relationships, value clarification,…

  19. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic

  20. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers

    PubMed Central

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-01-01

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith’s Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial. PMID:26266419

  1. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers.

    PubMed

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-08-10

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith's Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial.

  2. The suitability evaluation of dredged soil from reservoirs as embankment material.

    PubMed

    Park, Jaesung; Son, Younghwan; Noh, Sookack; Bong, Taeho

    2016-12-01

    We assessed the suitability of soil dredged from reservoirs as embankment material and investigated its physical and geochemical properties and strength parameters, as well as its environmental stability. The dredged soil samples were taken from the Ansung, Jechon, and Mulwang Reservoirs in Korea. To evaluate their environmental stability and geochemical properties, we examined their levels of heavy metal contamination, pH, and electrical conductivity. We also conducted X-ray fluorescence and X-ray diffraction analyses. Furthermore, we determined the geotechnical characteristics, such as the compaction characteristics, and permeability coefficient, and we performed consolidated undrained triaxial compression tests to evaluate the recycling potential of dredged soil as embankment material. The concentrations of heavy metals in the sediment samples were lower than those of the standard samples. The pH value of the soil samples ranged from 4.25 to 5.39, and the electrical conductivity ranged between 83.3 and 265.0 μS/cm, indicating suitability for use as construction material with steel and concrete. Based on the values of the mechanical properties of the dredged soil, analysis of slope stability was performed for various cases and water level conditions. Our results indicate that the dredged soil has sufficient stability for substitution of embankment material and also as new embankment material for expansion.

  3. Online Soil Science Lesson 3: Soil Forming Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  4. Soils of Israel and Their Similarity to Soils of the United States.

    DTIC Science & Technology

    1981-01-01

    are covered by large, Quaternary flows of basalt . Hard and soft calcareous rocks are the main parent materials in the mountain and hill region. In the...Pliocene basaltic rocks. In the south, the soils developed from Quaternary silty sediments, and in the extreme south, the soils were derived form...the basalt -derived soils (Yaalon and Ganor, 1973). The soils of the Negev are of eolian origin; however, they differ greatly from soils found in

  5. Development of Low Cost Soil Stabilization Using Recycled Material

    NASA Astrophysics Data System (ADS)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  6. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain.

  7. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass materials. It is being considered as a potentially significant means of storing carbon for long periods to mitigate greenhouse gases. Much of the interest comes from studies of Amazonian soils that appear to have...

  8. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.

    PubMed

    Chen, Jun; Wang, Hao; Yao, Yangping

    2016-07-01

    In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ.

  9. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  10. Inexpensive and Easily Made Instructional Materials: A Training Manual for Teachers and Parents for Working with Preschool Children.

    ERIC Educational Resources Information Center

    Kutac, Ethel M., Comp.

    Intended for use in parent education activities, the manual presents guidelines for making 24 instructional toys and lesson plans for using the toys with preschool handicapped children. Each toy is presented in terms of an illustration, a list of specific skills to be developed by the child using the toy, materials needed, time required to make…

  11. Toxicity Determinations for Five Energetic Materials, Weathered and Aged in Soil, to the Collembolan Folsomia Candida

    DTIC Science & Technology

    2015-03-01

    and NG that meet the USEPA criteria for inclusion in the development of scientifically based ecological soil-screening levels, which can be used...in ecological risk assessment at sites that are contaminated with energetic materials. 15. SUBJECT TERMS 2,4-Dinitrotoluene (2,4-DNT...Toxicity Ecological soil-screening level (Eco-SSL) Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 16. SECURITY CLASSIFICATION OF

  12. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  13. Soil as an inexhaustible and high-performance anode material for Li-ion batteries.

    PubMed

    Hu, Xiaofei; Zhang, Kai; Cong, Liang; Cheng, Fangyi; Chen, Jun

    2015-11-11

    Herein, we demonstrate that by a simple treatment of heating and ball-milling, soil is endowed with a 77.2% degree of defects and acts as a high-performance anode material for soil/Li half cells and 18650-type LiNi0.915Co0.075Al0.1O2 (NCA)/soil full batteries that displayed a high and stable capacity of 3200 mA h (corresponding to 176 W h kg(-1) and 522 W h L(-1)) in the 200th cycle at a high current of 4 A.

  14. Carbon Dioxide Effects on Soil-Chemical Weathering: Laboratory Column Studies with Saprolite Materials

    NASA Astrophysics Data System (ADS)

    Oh, N.; Richter, D. D.

    2001-12-01

    Column leaching experiments have evaluated effects of sulfuric, nitric, and hydrochloric acids on chemical weathering in soils and rocks. In contrast, research to investigate effects of carbonic acid on chemical weathering is notably absent. Given that rising aboveground CO2 may increase photosynthesis and may enhance soil respiration, elevated soil CO2 and carbonic acid may enhance cation leaching via a combination of cation exchange and mineral dissolution. Column leaching studies were conducted using deep soil materials of the southern Piedmont (Enon, Tarrus, and Cecil series soils). Deionized water equilibrated with CO2 (at 1, 10, and 100%) was used as eluent and soluble products from exchangeable and mineral-bound sources were estimated. Results demonstrated that elevated CO2 accelerated cation release by both cation exchange and mineral dissolution. Highest cation release rates were from the Enon C horizon, a smectite-rich material from diabase with 23cmol(+)/kg ECEC and 98% base saturation. Lowest releases were from the Cecil Cr horizon, a kaolin-micaceous material derived from granitic gneiss with 1.2cmol(+)/kg ECEC and 40% B.S. Cation exchange was the predominant source of cations released, although mineral dissolution occurred in all three soils in response to elevated CO2. Remarkably, upto 35% of the cations released by the Cecil Cr horizon was attributed to weathering dissolution, probably from micaceous minerals.

  15. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  16. Correspondence and Least Squares Analyses of Soil and Rock Compositions for the Viking Lander 1 and Pathfinder Sites

    NASA Technical Reports Server (NTRS)

    Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.

    2000-01-01

    Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.

  17. Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

    SciTech Connect

    PHELAN, JAMES M.; WEBB, STEPHEN W.; ROMERO, JOSEPH V.; BARNETT, JAMES L.; GRIFFIN, FAWN A.

    2003-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

  18. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  19. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  20. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  1. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  2. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    PubMed Central

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555

  3. Strontium-doped hematite as a possible humidity sensing material for soil water content determination.

    PubMed

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-09-10

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800-1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil.

  4. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2015-06-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  5. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2014-09-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  6. Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials?

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Janicke, J.

    1995-09-01

    Acapulco is considered to be a link between primitive chondritic meteorites and the differentiated achondrites. Its parent body presumably formed by accretion of material of chondritic compositions at an fO2 that lies between that of H- and enstatite chondrites [1]. The accreted chondritic material was subjected 4.557 Gyr ago to peak temperatures close to 1200 degrees C that lead to partial melting and extensive recrystallization [1, 2]. Seven morphologically different types of graphite with large variations in C- and N-isotopic compositions were recently reported from Acapulco [3, 4]. At least four distinct isotopic reservoirs are required to explain the C- and N-isotopic compositions of these graphites [3, 4]. While the silicate minerals in Acapulco have isotopically heavy N (delta^(15)N = + 15 per mil) chromites were found to be isotopically light (delta^(15)N = _ 75 to _ 82 per mil). Chromite occurs in Acapulco in six different assemblages: (1) as inclusions in silicates, (2) in FeNi, (3) in troilite, (4) with FeNi and troilite, (5) with FeNi and silicates, and (6) with troilite and silicates. It is also rarely present as small idiomorphic inclusions in plagioclase. Chromites in contact with silicates display no chemical zoning for Cr, Al, Ti, Fe, Mg, Mn, or Zn to the silicate borders thus indicating high degree of equilibration with the silicate neighbours. The MgO-contents of chromites in metals and troilites (4.74 to 7.2 %) are relatively lower and their compositional ranges are relatively wider than those in contact with silicates (6.1 to 7.69 %). Zoning profiles of MgO and FeO in chromites in all assemblages are quite flat. Chromites in contact with metals and troilite display a variety of zoning patterns of Cr, Al, Ti, and Zn. All these chromite types , however, depict the same MnO zoning trends with low MnO-contents in their cores (0.96 to 2.14 %) than in their rims to metal or troilite (1.7 to 3.1 %). With few exceptions, the zoning behaviour of Cr, Al

  7. Analyses of exobiological and potential resource materials in the Martian soil.

    PubMed

    Mancinelli, R L; Marshall, J R; White, M R

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  8. Analyses of exobiological and potential resource materials in the Martian soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Marshall, John R.; White, Melisa R.

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end, methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology are investigated. Differential thermal analysis coupled with gas chromotography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  9. Studies related to the evolution of the lunar soil materials

    NASA Technical Reports Server (NTRS)

    Carter, J. L.

    1973-01-01

    Studies of the chemistry and morphology of the lunar samples are reported. The presence of fragments of plagoclase in the centers of the impact craters indicate that the glass spheres were derived by meteoritic impact from high velocity particles, while the glass was at high temperatures. From the study of the Apollo 16 samples, it is suggested that this material was formed in a hot impact ejecta blanket, or in an igneous environment, and later exposed to meteoritic impact. It is suggested that particles from Apollo 17 were formed in a cloud of siliceous vapors.

  10. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found

  11. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  12. Unit The World of the Soil, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education project is producing materials designed for use in grades 7 - 10 of Australian schools. This is the first trial version of a unit expected to take about 20 40-minute periods to complete. Included are a teacher's guide to the unit, four pupil booklets ("Looking at Soils,""Things to do With…

  13. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination

    PubMed Central

    de O. Pinto, Tatiana; García, Andrés C.; Guedes, Jair do N.; do A. Sobrinho, Nelson M. B.; Tavares, Orlando C. H.

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+. PMID:27341440

  14. Phosphoric acid, nitric acid, and hydrogen peroxide digestion of soil and plant materials for selenium determination

    SciTech Connect

    Dong, A.; Rendig, V.V.; Burau, R.G.; Besga, G.S.

    1987-11-15

    A mixture of phosphoric acid, nitric acid, and hydrogen peroxide has been proposed as an alternative to the use of the nitric/perchloric acid mixture to digest biological fluids to determine their selenium (Se) content. The purpose of the studies reported here was to test the applicability of this digestion method for the determination of Se in soil and plant materials.

  15. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  16. Consensus evaluation of radioactivity-in-soil reference materials in the context of an NPL Environmental Radioactivity Proficiency Test Exercise.

    PubMed

    Dean, Julian; Collins, Sean; Garcia Miranda, Maria; Ivanov, Peter; Larijani, Cyrus; Woods, Selina

    2017-01-25

    The development of two radioactivity-in-soil reference materials is described - one for peat and one for soil with high sand content. Each bulk material was processed, subdivided and measured before being sent to participants in an NPL Environmental Radioactivity Proficiency Test Exercise. Activity concentrations of radionuclides in each material were determined by 'consensus' evaluations of participants' results using two weighted mean methods. The project demonstrated the use of such exercises in delivering reference materials to the user community.

  17. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  18. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  19. Dose-response functions for the soiling of heritage materials due to air pollution exposure.

    PubMed

    Watt, John; Jarrett, David; Hamilton, Ron

    2008-08-01

    A set of materials (Portland limestone, white painted steel, white plastic and polycarbonate filter material) was exposed at locations in London, Athens and Krakow. Regular measurements of reflectance were taken over a period of twelve months. Co-located measurements of PM(10) concentrations were available. Based on these results, the relationship between soiling (measured as loss of reflectance) and ambient PM(10) concentrations was quantified leading to the development of dose-response functions for the soiling of materials. The results for limestone revealed too much scatter for a prediction to be made. Implications for air quality management and for the conservation of cultural heritage buildings are considered, including public acceptability and economic factors.

  20. Element concentrations in soils and other surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.

    1984-01-01

    Samples of soils or other regoliths, taken at a depth of approximately 20 cm form locations about 80 km apart, throughout the conterminous United States, were analyzed for their content of elements. In this manner, 1,318 sampling sites were chosen, and the results of the sample analyses for 50 elements were plotted on maps. The arithmetic and geometric mean, the geometric deviation, and a histogram showing frequencies of analytical values are given for 47 elements. The lower concentrations of some elements (notable, aluminum, barium, calcium, magnesium, potassium, sodium, and strontium) in most samples of surficial materials from the Eastern United States, and the greater abundance of heavy metals in the same materials of the Western United States, indicates a regional geochemical pattern of the largest scale. The low concentrations of many elements in soils characterize the Atlantic Coastal Plain. Souls of the Pacific Northwest generally have high concentrations of aluminum, cobalt, iron, scandium, and vanadium, but are low in boron. Soils of the Rocky Mountain region tend to have high concentrations of copper, lead, and zinc. High mercury concentrations in surficial materials are characteristic of Gulf Coast sampling sites and the Atlantic coast sites of Connecticut, Massachusetts, and Maine. At the State level, Florida has the most striking geochemical pattern by having soils that are low in concentrations of most elements considered in this study. Some smaller patterns of element abundance can be noted, but the degree of confidence in the validity of these patterns decreases as the patterns become less extensive.

  1. Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal Region

    NASA Astrophysics Data System (ADS)

    Tsybenov, Yu. B.; Chimitdorzhieva, G. D.; Chimitdorzhieva, E. O.; Egorova, R. A.; Mil'kheev, E. Yu.; Davydova, T. V.; Korsunova, Ts. D.-Ts.

    2016-08-01

    Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100-120 cm and filled with humified material. The depth of humus pockets is 50-80 cm, and their width in the upper part is 50-90 cm. The lower boundary of most of the humus pockets lies at the depth of 60-70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (<0.01 mm) constitutes a considerable part of the material filling the cracks, which explains the significant humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.

  2. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  3. Measurable and Influential Parameters That Influence Corrosion Performance Differences between Multiwall Carbon Nanotube Coating Material Combinations and Model Parent Material Combinations Derived from Epoxy-Amine Matrix Materials.

    PubMed

    Curtzwiler, Greg W; Williams, Eric B; Maples, Austin L; Wand, Steven W; Rawlins, James W

    2017-02-22

    Protective coatings are often erroneously thought of as perfect environmental barriers for metal substrates; however, a host of corrosion inducing environmental contaminants permeate through defect-free coatings. Carbon nanotubes are high aspect ratio nanofillers with unique mechanical, electrical, and polymer interaction properties with well-established yet, for practical reasons, often unrealized potential. The research objective was to quantify and understand the influential effects and relationships between low concentration levels of multiwall carbon nanotubes (MWCNT) dispersed into epoxy-amine matrix materials and the different water hydrogen bonding interactions on corrosion rates of steel substrates. We hypothesize that when water directly hydrogen bonds with polymer, substrate and/or MWCNTS, the localized water's capacity to transfer environmental contaminants through the coating, i.e., to and from the substrate, diminishes due to a reduced potential to contribute to the formation of water hydration shells and therefore aid in diminishing the corrosion rate. We measured the absolute pre-exposure water content, and monitored to delineate between the ratio and shifting ratio of in situ free versus bound water hydrogen bonding interactions at the coating/air interface using ATR-FTIR spectroscopy in a 5% NaCl fog environment in an attempt to correlate these differences with experimental corrosion rates. Free water content was reduced from ∼20% to <1% of the total water concentration when 1.0 wt % MWCNTs was dispersed into the parent polymer network. Concurrently, the bound water content was measured to shift from ∼2% to >80% with the same MWCNT concentration. The MWCNT bound water resulted in 25% less corrosion for the same steel substrates albeit the measured water vapor diffusivity was the same for each material combination evaluated. Interestingly, the measured pre-exposure bound water content was predictive of which material would corrode slowest and

  4. Experimental study of bentonite-soil mixtures as anti-seepage materials of constructed wetlands.

    PubMed

    Chen, Jing; Li, Zifu; Zhao, Xin; Li, Haihan

    2011-01-01

    In this study, mixtures of different kinds of bentonite and soil were used and tested in order to find a cheap alternative to current anti-seepage materials for constructed wetlands. The anti-seepage layer of constructed wetlands was simulated in the experimental study and the permeability coefficient of the mixed materials was determined in order to evaluate the anti-seepage effect of mixtures. The main results are as follows: (i) The minimum mass ratio of bentonite to soil is 10%; (ii) Within a certain range, the more compact and higher the wet density is, then the better anti-seepage effect is (under the condition of certain moisture content). The permeability coefficient of the mixed materials exponentially increased with the increase of wet density; (iii) At the wet density of 1.83 g/cm(3), corresponding with the optimum compactness, the mixture of natural sodium bentonite produced in Wyoming, USA and soil from Cangzhou, Hebei province showed the best anti-seepage performance; (iv) The impermeability of the mixture with smaller particle sizes of bentonite was far better than that with the bigger particle sizes; (v) The hydration effect of bentonite changed the structure of the mixture materials into a special structure that is similar to that of pure bentonite. The particles of the mixture became expanded under SEM investigation and the mixture became more compact, which could have the same or similar effect as pure bentonite for anti-seepage.

  5. Evaluation of Varying Biochars as Carrier Materials for Bacterial Soil Inoculants

    NASA Astrophysics Data System (ADS)

    Hale, Lauren; Crowley, David

    2014-05-01

    The incorporation of biochar into agricultural soils for carbon sequestration and improved soil fertility creates an opportunity to simultaneously deliver plant-growth promoting rhizobacteria (PGPR). Many characteristics of biochar materials indicate that these particles could be conducive as inoculum carriers. This could provide a value-added component for biochar marketing and has an advantage over traditional carrier materials, which can be unsustainable or expensive to produce. Here, we assessed the suitability of 10 biochar types, made from 5 feedstocks at 2 pyrolysis temperatures (300°C and 600°C), to serve as carriers for 2 model PGPR strains, Enterobacter cloacae UW5 and Pseudomonas putida UW4. All biochars were characterized based on BET specific surface area, C-N content, pH, EC, and their abilities to adsorb bacterial cells from a liquid inoculum. Further studies incorporated qPCR to quantify the survival of inoculants after introduction into soils via biochar carriers. The biochars that performed well were further assayed for their influence on PGPR traits, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and auxin production. Peat and vermiculite served as traditional carrier materials to which we compared the biochars. Our findings indicated that biochars varied in their interactions with our model PGPR strains. Based on our analysis several biochar types were able to serve as carriers which were as good, if not better than, the traditional carrier materials. Future work should seek to assess shelf life and varying inoculation methods for the biochar-inoculant complexes.

  6. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    2016-01-01

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm(3)) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  7. Simple method for estimating soil mass loading onto plant surface using magnetic material content as a soil indicator - Influence of soil adhesion to vegetation on radioactive cesium concentration in forage.

    PubMed

    Sunaga, Yoshihito; Harada, Hisatomi

    2016-11-01

    A simple technique for estimating soil mass loading on vegetation was developed using magnetic material content as an indicator of soil adhesion. Magnetic material contents in plant and soil samples were determined by a magnetic analyzer. High recovery rates of 85-97% were achieved in a recovery test in which additional soil was added to powdered plant materials [stem of forage corn (Zea mays L.), aboveground part of Italian ryegrass (Lolium multiflorum Lam.)] at addition rates of 12.3-200 g dry soil kg(-1) dry plant material including soil. Samples of different Japanese cultivated soils were tested and showed a range of magnetic contents of 1.27-16.1 g kg(-1) on a dry weight basis. These levels are considered adequate for determining soil contamination in plant materials. Then, we applied this method for confirming the effect of soil adhesion on radioactive cesium concentrations in plant samples obtained at the area affected by the 2011 nuclear accident in Japan. The mean soil mass loading (±standard deviation) on forage rye (Secale cereale L.) showing mild lodging was 0.8 ± 0.6 g kg(-1), but was 7.4 ± 5.0 g kg(-1) for plants with serious lodging. No soil loading was detected on rye plants that showed no lodging. Radioactive cesium concentrations in the rye samples increased linearly with the increase in soil mass loading caused by plant lodging, and consequently mean radioactive cesium concentration for rye plants with serious lodging was about 2.7 times higher than that with no lodging. Cesium radioactivity in forage was affected by variations in soil mass loading onto forage plants caused by changes in plant growth and differences between plant species.

  8. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    USGS Publications Warehouse

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  9. Gender and Material Transfers between Older Parents and Children in Ismailia, Egypt

    ERIC Educational Resources Information Center

    Yount, Kathryn M.; Cunningham, Solveig A.; Engelman, Michal; Agree, Emily M.

    2012-01-01

    In Egypt, kin relations have been governed by a patriarchal contract, which defines expectations for intergenerational support along gendered lines. Social changes may be disrupting these customs and bringing attention to the ways gender may influence intergenerational support in rapidly changing contexts. Using data from 4,465 parent-child dyads…

  10. The Soil Series in Soil Classifications of the United States

    NASA Astrophysics Data System (ADS)

    Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.

    2014-05-01

    Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type

  11. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  12. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    PubMed

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review.

  13. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  14. Designing for cleanability: The effects of material, surface roughness, and the presence of blood test soil and bacteria on devices.

    PubMed

    Gonzalez, Elizabeth A; Nandy, Poulomi; Lucas, Anne D; Hitchins, Victoria M

    2017-02-01

    Cleaning reusable medical devices removes organic and inorganic soil, which allows for effective disinfection and sterilization. However, it is not always clear what variables to consider when validating cleaning. This study compared the ability of 3 different cleaning agents (ie, water, alcohol, and bleach) to remove bacteria (ie, vegetative and spores) and artificial blood test soil from 2 common device materials: polypropylene and ultra-high-molecular-weight polyethylene. There was a complex interaction between bacteria, soil, and surface roughness.

  15. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  16. Overview of recent magnetic studies of high T{sub c} cuprate parent compounds and related materials

    SciTech Connect

    Johnston, D.C.; Ami, T.; Borsa, F.

    1995-12-01

    Recent studies of the magnetic properties of several high superconducting transition temperature (T{sub c}) cuprate parent compounds and related materials will be reviewed. The observations of a Heisenberg to XY-like crossover upon cooling below {approximately}300K towards the Neel temperature T{sub N} = 257 K and a subsequent magnetic field-induced XY-like to Ising-like crossover near TN in single crystals of the K{sub 2}NiF{sub 4} type spin 1/2 model compound Sr{sub 2}CuO{sub 2}Cl{sub 2} will be described.

  17. Additional Sediment/Soil Sampling Conducted at the Little Sioux Bend Shallow Water Habitat Project Site during October 2013

    DTIC Science & Technology

    2013-11-01

    Fenton, 1999). The general trend of the distribution is similar whether the parent material is loess or glacial till (Fenton 1999). The total...whether the parent material is loess or glacial till (Fenton 1999). The total phosphorus depth distributions for various Iowa soil types, as reported by...Fenton, 1999. Loess -derived moderately well and well drained soils. Loess -derived somewhat poorly drained soils Till-derived moderately well, well

  18. Knowledge, attitudes and practices among parents and teachers about soil-transmitted helminthiasis control programs for school children in Guimaras, Philippines.

    PubMed

    Parikh, Divya Sinha; Totañes, Francis I G; Tuliao, Alex H; Ciro, Raezelle N T; Macatangay, Bernard J C; Belizario, Vicente Y

    2013-09-01

    We determined the attitudes toward and practices regarding soil-transmitted helminthes (STH) control among parents and school teachers to identify reasons behind attitudes and practices that do not promote STH control. Written knowledge, attitudes and practices surveys were distributed to parents (N = 531) and teachers (N = 105) of students at 11 elementary schools in Guimaras Province, the Philippines. The survey addressed attitudes about mass drug administration (MDA), knowledge about STH control, hygienic practices, and acceptability of distributing deworming tablets among teachers. More than 90% of parents and teachers held favorable attitudes towards MDA. Sixty-nine percent of parents and 75.5% of teachers believed stool exams were necessary before MDA. Thirty-seven percent of parents stated they would not allow teachers to administer deworming tablets and 91.5% of parents feared teachers would not detect side effects of the medication. Forty-eight percent of teachers felt they could safely give deworming tablets and 81.4% of teachers were afraid of managing the side effects of deworming tablets. Forty-seven point eight percent of parents and 42.2% of teachers stated defecation in the open occured in their community. Although attitudes toward STH control were largely favorable, misconceptions about the MDA strategy, lack of support for teachers giving deworming tablets, and the practice of open defecation still exist as barriers to STH control efforts. The next step to achieve effective STH control will be to clarify misconceptions in education campaigns, to train teachers about medication administration, campaign to improve sanitation and hygiene and begin targeted mass treatment in Guimaras, the Philippines.

  19. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  20. Laboratory and field testing for utilization of an excavated soil as landfill liner material.

    PubMed

    Bozbey, Ilknur; Guler, Erol

    2006-01-01

    This study investigates the feasibility of using a silty soil excavated in highway construction as landfill liner material. The tests were conducted both at laboratory and in situ scales, and the soil was tested in pure and lime treated forms. Different levels of compaction energy were used. For the field study, a test pad was constructed and in situ hydraulic conductivity experiments were conducted by sealed double ring infiltrometers (SDRI). Laboratory testing revealed that while lime treatment improved the shear strength, it resulted in higher hydraulic conductivity values compared to pure soil. It was observed that leachate permeation did not change the hydraulic conductivity of the pure and lime treated samples. Laboratory hydraulic conductivities were on the order of 10(-9) m/s and met the 1.0E-08 m/s criterion in the Turkish regulations, which is one order of magnitude higher than the value allowed in most developed countries. SDRI testing, which lasted for 6 mo, indicated that lime treatment increased the hydraulic conductivity of pure soil significantly in the field scale tests. In situ hydraulic conductivities were on the order of 1E-08 and 1E-07 m/s, and exceeded the allowable value in the Turkish regulations. Undisturbed samples collected from the test pad were not representative of field hydraulic conductivities. Contrary to laboratory findings, higher compaction efforts did not result in lower hydraulic conductivities in field scales. The study verified the importance of in situ hydraulic conductivity testing in compacted liners.

  1. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  2. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  3. Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

    2006-12-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

  4. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    PubMed

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  5. Some adverse effects of soil amendment with organic Materials-The case of soils polluted by copper industry phytostabilized with red fescue.

    PubMed

    Cuske, Mateusz; Karczewska, Anna; Gałka, Bernard; Dradrach, Agnieszka

    2016-08-02

    The study was aimed to examine the effects of soil amendment with organic waste materials on the growth of red fescue and the uptake of Cu and Zn by this grass, in view of its potential usage for phytostabilization of Cu-polluted soils. Five soils, containing 301-5180 mg/kg Cu, were collected from the surroundings of copper smelter Legnica, and amended with lignite (LG) and limed sewage sludge (SS). Plant growth and the concentrations of Cu and Zn in the shoots and roots of grass were measured in a pot experiment and related to the results of Pytotoxkit and Microtox® tests performed on soil solution. The effects of soil amendment with LG and SS differed greatly, and depended on soil properties. In some cases, the application of alkaline SS resulted in dramatic increase of Cu phytotoxicity and its enhanced uptake by plants, while application of LG to slightly acidic soil caused increased accumulation of Zn in plants, particularly in their roots. The study confirmed good suitability of red fescue for phytostabilization of Cu-contaminated soils except for those extremely polluted. Organic amendments to be used for metal immobilization should be thoroughly examined prior to application.

  6. Development of construction materials like concrete from lunar soils without water

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  7. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    SciTech Connect

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  8. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Chang, S. (Principal Investigator)

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC

  9. Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil

    NASA Astrophysics Data System (ADS)

    López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael

    2015-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1

  10. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2011-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  11. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2010-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  12. Possible sources of H2 to H2O enrichment at evaporation of parent chondritic material

    NASA Technical Reports Server (NTRS)

    Makalkin, A. B.; Dorofeyeva, V. A.; Vityazev, A. V.

    1993-01-01

    One of the results obtained from thermodynamic simulation of recondensation of the source chondritic material is that at 1500-1800 K it's possible to form iron-rich olivine by reaction between enstatite, metallic iron and water vapor in the case of (H2O)/(H2) approximately equal to 0.1. This could be reached if the gas depletion in hydrogen is 200-300 times relative to solar abundance. To get this range of depletion one needs some source material more rich in hydrogen than the carbonaceous CI material which is the richest in volatiles among chondrites. In the case of recondensation at impact heating and evaporation of colliding planetesimals composed of CI material, we obtain insufficiently high value of (H2)/(H2O) ratio. In the present paper we consider some possible source materials and physical conditions necessary to reach gas composition with (H2)/(H2O) approximately 10 at high temperature.

  13. Parents' regulation and self-regulation and performance in children with intellectual disability in problem-solving using physical materials or computers.

    PubMed

    Nader-Grosbois, Nathalie; Lefèvre, Nathalie

    2012-01-01

    This study compared mothers and fathers' regulation with respect to 29 children with intellectual disability (ID) and 30 typically developing (TD) children, matched on their mental age (MA), as they solved eight tasks using physical materials and computers. Seven parents' regulatory strategies were coded as they supported their child's identification of the objective, planning, attention, motivation, joint attention, behaviour regulation and evaluation. Children's performance was scored. Regulation by the parents of the two groups did not differ significantly, regardless of the medium, except that the degree of parental regulation of the child's behaviour was greater in the ID group than in the TD group. In tasks involving the computer, we observed a higher degree of regulation of children's planning and a lower degree of regulation of their evaluation for the two groups. The parents displayed significantly less regulation with respect to the children with the highest MA than towards the children with the lowest MA, in each group. There was a significant interaction effect of medium and children's MA on overall parents' regulation and on their support of identification of objective and of planning. Most parental strategies were negatively linked with ID and TD children's performance in tasks. In both groups, with control for MA, parental support with the identification of the objective, with planning and with attention was negatively linked to the corresponding self-regulatory strategies of the children with each medium; however, parents' joint attention was positively linked with children's joint attention.

  14. Obesity related programming statements in materials on infant feeding aimed at parents in five European countries.

    PubMed

    von Rosen-von Hoewel, Julia; Laitinen, Kirsi; Martin-Bautista, Elena; Campoy, Cristina; Jakobik, Viktoria; Decsi, Tamás; Schmid, Martina A; Morgan, Jane; Gage, Heather; Koletzko, Berthold; Raats, Monique

    2009-01-01

    Early nutrition programming as an origin of obesity is well acknowledged, but to what extent is this concept communicated to parents? In five European countries, UK, Finland (FI), Germany (DE), Hungary (HU) and Spain (ES), a total of 130 stand alone leaflets and 161 articles from parenting magazines providing information on feeding of healthy infants aged 0-12 months were identified and screened for nutrition programming statements. Obesity was mentioned in 8.5% (54/638) of the statements, and was the fourth most frequent outcome after allergy (20.7%), risk of infections (15.5%) and growth and development (11.4%). A temporal prognosis was given in 39% of obesity related statements, 6% referring to short- (< 5 years), 13% to medium- (5-15 years) and 20% to long-term (>15 years) duration of effects. So advice on obesity focuses on the intrinsic long-term perspective of programming in contrary to other surveyed health-outcomes where only 8- considered a lifelong approach. The major programming related behaviour concerned breast-feeding compared to formula and complementary feeding with meaningful differences concerning the recommended duration: for ES and HU the predominant advice was for exclusive breast-feeding for 6 months, for DE exclusive breast-feeding for 4-6 months and for UK and FI breast-feeding without further specification. In summary, statements relating to the programming of later obesity have been partially integrated into feeding information in five European countries. These countries have slightly different breastfeeding recommendations, but consistently refer to the preventive potential of breastfeeding in general. This is important as obesity and its resulting morbidity are of increasing public health concern in developed countries.

  15. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance].

    PubMed

    Yao, Gui-hua; Xu, Hai-zhou; Zhu, Lin-gang; Ma, Jia-wei; Liu, Dan; Ye, Zheng-qian

    2015-11-01

    In this study, a pot experiment was conducted to investigate the effect of clean organic materials i. e., biogas residue (BR), mushroom residue (MR), and bamboo shell (BS) on phytoextraction remediation of two heavy metal contaminated soils (collected from Wenzhou and Fuyang, which referred to "Wenzhou soil" and "Fuyang soil", respectively.) using a cadmium (Cd) and zinc (Zn) hyperaccumulator Sedum alfredii Hance. The results indicated that the effects of organic materials on availabilities of soil heavy metals were different due to different kinds of heavy metals, organic materials, and the application rates of the organic materials. Addition with 5% BR showed the greatest activation to copper (Cu), Zn in Wenzhou soil, and in Fuyang soil 1% BS had the highest activation for Cu, Zn, lead ( Ph) and Cd. Growth of shoot biomass of Sedum alfredii Hance increased with the addition rate of organic materials, and the plant dry weights were increased by 23.7%-93.0%. In Wenzhou soil, only 1% BS treatment had the best effect on Cd uptake and accumulation in shoots of Sedum alfredii Hance, increased by 22.6%, while other treatments were inferior to the control. For Zn, MR treatments were inferior to the control, while other treafments were superior to the control, of which 5% BR, 1% BS and 5% BS exceeded the control by 39. 6%, 32.6% and 23.8%, respectively. In Fuyang soil, for Cd, the treatment effects of 5% BS, 1% BR and 5% BR were the greatest, of which Cd accumulation in shoots exceeded the control by 12.9%, 12.8% and 6.2%, respectively, while Cd accumulations in shoots in all other treatments were less than that of control. For Zn, the treatments of adding organic materials promoted Zn accumulation in shoots of Sedum alfredii Hance, and the best treatments were as follows: 5% BS. 5% BR and 5% MR, exceeded the control by 38.4%, 25.7% and 22.4%, respectively.

  16. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials

    SciTech Connect

    Guohui Wang; Sybille Kleineidam; Peter Grathwohl

    2007-02-15

    Sorption/desorption of phenanthrene in two soil samples and carbonaceous materials was found to yield co-incident equilibrium isotherms and no significant hysteresis was observed. Additionally, release of native phenanthrene was investigated. Equilibrium sorption and desorption isotherms were determined using pulverized samples of Pahokee peat, lignite, and high-volatile bituminous coal, a mineral soil, and an anthropogenic soil. Instead of the conventional decant-and-refill batch method, sorption/desorption was driven by temperature changes using consistent samples. Sorption started at 77{sup o}C and was increased by reducing the temperature stepwise to 46, 20, and finally 4{sup o}C. For desorption the temperature was increased stepwise again until 77{sup o}C was reached. Besides the co-incident sorption and desorption isotherms at each temperature step, the solubility-normalized sorption/desorption isotherms of all different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked sorption isotherms indicating that the release of native phenanthrene involves the same sorption/desorption mechanisms as those for newly added phenanthrene. 35 refs., 4 figs., 5 tabs.

  17. An improved SOIL*EX{trademark} process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    SciTech Connect

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-12-31

    Rust`s patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust`s Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements.

  18. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.

    PubMed

    Lee, Chang Hoon; Lee, Do Kyoung; Ali, Muhammad Aslam; Kim, Pil Joo

    2008-12-01

    Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop

  19. Changes in interfacial tension of chlorinated solvents following flow through U.K. soils and shallow aquifer material.

    PubMed

    Harrold, Gavin; Gooddy, Daren C; Reid, Stephen; Lerner, David N; Leharne, Stephen A

    2003-05-01

    The interfacial tension (IFT) that arises at the interface between water and an immiscible organic liquid is a key parameter affecting the transport and subsequent fate of the organic liquid in water-saturated porous media. In this paper, data are presented that show how contact between a range of soil types and chlorinated hydrocarbon solvent (CHS) dense nonaqueous phase liquids (DNAPLs) can affect DNAPL/water IFT values. The soils examined are indicative of U.K. soil types and shallow aquifer materials. The solvents investigated were tetrachloroethylene (PCE) and trichloroethylene (TCE). Lab grade, recovered field DNAPL and industrial waste chlorinated solvent mixtures were used. The data from batch and column experiments invariably revealed that water/DNAPL IFT values change following contact with unsaturated soils. In the majority of cases, the IFT values increase following soil exposure. However, after contact with an organic-rich soil, the IFT of the lab grade solvents decreased. The experimental evidence suggests that these reductions are linked to the removal of organic material from the soil and its subsequent incorporation into the solvent IFT increases in the case of lab solvents are shown to be linked to the removal of stabilizers (added by the manufacturers to obviate degradation) that are removed by adsorption to soil mineral surfaces. Similarly, it is conjectured that adsorption of surface-active compounds from the industrial waste samples to soil surfaces is responsible for increases in the IFT in these samples. Finally, it was observed that invading CHSs are capable of dissolving and subsequently mobilizing in-situ soil contaminants. GC/MS analysis revealed these mobilized soil contaminants to be polyaromatic hydrocarbons and phthalate esters.

  20. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  1. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  2. Evaluation of bottom ash and composted manure blends as a soil amendment material.

    PubMed

    Mukhtar, S; Kenimer, A L; Sadaka, S S; Mathis, J G

    2003-09-01

    The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material.

  3. Steroid Biomarkers Revisited – Improved Source Identification of Faecal Remains in Archaeological Soil Material

    PubMed Central

    Prost, Katharina; Birk, Jago Jonathan; Lehndorff, Eva; Gerlach, Renate; Amelung, Wulf

    2017-01-01

    Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids). We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces from old livestock breed (cattle, horse, donkey, sheep, goat, goose, and pig) and humans. Additionally, we performed steroid analyses on soil material of four different archaeological periods (sites located in the Lower Rhine Basin, Western Germany, dating to the Linearbandkeramik, Urnfield Period / Bronze Age, Iron Age, Roman Age) with known or supposed faecal inputs. By means of already established and newly applied steroid ratios of the analysed faeces together with results from the literature, all considered livestock faeces, except sheep and cattle, could be distinguished on the basis of their steroid signatures. Most remarkably was the identification of horse faeces (via the ratio: epi-5β-stigmastanol: 5β-stigmastanol + epicoprostanol: coprostanol; together with the presence of chenodeoxycholic acid) and a successful differentiation between goat (with chenodeoxycholic acid) and sheep/cattle faeces (without chenodeoxycholic acid). The steroid analysis of archaeological soil material confirmed the supposed faecal inputs, even if these inputs had occurred several thousand years ago. PMID:28060808

  4. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.

    1993-01-01

    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  5. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  6. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  7. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.

    PubMed

    Shi, Yu; Huang, Zhanbin; Liu, Xiujie; Imran, Suheryani; Peng, Licheng; Dai, Rongji; Deng, Yulin

    2016-04-01

    Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.

  8. Parenting: The Underdeveloped Skill.

    ERIC Educational Resources Information Center

    National PTA, Chicago, IL.

    This parent education curriculum contains a variety of materials designed to help local Parent Teacher Associations (PTAs) hold meetings for parents on child rearing. The materials help organizers plan meetings on topics such as dating, drugs, and careers. The unit contains a leader's guide, which contains a description of how to plan meetings,…

  9. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides

  10. Soil microstructure and factors of its formation

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.

    2007-06-01

    The microstructural stability of soils of different geneses (steppe soils, tropical soils, and subtropical soils) developed from marine clay, loess, and weathering crusts was studied by the method of successive treatments with chemical reagents destroying the particular clay-aggregating components. The following dispersing agents were used: (1) H2O (pH 5.5), (2) 0.1 N NaCl (pH 6), (3) 0.002% Na2CO3 (pH 8.7), (4) 0.1 N NaOH (pH 11.5), (5) the Tamm reagent (pH 3.2), and (6) 0.1 N NaOH (pH 11.5). The properties of the clay subfractions obtained in the course of these treatments were studied by a set of analytical methods, including X-ray diffractometry, Mössbauer spectroscopy, and magnetic measurements. It was shown that soil microaggregates are formed under the impact of a number of physicochemical processes; the content and properties of inorganic components (clay minerals in soils with a high CEC and iron oxides in soils with a low CEC) are the controlling factors. The structure of the parent materials is transformed to different degrees to form the soil structure. For example, autonomous nondifferentiated soils inherit, to some extent, the specific microorganization of the parent material. At the same time, the redistribution of substances in the soil profile and in the landscape may exert a substantial influence on the soil structure and microstructure. This is particularly true for autonomous differentiated soils, turbated soils, accumulative soils, polylithogenic soils, and polygenetic soils. The properties of the obtained subfractions of the clay (the mineralogical composition, the Fe2+/(Fe2+ + Fe3+) ratio, the magnetic susceptibility, and the Cha/Cfa ratio) attest to the spatial heterogeneity of the composition and properties of the mineral and organic aggregated compounds in soils.

  11. Effect of Ground Rubber vs. ZnSO4 on Spinach Accumulation of Cd from Cd-Mineralized California Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain soils derived from marine shale in Salinas Valley, CA, USA, contain significant levels of natural Cd but normal levels of Zn, all derived from the soil parent materials. Crops grown on these soils contain high levels of Cd, and because of the high Cd:Zn, this Cd is highly bioavailable and a...

  12. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  13. Management of Plant-parasitic Nematodes with a Chitin-Urea Soil Amendment and Other Materials

    PubMed Central

    Westerdahl, B. B.; Carlson, H. L.; Grant, J.; Radewald, J. D.; Welch, N.; Anderson, C. A.; Darso, J.; Kirby, D.; Shibuya, F.

    1992-01-01

    Field trials were conducted with a chitin-urea soil amendment and several other nematicides on four crop-nematode combinations: tomato-Meloidogyne incognita; potato-Meloidogyne chitwoodi; walnut-Pratylenchus vulnus; and brussels sprouts-Heterodera schachtii. Significant (P ≤ 0.10) nematode population reductions were obtained with the chitin-urea soil amendment in the trims on potato and walnut. In the trials on brussels sprouts and on tomato, phytotoxicity occurred at rates of 1,868 and 1,093 kg/ha, respectively. Significant (P ≤ 0.10) nematode reductions were also obtained with metham sodium on potato; with 1,3-D on tomato and brussels sprouts; and with sodium tetrathiocarbonate, XRM 5053, fenamiphos, ethoprop, LX1075-05, LX1075-07, and SN 109106 on tomato. The following materials did not provide significant nematode control under the conditions of the particular experiments: metham sodium, oxamyl, and Yucca extract on tomato; and dazomet granules on brussels sprouts. PMID:19283044

  14. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  15. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    PubMed

    Cheng, Chin-Min; Chang, Yung-Nan; Sistani, Karamat R; Wang, Yen-Wen; Lu, Wen-Chieh; Lin, Chia-Wei; Dong, Jing-Hong; Hu, Chih-Chung; Pan, Wei-Ping

    2012-02-01

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.

  16. Becoming Informed Consumers: A National Survey of Parents' Experience with Respite Services. Guide Materials for Respite Care for Families with Members Who Are Disabled. Final Project Report.

    ERIC Educational Resources Information Center

    Knoll, James A.; Bedford, Sara

    The project sought to determine the content and form of materials that would enable parents of children with disabilities to become informed critical consumers of respite services. Project activities included establishment and utilization of a national advisory panel; an indepth review of the literature on family supports, systems change, and…

  17. Effect of Soil Solid-Phase Material Migration on Soil Properties within a Small Watershed Detected Using the Magnetic Tracer Method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur; Gennadiev, Alexander; Zhidkin, Andrei

    2014-05-01

    We have performed detailed studies of the lateral migration of the solid soil material and the soil cover within a small catchment area (Russia, Tula region, Lokna river basin). The main goal of this work is to characterize the migration and accumulation features of the soil solid-phase material within a small watershed and to analyze the effect of the lateral mass transfer on the crucial soil fertility-related properties in the catchment basin under study. The total area of the catchment and the ravine network elements is 96 ha. The catchment basin is drop-shaped; it slightly curves and is latitudinally oriented. The catchment basin's slopes are of southern, eastern, northern, and intermediate exposures with average inclination of 1,5-5 degrees. The magnetic tracer method was used to assess the volumes and rates of the lateral migration of the solid-phase soil material on the selected territory. This method is based on the investigation of the spherical magnetic particles (SMPs), which fall onto the soil cover from the atmosphere, where they arrive at the burning of coals and some other fuels, mostly in steam locomotives. The period of the most intensive emission of SMPs into the soil in the territory of Russia corresponds to the last 100-150 years [1]. The reserve of SMPs in the 0- to 25-cm layer is estimated to be 3.8 g/m2on the least eroded sub-horizontal surface. The zones with the concentration of SMPs lower than their average content on the least eroded surface were characterized as dispersion zones. The zones of the basin with significant exceeding the value of 3.8 g/m2 were marked as accumulation zones of the soil solid-phase material. Dispersion zones are found in the middle part of the ridge in the north-eastern area, in the middle part of a longslope in the south-western area of the catchment basin, and other [2]. Accumulation zones are observed in a cup-shaped depression on the plowed slope adjacent to the ravine's head, on steep unplowed slopes of the

  18. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  19. Orientation Booklet for Parents Enrolled in Parent Education Cooperative Groups. Columbia Basin College Parent Education Program.

    ERIC Educational Resources Information Center

    Debban, Barbara, Comp.; And Others

    This booklet provides parents with information to help them get the most from their enrollment in parent education cooperative groups. Orientation information is presented for both the Parent Walkabout/Parent Toddler Programs and the Parent Cooperative Preschool Programs at Columbia Basin College (CBC), Washington. Informative material on the…

  20. Cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals, to render them immobile

    SciTech Connect

    Stark, J.N.

    1994-01-04

    The present invention relates to the cementitious encapsulation of waste materials and/or contaminated soils containing heavy metals, to render them immobile, and particularly to the immobilization of metals, in regulated amounts, in the wastes. A waste product comprising the metals is provided. A mixture is prepared comprising the wastes and/or contaminated soils containing heavy metals, water, and a cementitious composition. The cementitious composition comprises magnesium oxide and magnesium chloride in proportions effective to produce, with the water, a magnesium oxychloride cement. The cementitious composition is present in an amount which, on setting, is effective to immobilize the metals in the waste and/or contaminated soils. The mixture of waste and/or contaminated soils and cementitious composition is introduced to a disposition site, and allowed to set and harden at the site. The present invention is particularly useful for the remedial treatment of landfill sites. No Drawings

  1. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  2. PRODUCTION OF METHYL SULFIDE AND DIMETHYL DISULFIDE FROM SOIL-INCORPORATED PLANT MATERIALS AND IMPLICATIONS FOR CONTROLLING SOILBORNE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-incorporated plant materials have been associated with reduction in soilborne pathogens and diseases. Most credits have been given to secondary products of glucosinolate hydrolysis. Little is known about the production of volatile sulfur compounds and even less on their efficacy against soilb...

  3. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    NASA Astrophysics Data System (ADS)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  4. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    SciTech Connect

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik Saat, Ahmad; Hamzah, Zaini

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The K{sub d} values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  5. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    NASA Astrophysics Data System (ADS)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik; Saat, Ahmad; Hamzah, Zaini

    2015-04-01

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The Kd values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The Kd values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  6. Back Pack: Parent and Child Kits. Actividades para la Familia: Octubre. The Best of BES--Basic Educational Skills Materials.

    ERIC Educational Resources Information Center

    Southwest Educational Development Lab., Austin, TX.

    One of a series of documents produced by a nationwide network of early childhood education specialists, teachers, parents, and Head Start staff, the document presents a packet of over 52 home activities in both Spanish and English. Designed for teachers and parents of kindergarteners, the packet was intended to help teachers facilitate the…

  7. Schoolwide Programs: Parents' Guide & Capacity-Building Materials = Programas Schoolwide: Una Guia para Padres y Materias de Capacitacion.

    ERIC Educational Resources Information Center

    WestEd, San Francisco, CA.

    The reauthorization of Title I (Improving America's Schools Act--IASA) made the Schoolwide Program (Schoolwide) a major strategy for schools with high poverty rates and stressed the importance of parent involvement. This guide was developed to provide professional development and parent education on Schoolwide implementation in California. The…

  8. The influence of maternal self-objectification, materialism and parenting style on potentially sexualized 'grown up' behaviours and appearance concerns in 5-8year old girls.

    PubMed

    Slater, Amy; Tiggemann, Marika

    2016-08-01

    There is widespread concern about young girls displaying 'grown up' or sexualized behaviours, as well as experiencing body image and appearance concerns that were previously thought to only impact much older girls. The present study examined the influence of three maternal attributes, self-objectification, materialism and parenting style, on sexualized behaviours and appearance concerns in young girls. A sample of 252 Australian mothers of 5-8year old girls reported on the behaviours and appearance concerns observed in their daughters and also completed measures of their own self-objectification, materialism and parenting style. It was found that a significant proportion of young girls were engaging with 'teen' culture, using beauty products and expressing some degree of appearance concern. Maternal self-objectification was related to daughters' engagement in teen culture, use of beauty products and appearance concern. Maternal materialism was related to girls' engagement in teen culture and appearance concern, while an authoritative parenting style was negatively related to girls' use of beauty products. The findings suggest that maternal self-objectification and materialism play a role in the body image and appearance concerns of young girls, and in so doing, identify these maternal attributes as novel potential targets for intervention.

  9. Parent-to-Parent Support.

    ERIC Educational Resources Information Center

    Scott, Sue; Doyle, Phyllis

    1984-01-01

    A parent-to-parent support program was begun to provide early support for parents of handicapped children. New parents are carefully matched with helping parents, who have been trained in communication, resource finding, and referral making. (CL)

  10. Rehabilitation materials from surface- coal mines in western U.S.A. III. Relations between elements in mine soil and uptake by plants.

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1984-01-01

    Plant uptake of Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn from mine soils was assessed using alfalfa Medicago sativa, sainfoin Onobrychis viciaefolia, smooth brome Bromus inermis, crested wheatgrass Agropyron cristatum, slender wheatgrass A. trachycaulum and intermediate wheatgrass A. intermedium; mine soil (cover-soil and spoil material) samples were collected from rehabilitated areas of 11 western US surface-coal mines in North Dakota, Montana, Wyoming and Colorado. Correlations between metals in plants and DTPA-extractable metals from mine soils were generally not statistically significant and showed no consistent patterns for a single metal or for a single plant species. Metal uptake by plants, relative to amounts in DTPA extracts of mine soil, was positively related to mine soil organic matter content or negatively related to mine soil pH. DTPA-extractable metal levels were significantly correlated with mine soil pH and organic-matter content.-from Authors

  11. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  12. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    PubMed

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).

  13. Generation and mobility of radon in soil

    SciTech Connect

    Rose, A.W.

    1990-01-01

    This research generation and mobility of radon in soil evaluates the extent and nature of uranium and radium depletion and/or enrichment in soil horizons as a function of climate and other factors affecting soil character; evaluates the relation of radon emanation coefficient to soil type, soil properties, soil-forming factors, and radon levels in soil gas; and evaluate the relations of fragipans, soil moisture and soil permeability to radon concentration and radon flux in soil profiles. The approach has been to investigate in detail 13 soil profiles selected to represent distinct differences in parent material (limestone, sandstone, shale, granite), major soil groups (Alfisols, Ultisol, Inceptisol, Mollisol, Spodosol), and moisture regimes (well-drained to somewhat poorly drained with fragipan). The nine profiles investigated in the first 2 years are in Pennsylvania and North Carolina. Four profiles currently being sampled are in New York, Tennessee, Illinois and Pennsylvania. Samples from five profiles in Georgia have also been analyzed in less detail. A combination of pedologic, geochemical and radiometric methods have been applied to understanding radon at these sites (Table 2). An important feature of the project has been the collaboration of a geochemist, a soil scientist and a nuclear engineer as Co-PI's. 4 refs., 12 figs., 4 tabs.

  14. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  15. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique.

    PubMed

    Putra, Heriansyah; Yasuhara, Hideaki; Kinoshita, Naoki; Neupane, Debendra; Lu, Chih-Wei

    2016-01-01

    The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca(2+) to precipitate with [Formula: see text] as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples.

  16. Comparison of American Society of Testing Materials and Soil Science Society of America Hydrometer Methods for Particle-Size Analysis

    SciTech Connect

    Keller, Jason M.; Gee, Glendon W.

    2006-05-31

    Particle-size analysis (PSA) is widely used in both soil science and geo-engineering. Soil classification schemes are built on PSA values while recent developments in pedotransfer functions rely on PSA to estimate soil hydraulic properties. Because PSA is method dependent, the standardization of experimental procedures is important for the comparison of reported results. A study was conducted to compare the American Society of Testing Materials (ASTM) hydrometer method (D422) for particle-size analysis with the hydrometer method published by the Soil Science Society of America (SSSA). Tests on soils ranging in texture from sand to a sandy clay loam were conducted at temperatures ranging from 20 C to 30 C. The main difference between methods is the temperature correction, with the ASTM method relying on an empirical correction and the SSSA method using a blank hydrometer reading. Identical texture estimates for all but one sample was observed between methods. Percent fines, silt, and clay demonstrated relatively consistent values between methods. D50 and D30 showed reasonable agreement between methods, with differences of less than 4 percent and 8 percent. For D10 values, the agreement was less satisfactory, with uncertainties of as much as 10 percent. The results suggest that ASTM and SSSA methods can be used interchangeably for textural analysis.

  17. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.

    PubMed

    Yang, Yan-min; Liu, Xiao-jing; Li, Wei-qiang; Li, Cun-zhen

    2006-11-01

    Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002~2003 and 2003~2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.

  18. Quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method

    NASA Astrophysics Data System (ADS)

    Zhidkin, A. P.; Gennadiev, A. N.

    2016-07-01

    Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92-1.32 mm/year on the forest plot and 1.47-1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.

  19. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique

    PubMed Central

    Putra, Heriansyah; Yasuhara, Hideaki; Kinoshita, Naoki; Neupane, Debendra; Lu, Chih-Wei

    2016-01-01

    The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca2+ to precipitate with CO32− as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples. PMID:27200343

  20. Environmental Impact Research Program. Restoration of Problem Soil Materials at Corps of Engineers Construction Sites.

    DTIC Science & Technology

    1985-05-01

    Bell, University of Queensland , Brisbane, Australia, for technical review of this report. The valuable contributions made by the following Federal and...11-2 Geology and soil characteristics. ................ 11-5 Hydrology ........................... 11-13 Topography...the interaction of soils, geology , and climate in potentially difficult restoration situations. Information and techniques are presented relating to

  1. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  2. Tillage and crop rotation effects on soil quality in two Iowa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  3. Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.

    1993-01-01

    The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.

  4. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  5. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  6. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G; Edwards, J O; Mancinelli, R L; Fröschl, H

    1995-09-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mössbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mössbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mössbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the

  7. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  8. Assessment of radium and radon exhalation rate in soil and building material samples using LR-115 plastic track detectors.

    PubMed

    Mehra, Rohit; Badhan, Komal; Bala, Pankaj

    2013-04-01

    Solid state nuclear track detectors (LR-115 TYPE-II) were used to determine the concentration of radium and radon exhalation rate in soil samples collected from the different areas of Dharamshala,Himachal Pradesh (India) and in building material samples :" viz. cement, bricks and white marble collected from different locations of India. The radium concentration for the soil samples and building materials variedfrom 16.22Bqkg-1 to 25.44Bqkg-1 and 32.33 Bqkg-1 to 52.26Bqkg-1 with an average value of 22.03 Bqkg-1 and 39.12 Bqkg-1 respectively. The calculated average values of radon exhalation rate in terms of mass (E.) and area (E.) for soil samples and building material samples are (8.59mBqkg-1h-1 and 310.6 mBqm-1h-1) and (15.26mBqkg-1h-1and 551.6 mBqm-2h-1) respectively.

  9. Protective barrier materials analysis: Fine soil site characterization: A research report for Westinghouse Hanford Company

    SciTech Connect

    Last, G.V.; Glennon, M.A.; Young, M.A.; Gee, G.W.

    1987-11-01

    We collected soil samples for the physical characterization of a potential fine-soil quarry site at the McGee Ranch, which is located approximately 1 km northwest of the Hanford Site's Yakima Barricade. Forty test borings were made using a hollow-stem auger. Field moisture content and grain-size distribution were determined. The samples were classified into one of 19 sediment classes based on their grain-size distributions. Maps and cross sections were constructed from both the field and laboratory data to delineate the distributions of the various sediment classes. Statistical evaluations were made to determine the variations within the fine-soil fraction of the various sediment classes. Volume estimates were then made of the amounts of soil meeting the preliminary grain-size criteria. The physical characterization of the fine soils sampled near the McGee Ranch site indicated that approximately 3.4 million cubic meters of soil met or exceeded the minimum grain-size criteria for the fine soils needed for the protective barriers program. 11 refs., 14 figs., 6 tabs.

  10. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1).

  11. The Effect of Equilibration Time and Tubing Material on Soil Gas Measurements

    EPA Science Inventory

    The collection of soil vapor samples representative of in-situ conditions presents challenges associated with the unavoidable disturbance of the subsurface and potential losses to the atmosphere. This article evaluates the effects of two variables that influence the concentration...

  12. Ice-lens formation and geometrical supercooling in soils and other colloidal materials.

    PubMed

    Style, Robert W; Peppin, Stephen S L; Cocks, Alan C F; Wettlaufer, J S

    2011-10-01

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates.

  13. Generation and mobility of radon in soil

    SciTech Connect

    Rose, A.W.

    1990-04-25

    This report discusses progress from March 1987--June 1990. Objectives of this project are to: evaluate the extent and nature of uranium and radium depletion and/or enrichment in soil horizons as a function of climate and other factors affecting soil character; evaluate the relation of radon emanation coefficient to soil type, soil properties, soil-forming factors, and radon levels in soil gas; and evaluate the relations of fragipans, soil moisture and soil permeability to radon concentration and radon flux in soil profiles. The approach has been to investigate in detail 13 soil profiles selected to represent distinct differences in parent material (limestone, sandstone, shale, granite), major soil groups (Alfisols, Ultisol, Inceptisol, Mollisol, Spodosol), and moisture regimes (well-drained to somewhat poorly drained with fragipan). The 13 profiles investigated in the past 3 years are in Pennsylvania, North Carolina, New York, Tennessee, Illinois, and represent highly varied soil types. Samples from five profiles in Georgia have also been analyzed in less detail. A combination of pedologic, geochemical and radiometric methods have been applied to understanding radon at these sites. 12 refs., 14 figs., 5 tabs.

  14. Use of different surface covering materials to enhance removal of radiocaesium in plants and upper soil from orchards in Fukushima prefecture.

    PubMed

    Sato, Mamoru; Akai, Hiroko; Saito, Yuichi; Takase, Tsugiko; Kikunaga, Hidetoshi; Sekiya, Nobuhito; Ohtsuki, Tsutomu; Yamaguchi, Katsuhiko

    2017-04-04

    The effectiveness of a decontamination methodology whereby herbaceous plants were grown through different materials covering the soil surface followed by subsequent removal of the material, associated plant tissues and attached soil on (137)Cs removal from soil was evaluated. Revegetation netting sown with Kentucky bluegrass and white clover had a high effectiveness in (137)Cs removal when rolling up the plants, roots, and rhizosphere soil approximately 6 months after sowing. The removal rate was lower when there was higher (137)Cs vertical migration down the soil profile. The maximum removal effectiveness of 93.1% was observed by rolling up fertilized Kentucky bluegrass with a well-developed root mat without netting, indicating that applying nutrients to encourage the development of roots or root mats in the 3 cm topsoil rhizosphere is an efficient technology to increase the decontamination effect of plant removal in orchards. Netting and weeding were able to remove up to 80% of (137)Cs in the soil without the use of heavy machinery. There was a significant relationship between the removal ratio and the removed soil weight per area. Using the relationship on the site below the canopy, removal of 14.3 kg m(-2) DW soil would achieve a removal ratio of 80%. The effectiveness of the technique will decrease with time as radiocaesium migrates down the soil profile but this would be expected to occur slowly in many soils.

  15. Rock types present in lunar highland soils

    NASA Technical Reports Server (NTRS)

    Reid, A. M.

    1974-01-01

    Several investigators have studied soils from the lunar highlands with the objective of recognizing the parent rocks that have contributed significant amounts of material to these soils. Comparing only major element data, and thus avoiding the problems induced by individual classifications, these data appear to converge on a relatively limited number of rock types. The highland soils are derived from a suite of highly feldspathic rocks comprising anorthositic gabbros (or norites), high alumina basalts, troctolites, and less abundant gabbroic (or noritic) anorthosites, anorthosites, and KREEP basalts.

  16. Saline soils spectral library as a tool for digital soil mapping

    NASA Astrophysics Data System (ADS)

    Bas, María Victoria; Meléndez-Pastor, Ignacio; Navarro-Pedreño, José; Gómez, Ignacio; Mataix-Solera, Jorge; Hernández, Encarni

    2013-04-01

    . Large arid and semiarid Mediterranean areas are affected by severe salinization processes by converging salinity problems due to parent material salinity, water scarcity and poor quality of irrigation water. A soils database in the South-East of Spain (semiarid Mediterranean environments) is being developed, by sampling and analyzing soils properties but especially salinity, besides recording their VNIR spectral signatures in field conditions. Also a spectral library related to soil type and salinity in these environments was determined in laboratory and it is a promising tool to monitor soil spectral signature changes. Positive relations between salinity, spectral data and soil type have been found using this technique. Soil spectra could be employed for quantitative spectroscopic analyses of soil properties, as ancillary data for digital soil mapping and for spectral calibration of remotely sensed imagery.

  17. Mathematical modelling and optimization of synthetic textile dye removal using soil composites as highly competent liner material.

    PubMed

    Das, Papita; Banerjee, Priya; Mondal, Sandip

    2015-01-01

    Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions. Around 99.85 % removal of CV was obtained at initial pH 6.4, which further increased to 99.98 % on using soil and cement composite proving it to be the best admixture of those selected. The phenomenon was found to be represented best by the Langmuir isotherm at different temperatures. The process followed the pseudo-second-order kinetic model and was determined to be spontaneous chemisorption in nature. This adsorbent can hence be suggested as an appropriate liner material for the removal of CV dye.

  18. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    PubMed

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  19. Dinosaur Reproduction and Parenting

    NASA Astrophysics Data System (ADS)

    Horner, John R.

    Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.

  20. Distribution and variation of arsenic in Wisconsin surface soils, with data on other trace elements

    USGS Publications Warehouse

    Stensvold, Krista A.

    2012-01-01

    Soils with sandy glacial outwash as a parent material have a lower median arsenic concentration (1.0 mg/kg) than soils forming in other parent materials (1.5 to 3.0 mg/kg). Soil texture and drainage category also influence median arsenic concentration. Finer grained soils have a higher observed range of concentrations. For loamy and loess-dominated soil groups, drainage category influences the median arsenic concentration and observed range of values, but a consistent relationship within the data is not apparent. Statistical analysis of the 16 other elements are presented in this report, but the relationships of concentrations to soil properties or geographic areas were not examined.

  1. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  2. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized.

  3. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  4. Interplay between physical movements of soils and mineral grains and chemical weathering

    NASA Astrophysics Data System (ADS)

    Yoo, K.

    2007-12-01

    Most soil biogeochemistry studies treat the soils and their inorganic and organic constituents as physically immobile. Those soil materials, however, are in perpetual motion due to the conversion of bedrock to soils, colluvial transport, and vertical mixing by various biophysical perturbations of the soils. Subsequently, a soil is continuously replaced by the materials from the neighboring soils and the underlying parent material, while its individual horizons are gradually mixed with the materials in the neighboring horizons. The movements of bulk soil materials are ultimately driven by moving individual mineral grains. While rarely appreciated, these physical movements of soil's mineral components operate in the presence of strong vertical and topographic gradients of the rates of mineral dissolution and leaching. The result is that the physical movement of soil constituents affects chemical weathering. The fluxes of soil materials (via physical movements and solute fluxes) in and out of a soil system defined by a researcher determine the time length that the materials reside in the system. The residence time, together with the system-specific rates of chemical weathering, determine the degree of weathering of the materials within the system. This presentation provides a new mathematical framework to consistently quantify the residence times of minerals, individual soil horizons, soil profiles, and an entire soil within a watershed boundary. Soil age, which is equivalent of the time length since the cessation of erosion or deposition on level grounds, becomes a special case of the residence time. The model is combined with empirical data to quantitatively illustrate the impacts that the physical motion of soil constituents have on the rates of chemical weathering. The data are drawn from ongoing field and laboratory studies focusing on the impact of river incision, colluvial flux, bioturbation, and agricultural tillage on the vertical and lateral variation of

  5. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on

  6. Ion selective electrode for determination of chloride ion in biological materials, food products, soils and waste water.

    PubMed

    Sekerka, I; Lechner, J F

    1978-11-01

    The chloride ion selective electrode is used for a rapid, simple, and reliable determination of chloride ion in biological materials (blood serum, urine, fish, and plant tissues), food products (milk, beef extract, nutrient broth and orange, tomato, and grapefruit juices), soils, and waste water (industrial and municipal). The method consists of treating the samples with perchloric acid (pH 1) and potassium peroxydisulfate and determining the chloride content either by a calibration curve or by known addition or analyte addition, using the chloride ion selective electrode. Such sample treatment eliminates most of the interferences occurring in the samples, including iodide, complexing and reducing compounds, and macromolecular and surface-active species. The method is suitable for a wide range of chloride concentration, e.g., 5010 ppm Cl- in nutrient broth and 4890 ppm in beef extract and as low as 12 and 80 ppm in soil extracts.

  7. Genesis of marine terrace soils, Barbados, West Indies: evidence from mineralogy and geochemistry

    USGS Publications Warehouse

    Muhs, D.R.; Crittenden, R.C.; Rosholt, J.N.; Bush, C.A.; Stewart, K.C.

    1987-01-01

    Well-developed, clay-rich soils dominated by interstratified kaolinite-smectite are found on the uplifted coral reef terraces on the island of Barbados. The reef limestone is unlikely to have been the soil parent material however, because it is 98% CaCO 3 and geomorphic evidence argues against the 20 m of reef solution required to produce the soils by this process. The mineralogy of the sand, silt, and clay fractions of the soils, and trace element geochemistry, suggest that aeolian materials carried on the trade winds from Africa, volcanic ash from the island of St. Vincent, and quartz from Tertiary bedrock on the island itself are the parent materials for the soils. -Authors

  8. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  9. Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Caputo, Gianvito; Pinna, Nicola; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    Nearly 80% of all the nano-powders produced worldwide are metal oxides, and among these materials titanium dioxide (TiO2 ) is one of the most produced. Titanium dioxide's toxicity is estimated as low to soil organisms, but some studies have shown that TiO2 nanoparticles can cause oxidative stress. Additionally, it is known that TiO2 is activated by ultraviolet (UV) radiation, which can promote photocatalytic generation of reactive oxygen species, which is seldom taken into account in toxicity testing. In the present study, the authors investigated the effects of different TiO2 and zirconium materials on the soil oligochaete Enchytraeus crypticus, using exposure via soil, water, and soil:water extracts, and studied the effects combined with UV radiation. The results showed that zirconium dioxide (bulk and nano) was not toxic, whereas zirconium tetrachloride reduced enchytraeid reproduction in soil (50% effect concentration = 502 mg/kg). The TiO2 materials were also not toxic via soil exposure or under UV radiation. However, pre-exposure to TiO2 and UV radiation via aqueous media caused a lower reproductive output post-exposure in clean soil (20-50% less but only observed at the lowest concentration tested, 1 mg/L); that is, the effect of TiO2 in water was potentiated by the UV radiation and measurable as a decrease in reproduction in soil media.

  10. Curriculum Guide for Parent Education Programs (Including Special Sections for Rural Parents, Single Parents, Working Parents, and High Risk Parents). Columbia Basin College Parent Education Program.

    ERIC Educational Resources Information Center

    Hare, Jo Ann; And Others

    This curriculum for parent education through cooperative preschools has a sequential approach, with topics developed for parents with different age children enrolled in the various laboratory settings. Introductory materials include the goals and objectives for community college parent cooperative programs, methods of presentation, and a…

  11. Influence of soils on Landsat spectral signatures of corn

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Worcester, B. K.; Devries, M. E.

    1980-01-01

    Landsat data have been investigated extensively to determine crop types and acreage. However, confounding site factors have been found to reduce accuracy. Soils data in a small, contiguous area in southeast South Dakota were used to stratify Landsat data. A June 5 and July 29 CCT were used in a statistical analysis of corn training data. Significant soil parameters causing differences in study area soils were slope and parent material. Implication of the results is that, in this region, stratification of CCT data along parent material boundaries would improve corn classification accuracy. Research expanding on the interaction of soils and crops is both in progress and scheduled for additional studies in east central South Dakota.

  12. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  13. System for high throughput water extraction from soil material for stable isotope analysis of water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  14. Measurement and Modeling of Energetic-Material Mass Transfer to Soil-Pore Water

    DTIC Science & Technology

    2006-05-01

    143 6 Figures Figure 1. Low-Order Detonation Debris Containing TNT Main Charge (~30 cm long) .............17 Figure 2. Soil...Aggregate Containing Soot and Extractable TNT (~5 cm long axis)....................17 Figure 3. Unreacted TNT Ejected from Low Order Detonation (~5...Slurry Sacrifice Test Results – First-Order Degradation Plot.....................................46 Figure 22. Compiled RDX and TNT Solubility Data

  15. Geotechnical characteristics of residual soils

    SciTech Connect

    Townsend, F.C.

    1985-01-01

    Residual soils are products of chemical weathering and thus their characteristics are dependent upon environmental factors of climate, parent material, topography and drainage, and age. These conditions are optimized in the tropics where well-drained regions produce reddish lateritic soils rich in iron and aluminum sesquioxides and kaolinitic clays. Conversely, poorly drained areas tend towards montmorillonitic expansive black clays. Andosols develop over volcanic ash and rock regions and are rich in allophane (amorphous silica) and metastable halloysite. The geological origins greatly affect the resulting engineering characteristics. Both lateritic soils and andosols are susceptible to property changes upon drying, and exhibit compaction and strength properties not indicative of their classification limits. Both soils have been used successfully in earth dam construction, but attention must be given to seepage control through the weathered rock. Conversely, black soils are unpopular for embankments. Lateritic soils respond to cement stabilization and, in some cases, lime stabilization. Andosols should also respond to lime treatment and cement treatments if proper mixing can be achieved. Black expansive residual soils respond to lime treatment by demonstrating strength gains and decreased expansiveness. Rainfall induced landslides are typical of residual soil deposits.

  16. Synergic use of chemical and ecotoxicological tools for evaluating multi-contaminated soils amended with iron oxides-rich materials.

    PubMed

    Manzano, Rebeca; Jiménez-Peñalver, Pedro; Esteban, Elvira

    2017-03-27

    Abandoned waste piles from ancient mining activities are potential hot spots for the pollution of the surrounding areas. A pot experiment was carried out to check the potential toxicity of the dumping material present in one of these scenarios, and several amendments were tested to attenuate the spread of the contamination events. The waste material had an acid pH and a large total concentration of As and Cu. A dose-response experiment was performed with this material following OCDE 208 test. A proportion 90:10 uncontaminated soil: dumping material (% w/w) was selected for the following experiment, in order to surpass the amount of dumping material that caused 50% reduction in plant growth. Pots were filled with the 90:10 mixture, planted with seeds of Brassica napus and amended with the following materials: three iron oxides of Bayoxide® E33 series, iron (II) sulphate in combination with de-inking paper sludge (Fe+PS), iron oxide-rich rolling mill scale (ROL) and iron oxide-rich cement waste (CEM). Amendment effectiveness evaluation was based on chemical and biological assays: extractable trace element concentration, soil enzymatic activities, inhibition of light emission of V. fischeri and Anabaena sp., B. napus L. fresh weight and screening test for emergence of B. napus L. seedlings. Amendments E33HCF and Fe+PS were the most effective in reducing extractable As and Zn concentration. B. napus weight and dehydrogenase and β-glucosidase activities were positively increased with the two above mentioned treatments but they triggered more toxic effects for V. fischeri luminescence. E33P treatment was the only in which the EC50 was higher than in the control. Anabaena sp. was less sensitive than V. fischeri as its luminescence was not hampered by any treatment. Trace element concentration did not significantly affect the failure in seed emergence. E33HCF and Fe+PS could act as proper amendments as they decreased extractable As and Zn. Further, plant fresh weight

  17. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  18. Method for recovery of hydrocarbons form contaminated soil or refuse materials

    DOEpatents

    Ignasiak, Teresa; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.; Guerra, Carlos R.; Zwillenberg, Melvin L.

    1991-01-01

    A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.

  19. Methods using earthworms for the evaluation of potentially toxic materials in soils

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1982-01-01

    The purpose of this study was to investigate the feasibility of using earthworms to indicate effects of potentially toxic wastes when such wastes are intentionally or accidentally added to soils. Initial work with metals has shown that earthworms exhibit specific growth and reproductive responses. These responses are related to the concentration and solubility of the metal. Of the metals tested, cadmium was found to be the most toxic, followed by nickel, copper, zinc, and lead. The metal concentration in earthworm tissue and the background manure-metal mixture was measured, permitting the concentration factor to be computed. The concentration factor is the ratio of the metal in the worm tissue to that in the surrounding manure-metal mixture. These and other studies in our laboratory have demonstrated that the methods described in this paper may be used to predict the effect of land-applied or atmospherically deposited residues on the soil biota.

  20. Parents as Partners in Career Education.

    ERIC Educational Resources Information Center

    Kucker, Marsha; Smith-Rockhold, Gloria; Bemis, Dodie; Wiese, Vickie

    This document is a compilation of materials on improving parent involvement in career education. Section 1 contains the following informative materials and exercises: a parent's guide to the career development alphabet, involvement continuum, self-assessment, influences on parents' career decisions, and parental influence exercises; and sample…

  1. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    PubMed

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.

  2. Defining Soil Materials for 3-D Models of the Near Surface: Preliminary Findings

    DTIC Science & Technology

    2012-03-01

    R.COE2009.06. Dr. David Horner was the ATO Manager, Josh R. Fairley was the GEOTACS Program Manager, and Dr. Niki Goerger was the Technology Staff...sensor systems for surface and near-surface target detection in complex geo-environmental settings (Horner 2009; Fairley et al. 2010). The intent...soils (Eslinger et al. 2007; Fairley et al. 2010; Howington et al. 2010; Peters et al. 2007). To support the computational testbed, the GEOTACS

  3. Development and Validation of EPH Material Model for Engineered Roadway Soil

    DTIC Science & Technology

    2014-08-01

    of information if it does not display a currently valid OMB control number. 1. REPORT DATE 11 AUG 2014 2. REPORT TYPE Journal Article 3. DATES...fairly consistent gradation, it is not blended to a specification, and current process controls are not sufficient to guarantee the soil consistency...of the plate. The deformed overall shape matches very well with the test. The resulting four normalized deformations, labeled as “ Dsim ” are also

  4. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  5. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic

  6. Estimate of excess uranium in surface soil surrounding the Feed Materials Production Center using a requalified data base.

    PubMed

    Stevenson, K A; Hardy, E P

    1993-09-01

    A conservative estimate of the excess total uranium in the top 5 cm of soil surrounding the former Feed Materials Production Center was made using a data base compiled by the International Technology Corporation in 1986, and the requalification of that data base was completed in 1988. The results indicate that within an area of 8 km2, extending 2 km both northeast and southwest of the Feed Materials Production Center, the uranium concentration is between 2 and 5 times greater than average natural background radiation levels. More than 85% of this excess uranium is deposited within 1 km of the site boundary. The presence of any excess uranium outside of this area is indistinguishable from the natural background contribution.

  7. Geo-pedological control of soil organic carbon and nitrogen stocks at the landscape scale

    NASA Astrophysics Data System (ADS)

    Barré, Pierre; Durand, Hermine; Chenu, Claire; Meunier, Patrick; Montagne, David; Castel, Géraldine; Billiou, Daniel; Cécillon, Lauric

    2015-04-01

    Geo-pedology, here defined as soil type (or Reference Soil Group) and parent material, can have a major impact on ecosystem (vegetation and soil) functioning. Geo-pedology can therefore deeply influence soil organic matter (SOM) stock. Nonetheless, the effect of geo-pedology on soil organic C (SOC) and N stocks has seldom been investigated. Indeed, factors known to influence SOM stocks such as land use and climate frequently co-vary with geo-pedology, so that testing the influence on SOM stocks of the factor "geo-pedology" alone is challenging. In this work, we studied SOM stocks of forest and cropland soils in a small landscape (17 km²) of the Paris basin (AgroParisTech domain, Thiverval-Grignon, France). We collected soil samples (0-30 cm) in 50 forest and cropland plots, located in five geo-pedological contexts: Luvisols developed on loess deposit, Cambisols developed on hard limestone, Cambisols developed on shelly limestone, Cambisols developed on chalk and Cambisols developed on calcareous clay deposits. We then determined SOM stocks (organic C and total N) and SOM distribution across different particle size fractions (coarse sand, fine sand and silt-clay). As expected, SOC stocks were much higher in forests (~ 83 tC ha-1) than in cultivated soils (~ 49 tC ha-1). Interestingly, Cambisols had higher SOC stocks than Luvisols (69 vs 56 tC ha-1) and the difference between SOC stocks in forest and cultivated soils was much higher for Cambisols compared to Luvisols. Within Cambisols, parent material did not influence SOC stocks but the interaction between parent material and land use was significant, indicating that the effect of land use on SOC stocks was modulated by parent material. Similar trends were observed for soil N stocks. Conversely, soil type and parent material did not control SOM distribution in soil size fractions, while forest soils showed a higher distribution of SOC and N in the sand-size fraction than cropland soils. Overall, our study evidenced

  8. In Situ Evaluation of Unsurfaced Portland Cement-Stabilized Soil Airfields

    DTIC Science & Technology

    2009-07-01

    interparticle friction within the soil mass, and reduce the moisture susceptibility of the parent material. Stabilization with Portland cement can be used...Materials underlying a bound surface layer can be tested by first drilling or coring an access hole. The typical apparatus is composed of a handle, two...methods for the determination of the modulus and damping properties of ERDC/GSL TR-09-20 15 soils using the cyclic triaxial apparatus .” In this

  9. Report: Potential environmental impact of exempt site materials - a case study of bituminous road planings and waste soils.

    PubMed

    Bark, Marjorie; Bland, Michael; Grimes, Sue

    2009-09-01

    The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.

  10. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  11. SATURATED - UNSATURATED HYDRAULIC PROPERTIES OF SUBBASE COURSE MATERIAL AND SUBGRADE SOIL

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Nakashima, Shin-Ichiro; Moriishi, Kazushi; Ohnishi, Yuzo

    In order to evaluate the rainwate r storage and infiltration properties of the permeable pavement by unsaturated seepage analysis or gas-liquid two-phase flow analysis, it is important to know the unsaturated hydraulic properties of materials wh ich constitute the pavement. For this reason, we showed the unsaturated hydraulic properties of porous asphalt material s but we have not clarified the relation between the performance of the permeable pavement and the properties of all constituti on materials. In this paper, we try to determine the unsaturated hydraulic properties of subbase course and subgrade materials that greatly affect the rainwater storage and infiltration properties of the permeable pavement. We show from experiments that water retention characteristic and the un saturated hydraulic properties of subbase course and subgrade materials well match the van Genuchten model and the Irmay model.

  12. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    PubMed Central

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-01-01

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450

  13. Parents in Reading: Administrator's Guide.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    Adapted from Idaho's original Parents in Reading program, the materials in this booklet are designed for use by school administrators who want to begin a positive program that involves parents in reading. Various sections contain samples of board policy statements, press releases, and radio commercials; samples of letters to parents new to the…

  14. Correlations Between Chemical Weathering and Soil Production in Soil-Mantled, Upland Landscapes, Central California

    NASA Astrophysics Data System (ADS)

    Burke, B. C.

    2002-12-01

    Quantifying and understanding the coupling between chemical and mechanical weathering in soil-mantled, upland hillslope development is an area of active research. Recent work on hillslope development from soil-mantled, upland landscapes has observed that maximal soil production from bedrock occurs within a narrow range of soil depths. Here we present initial results from an extensive field and laboratory investigation seeking to quantitatively link the degree of chemical weathering in bedrock-derived soils and underlying saprolite to the rate of soil production from the same saprolite. We dug twenty-three soil pits of varying depths into a convex hillslope near Mount Vision, Point Reyes National Seashore, California. Pits were dug manually to refusal or to the saprolite-soil interfaces. We sampled soil at regular intervals for short-lived isotope analyses and saprolite from just below the soil-saprolite interface. The saprolite samples underwent analyses for trace metals and labile oxides by inductively coupled plasma-optical emissions spectrometry and x-ray diffraction. A high-resolution topographic survey and previous work quantifying soil production rates with cosmogenic nuclides allows us to connect transport processes with chemical weathering rates. Saprolite bulk density and other field parameters were measured for volumetric strain analysis. We used the Chemical Index of Alteration (CIA) (Kirkwood and Nesbitt, 1992) to quantify the degree of chemical weathering in both unweathering bedrock and weathered saprolite. Initial results indicate relative enrichment of resistant trace metals such as zircon at shallow sample depths. We find that zirconium at the soil-saprolite boundary is on average 35% less weathered than the saprolite in the 150 cm. beneath the boundary. Weathering at the soil-saprolite boundary as defined by the CIA is 50% more weathered than the parent material. CIA values for unweathered and weathered material agree well with previous published

  15. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  16. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  17. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region

    USGS Publications Warehouse

    Beyer, W.N.; Stafford, C.

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.

  18. Soil Mineralogy and Substrate Quality Effects on Microbial Priming

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Mau, R. L.; Liu, X. J. A.; Hungate, B. A.

    2014-12-01

    Soil carbon (C) cycling can slow or accelerate in response to new C inputs from fresh organic matter. This change in native C mineralization, known as the "microbial priming effect," is difficult to predict because the underlying mechanisms of priming are still poorly understood. We hypothesized that soil mineral assemblage, specifically short-range-order (SRO) minerals, influences microbial responses to different quality C substrate inputs. To test this, we added 350 μg C g-1soil weekly of an artificial root exudates mixture primarily comprised of glucose, sucrose, lactate and fructose (a simple C source) or ground ponderosa pine litter (a complex C source) for six weeks to three soil types from similar ecosystems derived from different parent material. The soils, from andesite, basalt, and granite parent materials, had decreasing abundance in SRO minerals, respectively. We found that the simple C substrate induced 63 ±16.3% greater positive priming than the complex C across all soil types. The quantity of soil SRO materials was negatively correlated with soil respiration, but positively correlated with priming. The lowest SRO soil amended with litter primed the least (14 ± 11 μgCO2-C g-1), while the largest priming effect occurring in the highest SRO soil amended with simple substrate (246 ± 18 μgCO2-C g-1). Our results indicate that higher SRO mineral content could accelerate microorganisms' capacity to mineralize native soil organic carbon and respond more strongly to labile C inputs. However, while all treatments exhibited positive priming, the amount of C added over the six-week incubation was greater than total CO2 respired. This suggests that despite a relative stimulation of native C mineralization, these soils act as C sinks rather than sources in response to fresh organic matter inputs.

  19. Coal tar, material used in soil improvement for use in road engineering

    NASA Astrophysics Data System (ADS)

    Ochoa Díaz, R.; Montañez, A.; Cuentas, J.

    2016-02-01

    Coal tar is a by-product of coal distillation in the absence of oxygen to obtain metallurgical coke; its colour varies from dark coffee to black, slightly viscous and its density is greater than that of water. Taking into account the previous characteristics, this document presents a study of the feasibility of using coal tar for the improvement of physical properties, mechanics and dynamics of materials used in road engineering. In this way, the origin, characteristics, and properties of tar are first described. Next, its combination with which granular-based material is evaluated through the CBR test procedure to determine its resistance and to compare it with the non-stabilized material. Finally, the behaviour of the material when subjected to dead loads by means of resistant modules found with the NAT (Nottingham Asphalt Tester) is explored. As a result, the option of using coal tar as a stabilizer was identified due to its use under specific conditions.

  20. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  1. Compassionate Parenting.

    ERIC Educational Resources Information Center

    Stosny, Steven

    Noting that parents' response to their children is essentially emotional and keyed almost exclusively to inferences about their children's emotions, this program for parents teaches compassionate parenting, an approach that provides a secure emotional base from which children explore and interact with their environment as parents develop the…

  2. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.

    PubMed

    Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B

    2013-12-01

    The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.

  3. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties.

  4. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  5. The Systems Mapping of Soils

    NASA Astrophysics Data System (ADS)

    Nikiforova, Alexandra; Fleis, Maria; Borisov, Mickail

    2013-04-01

    Soil, together with rocks, waters, air, and living organisms, is one of the natural elements, which make up landscapes. At the same time soil is a unique (derivative) natural element because only it originates from the interaction of all the other (basic) natural elements. Reasoning from this fact, soil maps must be unique too - fundamentally different from geological, geomorphological, natural vegetation, and other thematic maps of the basic natural elements. It is suggested creating conceptually new soil maps, namely the systems soil maps, which are derived from the systems landscape maps. Legends of such maps are based on hierarchical classification of natural landscapes-systems. The last-mentioned are regarded as elementary structural units of the Earth's landscape envelope comprised of interacting landscape elements. The landscapes-systems step by step are divided into divisions and subdivisions of different hierarchical levels unless reaching separate and isolated landscapes-systems, which can not be divided further because of their homogeneity. Criteria used to differentiate between landscapes-systems include the most prominent properties of natural landscape elements, for instance: sequence of the elements, range of altitudes and slopes, zonal vegetation types associated with effective heat sum and precipitation ratio, the main genetic soil horizons, genetic types and forms of relief, lithology of parent materials, depth of humus horizons, chemical composition of ground waters, and so forth. Levels at which criteria of classification are soil properties are named the "soil" one; they are the lowest one in each scale range. The systems soil maps are produced for "soil" levels and show certain soil properties in connection with those properties of the basic natural elements, which cause these soil properties. In GIS environment the systems soil maps are produced automatically from an integrated polygon layer created manually on the basis of expert analysis of

  6. Soil erosion survey using remote sensing images

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Kertész, Ádám; Madarász, Balázs; Pálinkás, Melinda; Tóth, Adrienn

    2016-04-01

    Soil erosion is one of the most effective soil degradation processes reducing crop production on arable fields significantly. It also leads to serious environmental hazards such as eutrophication, mud and flesh floods. Beyond the processes there is an urgent need to survey and descript the current degree of erosion of arable lands in order to provide adequate land use techniques and mitigate the harmful effects. Surveying soil erosion is a very time consuming process since soil loss and deposition take place next to each other resulting a rather diverse erosion pattern even within a plot. Remote sensing is a possible way to determine the degree of soil erosion without special efforts taken in the field. The application of images can provide high resolution erosion maps of almost any type of arable fields. The method is based on the identification of the origin of the surface soil layer, i.e. whether it represents an originally deeper laying horizon (e.g. B horizon), or the parent material. A case study was carried out on a Cambisol formed on loess parent material. The soil and the parent rock have various reflectance spectra in the visible range, so this strip was used for the investigations. For map creation "training sites" were used in ArcMap environment. The obtained results suggest that the method is highly effective and useful, however, other properties like moisture content and plant cover can limit automated application. In this case new training sites are needed. The study was supported by the National Research, Development and Innovation Office (NKFIH),), project Nr. 108755 and the support is gratefully acknowledged here. G. Jakab was supported by the János Bolyai Fellowship.

  7. Landscape development in the context of soil distribution in Jordan

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Processes of landscape change can be assessed by studying the distribution of soil types and their connection to climate, the geology, and land use. In this context, even in areas where no virgin soils are available, paleosols pre-dating the introduction of agriculture can be utilized for estimating potential soil development without human impact. Soil distribution in Jordan follows closely the climate and topography: specific soil orders can be found within the dry and hot subtropical, subhumid-semiarid, semiarid-arid, and arid regions. The pattern of soil and paleosol distribution in Jordan points to an important role of the geology (bedrock and relief), and of climate in their formation, both locally such as in the vicinity of the ancient site of Abila, and regionally in the whole country. In contrast, the impact of land use appears relatively limited: overall erosion has been estimated not to exceed the expected geological rate, and Jordan is considered to be in the stable state of completed geologic erosion. This is further supported by strongly varying soil properties and archaeological material on agricultural fields, which suggests that overall erosion processes during historical periods were limited. The presence of a quite uniform 4 m thick loess cover around the site of Umm el-Jimal in north-east Jordan suggests that aeolian deposits are probably the by far dominating parent material of current soils in northern Jordan. In this context, an apparent division of some soil profiles into subsoil and topsoil could correspond to dominant in-situ soil formation out of bedrock weathering at the bottom, while the upper part of the profiles could correspond to aeolian dust as main parent material. A stone line or lithological discontinuity separating these two parts of the profile might refer to a major erosion event. If true, this could indicate that current soils in Jordan might represent a mixture of at least two phases of soil development with probably

  8. The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-08-01

    The coefficients of the soil line are often taken into account in calculations of vegetation indices. These coefficients are usually calculated for the entire satellite image, or are taken as constants without any calculations. In both cases, the informativeness of these coefficients is low and insufficient for the needs of soil mapping. In our study, we calculated soil line coefficients at 8000 lattice points for the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast on the basis of 34 Landsat 5, 7, and 8 images obtained in 1985-2014. In order to distinguish between the soil line calculated for a given image and the soil line calculated for lattice points on the basis of dozens of multitemporal images, we suggest that the latter can be referred to as the temporal soil line. The temporal soil line is described by a classical equation: NIR = RED a + b, where a is its slope relative to the horizontal axis (RED), and b is the Y-axis (NIR) intercept. Both coefficients were used to create soil maps. The verification of the maps was performed with the use of data on 1985 soil pits. The informativeness of these coefficients appeared to be sufficient for delineation of eight groups of soils of different taxonomic levels: soddy moderately podzolic soils, soddy slightly podzolic soils, soddy-podzolic soils, light gray forest soils, gray forest soils, dark gray forest soils, podzolized chernozems, and leached chernozems. The b coefficient proved to be more informative, as it allowed us to create the soil map precisely on its basis. In order to create the soil map on the basis of the a coefficient, we had to apply some threshold values of the b coefficient. The bare soil on each of Landsat scenes was separated with the help of the mask of agricultural fields and the notion of the spectral neighborhood of soil line (SNSL).

  9. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  10. Soil map of the Russian Arctic on a 1 : 1 M scale: Contents and compilation methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. S.

    2016-04-01

    A new soil map of the Russian Arctic on a scale of 1 : 1 M shows the soil cover in the north of Eurasia and on the islands of the Arctic Ocean to the north of 68° N. This map has been developed in a geoinformation system in the vector format with the wide use of remote sensing data. The delineated soil polygons show dominant and accompanying soils and the structure of soil cover patterns with indication of soil associations and soil complexes, the character of parent materials, and the topographic conditions. The map of the soil-geographic zoning of the Russian Arctic developed on the basis of the soil map differs from its earlier analogues in a greater degree of detail. The soil map of the Russian Arctic on a scale of 1 : 1 M displays the most detailed information on the soil cover patterns and can be used for solving various problems related to the exploration and development of this territory. Soil names from the new classification system of Russian soils [10] have been introduced into the legend of the map. New soil information and the use of remote sensing data have made it possible to enlarge the number of soil polygons shown on the map and to correct their boundaries in comparison with previous soil maps of the Russian Arctic.

  11. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  12. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  13. Analysis of remotely sensed data for detecting soil limitations

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.; Waltz, F. A.

    1973-01-01

    During 1971 and 1972 a detailed study was conducted on a fallow field in the proposed Oahe Irrigation Project to determine the relationship between the tonal variation observed on aerial photographs and the properties of eroded soil. Correlation and regression analysis of digitized, multiemulsion, color infrared film (2443) data and detailed field data revealed a highly significant correlation between film transmittance and several soil properties indicative of the erosion limitation. Computer classification of the multiemulsion film data resulted in maps portraying the eroded soil and the normal soil. Both correlation and computer classification results were best using the reflectance data from the red spectral band. The results showed film transmittance was actually measuring the reflectivity of the soil surface which was increased by the incorporation of the light colored, calcareous parent material exposed by erosion or tillage on soils with thin surface horizons.

  14. Soil magnetic susceptibility: A quantitative proxy of soil drainage for use in ecological restoration

    USGS Publications Warehouse

    Grimley, D.A.; Wang, J.-S.; Liebert, D.A.; Dawson, J.O.

    2008-01-01

    Flooded, saturated, or poorly drained soils are commonly anaerobic, leading to microbially induced magnetite/maghemite dissolution and decreased soil magnetic susceptibility (MS). Thus, MS is considerably higher in well-drained soils (MS typically 40-80 ?? 10-5 standard international [SI]) compared to poorly drained soils (MS typically 10-25 ?? 10-5 SI) in Illinois, other soil-forming factors being equal. Following calibration to standard soil probings, MS values can be used to rapidly and precisely delineate hydric from nonhydric soils in areas with relatively uniform parent material. Furthermore, soil MS has a moderate to strong association with individual tree species' distribution across soil moisture regimes, correlating inversely with independently reported rankings of a tree species' flood tolerance. Soil MS mapping can thus provide a simple, rapid, and quantitative means for precisely guiding reforestation with respect to plant species' adaptations to soil drainage classes. For instance, in native woodlands of east-central Illinois, Quercus alba , Prunus serotina, and Liriodendron tulipifera predominantly occur in moderately well-drained soils (MS 40-60 ?? 10-5 SI), whereas Acer saccharinum, Carya laciniosa, and Fraxinus pennsylvanica predominantly occur in poorly drained soils (MS <20 ?? 10-5 SI). Using a similar method, an MS contour map was used to guide restoration of mesic, wet mesic, and wet prairie species to pre-settlement distributions at Meadowbrook Park (Urbana, IL, U.S.A.). Through use of soil MS maps calibrated to soil drainage class and native vegetation occurrence, restoration efforts can be conducted more successfully and species distributions more accurately reconstructed at the microecosystem level. ?? 2008 Society for Ecological Restoration International.

  15. Development of a certified reference material for the content of nitroimidazole parent drugs and hydroxy metabolites in pork meat.

    PubMed

    Zeleny, R; Schimmel, H; Ulberth, F; Emons, H

    2009-02-23

    Nitroimidazoles have been applied in the past to poultry and pigs to treat protozoan diseases and to combat bacterial infections, but due to adverse health effects their use in food-producing animals has meanwhile been banned in the EU. The request for a certified reference material in a representative matrix was stipulated by the responsible Community Reference Laboratory and is underpinned by the need to improve the accuracy and comparability of measurement data and to establish metrological traceability of analytical results. The Institute for Reference Materials and Measurements (IRMM) has responded to this demand by developing and producing a new certified matrix reference material, ERM-BB124. This incurred lyophilised pork meat material was certified according to ISO guides 34 and 35 for the mass fractions of six nitroimidazole compounds. Processing of the frozen muscle tissue to the final material was accomplished by application of cutting, freeze-drying, mixing and milling techniques. Homogeneity and stability measurements were performed using liquid chromatography tandem mass spectrometry. The relative standard uncertainty due to possible heterogeneity showed to be below 1.8% for all analytes. Potential degradation during transport and storage was assessed by isochronous stability studies. No significant instability was detected at a storage temperature of -20 degrees C for a shelf-life of 2 years. The certified mass fraction values were assigned upon evaluation of the data acquired in an international laboratory inter-comparison involving 12 expert laboratories using different sample preparation procedures, but exclusively LC-MS/MS methods. Relative standard uncertainty contributions for the characterisation (between-lab variation of mean values) were found to be between 1.6 and 4.8%. Certified values for five analytes were in the range of 0.7 to 6.2 microg kg(-1), with expanded relative uncertainties ranging between 7 and 14%. Dimetridazole could be

  16. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  17. Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils

    NASA Astrophysics Data System (ADS)

    Coward, E.; Plante, A. F.; Thompson, A.

    2015-12-01

    Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical

  18. Partitioning CO2 effluxes from an Atlantic pine forest soil between endogenous soil organic matter and recently incorporated 13C-enriched plant material.

    PubMed

    Fernandez, Irene; Cabaneiro, Ana; González-Prieto, Serafín J

    2006-04-15

    Soil CO2 effluxes from recently added 13C-labeled phytomass versus endogenous soil organic matter (SOM) were studied in an acid soil from Atlantic pine forests (NW Spain). After several cultures to incorporate fresh 13C-enriched Lolium perenne to a Humic Cambisol with predominance of humus--Al over humus--Fe complexes, potential soil C mineralization was determined by laboratory aerobic incubation (84 days). Isotopic 13C analyses of SOM fractions were assessed to know in which organic compartments the 13C was preferentially incorporated. Although in the 13C-labeled soil the C mineralization coefficient totalized less than 3% of soil C, the 13C mineralization coefficient exceeded 14%, indicating a greater lability of the newly incorporated organic matter. Organic compounds coming from added phytomass showed a higher lability and contributed considerably to the total soil CO2 effluxes (52% of total soil CO2 evolved during the first decomposition stages and 27% at the end), even though added-C comprised less than 4% of total soil C. Good determination coefficients, when values of CO2--C released were fitted to a first-order double exponential kinetic model, support the existence of two C pools of different lability. Kinetic parameters obtained with this model indicated that phytomass addition augmented the biodegradability of the labile pool (instantaneous mineralization rate k increased from 0.07 d(-1) to 0.12 d(-1)) but diminished that of the recalcitrant pool (instantaneous mineralization rate h decreased from 2.7 x 10(-4) d(-1) to 1.6 x 10(-4) d(-1)). Consequently, the differentiation between both SOM pools increased, showing the importance of SOM quality on CO2 emissions from this kind of soil to the atmosphere.

  19. Parenting: An Annotated Bibliography, 1965-1987.

    ERIC Educational Resources Information Center

    Feinberg, Sandra; And Others

    This annotated bibliography on parenting resources is designed to assist parents and those who work with them to locate books on the many and complex topics that affect family life. The materials included encompass the various stages of parenting, from pregnancy and childbirth through the parenting of adult children. The many topics covered…

  20. Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Schönbächler, Maria

    2015-09-01

    The progressive dissolution of the carbonaceous chondrites Orgueil (CI1), Murchison (CM2) and Allende (CV3) with acids of increasing strength reveals correlated W isotope variations ranging from 3.5 ε182W and 6.5 ε183W in the initial leachate (acetic acid) to -60 ε182W and -40 ε183W in the leachate residue. The observed variations are readily explained by variable mixing of s-process depleted and s-process enriched components. One W s-process carrier is SiC, however, the observed anomaly patterns and mass-balance considerations require at least on additional s-process carrier, possibly a silicate or sulfide. The data reveal well-defined correlations, which provide a test for s-process nucleosynthesis models. The correlations demonstrate that current models need to be revised and highlight the need for more precise W isotope data of SiC grains. Furthermore the correlations provide a mean to disentangle nucleosynthetic and radiogenic contributions to 182W (ε182Wcorrected = ε182Wmeasured - (1.41 ± 0.05) × ε183Wmeasured; ε182Wcorrected = ε182Wmeasured - (-0.12 ± 0.06) × ε184Wmeasured), a prerequisite for the successful application of the Hf-W chronometer to samples with nucleosynthetic anomalies. The overall magnitude of the W isotope variations decreases in the order CI1 > CM2 > CV3. This can be interpreted as the progressive thermal destruction of an initially homogeneous mixture of presolar grains by parent-body processing. However, not only the magnitude but also the W anomaly patterns of the three chondrites are different. In particular leach step 2, that employs nitric acid, reveals a s-deficit signature for Murchison, but a s-excess for Orgueil and Allende. This could be the result of redistribution of anomalous W into a new phase by parent-body alteration, or, the fingerprint of dust processing in the solar nebula. Given that the thermal and aqueous alteration of Murchison is between the CI and CV3 chondrites, parent-body processing is probably

  1. Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil.

    PubMed

    Crockett, Michael P; Evans, Austin M; Worthington, Max J H; Albuquerque, Inês S; Slattery, Ashley D; Gibson, Christopher T; Campbell, Jonathan A; Lewis, David A; Bernardes, Gonçalo J L; Chalker, Justin M

    2016-01-26

    A polysulfide material was synthesized by the direct reaction of sulfur and d-limonene, by-products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur-limonene polysulfide resulted in a color change. These properties motivate application in next-generation environmental remediation and mercury sensing.

  2. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    PubMed Central

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  3. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  4. Parenting Matters

    ERIC Educational Resources Information Center

    Bornstein, Marc H.

    2005-01-01

    Parenting is a subject about which people typically hold strong opinions, but about which too little solid information or considered reflection exists. And clearly critical questions about parenting abound. Moreover, the family generally, and parenting specifically, are today in a greater state of flux, question, and re-definition than perhaps…

  5. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L(-1) and Fe 48 mg L(-1)) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  6. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    PubMed

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC.

  7. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals.

  8. Verification of the Classification and Diagnostic system of Russian soils (2004) on the materials of a collection of soil monoliths from the V.V. Dokuchaev Central Soil Museum

    NASA Astrophysics Data System (ADS)

    Aparin, B. F.; Gerasimova, M. I.; Lebedeva, I. I.; Sukhacheva, E. I.; Tonkonogov, V. D.

    2007-05-01

    The first in the world collection of soil monoliths from the Dokuchaev Central Soil Museum (St. Petersburg) was examined in order to test and verify the new substantive-genetic classification system of Russian soils. This work made it possible to introduce a number of refinements in the second edition of the Russian soil classification system (2004). These refinements included the addition of new diagnostic horizons and features and the specification of their definitions. The analysis of the museum collection of soils has definite advantages, as it allows one to work with soils from different geographic regions simultaneously, to consider morphological features of soils under standard conditions, to use analytical soil data, and to analyze different names (i.e., interpretations of the genesis) given to the same soils. At the same time, a critical analysis of the collection creates necessary prerequisites for a comparative analysis of soils from different regions of Russia with the national reference soil base, which is important in order to reveal the real pedogenetic diversity and improve the information base on soil resources in Russia.

  9. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods.

    PubMed

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure.

  10. Soils of the Galindez Island, Argentine archipelago, Western Antarctica

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Parnikoza, Ivan

    2015-04-01

    Antarctic Peninsula is a part of Antarctica which is characterized by increased soil diversity, caused by specific of parent materials and diversity of non-vascular and vascular plants. Soils of Galindez Island have been investigated during the 18-th Ukranian Antarctic Expedition 2013/14. This Island situated in Argentine archipelago (coastal part of Antarctic Peninsula). Soils of Galindez Island presented by following types: Leptosols, Lithosols, Histic Lithosols and Leptosols and some Gleyic soils, located in lowlands and coastal parts. An average solum profile thickness is 3-19 cm which result from the small depth of debris's, underplayed by massive crystallic rocks. The permafrost layer is located within the massive rock, but not in coarse friable parent material. The soils with bird influence are widely spread both in coastal and central part of Island. In the coastal parts we can find typical Ornithosols in the penguin rockeries areas. The main aim of our investigation was characterization of soils formed under vegetation, exactly under Deschampsia antarctica Desv. localities. Argentine Islands is the central part of D. antarctica spreading area in region of Antarctic peninsula. Probably, these islands colonized by hairgrass mainly due to ornitogenic activity. So, coastal population appearance related with Larus dominicanus nest areas and feeding activity. Thus, we found typical post ornithogenic soils here. This kind of soils we also observed in population of hairgrass of Galindez mainland where it was connected with the other Antarctic bird - Catharacta maccormicki activity. Thus, the soil diversity and soil geochemistry of the Galindez Island are closely related to the activity of birds. The spatial pattern of soils, their chemistry and organic matter quality is discussed in relation with distribution of bird nesting and feeding activity.

  11. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  12. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  13. Parenting in 1976: A Listing from PMIC.

    ERIC Educational Resources Information Center

    Southwest Educational Development Lab., Austin, TX.

    This bibliography lists materials, programs and resources which appear to be relevant to the needs of parents and those working with parents. The bibliography is a project of the Parenting Materials Information Center (PMIC) being developed by the Southwest Educational Development Laboratory. PMIC collects, analyzes and disseminates information…

  14. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R. L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  15. Soils and the soil cover of the arkaim reserve (Steppe Zone of the Trans-Ural Region)

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, V. E.; Ivanov, I. V.; Manakhov, D. V.; Manakhova, E. V.

    2012-08-01

    Soils of the Arkaim Reserve in the area around a unique settlement-fortress of the Bronze Age in Chelyabinsk oblast have been studied. These soils are generally typical of the entire Trans-Ural Plateau. The soil properties are characterized in detail on the basis of factual data on 170 soil pits and four soil catenas. The soil cover of the reserve is specified into six geomorphic groups: (a) denudational surfaces of the low mountains, (b) accumulative-denudational surfaces of the low mountains, (c) denudational-accumulative plain surfaces, (d) lacustrine-alluvial plain surfaces, (e) floodplain surfaces, and (f) slopes and bottoms of the local ravines and hollows. Chernozems occupy about 50% of the reserve; solonetzes and saline soils, 32%; meadow chernozems, 7%; and forest soils, 1%. The soils of the reserve are relatively thin; they have a distinct tonguing of the humus horizon and are often saline and solonetzic. The latter properties are inherited from the parent materials and are preserved in the soils for a long time under the conditions of a dry continental climate. The genetic features of the soils differ in dependence on the composition and age of the parent materials. With respect to the thickness of the soil profiles and the reserves of soil humus, the soils can be arranged into the following lithogenic sequence: the soils developed from the eluvium of igneous rocks-redeposited kaolin clay-montmorillonite-hydromica nonsaline and saline loams and clays. The content of Corg in the upper 20 cm varies from 2.5 to 5.6%, and the reserves of Corg in the layers of 0-0.5 and 0-1.0 m reach 57-265 and 234-375 t/ha, respectively. The soils of pastures subjected to overgrazing occupy two-thirds of the reserve. Their humus content is 10-16% higher in comparison with that in the analogous plowed soils. Another characteristic feature of the humus in the soils of the pastures is its enrichment in the labile fraction (28-40% of Corg).

  16. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  17. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.

  18. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  19. A Brief History of Soil Mapping and Classification in the USA

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Hartemink, Alfred E.

    2014-05-01

    Soil maps show the distribution of soils across an area but also depict soil science theory and ideas on soil formation and classification at the time the maps were created. The national soil mapping program in the USA was established in 1899. The first nation-wide soil map was published by M. Whitney in 1909 and showed soil provinces that were largely based on geology. In 1912, G.N. Coffey published the first country-wide map based on soil properties. The map showed 5 broad soil units that used parent material, color and drainage as diagnostic criteria. The 1913 national map was produced by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham and showed broad physiographic units that were further subdivided into soil series, soil classes and soil types. In 1935, Marbut drafted a series of maps based on soil properties, but these maps were replaced as official U.S. soil maps in 1938 with the work of M. Baldwin, C.E. Kellogg, and J. Thorp. A series of soil maps similar to modern USA maps appeared in the 1960s with the 7th Approximation followed by revisions with the 1975 and 1999 editions of Soil Taxonomy. This review has shown that soil maps in the United States produced since the early 1900s moved initially from a geologic-based concept to a pedologic concept of soils. Later changes were from property-based systems to process-based, and then back to property-based. The information in this presentation is based on Brevik and Hartemink (2013). Brevik, E.C., and A.E. Hartemink. 2013. Soil Maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390.

  20. Effects of land use and geological factors on the spatial variability of soil carbon and nitrogen in the Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Clayton, M.

    2012-12-01

    The landscape-scale (10s-100s km2) spatial variability of soil properties such as carbon and nitrogen stocks is poorly known in many regions worldwide, especially in semi-arid landscapes with millenial histories of intense land use activities. Characterizing patterns and understanding processes that affect such variability is important for basic research on land use impacts for soils and ecosystems, such as modeling regional-scale ecosystem biogeochemical balances and greenhouse gas emissions, as well as applied research for precision agriculture, soil erosion control, water conservation and carbon accounting. Here, we use geostatistical analyses to study patterns of spatial variability in total carbon (TC), organic carbon (SOC), and total nitrogen (TN) stocks in soils (0-25 cm) of the Konya Basin, Turkey. We hypothesized that land use will have a stronger effect on SOC variability, which will be more tightly linked with vegetation and human management, while parent material will be a more important predictor of TC variability in these arid soils with high carbonate content. We collected a total of 560 samples from 35 sites distributed across three soil parent materials and three classes of land use (agriculture, grazing lands and orchards), using multi-temporal analyses of Landsat data to map land cover and geographic information systems (GIS) to aid selection of field sites. Building on previous research that found parent materials strongly control TC, TN and SOC, we tested whether soil parent materials or land-use practices more strongly explain patterns of spatial variability of soil properties at nested scales, including within field-site (within 35 1-ha field sites) and landscape scales (across 35 sites). Initial results show that spatial patterns of total carbon (TC) are strongly affected by soil parent materials and field sites at landscape scales. Forthcoming analyses will analyze patterns in TN and SOC. Our analyses, which test effects of geological

  1. A new approach of mapping soils in the Alps - Challenges of deriving soil information and creating soil maps for sustainable land use. An example from South Tyrol (Italy)

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Gruber, Fabian E.; Geitner, Clemens

    2015-04-01

    Nowadays sustainable land use management is gaining importance because intensive land use leads to increasing soil degradation. Especially in mountainous regions like the Alps sustainable land use management is important, as topography limits land use. Therefore, a database containing detailed information of soil characteristics is required. However, information of soil properties is far from being comprehensive. The project "ReBo - Terrain classification based on airborne laser scanning data to support soil mapping in the Alps", founded by the Autonomous Province of Bolzano, aims at developing a methodical framework of how to obtain soil data. The approach combines geomorphometric analysis and soil mapping to generate modern soil maps at medium-scale in a time and cost efficient way. In this study the open source GRASS GIS extension module r.geomorphon (Jasciewicz and Stepinski, 2013) is used to derive topographically homogeneous landform units out of high resolution DTMs on scale 1:5.000. Furthermore, for terrain segmentation and classification we additionally use medium-scale data sets (geology, parent material, land use etc.). As the Alps are characterized by a great variety of topography, parent material, wide range of moisture regimes etc. getting reliable soil data is difficult. Additionally, geomorphic activity (debris flow, landslide etc.) leads to natural disturbances. Thus, soil properties are highly diverse and largely scale dependent. Furthermore, getting soil information of anthropogenically influenced soils is an added challenge. Due to intensive cultivation techniques the natural link between the soil forming factors is often repealed. In South Tyrol we find the largest pome producing area in Europe. Normally, the annual precipitation is not enough for intensive orcharding. Thus, irrigation strategies are in use. However, as knowledge about the small scaled heterogeneous soil properties is mostly lacking, overwatering and modifications of the

  2. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  3. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Pett-Ridge, J. C.; Opfergelt, S.; Guicharnaud, R. A.; Halliday, A. N.; Burton, K. W.

    2015-08-01

    Molybdenum isotope fractionation accompanying soil development is studied across three pedogenic gradients encompassing a range of controlling factors. These factors include variable redox conditions, organic matter content, Fe and Mn oxy(hydr)oxide content, mineral composition, degree of weathering, pH, type and amount of atmospheric inputs, age, climate, and underlying rock type. Soil profiles from the island of Maui (Hawaii) along a precipitation gradient ranging from 850 to 5050 mm mean annual precipitation show a decrease in average soil δ98Mo from -0.04 ± 0.11‰ at the driest, most oxic site, which is indistinguishable from the basalt parent material (-0.09 ± 0.08‰), to -0.33 ± 0.10‰ at the wettest, most reducing site. A suite of 6 Icelandic soils display a broad trend with heavier δ98Mo values (up to +1.50 ± 0.09‰) in soil horizons that are more weathered and have higher organic matter content. Selective extractions of Mo from different soil components indicate that the association with organic matter and silicate or Ti-oxide residue dominates retention of Mo in these soils, with adsorption on Fe and Mn oxy(hydr)oxides playing a lesser role. Across all basaltic soils, δ98Mo values are lighter in soils that exhibit the most net Mo loss relative to the parent material, and δ98Mo values are heavier in soils that exhibit net Mo gains. A well-drained regolith profile in the Luquillo Mountains of Puerto Rico developed on quartz diorite shows heavier δ98Mo values than the parent material (up to +0.71 ± 0.10‰ with an integrated profile average of +0.28 ± 0.10‰) in soil and shallower saprolite, despite overall moderate loss of 28% of Mo relative to the bedrock. However, the deeper saprolite is unfractionated from bedrock (-0.01 ± 0.10‰, quartz diorite bedrock) indicating that rock weathering dissolution processes and secondary clay formation do not fractionate Mo isotopes. Our data suggest that the Mo mass balance and isotope composition of

  4. Decontamination of soils and materials containing medium-fired PuO{sub 2} using inhibited fluorides with polymer filtration technology

    SciTech Connect

    Temer, D.J.; Villarreal, R.; Smith, B.F.

    1997-10-01

    The decontamination of soils and/or materials from medium-fired plutonium oxide (PuO{sub 2}) with an effective and efficient decontamination agent that will not significantly dissolve the matrix requires a new and innovative technology. After testing several decontamination agents and solutions for dissolution of medium-fired PuO{sub 2}, the most successful decontamination solutions were fluoride compounds, which were effective in breaking the Pu-oxide bond but would not extensively dissolve soil constituents and other materials. The fluoride compounds, tetra fluoboric acid (HBF{sub 4}) and hydrofluorosilicic acid (H{sub 2}F{sub 6}Si), were effective in dissolving medium-fired PuO{sub 2}, and did not seem to have the potential to dissolve the matrix. In both compounds, the fluoride atom is attached to a boron or silicon atom that inhibits the reactivity of the fluoride towards other compounds or materials containing atoms less attracted to the fluoride atom in an acid solution. Because of this inhibition of the reactivity of the fluoride ion, these compounds are termed inhibited fluoride compounds or agents. Both inhibited fluorides studied effectively dissolved medium-fired PuO{sub 2} but exhibited a tendency to not attack stainless steel or soil. The basis for selecting inhibited fluorides was confirmed during leaching tests of medium-fired PuO{sub 2} spiked into soil taken from the Idaho National Engineering Laboratory (INEL). When dissolved in dilute HNO{sub 3}, HCl, or HBr, both inhibited fluoride compounds were effective at solubilizing the medium-fired PuO{sub 2} from spiked INEL soil.

  5. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of

  6. Games in an Introductory Soil Science Course: A Novel Approach for Increasing Student Involvement with Course Material

    ERIC Educational Resources Information Center

    Sulzman, Elizabeth W.

    2004-01-01

    An optional 1-credit recitation course was developed to supplement a traditionally taught 4-credit lecture-plus-laboratory course in soil science at Oregon State University. Popular, competitive games that would be familiar to students were revised to be "soils-based" and were employed in the recitation class. These games were seen as a…

  7. Acidification of forest soil in Russia: From 1893 to present

    SciTech Connect

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2003-01-02

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations similar to 100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place.

  8. Acidification of forest soil in Russia: From 1893 to present

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  9. Magnetic Properties of Different-Aged Chernozemic Soils

    NASA Astrophysics Data System (ADS)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  10. On the origin of superparamagnetic minerals of tropical soils and their impact on landmine detection

    NASA Astrophysics Data System (ADS)

    Igel, Jan; Preetz, Holger; Altfelder, Sven

    2010-05-01

    Magnetic susceptibility of soils is mainly determined by their content of ferrimagnetic minerals whereas titanomagnetite, magnetite and maghemite being the most important ones. Titanomagnetite and magnetite are of magmatic origin, i.e. they crystallise during cooling of iron-rich magma and are part of many igneous rocks. Maghemite and sometimes magnetite are of pedogenic origin. They develop by crystallisation of dissolved iron during soil forming processes. Ferrimagnetic minerals that are smaller than some tens of nanometres are superparamagnetic (SP) and show frequency dependent susceptibility. SP minerals crystallise if magma cools down rapidly (e.g. volcanic magmas, glasses and ashes) and are frequently formed during pedogenesis. In order to investigate the origin and formation of SP minerals in tropical soils, we analyse magnetic properties of 594 samples from the entire tropics comprising the whole range of weathering states from unweathered rock to highly weathered soil. Tropical soils are subject to intense chemical weathering and are rich in ferrimagnetic and in particular SP minerals. The process leading to a high content of these minerals is either residual enrichment due to their weathering resistance or neo-formation. In this study we focus on the frequency dependent susceptibility (absolute and relative) of the samples and classify it according to the parent material and alteration. We observe that • within each parent-material group, rock material shows in general lower susceptibility and absolute frequency dependence than soil material • ultrabasic and basic/intermediate rocks and soils developed from these rocks show high absolute frequency dependent susceptibility and, in contrast, acid rocks and sediments show lower absolute frequency dependence • absolute frequency dependence increases from unweathered rock to weathered rock, and from subsoil to topsoil material within every group of parent material • relative frequency dependence rises

  11. Changes in soil CO2 efflux of organic calcaric soils due to disturbance by wind

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Katzensteiner, K.

    2012-04-01

    Disturbances such as windthrow or insect infestations are supposed to have a significant influence on the soil carbon balance of affected forests. Increasing soil temperatures and changes in the soil moisture regime, caused by the removed tree layer, are expected to change soil CO2 efflux, also known as soil respiration. Beside an anticipated stimulation of the carbon mineralization, the main part of root allocated CO2 is offset due to the blown down trees. On mountain forest sites of the Northern Limestone Alps, where highly active organic soils above calcareous parent material are characteristic (Folic Histosols and Rendzic Leptosols), an increase of the mineralization rate of carbon may contribute to enormous humus losses. Serious site degradation can be the consequence, especially on south exposed slopes where extreme climatic conditions occur. The present study tries to give insights to disturbance induced changes in temporal and spatial behaviour of soil respiration for a montane mountain forest located in the Northern Limestone Alps of Upper Austria. Soil respiration, soil temperature and volumetric water content were measured on two windthrow areas (blow down dates were 2007 and 2009 respectively) as well as in an adjacent mature mixed forest during the vegetation periods of 2010 and 2011. Soil respiration in both years was mainly driven by soil temperature, which explained up to 90 % of the concerning temporal variation. Volumetric water content had a significant influence as additional temporal driver. After removing the temperature trend, significant differences in basal soil respiration rates were found for the disturbance area and the forest stand. Inter seasonal declines in soil respiration were ascertained for the mature stand as well as for the recent windthrow. Particular decreases are related to drought stress in summer 2011 and a proceeded decomposition of labile soil carbon components at the windthrow site. An interaction between soil type and

  12. Visualizing Soil Landscapes on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Schulze, Darrell; Lindbo, David

    2016-04-01

    The Integrating Spatial Educational Experiences (Isee) project utilizes the most detailed US soil survey data to create thematic maps of soil properties that are then combined with a highly optimized hillshade basemap for display. The Isee app, currently available for the iPad platform from the Apple App Store, allows the cached maps to be zoomed and panned quickly to any location down to a scale of 1:18,000. Maps currently available for the states of Indiana, Illinois, Kentucky, Ohio, Texas, West Virginia, and Wisconsin include, Dominant Soil Parent Materials, Natural Soil Drainage Classes, Limiting Layers, Surface Soil Colors, and Acid Subsoils. Other thematic maps will be added in the future. The ability to zoom, pan, and change maps quickly allows the user to see and understand soil landscape relationships that are not often apparent using static maps, while the ability to access the maps conveniently in the field allows the user to see how soil landscape features on the maps appear in the field.

  13. GEMAS - Soil geochemistry and health implications

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic

  14. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  15. Valuing Parents

    ERIC Educational Resources Information Center

    Gerdes, Eugenia Proctor

    2004-01-01

    Recently, a young faculty member commented that e-mail and inexpensive long distance rates were hampering her first-year students' development by making it too easy for them to stay in touch with their parents. Similarly, Judith Shapiro, president of Barnard College, argued in her August 22, 2002, New York Times op-ed piece, "Keeping Parents Off…

  16. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are <6 are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry

  17. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    NASA Astrophysics Data System (ADS)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  18. A first attempt to reproduce basaltic soil chronosequences using a process-based soil profile model: implications for our understanding of soil evolution

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Gloor, M.; Lloyd, J.

    2012-04-01

    Soils are complex systems which hold a wealth of information on both current and past conditions and many biogeochemical processes. The ability to model soil forming processes and predict soil properties will enable us to quantify such conditions and contribute to our understanding of long-term biogeochemical cycles, particularly the carbon cycle and plant nutrient cycles. However, attempts to confront such soil model predictions with data are rare, although increasingly more data from chronosquence studies is becoming available for such a purpose. Here we present initial results of an attempt to reproduce soil properties with a process-based soil evolution model similar to the model of Kirkby (1985, J. Soil Science). We specifically focus on the basaltic soils in both Hawaii and north Queensland, Australia. These soils are formed on a series of volcanic lava flows which provide sequences of different aged soils all with a relatively uniform parent material. These soil chronosequences provide a snapshot of a soil profile during different stages of development. Steep rainfall gradients in these regions also provide a system which allows us to test the model's ability to reproduce soil properties under differing climates. The mechanistic, soil evolution model presented here includes the major processes of soil formation such as i) mineral weathering, ii) percolation of rainfall through the soil, iii) leaching of solutes out of the soil profile iv) surface erosion and v) vegetation and biotic interactions. The model consists of a vertical profile and assumes simple geometry with a constantly sloping surface. The timescales of interest are on the order of tens to hundreds of thousand years. The specific properties the model predicts are, soil depth, the proportion of original elemental oxides remaining in each soil layer, pH of the soil solution, organic carbon distribution and CO2 production and concentration. The presentation will focus on a brief introduction of the

  19. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  20. "Lou soil", a fertile anthropogenic soil with thousands of years of cultivating history

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liang, B.; Yan, J.; Zhao, W.

    2012-12-01

    Chinese farmers have a very long history of using manures in their fields. Owing to the long-term addition of manures, an anthropogenic layer was formed on the top of original soil profile (drab soil) in Guanzhong Plains on the south edge of the Loess Plateau, North China. This soil is named the Manural Loessial soil (or Lou soil, "Lou" means the different stories of a building in Chinese). The depth of anthropogenic layer is in range of about 30 to 100 cm depth, which has a close relationship with the soil productivity. This fertile agricultural soil has sustained the agriculture in the region for millenniums. We had determined the organic carbon (SOC) in 7 soil profiles, and found that the depths of anthropogenic layer of were in range of 40 to 71 cm (averaging 59 cm). And the anthropogenic layer became shallower as the profile was far from the village due to less manure application. The organic C stocks in this layer accounted for 69% of organic C stocks in 0-100 cm soil profiles. Organic C stocks in Lou soil was higher than that in the newly cultivated soil developed from loess parent materials. Our 30-day incubation experiment found that addition of synthetic N fertilizer significantly increased the decomposition of SOC in the soils. However, The decomposition rate of SOC in the soil added with manure and inorganic fertilizers for 18-yr (MNPK soil) was significantly lower than in the soils added without fertilizer or inorganic fertilizers (NF soil, and NPK soils). The half-life of the organic C in MNPK soils was also slower than the NF soil, and NPK soil. It indicates that long-term combined application of manure and inorganic fertilizers improves the stabilization of soil organic C. Long-term cultivation has not only increased organic C stocks, but also stabilization of organic C in soil profile. It provides us a unique sample to study the mechanism of accumulation and stabilization of organic C in soil to balance agricultural production and C sequestration

  1. Organic carbon stocks and sequestration rates of forest soils in Germany.

    PubMed

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period.

  2. Soil CO2 constrain and distinction of root respiration and microbial activity by soil CO2 and CH4 profile

    NASA Astrophysics Data System (ADS)

    Ji, S.; Breecker, D.; Nie, J.

    2015-12-01

    Profiles of soil pore space CO2 and CH4 concentrations are rarely reported, especially from the same soils, yet are important for a number of applications. First, quantifying the component of respired CO2 in the soil pore spaces improves paleosol-based paleo-atmospheric CO2 estimates. Second, profiles can be used to estimate the average depth of biological activity (e.g. respiration and CH4 oxidation). Third, CH4 profiles, by identifying microbial activity, may help distinguish root/rhizosphere respiration from microbial decomposition. Here, we report soil CO2 and CH4 profiles measured at the Semi-Arid Climate Observatory and Laboratory (SACOL) on the Chinese Loess Plateau (CLP) at Lanzhou University, Gansu, China. Soil parent material on the site is mainly Quaternary aeolian loess and classifies as an Entisol. Soil respired CO2 (S(z) = soil CO2 - atmospheric CO2) is the most uncertain variable required to reconstruct ancient atmospheric CO2 concentrations from paleosol carbonates. Our direct soil pore space CO2 measurements show that S(z) values varied from ~100ppmV during the spring to ~2200ppmV during the summer. S(z) average 390 ± 30ppmV during May before the summer monsoon begins when soil temperature is increasing, soil water content is at a minimum and pedogenic carbonate may be forming. This value lies in the range of S(z) values previously estimated for surface Inceptisols (300 ± 100ppmV, Breecker 2013) and is lower than Pleistocene CLP paleosols (Da et al.,2015) in similar parent material. Our direct measurements of soil pore space CO2 thus support these previous independent S(z) estimates. We also investigate the average depth of CH4 oxidation and soil respiration, which range from 3-10cm and at least 20cm, respectively, using the shapes of soil gas profiles. Fitting observed soil CO2 and CH4 profiles with a production-diffusion model show that the average depth of CH4 oxidation was always at least 10 cm shallower than the average depth of respiration

  3. Conserving Soil. Revised.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…

  4. New elements in teaching soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Sonneveld, M. P. W.

    2012-04-01

    A landscape is an area whose character is the result of the action and interaction of natural and/or human factors. Landscapes are fundamental spatial units for soil scientists working in the fields of soil survey and soil geography. For these scientists but also for those who use their products (e.g. maps), interrelations between geology, geomorphology, soil formation and derived soil patterns in relation to land use are keys to the understanding of landscape functions. Many of these relations have been documented in aging soil survey reports but these are often difficult to access. As a result, important and unique soil-landscape phenomena remain hidden for other environmental scientists or the general public. In the Netherlands, efforts have been undertaken to aggregate information from soil survey reports and recent scientific insights into a new book with the aim to teach students the basic elements in soil-landscape research and to provide insights into valuable earth phenomena that are in need of preservation and/or careful management. New elements include amongst others: - State-of-the-art graphics to show how basic soil forming factors such as climate (change), parent material and time are interrelated. - Detailed catenas for specific soil-landscape systems, showing the relations between geomorphology and soil genesis. - Combining traditional soil maps with high-resolution DEM data to make soil-landscape relations more explicit. - Indicating the extent and impacts of land use change using maps of land use history. With this approach, current insights into natural patterns of geodiversity and pedodiversity are documented and available as a resource for education but also for policy makers working in the fields of geoheritage.

  5. Mineral control of soil organic carbon storage and turnover

    NASA Astrophysics Data System (ADS)

    Torn, Margaret S.; Trumbore, Susan E.; Chadwick, Oliver A.; Vitousek, Peter M.; Hendricks, David M.

    1997-09-01

    A large source of uncertainty in present understanding of the global carbon cycle is the distribution and dynamics of the soil organic carbon reservoir. Most of the organic carbon in soils is degraded to inorganic forms slowly, on timescales from centuries to millennia. Soil minerals are known to play a stabilizing role, but how spatial and temporal variation in soil mineralogy controls the quantity and turnover of long-residence-time organic carbon is not well known. Here we use radiocarbon analyses to explore interactions between soil mineralogy and soil organic carbon along two natural gradients-of soil-age and of climate-in volcanic soil environments. During the first ~150,000 years of soil development, the volcanic parent material weathered to metastable, non-crystalline minerals. Thereafter, the amount of non-crystalline minerals declined, and more stable crystalline minerals accumulated. Soil organic carbon content followed a similar trend, accumulating to a maximum after 150,000 years, and then decreasing by 50% over the next four million years. A positive relationship between non-crystalline minerals and organic carbon was also observed in soils through the climate gradient, indicating that the accumulation and subsequent loss of organic matter were largely driven by changes in the millennial scale cycling of mineral-stabilized carbon, rather than by changes in the amount of fast-cycling organic matter or in net primary productivity. Soil mineralogy is therefore important in determining the quantity of organic carbon stored in soil, its turnover time, and atmosphere-ecosystem carbon fluxes during long-term soil development; this conclusion should be generalizable at least to other humid environments.

  6. Soil Ecology of Coccidioides immitis at Amerindian Middens in California

    PubMed Central

    Lacy, George H.; Swatek, Frank E.

    1974-01-01

    Outbreaks of coccidioidomycosis and isolation of Coccidioides immitis have been reported from Amerindian middens. This study was undertaken to determine the most important ecological component(s) for the occurrence of C. immitis at archeological sites. Soils from 10 former Indian villages with no prior history of coccidioidal infection were collected and cultured. The physicochemical properties of the midden soils were compared with nonmidden soils and positive soils. The following theories for the sporadic distribution of the pathogen in the soil of the Lower Sonoran Life Zone were considered: (i) the Larrea tridentata (creosote bush) association, (ii) the preference for saline soils, (iii) isolation near rodent burrows, and (iv) animals as possible agents of dispersal. Results showed that a high percentage of the midden soils contained C. immitis, whereas none of the adjacent, nonmidden soils yielded the fungus. Physicochemical analyses revealed that the dark color and alkaline pH of the midden soils were due to past organic contamination. Repeated isolations were made from soils with low to moderate alkalinity. Alkalinity and sandy texture were consistent features of all soils in this study. However, the lack of any reports of nonsandy infested soils possibly indicates that the sandy texture and alkalinity may be factors in the distribution of this fungus. The organic content, soil parent material, and color were not important in the soil ecology. L. tridentata was not significant in the macroflora at the infested sites surveyed. Samples collected without reference to rodent burrows yielded a high percentage of recoveries. Animals, although not the major natural reservoir, cannot be ignored as possible factors in the ecology of C. immitis. Images PMID:4856715

  7. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    DTIC Science & Technology

    2015-04-01

    Protection Agency (USEPA) developed ecological soil screening level (EcoSSL) values for contaminants at Superfund sites. EcoSSL values are derived by...RDX, HMX, 2,4-DNT, 2,6-DNT, and TNB. We used the Folsomia Reproduction Test, which uses an ecologically relevant test species and includes at least one...2,6-DNT) Bioavailability 1,3,5-trinitrobenzene (TNB) Natural soil Ecological

  8. Can Low Water/Rock Hydrothermal Alteration of Impact Materials Explain the Rock Component of the Martian Soil?

    NASA Technical Reports Server (NTRS)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The martian regolith is a globally homogenized product of chemical and aeolian weathering processes. The soil is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine. In this study we consider the contributions of hydrothermal processes to the origin of the rock component of the martian soil.

  9. Rapid Development of Microbial Strains for Bioremediation of Military Soils and Dredged Materials Contaminated with Polycyclic Aromatic Hydrocarbons.

    DTIC Science & Technology

    1993-09-01

    products . Wh PWR 1D OW RECYCLED PAPER Technical Report EL-93-18 September 1993 Rapid Development of Microbial Strains for Bioremediation of Military Soils... examined . Objectives The study had the following objectives: (a) to develop a technology to rapidly obtain native microorganisms or consrotia with the...are also found in emissions from automobile exhausts and power production , in soils from gas manufacturing plants (Erickson, Loehr, and Neuhauser

  10. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons

    PubMed Central

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  11. National Soil Information System in Turkey

    NASA Astrophysics Data System (ADS)

    Emrah Erdogan, Hakki; Sahin, Mehmet; Sahin, Yuksel

    2013-04-01

    Land consolidation (LC) represents complexity if management, legal, economic and technical procedures realized in order to adjust the land structure according to actual human preferences and needs. It includes changes in ownership rights to land and other real estate property, exchange of parcels among owners, changes in parcel borders, parcel size and shape, joining and dividing of parcels, changes in land use, construction works as roads, bridges, water changes etc.. Since the subject of LC is agricultural lands, the quality of consolidation depends on the quality of soil data. General Directorate of Agrarian Reform (GDAR) is the responsible institution on land consolidation whole of Turkey. Under GDAR, National Soil Information System (NSIS) has been build up with base soil data in relevant scale (1:5000). NSIS contain detailed information on soil chemical and physical properties, current land use, parent material, land capability class, Storie Index Values. SI were used on land consolidation, land use planning and farm development services. LCC was used for land distribution, rental land; define of village settlement, consolidation, expropriation, reconstruction, reclamation, non-agricultural usage. LCC were also specified to subclasses in four different limited factors as i) flow and erosion risk ii) requirement of drainage and soil moisture iii) Limits of soil tillage and root (shallow soils, low water retention capacity, stony, salty .etc) iv) climatic limits. In this study, digital soil survey and mapping project located in Yumurtalik, Adana is presented as an example of NSIS data structure. The project cover an area of 45709 ha that include crop lands as an area of 28528 ha and other land use (urban, roads..etc) as an area of 17181 ha. Soil profiles were described in 45 different points and totally 1279 soil samples were collected in field study and the check bore hole were made in 3170 points.

  12. Soil Organic Carbon Stocks in Depositional Landscapes of Bavaria

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2016-04-01

    Erosion leads to redistribution and accumulation of soil organic matter (SOM) within agricultural landscapes. These fluvic and colluvic deposits are characterized by a highly diverse vertical structure and can contain high amounts of soil organic carbon (SOC) over the whole soil profile. Depositional landscapes are therefore not only productive sites for agricultural use but also influence carbon dynamics which is of great interest with regard on the recent climate change debate. The aim of our study is to elucidate the spatial distribution of organic carbon stocks, as well as its depth function and the role of these landscapes as a reservoir for SOM. Therefore we compare two representative depositional landscapes in Bavaria composed of different parent materials (carbonate vs. granitic). We hypothesize that the soils associated with different depositional processes (fluvial vs. colluvial) differ in SOC contents and stocks, also because of different hydromorphic regimes in fluvic versus colluvic soil profiles. Sampling sites are located in the Alpine Foreland (quaternary moraines with carbonatic parent material) and the foothills of the Bavarian Forest (Granite with Loess) with the main soil types Fluvisols, Gleysols and Luvisols. At both sites we sampled twelve soil profiles up to 150 cm depth, six in the floodplain and six along a vertical slope transect. We took undisturbed soil samples from each horizon and analyzed them for bulk density, total Carbon (OC and IC) and total Nitrogen (N) concentrations. This approach allows to calculate total OC contents and OC stocks and to investigate vertical and horizontal distribution of OC stocks. It will also reveal differences in OC stocks due to the location of the soil profile in fluvic or colluvic deposition scenarios.

  13. Influence of perennial plants on chemical properties of arid calcareous soils in Iran

    SciTech Connect

    Karimian, N.; Razmi, K. )

    1990-10-01

    The authors conducted a study in Bajgah to determine the influence of perennial plants on some selected properties of soils formed on the highly calcareous parent material. The major plant genera were determined to be Agropyron, Artemisia, Astragalus, Dianthus, Eryngium, Peganum, Polygonum, Stipa, and Thymus. Tops of plants genera were found to be significantly different in ash, N, P, K, Ca, Mg, Na, Mn, Zn, and Cu; the concentration of Fe was not significantly different. The authors found the plants to differ significantly in their influence on soil properties. Peganum caused an accumulation of organic matter (OM) as high as 7% in the soil, in an environment where the soils typically contain less than 1% OM. Soil concentrations of P, K, Mn, Zn, and Cu were also found to vary significantly beneath different plant genera. They suggest these differences in OM accumulation were caused by plant litter. Concentration of Fe in the soils formed beneath different plant genera was statistically unchanged.

  14. Soil development over millennial timescales - a comparison of soil chronosequences of different climates and lithologies

    NASA Astrophysics Data System (ADS)

    Sauer, D.; Schülli-Maurer, I.; Wagner, S.; Scarciglia, F.; Sperstad, R.; Svendgård-Stokke, S.; Sørensen, R.; Schellmann, G.

    2015-07-01

    This paper reports soil development over time in different climates, on time-scales ranging from a few thousand to several hundred thousand years. Changes in soil properties over time, underlying soil-forming processes and their rates are presented. The paper is based on six soil chronosequences, i.e. sequences of soils of different age that are supposed to have developed under the similar conditions with regard to climate, vegetation and other living organisms, relief and parent material. The six soil chronosequences are from humid-temperate, Mediterranean and semi-arid climates. They are compared with regard to soil thickness increase, changes in soil pH, formation of pedogenic iron oxides (expressed as Fed/Fet ratios), clay formation, dust influx (both reflected in clay/silt ratios), and silicate weathering and leaching of base cations(expressed as (Ca+Mg+K+Na)/Al molar ratios) over time. This comparison reveals that the increase of solum thickness with time can be best described by logarithmic equations in all three types of climates. Fed/Fet ratios (proportion of pedogeniciron Fed compared to total iron Fet) reflects the transformation of iron in primary minerals into pedogeniciron. This ratio usually increases with time, except for regions, where the influx of dust (having low Fed/Fet ratios) prevails over the process of pedogeniciron oxide formation, which is the case in the Patagonian chronosequences. Dust influx has also a substantial influence on the time courses of clay/silt ratios and on element indices of silicate weathering. Using the example of a 730 kasoil chronosequence from southern Italy, the fact that soils of long chronosequences inevitably experienced major environmental changes is demonstrated, and, consequentially a modified definition of requirements for soil chronosequences is suggested. Moreover, pedogenic thresholds, feedback systems and progressive versus regressive processes identified in the soil chronosequences are discussed.

  15. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  16. The Soil Is Alive!

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Describes activities which demonstrate the abundance of organisms living underground. Provides outlined directions, lists of materials, and a soil ecosystem transparency for delving into the properties of soil. (RT)

  17. Fractionation of Volatile Elements by Heating of Solid Allende: Implications for the Source Material of Earth, Moon, and the Eucrite Parent Body

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Palme, H.

    1993-07-01

    . Nearly-CI-chondritic Sn/Pb ratios are observed in Allende and other carbonaceous chondrites. Evaporation from a solid leads to a severe increase in this ratio. Similarly, Rb/Cs ratios (about 12) are approximately CI-like in all groups of carbonaceous chondrites, perhaps reflecting the inability of nebular processes to fractionate these ratios. In contrast, terrestrial, lunar, and eucritic rocks have much higher Rb/Cs ratios [5]. As volatile loss from molten magmas is excluded [2], their low Cs contents must be characteristic of the parent material. This may exclude carbonaceous chondrites as source materials of eucrites, the Earth, and the Moon. The low Cs in planetary precursor materials may have been produced by secondary heating of small fragments of solid matter at subsolidus temperatures before final accretion. Equilibrated chondrites also show high Rb/Cs ratios, perhaps indicating mobilization of Cs at metamorphic temperatures. References: [1] Palme H. et al. (1988) in Meteorites and the Early Solar System, 436-461, Univ. of Arizona. [2] Humayan M. and Clayton R. N. (1993) LPSC XXIV, 685-686. [3] Davis A. M. et al. (1990) Nature, 347, 655-658. [4] Wulf A. V. and Palme H. (1991) LPSC XXII, 1527-1528. [5] McDonough W. F. et al. (1992) GCA, 56, 1001-1012. Figure 1 appears here in the hard copy.

  18. Total parenting.

    PubMed

    Smith, Richard

    2010-01-01

    In this essay, Richard Smith observes that being a parent, like so much else in our late-modern world, is required to become ever more efficient and effective, and is increasingly monitored by the agencies of the state, often with good reason given the many recorded instances of child abuse and cruelty. However, Smith goes on to argue, this begins to cast being a parent as a matter of "parenting," a technological deployment of skills and techniques, with the loss of older, more spontaneous and intuitive relations between parents and children. Smith examines this phenomenon further through a discussion of how it is captured to some extent in Hannah Arendt's notion of "natality" and how it is illuminated by Charles Dickens in his classic novel, Dombey and Son.

  19. Parenting Multiples

    MedlinePlus

    ... can be particularly vulnerable to respiratory syncytial virus (RSV) , a flu-like illness that can be highly ... is very aware of the difference already. As kids get older it's important that parents look at ...

  20. Effective Parenting

    MedlinePlus

    ... child's school play and his soccer games. Your Current Parenting Experiences Spend some time thinking about how ... do you think you need more help? Your Current Life Issues For many men and women, the ...

  1. Parenting Conflicts

    MedlinePlus

    ... her strength, so the decision-making responsibilities are divided within the family. Overt Conflict Too often, parents ... think, "The kids require so much of our attention now; once they're grown, we'll have ...

  2. Parenting Multiples

    MedlinePlus

    ... parents. It's important for caretakers to spend time speaking directly to each child, as well as reading to them and encouraging language. Social skills can come earlier for multiples, simply because they' ...

  3. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  4. Spatial variations of Pb in the vertical zone of the soil-plant system in the Changbai Mountain National Nature Reserve.

    PubMed

    Bai, Jun-Hong; Deng, Wei; Fang, Hua-Jun; Xu, Xiao-Feng

    2002-07-01

    The characteristics of vertical and horizontal variations of lead element(Pb) in soil-plant system of vertical zone in Changbai Mountain National Nature Reserve(CNNR) were studied. The results showed that Pb concentrations in soils of vertical zone are all above 25 mg/kg, and the average Pb concentration of each soil zone negatively correlates its degree of variation, i.e. brown coniferous forest soil zone has the lowest average Pb concentration of four soil zones, and the highest horizontal variation; however, mountain soddy forest soil has the highest average Pb concentration, and the lowest horizontal variation; the average concentration of plant Pb of each plant zone is lower than the worldwide average level of Pb in plant(Clarke), respectively, and plant Pb content order is consistent with soil Pb content order, but their horizontal variations are different from those in soil zones, the variation of mountain tundra forest zone is highest, but Betula ermanii forest zone the lowest. Vertical variation of plant Pb is obviously higher than that in soils with variation coefficient of 89.76%; the enrichment capability of plant for Pb is depended on the plant types and the different organs of plant; parent material and parent rock, pH values, soil organic matter and soil particle fraction etc. are the main factors influencing variations of Pb content in soil-plant system of vertical zone in CNNR.

  5. Soil mineral surfaces of paddy soils are accessible for organic carbon accumulation after decalcification

    NASA Astrophysics Data System (ADS)

    Wissing, Livia

    2013-04-01

    We studied organic carbon (OC) accumulation due to organo-mineral associations during soil development on calcareous parent material. Two chronosequences in Zhejiang Province, PR China, were investigated; one under paddy cultivation with a maximum soil age of 2000 years, and the other under upland crops where the oldest soil was 700 years old. Bulk soils and soil fractions of the uppermost A horizons were analyzed for OC concentrations and radio carbon contents. Total pedogenic iron (Fed) concentration was determined by dithionite extraction and the proportion of oxalate extractable iron (Feox) was extracted by using the method of Schwertmann (1964). The specific surface area (SSA) of soil minerals was measured by the BET-N2 method (Brunauer et al., 1938) under four conditions: untreated, after organic matter removal, after iron removal and after removal of both. Within 700/2000 years of pedogenesis, we observed no change in clay mineral composition and no additional formation of the SSA of soil minerals. But the soils differed in the degree of decalcification, OC accumulation and in the formation of iron. Paddy soil management led to an enhanced decalcification and larger OC accumulation. Management-induced redox cycles caused larger proportions of Feox in paddy soils. Their large SSA, added to the surface area of clay minerals, provided additional options for OC covering. Unexpectedly, there was no evidence of formation of secondary minerals during soil development, which could provide new surfaces for OC accumulation. However, the study revealed higher OC coverings of mineral surfaces after decalcification in paddy soils. As carbonate and Ca2+ ions seemed to interconnect clay minerals, making their surface accessible to OC, the faster dissolution of carbonate and leaching of Ca2+ ions in paddy soils made additional clay mineral surfaces available to OC. In contrast, the surface area of minerals in non-paddy soils, in which decalcification was much lower, seemed

  6. Preliminary investigation of Large Format Camera photography utility in soil mapping and related agricultural applications

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Hudnall, W. H.

    1987-01-01

    The use of Space Shuttle Large Format Camera (LFC) color, IR/color, and B&W images in large-scale soil mapping is discussed and illustrated with sample photographs from STS 41-6 (October 1984). Consideration is given to the characteristics of the film types used; the photographic scales available; geometric and stereoscopic factors; and image interpretation and classification for soil-type mapping (detecting both sharp and gradual boundaries), soil parent material topographic and hydrologic assessment, natural-resources inventory, crop-type identification, and stress analysis. It is suggested that LFC photography can play an important role, filling the gap between aerial and satellite remote sensing.

  7. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  8. Spatial variability of available soil microelements in an ecological functional zone of Beijing.

    PubMed

    Ye, Huichun; Shen, Chongyang; Huang, Yuanfang; Huang, Wenjiang; Zhang, Shiwen; Jia, Xiaohong

    2015-02-01

    Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability.

  9. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    PubMed

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  10. Employment of a novel magnetically multifunctional purifying material for determination of toxic highly chlorinated polychlorinated biphenyls at trace levels in soil samples.

    PubMed

    Zhang, Jiabin; Pan, Muyun; Gan, Ning; Cao, Yuting; Wu, Dazhen

    2014-10-17

    In this study, we developed a magnetically multifunctional purifying material for efficient removal of matrix interferences, especially certain organochlorine pesticide (DDT, DDE, and DDD), during the determination of toxic highly chlorinated polychlorinated biphenyls (PCBs) at trace levels in soil samples. The multifunctional adsorbent (CMCD-NH2-MNPs) was prepared by grafting carboxymethyl-β-cyclodextrin on the surface of amino-functionalized magnetite (Fe3O4) nanoparticles. CMCD-NH2-MNPs has stronger host-guest complexation with DDT, DDE, and DDD, but the same adsorbent shows weaker adsorption ability toward highly chlorinated PCBs (from tetra- to octa-chlorinated PCBs) owing to their steric hindrance effect. Based on this principle, a simple and rapid gas chromatography-mass spectrometry (GC-MS) method was developed for six indicator PCBs (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in soil. Comparative studies were conducted to determine the clean-up efficiency of the following three techniques: (i) Oasis-HLB, (ii) multi-layer silica column, and (iii) dSPE employing CMCD-NH2-MNPs. The results indicate that CMCD-NH2-MNPs as the purification material can easily and effectively remove DDT, DDE, and DDD in soil samples within a short duration of time. The recoveries for highly chlorinated PCBs were in the range of 85.4-102.2%, with RSDs varying between 1.0 and 6.5%. The proposed method was verified as one of the most effective clean-up procedures for the analysis of highly chlorinated PCBs in real soil samples.

  11. Rehabilitation materials from surface- coal mines in western USA. I. Chemical characteristics of spoil and replaced cover-soil.

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1983-01-01

    A range of at least one order of magnitude was observed for DTPA-extractable Cd, Cu, Fe, Mn, Ni, Pb and Zn and organic matter content of samples of spoil and cover-soil from eleven western USA surface-coal mines. The observed pH of these samples ranged from 3.9 to 8.9; however, most samples were near-neutral to alkaline in reaction. Most constituent levels were found to be below proposed guidelines for maximum permissible levels in mine soil. -from Authors

  12. Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Moura, Pedro Adnet; Francelino, Marcio R.; Schaefer, Carlos Ernesto G. R.; Simas, Felipe N. B.; de Mendonça, Bruno A. F.

    2012-06-01

    This paper presents the spatial distribution of soils from the northern part of Byers Peninsula, Livingston Island, which is the largest ice-free area of the South Shetlands archipelago, Maritime Antarctica. Physical and chemical characteristics are presented for 23 soil profiles. Soil parent materials vary from marine sedimentary to volcanic and volcanoclastic rocks, intruded by igneous bodies. To assess soil-landscape relationships, twenty-three soil profiles were described and sampled. Soil samples of selected horizons were submitted to chemical, physical and mineralogical analyses. Soil mapping was based on the soil profiles, integrated with the existent topographic map (1:25.000 scale), a digital elevation model, the geological map and a satellite image. Twenty different soil units were identified and mapped. According to the World Reference Base for Soil Resources (WRB) system, soils were classified as Fluvisols, Regosols, Leptosols or Cryosols, which correspond mostly to Fluvents, Orthents/Psamments, Inceptsols and Gelisols, respectively, according to the Soil Taxonomy. Soils from northern Byers Peninsula are generally shallow and coarse textured, with low organic matter content. Three soils from the rocky platforms of the northern coastal region possess ornithogenic character, with lower pH, higher P, Al3 + and organic C values when compared to soils not influenced by sea birds. In non-ornithogenic soils, the presence of easily weatherable minerals in the clay fraction indicates that physical weathering occurs with limited chemical alteration of primary minerals. The influence of penguin and other birds on coastal soils alters clay mineralogy, with formation of poorly crystalline P-rich phases. A better understanding of the depth of the permafrost table and the spatial distribution of permafrost is necessary for a more conclusive classification of Cryosols or Gelisols.

  13. Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): Influence of parent rocks

    NASA Astrophysics Data System (ADS)

    Ngon Ngon, G. F.; Mbog, M. B.; Etame, J.; Ntamak-Nida, M. J.; Logmo, E. O.; Gerard, M.; Yongue-Fouateu, R.; Bilong, P.

    2014-03-01

    Major and trace element concentrations of clay deposits of the Missole II and Bomkoul respectively from the Paleocene-Eocene N'Kapa Formation and the Miocene-Pliocene-Matanda-Wouri Formation in the eastern part of the Wouri River in the Douala sub-basin of Cameroon have been investigated to identify the parent rocks. To carry out this study, X-ray diffraction, inductively coupled plasma-atomic emission spectrometry (ICP/AES) and inductively coupled plasma-mass spectrometry (ICP/MS) were performed to determine respectively the mineralogical and chemical data of Missole II and Bomkoul clayey materials. Clay sediments are essentially kaolinitic and illitic, and kaolinitic and smectitic respectively in both sites. They are generally siliceous, aluminous with small iron and bases (MgO, CaO, Na2O, and K2O) contents. Samples of Missole II profiles are more siliceous than those from the Bomkoul grey and dark grey clayey materials. Clayey materials have high Chemical Index of Alteration (CIA = 80-99.34) which suggests that they are strongly weathered under humid tropical climate before and after their deposition in the coastal plain. The value of Eu/Eu* (0.48-0.61), La/Sc (2.15-20.50), Th/Sc (0.74-2.25), Th/Co (1.08-8.33), and Cr/Th (5.24-13.55) ratios support essentially a silicic or felsic parent rocks. Total REE concentrations reflect the variations in their grain-size fractions. Chondrite-normalised REE patterns with LREE enrichment, flat HREE, and negative Eu anomaly are attributed essentially to silicic or felsic parent rocks like those from weathered materials developed from the gneisses around the coastal plain in the littoral part of Cameroon (Noa Tang et al., 2012), main characteristic of Paleocene-Eocene and Miocene-Pliocene clay sediments of Missole II and Bomkoul areas.

  14. Certification of a reference material for determination of total cyanide in soil to support implementation of the International Standard ISO 11262:2011.

    PubMed

    Scharf, Holger; Bremser, Wolfram

    2015-04-01

    Cyanides are among the most important inorganic pollutants to be tested and monitored in environmental compartments. They can be distinguished and determined as free cyanide, weak acid dissociable cyanide or as total cyanide. However, in any case obtained, measurement results are operationally defined referring to the applied analytical method. In 2011, the International Standard ISO 11262 has been published which specifies a normative analytical method for the determination of total cyanide in soil. The objective of the project described in this paper was to provide the first soil reference material (CRM) certified for its mass fraction of total cyanide on the basis of this standard. A total of 12 German laboratories with proven experience in the determination of cyanides in environmental samples participated in the certification study. Measurement results were evaluated in full compliance with the requirements of ISO Guide 35. Taking into account the results of the inter-laboratory comparison as well as the outcome of the homogeneity and stability studies, a certified mass fraction of total cyanide of 21.1 mg/kg and an expanded uncertainty (k = 2) of 1.3 mg/kg were assigned to the material. The reference material has been issued as CRM BAM-U114.

  15. Major element composition of glasses in three Apollo 15 soils.

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Warner, J.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions. Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep-seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content.

  16. Soil magnetic properties in Bulgaria at a national scale-Challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana; Petrov, Petar

    2016-02-01

    Establishing topsoil magnetic database at a national scale provides important information for soil classification, evaluation of soil drainage, indirect estimation of the total soil carbon and initial planning in precision agriculture. The Bulgarian database consists of 511 topsoil samples from the upper 20 cm of natural unpolluted soils. Samples have been characterized by detailed magnetic measurements, including mass-specific magnetic susceptibility, frequency dependent magnetic susceptibility, anhysteretic remanence, isothermal remanence and their ratios, hysteresis parameters and ratios, as well as soil reaction (pH). Histograms of the measured parameters per soil type and for the whole database show specific peculiarities and dependence from various parameters. Statistical factor analysis revealed that 87% from the total variance can be explained by four factors. The main factor is dominated by the contribution from concentration-dependent magnetic parameters, second one reflects the role of fine-grained pedogenic magnetic fraction, the third one is determined by the properties of the parent material, fourth one is governed by the internal structural peculiarities of the magnetic particles. The results from cluster analysis reveal the role of soil type and geology for the observed magnetic characteristics. The results emphasize the major role of geology (parent material) for the magnetic signature of topsoil samples on a national scale using sampling density of 1 sample/200 km2. Spatial interpolation of different magnetic parameters using modelled experimental variograms and kriging algorithm highlight lateral peculiarities in the concentration and grain size of the strongly magnetic iron oxides in the topsoils. Additional geochemical data for selected set of samples and meteorological information reveal the role of climate characteristics (mean annual temperature and precipitation) on the formation and development of the strongly magnetic pedogenic fraction

  17. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    NASA Astrophysics Data System (ADS)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    -mineralogy along the soil profiles. Influence of the weathering processes on all the measured parameters is discussed. Soil genesis is influenced by several factors, where the moisture is more important than the age of the parent material. Acknowledgement: This study was supported by Czech Science Foundation through grant No 13-10775S.

  18. Determination of traces of Mo in soils and geological materials by solvent extraction of the molybdenum-thiocyanate complex and atomic absorption.

    PubMed

    Kim, C H; Owens, C M; Smythe, L E

    1974-06-01

    Comprehensive studies of the extraction of the molybdenum-thiocyanate complex with methyl isobutyl ketone have resulted in an improved method for the determination of traces of molybdenum in soils and geological materials by atomic-absorption spectroscopy. The method is applicable in the range 1-500 ppm Mo, with 1-g samples, giving relative standard deviations not exceeding about 8% at a level of 1 ppm. The limit of detection is 0.1 ppm. There are few interferences, and large quantities of iron are without effect.

  19. k0-INAA quality assessment by analysis of soil reference material GBW07401 using the comparator and neutron flux monitor approaches.

    PubMed

    Menezes, M A B C; Jaćimović, R

    2011-07-01

    It is possible to apply the k(0)-method using a simplified equation for concentration calculations using Excel spreadsheet, using comparators without making corrections. The objective of this study was to confirm that the k(0)-standardization method is more efficient and accurate than this "k(0)-comparator" procedure, applying suitable software that takes into account several corrections. The reference material GBW07401 soil was analyzed in this study. Relative Bias and u-score tests were used in order to evaluate the overall results.

  20. Cave-soils, the soils forming underneath the surface

    NASA Astrophysics Data System (ADS)

    Dobos, Endre; Bertóti, Diána; Kovács, Károly; Vadnai, Péter

    2015-04-01

    , or possibly with the Mollic or Rhodic qualifiers. Despite the relatively small number of analysed and reference samples during the mineralogical examinations, we can say that clear trends could be observed in the cave sediments. Due to the present and historical heterogeneity of the catchment area, it is difficult to associate the samples with surface soils. It could be established, however, that approximately half of the minerals in the cave soils are quartz, with ratios of 38-73% depending on the texture. Smectite-vermiculite associations were dominant in the clay mineral fraction, making up 80-90% of the whole fraction in seven of the eight samples. The only exception was the Mexikó-2 sample, where relatively fresh, unweathered, unleached illite-muscovite is mixed with intensively weathered kaolinite. The explanation for this probably comes from the different origin of the parent materials deposited on each other, either over time or during sampling. This theory needs to be confirmed by further detailed analysis. The work has been supported by "Kútfő" TÁMOP-4.2.2.-A11/1/KONV-2012-0049 project and HUSK/1001/2.1.2/0058 cross-border project. Keywords: cave sediments, soil, WRB, soil contamination, soil formation

  1. Some characteristics of soils on the man made mounds in the Harran Plain of Turkey.

    PubMed

    Irmak, Seyyid; Surucu, Abdülkadir

    2007-12-15

    Morphological, chemical and some mineralogical characteristics of five soils, were researched to understand the genesis of soils on the man made mounds in the Harran Plain, in the Southeast Anatolia Region of Turkey. Five soil profiles developed on the man made mounds in the arid region. Time and climate have affected soil formation. Also, parent material has influenced the chemistry of soils. The parent material of man made mounds were carried from around soils in the Harran Plain by men in years ago. The parent materials of around soils are calcareous parent materials and alluvium materials. Pedon 1 was described on the Konuklu man made mounds the northeast of the study area and Pedon 5 was described on the Küplüce man made mounds the southeast of the study area. According to the place of man made mounds were ordered from north to south as following: Pedon 1, Pedon 2, Pedon 3, Pedon 4 and Pedon 5. The old of Konuklu mounds is approximately 5000-6000 years. The old of Sultantepe and Koruklu mounds are approximately 6000 years. Pedon 4 which was described on the old Harran city remnants have the youngest soils of study area. The Harran mounds was made in 1258 A.I. by Mongolians. Mongolians destroyed the Harran City and made the Harran mounds. The most important pedogenic processes is carbonate leaching and accumulation in the pedon 5 on the Küplüce man made mounds. The CaCO3 content of Pedon 5 may be attributed to eolian addition from Syria. Total Al2O3 contents of soils higher than total Fe2O3 content. According to the degree of soil formation the profiles were ordered as following: Pedon 3 > Pedon 5 > Pedon 2 > Pedon 1 > Pedon 4. The results of total elements analysis were used to determine the beta leaching factor according to Jenny. The leaching factor were determined as < 1 in the Pedon 1 (0.99), Pedon 2 (0.97), Pedon 3 (0.74) and Pedon 5 (0.92). The leaching factor were determined as >1 in the Pedon 4(1.13).

  2. Unlocking the biogeochemical black box: What drives microbial response to climate forcing in semi-arid soils?

    NASA Astrophysics Data System (ADS)

    Moravec, B. G.; McLain, J. E.; Lohse, K. A.

    2009-12-01

    Microbial mediated cycling of carbon (C) and nitrogen (N) and their loss from soils are closely linked to soil moisture and temperature. Yet, it is unclear how microbial communities will respond to climatic forcing (namely increased inter-annual precipitation variability and severe drought) and to what extent parent material controls these responses. We used Real Time Polymerase Chain Reaction (RT-PCR) and C utilization assays to determine the relative abundance and diversity of microbial populations during pre-, mid- and post-monsoon time intervals at four sites along a steep elevation gradient (temperature and precipitation range of >10°C and >50 cm, respectively) in the Santa Catalina Mountains, AZ. Contrasting parent materials (schist and granite) were paired at elevations. RT-PCR results showed large increases of bacterial and fungal biomarkers at high elevations with the onset of precipitation (pre- to mid- monsoon conditions) (as much as 824%). In contrast, bacteria biomarkers did not change at low elevation granite site as a result of the onset of precipitation whereas fungal biomarkers increased by 177% at this site. Both bacteria and fungal biomarkers increased substantially at low elevation schist sites with the onset of precipitation. Finally, C utilization assays indicated that high elevation sites had a relatively high diversity of C utilization compared to low elevation soils. We hypothesize that increased bacterial and fungal abundance in low elevation schist-derived soils relative to granite soils after the onset of monsoon rains may be a function of soil texture, with higher clay content in schist soils leading to higher soil moisture availability. Alternatively, differences in microbial responses may be due to higher C availability in schist soils compared to granite soils. Higher C utilization diversity as well as similar bacteria and fungal biomarker responses found at high elevation sites (both granite and schist soils) in response to

  3. Use of Geochemical Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable

    NASA Astrophysics Data System (ADS)

    Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie

    2016-04-01

    Geochemical correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that geochemical ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of geochemical indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of geochemical patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against geochemical relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that geochemical relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad

  4. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  5. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    PubMed

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

  6. Rock and Soil Types at Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Type areas of rocks and soils. (A) Dark rock type and bright soil type: Shown is the dark rock Barnacle Bill. Reflectance spectra typical of fresh basalt and APXS spectra indicating more silica-rich basaltic andesite compositions characterize this type. These rocks are typically the small boulders and intermediate-sized cobbles at the Pathfinder site. The bright soil type is very common and in this case comprises Barnacle Bill's wind tail and much of the surround soil area. This soil has a high reflectance and a strongly reddened spectrum indicative of oxidized ferric minerals. (B) Bright rock type: Shown is the bright rock Wedge. Reflectance spectra typical of weathered basalt and APXS spectra indicating basaltic compositions characterize this type. These rocks are typically larger than 1 meter in diameter and many display morphologies indicating flood deposition. (C) Pink rock type: Shown is the pink rock Scooby Doo. APXS and reflectance spectra indicate a composition and optical characteristics similar to the drift soil. However, the morphology of the pink rock type indicates a cemented or rocklike structure. This material may be a chemically cemented hardpan that underlies much of the Pathfinder site. (D) Dark soil type: The dark soil type is typically found on the windward sides of rocks or in rock-free areas like Photometry Flats (shown here) where the bright soil has been striped away by aeolian action or in open areas. Other locations include the Mermaid Dune. (E) Disturbed soil type: The darkening of disturbed soil relative to its parent material, bright soil, as a result of changes in soil texture and compaction caused by movement of the rover and retraction of the lander airbag. (F) Lamb-like soil type: This soil type shows reflectance and spectral characteristics intermediate between the bright and dark soils. Its distinguishing feature is a weak spectral absorption near 900 nanometers not seen in either the bright or dark soils.

    NOTE: original

  7. Confidence in Parenting: Is Parent Education Working?

    ERIC Educational Resources Information Center

    Stanberry, J. Phillip; Stanberry, Anne M.

    This study examined parents' feelings of confidence in their parenting ability among 56 individuals enrolled in 5 parent education programs in Mississippi, hypothesizing that there would be significant correlations between personal authority in the family system and a parent's confidence in performing the various roles of parenting. Based on…

  8. Can the Single Parent Parent As Well?

    ERIC Educational Resources Information Center

    Flanzer, Jerry P.

    The question of whether single parents are able to parent as well as those in two-parent families, as well as the differences between attitudes and practices of single mothers and fathers toward child rearing, were investigated. Members (N=179) of the Southeastern Wisconsin Parents Without Partners group completed the Single Parent Questionnaire,…

  9. Soil development as limiting factor for shrub expansion in southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D

  10. Toxicity of a New Polynitramine Energetic Material, CL-20, to the Enchytraeid Worm, Enchytraeus Crypticus, in a Sandy Loam Soil

    DTIC Science & Technology

    2006-08-01

    The use of either trade or manufacturers ’ names in this report does not constitute an official endorsement of any commercial products. This report may...ASTM Type II water, analytical reagent grade nitric acid 1% (volume/volume), then with ASTM Type I water. 2.3 Soil Amendment Procedures. Studies were...ecological receptors. This information should be considered by the manufacturer , potential users, risk assessors, and future site managers, during

  11. Mobility of Soil Contaminants in an Ecosystem of Trees Growing on Dredged Material - The Broekpolder (Rotterdam, The Netherlands)

    DTIC Science & Technology

    1988-12-27

    and Ormrod, 1982; Van den Burg, 1983). Likewise, metals are retained in the leaves and appear in the litterfall to different degrees, depending both...contaminants in soils also followed this pattern . Two com- pounds analyzed, o,p’-DDE and PCB 28, were consistently near or below detec- tion limits in...from elsewhere and may also have been the result of sample contamina- tion. There were no obvious patterns for bioaccumulation of organochlorine

  12. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China.

    PubMed

    Haribala; Hu, Bitao; Wang, Chengguo; Gerilemandahu; Xu, Xiao; Zhang, Shuai; Bao, Shanhu; Li, Yuhong

    2016-08-01

    Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45μSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient.

  13. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Terrestrial Plants in a Natural Sandy Loam Soil

    DTIC Science & Technology

    2005-04-01

    inclusion of growth component among the measurement endpoints. Tests were conducted in Sassafras sandy loam soil, which supports relatively high...including EC20 values for growth that can be used for Eco-SSL development. These study results will be provided to the Eco-SSL workgroup for review...Freshly Amended TNB (Acetonitrile Extraction) on Alfalfa Shoot Growth (Fresh [A] and Dry [B] Mass

  14. A history of Soil Survey in England and Wales

    NASA Astrophysics Data System (ADS)

    Hallett, S.; Deeks, L.

    2012-04-01

    Early soil mapping in Britain was dominated, as in the USA, by soil texture with maps dating back to the early 1900's identifying surface texture and parent rock materials. Only in the 1920's did Dokuchaev's work in Russia involving soil morphology and the development of the soil profile start to gain popularity, drawing in the influence of climate and topography on pedogenesis. Intentions to create a formal body at this time responsible for soil survey were not implemented and progress remained slow. However, in 1939 definite steps were taken to address this and the soil survey was created. In 1947, its activities were transferred from Bangor to the research branch of the Rothamsted experimental station in Hertfordshire under Professor G.W. Robinson. Soon after, a number of regional offices were also established to act as a link with the National Agricultural Advisory Service. At this time a Pedology Department was established at Rothamsted, focussing on petrological, X-ray, spectrographic and chemical analyses. Although not a Rothamsted Department itself, the Survey did fall under the 'Lawes Agricultural Trust'. A Soil Survey Research Advisory Board was also formed to act as a liaison with the Agricultural Field Council. In Scotland by contrast, soil survey activities became centred on the Macaulay Institute in Aberdeen. Developments in the survey of British soils were accompanied in parallel by the development of soil classification systems. In 1930 a Soils Correlation Committee had been formed to ensure consistency in methods and naming of soil series and to ensure the classification was applied uniformly. In England and Wales the zonal system adopted was similar to that used in the USA, where soil series were named after the location where they were first described. American soil scientists such as Veitch and Lee provided stimulus to the development of mapping methods. In Scotland a differing classification was adopted, being similar to that used in Canada

  15. Total Parenting

    ERIC Educational Resources Information Center

    Smith, Richard

    2010-01-01

    In this essay, Richard Smith observes that being a parent, like so much else in our late-modern world, is required to become ever more efficient and effective, and is increasingly monitored by the agencies of the state, often with good reason given the many recorded instances of child abuse and cruelty. However, Smith goes on to argue, this begins…

  16. Parental Monitoring

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Lehman, Stephanie; Clapp, John; Hovell, Melbourne; Sipan, Carol; Blumberg, Elaine

    2005-01-01

    Adolescence is a developmental period during which many youth experiment with risk practices. This paper examined the association of parental monitoring with a range of alcohol and other drug (AOD) use behaviors among high-risk youth, while controlling for other demographic and environmental variables previously found to be associated with AOD…

  17. Perceived Parenting

    ERIC Educational Resources Information Center

    Wouters, Sofie; Doumen, Sarah; Germeijs, Veerle; Colpin, Hilde; Verschueren, Karine

    2013-01-01

    Contingent self-esteem (i.e., the degree to which one's self-esteem is dependent on meeting particular conditions) has been shown to predict a wide range of psychosocial and academic problems. This study extends previous research on contingent self-esteem by examining the predictive role of perceived parenting dimensions in a sample of early…

  18. Constructive Parenting.

    ERIC Educational Resources Information Center

    Goldberg, Sally

    This book turns important research and theory into essential, easy-to-follow guidelines for new parents and child care providers to help them focus on the critical first 3 years of life to build a strong foundation for the future. All the key areas of child development are covered, including self-esteem, and cognitive, motor and social…

  19. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world.

  20. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO42-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3- and HCO32-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3-, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  1. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier

  2. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    NASA Astrophysics Data System (ADS)

    Holleran, M.; Levi, M.; Rasmussen, C.

    2015-01-01

    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil

  3. The distribution of organic material and its contribution to the micro-topography of particles from wettable and water repellent soils

    NASA Astrophysics Data System (ADS)

    Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.

    2010-05-01

    Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water

  4. Parent Discussion Manual: Parent/Child Home Stimulation. The Marshalltown Project. Revised July 1975.

    ERIC Educational Resources Information Center

    Marshall-Poweshiek Joint County School System, Marshalltown, IA. Dept. of Special Education.

    Intended for parents, the manual is for a 12 week parent education course on the mental stimulation of young handicapped children. Major objectives of the course are helping the child feel positively about himself and helping the child develop his intellectual abilities. Material reinforcements are offered parents who meet criteria for attendance,…

  5. Instructor Manual, 1984-1985. Delta College Parent Awareness. Developmental Disabilities/Parent Awareness Program.

    ERIC Educational Resources Information Center

    Delta Coll., University Center, MI. Allied Health-Community Affairs.

    Designed for instructors in the Delta College Parent Awareness Program, this manual provides information on the program, its students, and appropriate instructional techniques. Introductory material describes the Parent Awareness Program designed for parents and family members of persons with mental retardation, cerebal palsy, epilepsy, autism,…

  6. The origin of lead in the organic horizon of tundra soils: atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    PubMed

    Klaminder, Jonatan; Farmer, John G; MacKenzie, Angus B

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ((206)Pb/(207)Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ((206)Pb/(207)Pb=1.170 ± 0.002; mean ± SD) overlapped with that of the peat ((206)Pb/(207)Pb=1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ((206)Pb/(207)Pb=1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by (206)Pb/(207)Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources.

  7. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    USGS Publications Warehouse

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  8. Responsive Parenting: One Approach for Teaching Single Parents Parenting Skills.

    ERIC Educational Resources Information Center

    Hall, Marilyn C.; Nelson, Dorellis J.

    1981-01-01

    Responsive Parenting is a program designed to use parents in helping teach other parents to apply a behavior analysis approach in managing the behavior of their children. A description and evaluation of the adaptations for single-parents are discussed. Guidelines for program development and implementation are provided. (Author/RL)

  9. Volatile element depletion and K-39/K-41 fractionation in lunar soils

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.; Wright, J. E.; Lee-Hu, C.-N.

    1976-01-01

    Evidence for selective loss and isotopic fractionation (in the case of K) of volatile elements during formation of agglutinates by micrometeoritic bombardment of lunar soils is presented. Concentrations and isotopic compositions of volatile elements (K, Rb, Pb) and nonvolatile elements (U, Th, Ba, Sr, rare earths) in separates taken from soils 14163, 14259, 15041, 68501, and 71500 are examined. Rayleigh fractionation calculations applied to K-39/K-41 isotopic data indicate ten-fold recycling of bulk soil, to account for observed isotopic anomalies. The lunar soil fines fraction seems to be a site of deposition for volatile or labile Pb produced during agglutination. Local fines (below 75 microns) are viewed as representative of the parent material for agglutinates formed in situ by micrometeoritic impact. Magnetic separation of agglutinates from soil 68501 revealed a bimodal population, with one class comprising welded blocky magnetic glasses.

  10. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan.

    PubMed

    Howard, Jeffrey L; Olszewska, Dorota

    2011-03-01

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects.

  11. Soils developed from alluvial and proluvial deposits in the Gröndalselva River valley in West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.; Litvinova, T. I.

    2012-05-01

    The genetic characterization of soils developed from alluvial and proluvial deposits in the Gröndalselva River valley (West Spitsbergen) is presented. These soils are compared with analogous soils formed on marine terraces along the coasts of Isfjord and Grönfjord. Gray-humus (soddy) soils with an O-AY-C profile have been described on parent materials of different origins, including alluvial and proluvial sediments. The texture of the soils in the Gröndalselva River valley varies from medium to heavy loam and differs from the texture of the soils on other geomorphic positions in the higher content of fine particles. The soils developed from the alluvial deposits are characterized by their richer mineralogical and chemical composition in comparison with the soils developed from proluvial deposits, marine deposits, and bedrocks. All the deposits are impoverished in CaO. No differentiation of the chemical composition of the soils along the soil profiles has been found in the soils of the coastal areas and the river valley. Some accumulation of oxalate-soluble Al and Fe compounds takes place in the uppermost mineral horizon. The soils of all the geomorphic positions have a high humus content and a high exchange capacity.

  12. Effects of bedding materials in applied broiler litter and immobilizing agents on runoff water, soil properties, and bermudagrass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently poultry producers in the USA have begun using different types of bedding materials in production houses. Nutrient release into the environment from applied broiler litter (BL) made with different bedding materials has not been investigated. In this greenhouse study, broiler litter (BL) wi...

  13. Preliminary results of the North American Soil Geochemical Landscapes Project, northeast United States and Maritime Provinces of Canada

    USGS Publications Warehouse

    Grunsky, Eric C.; Smith, David B.; Friske, Peter W.B.; Woodruff, Laurel G.

    2009-01-01

    The results of a soil geochemical survey of the Canadian Maritime provinces and the northeast states of the United States are described. The data presented are for the <2-mm fraction of the surface layer (0-5 cm depth) and C horizons of the soil. Elemental determinations were made by ICP-MS following two digestions, aqua regia (partial dissolution) and a strong 4-acid mixture (near-total dissolution). The preliminary results show that Hg and Pb exhibit elevated abundances in the surface layer, while As and Ni exhibit abundances that can be attributed to the geological provenance of the soil parent materials.

  14. Release of soil bound (nonextractable) residues by various physiological groups of microorganisms

    SciTech Connect

    Khan, S.U.; Ivarson, K.C.

    1982-01-01

    Soil bound /sup 14/C-labeled residues were released by four different physiological groups of microorganisms from an organic soil treated with /sup 14/C-ring-labeled prometryn (2-(methylthio)-4,6-bis(isopropylamino)-s-triazine). The extent to which the different microbial populations released bound /sup 14/C residues (25-30% of the total bound /sup 14/C) from the gamma-irradiated soil after 28 days incubation did not differ considerably. Analysis of the extractable material from the incubated soil showed the presence of small amounts of the parent compound, and its hydroxy and mono-N-dealkylated analogues. Low level of /sup 14/CO2 (1.5-3.0% of the total bound /sup 14/C) was evolved from the microbial systems indicating ring cleavage of the released material as being a very minor reaction.

  15. Release of soil bound (nonextractable) residues by various physiological groups of microorganisms.

    PubMed

    Khan, S U; Ivarson, K C

    1982-01-01

    Soil bound 14C-labeled residues were released by four different physiological groups of microorganisms from an organic soil treated with 14C-ring-labeled prometryn [2-(methylthio)-4,6-bis(isopropylamino)-s-triazine]. The extent to which the different microbial populations released bound 14C residues (25-30% of the total bound 14C) from the gamma-irradiated soil after 28 days incubation did not differ considerably. Analysis of the extractable material from the incubated soil showed the presence of small amounts of the parent compound, and its hydroxy and mono-N-dealkylated analogues. Low level of 14CO2 (1.5-3.0% of the total bound 14C) was evolved from the microbial systems indicating ring cleavage of the released material as being a very minor reaction.

  16. Rapid mineral differentiation among horizons of a meadow soil

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Horváth Szabó, Kata; Németh, Tibor; Sipos, Péter; Madarász, Balázs; Jakab, Gergely

    2015-04-01

    Soil development under hydromorphic conditions may results intense mineral transformation and rapid vertical differentiation in the profile. Original papers refer more than hundreds of years for this kinds of mineral transformations. We suppose that this process could be more rapid. Present paper focuses on the profile development of a sandy meadow soil (calcic, gleyic Phaeozem ferric, arenic) from the soil mineralogical viewpoint. The main aim was to explore the degree of mineral phase alteration via soil formation during a half-century under hydromorphic conditions. The studied soil is located in a swampy area (near to Ceglédbercel, Hungary). The parent material deposited during an extremely heavy flood event in 1963. The reference (parent) material can be found near to the study site. We combined routine field tests (carbonate content, dipididil test) with laboratory measurements (selective extractions for the determination of amorphous and crystalline Fe, and Mn content; X-ray phase analysis; X-ray fluorescence spectroscopy; particle sizing by laser diffraction; NDIR and FT-IR and DRS spectrometry), whereas Eh and pH measured by field monitoring station. The most intense mineralogical transformations developed in the zone of the heaviest redox oscillation. Results show that well developed horizons have emerged during fifty years in the studied soil. This time was enough for bivalent and trivalent iron mineral crystallisation and smectite formation in this zone. The high proportion of amorphous and colloidal phases refers to very intensive recent processes. Soil formation under hydromorphic conditions proceeds at higher speeds contrariwise to the century time scale reported in sources (discussing non-waterlogged cases). Support of the Hungarian Research Fund OTKA under contracts K100180 (for Z. Szalai) and K100181 (for T Németh) are gratefully acknowledged.

  17. Soil water repellency as a vegetation-driven strategy for soil moisture sequestration in Banksia woodlands (Western Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Zavala, Lorena M.; Stevens, Jason; Jordán, Antonio

    2016-04-01

    Water repellency is a property of some soils that inhibits or delays the rainwater infiltration. When a surface or subsurface soil horizon is water repellent, water is retained for periods of time that vary according to the severity of hydrophobicity, soil moisture and other parameters. Water repellency is caused by hydrophobic organic substances released by plant residues, roots or soil microorganisms. Certain abiotic agents, like fire, can increase the severity of soil water repellency in certain cases. Under water-repellent conditions, water can infiltrate only when the pressure of the water column is high enough or when macropores allow it. These macropores may be formed by galleries excavated by animals, dead roots or gaps between aggregate or rock fragments. Banksia plants have a dimorphic root morphology. Proteoid roots are formed by clusters of densely compacted short lateral rootlets that radiate from the parent root. These clusters spread just some centimeters below the soil surface constituting a thick dense sheet of roots and are known to secrete large amounts of organic acids and phenolics to increase the uptake of P and other minerals. In contrast, the parent root penetrates soil deeply, reaching the water table. Sandy soils below banksia woodlands from Western Australia coastal dunes show a characteristic vertical distribution of water repellency. We observed that the first soil layer (just some millimeters of depth) was formed by a wettable sand particles transported by wind, covering a wettable or subcritically water-repellent subsurface layer (0-20 cm). A second soil layer (20-40 cm) was formed by a severely water-repellent layer with aggregates bulked by dominant banksia proteoid roots. Below this layer, soil water repellency decreased with depth until soil material rendered wettable at depths between 40 and 80 cm under field conditions. It is hypothesized that banksia roots are capable of inducing soil water repellency, causing the occurrence of

  18. Many Parents?

    NASA Astrophysics Data System (ADS)

    Maseng, Torleiv; Moxnes, John F.

    2015-06-01

    In all living species at most, two parents are needed in order to make an offspring. In this paper, we assume that N parents are needed, and we calculate the optimum N in terms of fitness using a simple probabilistic approach. The probability of finding an attractive partner is set to P. The probability that this partner gives increased fitness is set to 1- R. We show that the best number of partners is N = 2 for any value of R as long as 1/2 < P < 2/3. For P < 1/2, the most beneficial is N = 1 partner. As P increases, there exists an optimum number of partners N > 2.

  19. The Process of Parenting.

    ERIC Educational Resources Information Center

    Brooks, Jane B.

    Written to help couples prepare for parenthood and to improve the effectiveness of parents, this book provides extensive guidelines and background information for accomplishing the basic tasks of parenting. Chapter One depicts parenting as a process, delineates parents' tasks and describes how parents learn to be parents. Based on Erikson's theory…

  20. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  1. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies.

    PubMed

    Taberlet, Pierre; Prud'Homme, Sophie M; Campione, Etienne; Roy, Julien; Miquel, Christian; Shehzad, Wasim; Gielly, Ludovic; Rioux, Delphine; Choler, Philippe; Clément, Jean-Christophe; Melodelima, Christelle; Pompanon, François; Coissac, Eric

    2012-04-01

    DNA metabarcoding refers to the DNA-based identification of multiple species from a single complex and degraded environmental sample. We developed new sampling and extraction protocols suitable for DNA metabarcoding analyses targeting soil extracellular DNA. The proposed sampling protocol has been designed to reduce, as much as possible, the influence of local heterogeneity by processing a large amount of soil resulting from the mixing of many different cores. The DNA extraction is based on the use of saturated phosphate buffer. The sampling and extraction protocols were validated first by analysing plant DNA from a set of 12 plots corresponding to four plant communities in alpine meadows, and, second, by conducting pilot experiments on fungi and earthworms. The results of the validation experiments clearly demonstrated that sound biological information can be retrieved when following these sampling and extraction procedures. Such a protocol can be implemented at any time of the year without any preliminary knowledge of specific types of organisms during the sampling. It offers the opportunity to analyse all groups of organisms using a single sampling/extraction procedure and opens the possibility to fully standardize biodiversity surveys.

  2. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  3. A reexamination of amino acids in lunar soils: Implications for the survival of exogenous organic material during impact delivery

    NASA Astrophysics Data System (ADS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of ≤ 0.3 ppb for α-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is ≤ 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  4. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    PubMed

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed.

  5. A Novel Approach to Investigate Soil Organic Matter Development Using Isotopes and Thermal Analysis: C Sourcing from Various Plant Materials and Mineral Influence on Stability

    NASA Astrophysics Data System (ADS)

    Bower, J.; Horwath, W. R.

    2012-12-01

    Biomolecular input quality and mineral constituents are important factors that regulate turnover and stabilization of natural organic matter. The complexity and variability of natural soil systems might shadow basic mechanisms occurring between organic and mineral components. Utilizing an in vitro model decomposition system allows for control over inputs and turnover time. We created a model soil system with composted plant litter that was enriched with 13-C in order to investigate C use during the formation of stabilized SOM. The litter was subjected to microbially-mediated, aerobic decomposition before pure clays were added and allowed to incubate further. Isotopically labeled organic inputs allowed us to focus on C derived from known plant sources as a qualitative assessment of SOM formation. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) has been used successfully to quantify thermochemical properties of SOM reactivity/stability in three regions of exothermic activity corresponding generally to carbohydrates and lipids (Exo 1; 150-350 C), aromatic and condensed polymers (Exo 2; 400-460 C) and refractory/mineral associated C (Exo 3; 500-550 C). Thermal separation of the organics allows for in-line evolved gas analysis via Isotope Ratio Mass Spectrometry (IRMS) to measure 13-C isotopic values of those thermally separated organic compound classes. This coupled analysis is ideal in that it is fast, reproducible, and requires no sample pretreatment other than drying/grinding and it provides stability, mass loss, and isotopic data from a single sample. DSC results show the development of a higher temperature, energetically recalcitrant C pool over the course of decomposition in mineral-free litters and its absence in clay-litter mixtures, implicating the influence of mineral surfaces on soil organic matter energetic stability. Preliminary IRMS results indicate that mineral presence influences C sourcing from particular plant materials in some SOM

  6. Texture-dependent anaerobic microsites constrain soil carbon oxidation rates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Fendorf, Scott

    2016-04-01

    Soil texture, which is a product of parent material, climate and other soil forming factors, is a predictor for long-term storage of soil organic carbon (SOC) storage in many soil ecosystems. Positive correlation between texture (particularly clay content) and SOC storage have long been attributed to protective associations between clay minerals and organic compounds that prevent microbial and enzymatic access - a mechanism commonly referred to as 'mineral protection'. Texture therefore acts as the primary proxy for mineral protection in terrestrial ecosystem models used to assess SOC storage and its sensitivity to global change impacts. Here we show that this protective effect of texture is not only due to mineral protection, but also to the formation of anaerobic microsites. Combining micro-scale laboratory experiments with field-scale observations, we find that oxygen diffusion limitations within clay-rich domains create anaerobic microsites within seemingly well-aerated soils, shifting microbial metabolism to less efficient anaerobic SOC oxidation pathways. Kinetic and thermodynamic constraints reduce SOC oxidation rates within these anaerobic microsites by an order of magnitude relative to aerobic rates, and caused the preservation of bioavailable, polymeric and reduced organic compounds. Lifting these metabolic constraints through increased soil aeration (e.g., through changes in precipitation patterns or land use) may stimulate microbial oxidation of this inherently bioavailable SOC pool. Models that attribute the effects of texture merely to 'mineral protection' may therefore underestimate the vulnerability of soil C to global change impacts.

  7. Mineral Occurrence, Translocation, and Weathering in Soils Developed on Four Types of Carbonate and Non-carbonate Alluvial Fan Deposits in Mojave Desert, Southeastern California

    NASA Astrophysics Data System (ADS)

    Deng, Y.; McDonald, E. V.

    2007-12-01

    Soil geomorphology and mineralogy can reveal important clues about Quaternary climate change and geochemical process occurring in desert soils. We investigated (1) the mineral transformation in desert soils developed on four types of alluvial fans (carbonate and non-carbonate) under the same conditions of climate and landscape evolution; and (2) the effects of age, parent materials, and eolian processes on the transformation and translocation of the minerals. Four types of alluvial-fan deposits along the Providence Mountains piedmonts, Mojave Desert, southeastern California, USA were studied: (1) carbonate rocks, primarily limestone and marble (LS), (2) fine-grained rhyodacite and rhyolitic tuff mixed with plutonic and carbonate rocks (VX), (3) fine- to coarse- grained mixed plutonic (PM) rocks, and (4) coarse-grained quartz monzonite (QM). These juxtaposed fan deposits are physically correlated in a small area (about 20 km by 15 km) and experienced the same climatic changes in the late Pleistocene and Holocene. The soils show characteristic mineral compositions of arid/semiarid soils: calcite is present in nearly all of the samples, and a few of the oldest soils contain gypsum and soluble salts. Parent material has profound influence on clay mineral composition of the soils: (1) talc were observed only in soils developed on the volcanic mixture fan deposits, and talc occurs in all horizons; (2) palygorskite occur mainly in the petrocalcic (Bkm) of old soils developed on the LS and VX fan deposits, indicating pedogenic origin; (3) chlorite was observed mainly in soils developed on VX fan deposits (all ages) and on some LS deposits, but it is absent in soils developed on PM and QM fan deposits; and (4) vermiculite was common throughout soils developed on plutonic rock fan deposits. These mineralogical differences suggest that minerals in the soils are primarily inherited from their parent materials and that mineral weathering in this area was weak. Except the

  8. Lead in vegetation, forest floor material, and soils of the spruce-fir zone, Great Smoky Mountains National Park

    SciTech Connect

    Bogle, M.A.; Turner, R.R.

    1983-01-01

    Based on a survey during 1982, lead concentrations in vegetation, litter and soils of the spruce-fir zone of the Great Smoky Mountains National Park are generally less than values reported for similar sites in the northeastern United States and western Europe. As expected, lead concentrations increased with increasing age of spruce and fir foliage, and with increasing degree of decomposition of litter. Fir bole wood was higher in lead than spruce bole wood, but both species were far below acutely phytotoxic levels. Although the results of this study indicated no immediate cause for concern, periodic monitoring of lead and other metals in the spruce-fir zone should be continued to provide early detection of significant changes. 32 references, 1 figure, 4 tables.

  9. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology.

  10. Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran

    NASA Astrophysics Data System (ADS)

    Valaee, Morteza; Ayoubi, Shamsollah; Khormali, Farhad; Lu, Sheng Gao; Karimzadeh, Hamid Reza

    2016-04-01

    This study used discriminant analysis to determine the efficacy of magnetic measures for discriminating between four soil moisture regimes in northern Iran. The study area was located on loess deposits and loess-like soils containing similar parent material. Four soil moisture regimes including aridic, xeric, udic, and aquic were selected. A total of 25 soil profiles were drug from each regime and composite soil samples were collected within the moisture control section. A set of magnetic measures including magnetic susceptibility at low (χlf) and high (χhf) frequencies, frequency-dependent magnetic susceptibility (χfd), saturation isothermal remnant magnetization (SIRM), and isothermal remnant magnetization (IRM100 mT, IRM 20 mT) were measured in the laboratory. Dithionite citrate bicarbonate (Fed) and acid oxalate (Feo) contents of all soil samples were also determined. The lowest and highest χlf and χhf were observed in aquic and udic moisture regimes, respectively. A similar trend was obtained for Fed and Fed-Feo. The significant positive correlation between Fed and SIRM (r = 0.60; P < 0.01) suggested the formation of stable single domains (SSD) due to pedogenic processes. The results of discriminant analysis indicated that a combination of magnetic measures could successfully discriminate between the selected moisture regimes in the study area (average accuracy = 80%). It can thus be concluded that magnetic measures could be applied as a powerful indicator for differentiation of soil moisture regimes in the study area.

  11. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    SciTech Connect

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

  12. U.S. Geological Survey Field Leach Test for Assessing Water Reactivity and Leaching Potential of Mine Wastes, Soils, and Other Geologic and Environmental Materials

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    The U. S. Geological Survey (USGS) has developed a fast (5-minute), effective, simple, and cost-effective leach test that can be used to simulate the reactions that occur when materials are leached by water. The USGS Field Leach Test has been used to predict, assess, and characterize the geochemical interactions between water and a broad variety of geologic and environmental matrices. Examples of some of the samples leached include metal mine wastes, various types of dusts, biosolids (processed sewage sludge), flood and wetland sediments, volcanic ash, forest-fire burned soils, and many other diverse matrices. The Field Leach Test has been an integral part of these investigations and has demonstrated its value as a geochemical characterization tool. It has enabled investigators to identify which constituents are water reactive, soluble, mobilized, and made bioaccessible because of leaching by water, and to understand potential impacts of these interactions on the surrounding environment.

  13. Landmarks of History of Soil Science in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Mapa, R.

    2012-04-01

    Sri Lanka is a tropical Island in the Southern tip of Indian subcontinent positioned at 50 55' to 90 50' N latitude and 790 42' to 810 53' E longitude surrounded by the Indian Ocean. It is an island 435 km in length and 224 km width consisting of a land are of 6.56 million ha with a population of 20 million. In area wise it is ranked as 118th in the world, where at present ranked as 47 in population wise and ranked 19th in population density. The country was under colonial rule under Portuguese, Dutch and British from 1505 to 1948. The majority of the people in the past and present earn their living from activities based on land, which indicates the important of the soil resource. The objective of this paper is to describe the landmarks of the history of Soil Science to highlight the achievements and failures, which is useful to enrich our present understanding of Sri Lankan soils. The landmarks of the history of Soil Science in Sri Lanka can be divided to three phases namely, the early period (prior to 1956), the middle period (1956 to 1972) and the present period (from 1972 onwards). During the early period, detailed analytical studies of coffee and tea soils were compiled, and these gave mainly information on up-country soils which led to fertilizer recommendations based on field trials. In addition, rice and forest soils were also studied in less detail. The first classification of Sri Lankan soils and a provisional soil map based on parent material was published by Joachim in 1945 which is a major landmark of history of Soil Science in Sri Lanka. In 1959 Ponnamperuma proposed a soil classification system for wetland rice soils. From 1963 to 1968 valuable information on the land resource was collected and documented by aerial resource surveys funded by Canada-Ceylon Colombo plan aid project. This covered 18 major river basins and about 1/4th of Sri Lanka, which resulted in producing excellent soil maps and information of the areas called the Kelani Aruvi Ara

  14. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  15. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  16. RbSr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Erel, Yigal

    1997-08-01

    The RbSr isotope systematics of bedrock, soil digests, and the cation exchange fraction of soils from a granitic glacial soil chronosequence in the Wind River Mountains, Wyoming, USA, were investigated. Six soil profiles ranging in age from 0.4 to ˜300 kyr were studied and revealed that the 87Sr /86Sr ratio of exchangeable strontium in the B-horizons decreased from 0.7947 to 0.7114 with increasing soil age. Soil digests of the same samples showed much smaller variation in 87Sr/86Sr from 0.7272 to 0.7103 and also generally decreased with increasing soil age. Elevation of the 87Sr/86Sr ratios of Sr released by weathering over the soil digest and bedrock values results from the rapid weathering of biotite to form hydrobiotite and vermiculite in the younger soils. Biotite is estimated to weather at aaproximately eight times the rate of plagioclase (per gram of mineral) in the youngest soil profile and decreases to a rate of only ˜20% of that of plagioclase in the oldest soil. 87Rb/86Sr ratios of the soil cation exchange fraction are estimated to be depleted by factors of up to 11 over the 87Rb/86Sr ratios released by weathering, due to ion exchange partitioning. This study demonstrates that the 87Sr/86Sr ratio released by weathering of crystalline rocks can deviate significantly from bedrock values, and that in soils less than ˜20 kyr in age which contain biotite in the soil parent material, weathering-derived 87Sr/86Sr values can be elevated so dramatically that this factor must be considered in estimations of weathering rates based on strontium isotopes.

  17. Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering

    SciTech Connect

    Blum, J.D.; Erel, Y.

    1997-08-01

    The Rb-Sr isotope systematics of bedrock, soil digests, and the cation exchange fraction of soils from a granitic glacial soil chronosequence in the Wind River Mountains, Wyoming, USA, were investigated. Six soil profiles ranging in age from 0.4 to {approximately}300 kyr were studied and revealed that the {sup 87}Sr/{sup 86}Sr ratio of exchangeable strontium in the B-horizons decreased from 0.7947 to 0.7114 with increasing soil age. Soil digests of the same samples showed much smaller variation in {sup 87}Sr/{sup 86}Sr from 0.7272 to 0.7103 and also generally decreased with increasing soil age. Elevation of the {sup 87}Sr/{sup 86}Sr ratios of Sr released by weathering over the soil digest and bedrock values results from the rapid weathering of biotite to form hydrobiotite and vermiculite in the younger soils. Biotite is estimated to weather at approximately eight times the rate of plagioclase (per gram of mineral) in the youngest soil profile and decreases to a rate of only {approximately}20% of that of plagioclase in the oldest soil. {sup 87}Rb/{sup 86}Sr ratios of the soil cation exchange fraction are estimated to be depleted by factors of up to 11 over the {sup 87}Sr/{sup 86}Sr ratios released by weathering, due to ion exchange partitioning. This study demonstrates that the {sup 87}Sr/{sup 86}Sr ratio released by weathering of crystalline rocks can deviate significantly from bedrock values, and that in soils less than {approximately}20 kyr in age which contain biotite in the soil parent material, weathering-derived {sup 87}Sr/{sup 86}Sr values can be elevated so dramatically that this factor must be considered in estimations of weathering rates based on strontium isotopes. 54 refs., 3 figs., 4 tabs.

  18. Parental licensure.

    PubMed

    Lykken, D T

    2001-11-01

    Most of the 1,400,000 men currently locked up in American prisons would have become tax-paying neighbors had they been switched in the hospital nursery and sent home with a mature, self-supporting, married couple. The parent with whom they did go home would in most instances not have been fit to adopt someone else's baby. It is argued that perhaps the only effective way to reduce crime and the other pathologies of the growing American underclass--apart from building still more prisons--would be to require from persons wishing to birth and rear a child of their own those same minimal criteria usually expected in adoptive parents. For evolutionary reasons, human beings are reluctant to interfere with the procreational rights of any person, no matter how immature, incompetent, or unsocialized he or she might be. In consequence, human beings tend not to think about the right of the child to a reasonable opportunity for life, liberty, and the pursuit of happiness.

  19. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  20. Living with a Single Parent

    MedlinePlus

    ... Happens in the Operating Room? Living With a Single Parent KidsHealth > For Kids > Living With a Single Parent ... single parents can be a great idea, too. Single Parents and Work Single parents are often working parents ...

  1. Living with a Single Parent

    MedlinePlus

    ... Video: Getting an X-ray Living With a Single Parent KidsHealth > For Kids > Living With a Single Parent ... single parents can be a great idea, too. Single Parents and Work Single parents are often working parents ...

  2. Variable Charge Soils: Mineralogy and Chemistry

    SciTech Connect

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2003-11-01

    ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.

  3. An evaluation of the level of naturally occurring radioactive material in soil samples along the Chao Phraya river basin

    NASA Astrophysics Data System (ADS)

    Santawamaitre, T.; Regan, P. H.; Bradley, D. A.; Matthews, M.; Malain, D.; Al-Sulaiti, H. A.

    2010-07-01

    The aim of this study was to evaluate the level of natural radioactivity in river sediments and riverbank surface soils collected along the Chao Phraya River and its tributaries in Thailand. The activity concentrations of radionuclides in 238U and 232Th decay chains as well as 40K in all samples have been determined by means of a gamma-ray spectrometry system using a hyper-pure germanium detector in a low background configuration. The ranges of specific activity for 226Ra, 232Th and 40K were found to be 15.2-67.0, 16.8-73.3 and 204.6-656.5 Bq kg -1, respectively. Additionally, evaluations have been made of the absorbed gamma dose rate in air and the annual effective dose equivalent from outdoor terrestrial gamma radiation in order to assess any excess radiological risk from agricultural usage of fertilizers. In this study, the absorbed dose rate was observed to vary from 30.5 to 102.6 nGy h -1 and the outdoor annual effective dose equivalent to range from 37.4 to 125.8 μSv yr -1.

  4. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  5. Geomorphic Controls on High Elevation Meadow Soil Development and Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Arnold, C. L.; Ghezzehei, T. A.; Berhe, A. A.

    2012-12-01

    High elevation meadows form in response to the geomorphology of the landscape that ultimately controls the elevation of their water table and soil development. Proper understanding of soil development in high elevation meadows is essential since these meadow soils play a critical role in the filtering and release of water to the watershed. This study was conducted in a subalpine meadow in Yosemite National Park that formed in response to glacial ablation drift. In this heterogeneous landscape, we were able to examine geomorphological controls on meadow soil development, while controlling for all other soil forming factors such as time, parent material, climate, and organisms. We collected soil samples from three depths across the meadow hydrologic gradient in three topographically distinct locations in the meadow. We measured gravimetric water content, pH, soil color, particle size distribution, cation exchange capacity, C:N ratio, and bulk density on each sample. By conducting these tests on each sample we were able to obtain data that would allow us to compare how soils differ in characteristics based on their topographical location in the meadow. We found that soil color showed very small differences across depth and water content of the relevant area. The carbon concentration of the samples differed throughout depth and water content of an area. Dry areas had a carbon concentration ranging between 2.52-5.99%, while intermediate areas had a range of 2.67-24.66%; wet areas had a range of 3.45-24.84%. C: N ratio was more consistent with all values ranging from 13.04-18.13%, with an average throughout all samples of 15.02% N. Understanding how soils differ across geomorphologically distinct regions of the meadow will allow for a better understanding on how topography will affect biodiversity and water quality in these areas.

  6. Vegetation-induced spatial variability of soil redox properties in wetlands

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  7. Evolution of soils on quaternary reef terraces of Barbados, West Indies

    USGS Publications Warehouse

    Muhs, D.R.

    2001-01-01

    Soils on uplifted Quaternary reef terraces of Barbados, ???125,000 to ???700,000 yr old, form a climo-chronosequence and show changes in physical, chemical, and mineralogical properties with terrace age. Parent materials are dust derived from the Sahara, volcanic ash from the Lesser Antilles island arc, and detrital carbonate from the underlying reef limestone. Although some terrace soils are probably eroded, soils or their remnants are redder and more clay-rich with increasing terrace age. Profile-average Al2O3 and Fe2O3 content increases with terrace age, which partially reflects the increasing clay content, but dithionite-extractable Fe also increases with terrace age. Profile-average K2O/TiO2, Na2O/TiO2, and P2O5/TiO2 values decrease with terrace age, reflecting the depletion of primary minerals. Average SiO2/Al2O3 values also decrease with terrace age and reflect not only loss of primary minerals but also evolution of secondary clay minerals. Although they are not present in any of the parent materials, the youngest terrace soils are dominated by smectite and interstratified kaolinite-smectite, which gradually alter to relatively pure kaolinite over ???700,000 yr. Comparisons with other tropical islands, where precipitation is higher and rates of dust fall may be lower, show that Barbados soils are less weathered than soils of comparable age. It is concluded that many soil properties in tropical regions can be potentially useful relative-age indicators in Quaternary stratigraphic studies, even when soils are eroded or changes in soil morphology are not dramatic. ?? 2001 University of Washington.

  8. Mineral oil content in sediments and soils: comparability, traceability and a certified reference material for quality assurance.

    PubMed

    Becker, Roland; Buge, Hans-Gerhard; Bremser, Wolfram; Nehls, Irene

    2006-06-01

    The performance of twelve laboratories with previously established proficiency in the determination of the mineral oil content in a fresh water sediment is described. The summation parameter total petrol hydrocarbon (TPH) is defined according to ISO 16703:2004 with regard to the sample preparation to be applied, the flame ionisation detection (FID) and the boiling range of C10-C40 to be integrated. Comprehensive tests of homogeneity and stability have been carried out on the candidate material using appropriate models. The outcome of the study served as the basis for the certification of the candidate reference material as ERM-CC015a. The certified mass fraction is 1,820+/-130 mg kg(-1) and traceability was established by using an appropriate calibration standard certified for the mass fraction of C10-C40. The interlaboratory scatter of measurement results in this exercise can largely be explained by the variability of the individual calibrations based on this common calibration standard.

  9. Parenting and Video Games

    ERIC Educational Resources Information Center

    Steinkuehler, Constance

    2016-01-01

    There is a terrific disconnect between parenting advice related to media and the realities of contemporary parenting. We condone enrichment parenting and condemn the use of "digital babysitters," admonishing parents who exceed the two-hour screen time limitation even when, all the while, no one is listening. Parents are not merely blasé…

  10. The effect of salinization on the biomass of microorganisms in the soils of different ages in the forest-steppe zone of Western Siberia

    NASA Astrophysics Data System (ADS)

    Yakutin, M. V.; Anopchenko, L. Yu.; Andrievskii, V. S.

    2016-12-01

    The study of soils of different ages developing on the drying bottom of the shallow-water Yudinsk reach of Lake Chany (Western Siberia) has shown that soil salinization is a powerful factor affecting the biomass and metabolic activity of microorganisms. Strong salinity of parent materials retards the development of microbial population in the young soils. With an increase the soil age of lake depressions, desalinization takes place, and the rate of the formation of microbial biomass increases. Its metabolic activity becomes more pronounced, though the specific rate of metabolic activity slows down. The carbon of the microbial biomass and basal respiration in the soils developing on drying lake bottoms in the forest-steppe zone reach the values typical of the zonal chernozemic soils in about 80 years.

  11. Analyzing Layers of Soil Colluvia for Reconstruction of Soil Erosion and Holocene Landscape Genesis With Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Werban, U.; Dreibrodt, S.; Rabbel, W.; Bork, H.; Al Hagrey, S.

    2005-05-01

    Since the GPR method is suitable to differentiate soil layers with different water content based on the dielectric contrast, we apply it to solve landscape genetic and geomorphological questions. Historical and recent soil erosion events, caused by surface runoff, are documented in sequences of soil colluvia. These depositional areas called geoarchives often contain dateable objects, such as artifacts (potsherd or bricks) and charcoal. Geoarchives, e.g. colluvial fans and trench in-fills, are used as a source of information about past environmental conditions and for determination of land use impacts caused by human activities. Large exposures are common to characterize soil colluvia stratigraphy, and additional drillings are needed to correlate the layers and horizons found in different exposures. Often, soil colluvia sequences are characterized by a well defined layering and consecutive layers show different grain size. These layers have different saturation-suction relationships (pF-curve) and varied moisture contents. Our research focuses on radar mapping and characterizing these layers of soil colluvia in consideration of different moisture distributions. We present measurements with 200 MHz and 400 MHz antennas determined in a catchment area in northern Germany. Common offset measurements were used to map the distribution of accumulated sediments. GPR travel times were depth migrated to correlate them with the exposure survey. The velocity distribution with depth was determined with multi offset measurements and analysis of reflections of a metal rod in a known depth. TDR measurements in different layers within the exposure are used to verify the moisture distribution with depth. We mapped the boundary between soil colluvium and the underlying parent material (weichselian till, glaciofluviatil sand) and differentiated layers within the soil colluvia. Consequently a more detailed balancing of erosion and accumulation rates to quantify historical soil losses is

  12. Target-specific digital soil mapping supporting terroir mapping in Tokaj Wine Region, Hungary

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Szabó, József; Laborczi, Annamária; Szatmári, Gábor; László, Péter; Koós, Sándor; Bakacsi, Zsófia; Pásztor, László

    2016-04-01

    Tokaj Wine Region - located in Northeast-Hungary, at Hegyalja, in Tokaj Mountains - is a historical region for botrityzed dessert wine making. Very recently the sustainable quality wine production in the region was targeted, which requires detailed and "terroir-based approach" characterization of viticultural land and the survey of the state of vineyards. Terroir is a homogeneous area that relates to both environmental and cultural factors, that influence the grape and wine quality. Soil plays dominant role determining the viticultural potential and terroir delineation. According to viticultural experts the most relevant soil properties are drainage, water holding capacity, soil depth and pH. Not all of these soil characteristics can be directly measured, therefore the synthesis of observed soil properties is needed to satisfy the requirements of terroir mapping. The sampling strategy was designed to be representative to the combinations of basic environmental parameters (slope, aspect and geology) which determine the main soil properties of the vineyards. Field survey was carried out in two steps. At first soil samples were collected from 200 sites to obtain a general view about the pedology of the area. In the second stage further 650 samples were collected and the sampling strategy was designed based on spatial annealing technique taking into consideration the results of the preliminary survey and the local characteristics of vineyards. The data collection regarded soil type, soil depth, parent material, rate of erosion, organic matter content and further physical and chemical soil properties which support the inference of the proper soil parameters. In the framework of the recent project 33 primary and secondary soil property, soil class and soil function maps were compiled. A set of the resulting maps supports to meet the demands of the Hungarian standard viticultural potential assessment, while the majority of the maps is intended to be applied for terroir

  13. Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat.

    PubMed

    Beamish, David

    2013-01-01

    This study considers gamma ray attenuation in relation to the soils and bedrock of Northern Ireland using simple theory and data from a high resolution airborne survey. The bedrock is considered as a source of radiogenic material acting as parent to the soil. Attenuation in the near-surface is then controlled by water content in conjunction with the porosity and density of the soil cover. The Total Count radiometric data together with 1:250 k mapping of the soils and bedrock of Northern Ireland are used to perform statistical analyses emphasising the nature of the low count behaviour. Estimations of the bedrock response characteristics are improved by excluding areas covered by low count soils (organic/humic). Equally, estimations of soil response characteristics are improved by excluding areas underlain by low count bedrock (basalt). When the spatial characteristics of the soil-classified data are examined in detail, the low values form spatially-coherent zones (natural clusters) that can potentially be interpreted as areas of increased water content for each soil type. As predicted by theory, the highest attenuation factors are associated with the three organic soil types studied here. Peat, in particular, is remarkably skewed to low count behaviour in its radiometric response. Two detailed studies of blanket bogs reveal the extent to which peat may be mapped by its radiometric response while the intra-peat variations in the observed response may indicate areas of thin cover together with areas of increased water content.

  14. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils.

    PubMed

    Li, Hongxia; Sumarah, Mark W; Topp, Edward

    2013-05-01

    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of (3)H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT50) ranging from 48.1±3.5 (loam soil) to 84.5±13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC-TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil.

  15. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  16. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  17. Attributing spatial and temporal changes in soil C in the UK to environmental drivers

    NASA Astrophysics Data System (ADS)

    Thomas, Amy; Cosby, Bernard; Quin, Sam; Henrys, Pete; Robinson, David; Emmett, Bridget

    2015-04-01

    The largest terrestrial pool of carbon is found in soils. Understanding how soil C responds to drivers of change (land use and management, atmospheric deposition, climate change) and how these responses are modified by inherent soil properties is crucial if we are to manage soils more sustainably in the future. Here we attempt to attribute spatial and temporal changes in UK soil C to environmental drivers using data from the UK Countryside Survey (CS), a national soil survey across England, Scotland and Wales repeated in 1978, 1998 and 2007. A mixed model approach was used to model soil C concentration (g C kg-1) and density (t C ha-1) and their absolute changes for the time periods 1978-1998, 1998-2007 and 1978-2007 across the CS sites using a variety of explanatory variables: soil (parent material, pH, moisture, Olsen-P, Shannon Diversity Index); atmospheric deposition (nitrogen and sulphur); climate (growing degree days and rain); and land use (aggregate vegetation class). Spatially, prediction of soil C concentration was good; soil moisture, pH, vegetation class and dominant grain size were all significant predictors. Field capacity also appeared to be important; however this data was o