Science.gov

Sample records for parietal foramina craniofacial

  1. Genetics Home Reference: enlarged parietal foramina

    MedlinePlus

    ... parietal foramina is an inherited condition of impaired skull development. It is characterized by enlarged openings (foramina) ... that form the top and sides of the skull. This condition is due to incomplete bone formation ( ...

  2. Congenital biparietal foramina presenting with multiple concussions.

    PubMed

    Abdul Jalil, Muhammad Fahmi; Russell, Jeremy; Delatycki, Martin; Gonzalvo, Augusto

    2016-06-01

    We report a man with biparietal foramina secondary to Potocki-Shaffer syndrome. This is due to incomplete ossification of parietal bones secondary to haploinsuffiency of ALX4 gene. He presented with multiple episodes of concussion following minimal head trauma. Cranioplasty was performed to close the skull defects with the aim of preventing further concussion and permanent traumatic brain injury.

  3. Evolution of cranial blood drainage in hominids: enlarged occipital/marginal sinuses and emissary foramina.

    PubMed

    Falk, D

    1986-07-01

    Physiological studies of cranial blood flow in humans in reclining vs. upright postures suggest that selection for bipedalism was correlated with the establishment of epigenetic adaptations for delivering blood preferentially to the vertebral plexus of veins, depending upon momentary respiratory and postural constraints. The frequencies of vascular/osteological channels used to deliver blood to the vertebral plexus of veins were determined for samples of African pongids, various taxa of fossil hominids, and extant Homo sapiens. These channels include an enlarged occipital/marginal (O/M) sinus system, multiple hypoglossal canals, and foramina that conduct emissary veins: posterior condyloid, mastoid, occipital, and parietal. The African pongid, and therefore presumably the ancestral prebipedal hominoid, condition is characterized by low frequencies of all of these routes except multiple hypoglossal canals. The earliest known bipeds (Australopithecus afarensis) and robust australopithecines are characterized by fixation of enlarged O/M sinus systems. Robust australopithecines are also characterized by apparently low frequencies of mastoid and parietal foramina, and high frequencies of multiple hypoglossal canals and posterior condyloid foramina. In gracile australopithecines and subsequently living hominids, trends towards increased frequencies of mastoid and (later) parietal emissary foramina coincide with a trend towards decreased frequencies of an enlarged O/M sinus system and multiple hypoglossal canals. These findings suggest that selection for bipedalism initially resulted in epigenetic adaptations for routes to deliver blood to the vertebral plexus including an enlarged O/M sinus system and hypoglossal canals, but that the pressures underlying these adaptations relaxed as bipedalism became established, and other routes for delivering blood to the vertebral plexus of veins were either directly or indirectly selected for, perhaps in conjunction with a changing

  4. A microdeletion encompassing PHF21A in an individual with global developmental delay and craniofacial anomalies.

    PubMed

    Labonne, Jonathan D J; Vogt, Julie; Reali, Lisa; Kong, Il-Keun; Layman, Lawrence C; Kim, Hyung-Goo

    2015-12-01

    In Potocki-Shaffer syndrome (PSS), the full phenotypic spectrum is manifested when deletions are at least 2.1 Mb in size at 11p11.2. The PSS-associated genes EXT2 and ALX4, together with PHF21A, all map to this region flanked by markers D11S1393 and D11S1319. Being proximal to EXT2 and ALX4, a 1.1 Mb region containing 12 annotated genes had been identified by deletion mapping to explain PSS phenotypes except multiple exostoses and parietal foramina. Here, we report a male patient with partial PSS phenotypes including global developmental delay, craniofacial anomalies, minor limb anomalies, and micropenis. Using microarray, qPCR, RT-qPCR, and Western blot analyses, we refined the candidate gene region, which harbors five genes, by excluding two genes, SLC35C1 and CRY2, which resulted in a corroborating role of PHF21A in developmental delay and craniofacial anomalies. This microdeletion contains the least number of genes at 11p11.2 reported to date. Additionally, we also discuss the phenotypes observed in our patient with respect to those of published cases of microdeletions across the Potocki-Shaffer interval.

  5. Craniofacial Microsomia

    PubMed Central

    Birgfeld, Craig B.; Heike, Carrie

    2012-01-01

    Craniofacial microsomia (CFM) is one of the most common congenital conditions treated in craniofacial centers worldwide. This condition is variably associated with anomalies of the jaws, ears, facial soft tissue, orbits, and facial nerve function and can be associated with extracranial anomalies. The cause of this condition is unknown, though CFM has been associated withprenatalexposures and genetic abnormalities. Diagnosis, treatment, and outcome assessment in CFM is challenging due to the wide phenotypic spectrum observed in this condition. Surgical treatment requires a coordinated team approach involving multiple specialties, which can include plastic surgery, craniofacial surgery, orthognathic surgery, and microsurgery. A wide variety of surgical options exist, and individual treatment plans should be based on the patient's needs. Although CFM can be challenging to treat, successful outcomes are rewarding. We provide a review of the common craniofacial surgical treatments for individuals with CFM. PMID:23633936

  6. Diaphysial nutrient foramina in human metacarpals and metatarsals.

    PubMed Central

    Patake, S M; Mysorekar, V R

    1977-01-01

    728 metacarpals and 691 metatarsals of unknown sex, and 120 metacarpals and metatarsals, each of known sex, were studied for the number, position, direction and symmetry of the diaphysial nutrient foramina. It was found that, in general, these bones had one nutrient foramen which was situated in the middle third of the shaft (over 90%). Few bones had no foramina and some had two. In the first and second metacarpals the foramina were mostly situated on the medial surface, and in the other metacarpals mostly on the lateral surface; whereas in the first three metatarsals the foramina were mostly situated on the lateral surface and in the remaining metatarsals mostly on the medial surface. There was a good deal of bilateral symmetry in the foramina. Without any exception, the foramina were directed away from the growing end. The various theories put forward to account for the direction of the nutrient foramina have been considered. The findings favour the 'growing-end' theory. PMID:591428

  7. [Anatomical names of foramina and canales in skeleton].

    PubMed

    Shikano, S; Yamashita, Y

    1998-03-01

    Latin anatomical names of Foramina and Canales in skeleton were analyzed and compared with Japanese anatomical names for better understanding of the structures of the human body and for possible revision in the future. The conclusions were as follows: 1. In general, short tunnels were called Foramina (singular: Foramen), and long tunnels Canales (singular: Canalis). 2. One end of Canalis was sometimes called Foramen. In this case, Canalis and Foramen were usually modified by the same words. 3. Each name of Foramina contained the word which means form, state, absolute size, region of existence, one of the contents or function of Foramina. 4. Each name of Canales contained the word which means region of existence, one of the contents or function of Canales. 5. Some names of Foramina and Canales that were supposed to mean the region of existence meant one of the contents of the structures. 6. As for Latin anatomical names, the relation between words were relatively clear by the proper use of noun, adjective, nominative, and genitive. 7. Since different Chinese characters were sometimes pronounced similarly in Japanese anatomical names, different structures might be confused. 8. It seemed that some Japanese anatomical names needed partial correction.

  8. Variations in size and in symmetry of foramina of the human skull.

    PubMed

    Berge, J K; Bergman, R A

    2001-11-01

    The goal of this report is to define an average size and size range for many of the skull's foramina and to determine in which paired foramina asymmetry is commonly found so that researchers and clinicians examining foramina may have an anatomical reference. The incidence of foraminal variations is also discussed. Information on skull foraminal size and symmetry is increasingly important because of the advancements in radiologic techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). These methods are making difficult diagnoses of pathologic conditions of skull foramina possible. The foramina of 100 randomly selected dry skulls were measured and the symmetry of paired foramina was noted. The average, largest, and smallest sizes for 29 different foramina and the length of one canal are listed. Information regarding the symmetry of 27 paired foramina and the length symmetry of the infraorbital canal was also gathered. Specific data collected for paired foramina include the percent of skulls in which (1) neither foramen of the pair was present, (2) both foramina of a pair were present, (3) both foramina of the pair are present and were both the same size within 0.5 mm, and (4) both foramina of a pair are present but there was greater than 0.5 mm difference in size between them.

  9. [Craniofacial neuralgias].

    PubMed

    Mikula, Ivan

    2008-05-01

    Craniofacial neuralgias are characterized by sudden paroxysmal pain along the distribution of one or more of the cranial or upper cervical spinal nerves. The most significant neuralgia of the craniofacial region is trigeminal neuralgia, while geniculate neuralgia, glossopharyngeal neuralgia and occipital neuralgia are less common. Trigeminal neuralgia may be primary or secondary. Idiopathic trigeminal neuralgia or tic douloureux has been recognized for centuries as an extremely painful disorder most commonly involving the maxillary nerve. Recurrent lancinating, shocklike unilateral pain lasting for seconds to minutes is provoked by non noxious stimulation of the skin at specific sites around the face and less frequently by movement of the tongue. The trigger zones are usually within the same dermatome as the painful sensation. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce pain. Idiopathic trigeminal neuralgia occurs somewhat more frequently in women and usually begins in individuals 50 to 70 years of age. There is no pain between attacks, and the frequency of painful episodes can range from several per day to only a few per year. With time, the features may become more atypical, with greater areas of more enduring and dull pain and occasionally bilateral pain, rarely on both sides simultaneously. No sensory or reflex deficit is detectable by routine neurologic testing. Diagnostic local anesthetic blocks will identify the specific nerves involved and the trigger point distribution. Neurologic and neuroradiologic examination is advised in all cases to rule out diseases such as intracranical tumors, vascular malformations or multiple sclerosis.

  10. Cervical neural foramina: Correlation of microtomy and CT anatomy

    SciTech Connect

    Pech, P.; Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1985-04-01

    The CT appearance of the cervical neural foramina and contents is described in detail. Nineteen cervical spine specimens were studied with CT and corresponding cryomicrotomy in direct axial, sagittal, coronal, and oblique planes. Both ventra and dorsal nerve roots can be identified in the foramen's lower portion at or below the disk level. The dorsal nerve roots and ganglion contact the superior facet. The ventral nerve roots contact the uncinate process and bottom of the neural foramen. The ventral nerve roots, dorsal nerve roots and ganglion, and vertebral artery are resolved with current high-resolution CT.

  11. Craniofacial bone tissue engineering.

    PubMed

    Wan, Derrick C; Nacamuli, Randall P; Longaker, Michael T

    2006-04-01

    Repair and reconstruction of the craniofacial skeleton represents a significant biomedical burden, with thousands of procedures per-formed annually secondary to injuries and congenital malformations. Given the multitude of current approaches, the need for more effective strategies to repair these bone deficits is apparent. This article explores two major modalities for craniofacial bone tissue engineering: distraction osteogenesis and cellular based therapies. Current understanding of the guiding principles for each of these modalities is elaborated on along with the knowledge gained from clinical and investigative studies. By laying this foundation, future directions for craniofacial distraction and cell-based bone engineering have emerged with great promise for the advancement of clinical practice.

  12. Craniofacial reconstruction - series (image)

    MedlinePlus

    Patients requiring craniofacial reconstruction have: birth defects (such as hypertelorism, Crouzon's disease, Apert's syndrome) injuries to the head, face, or jaws (maxillofacial) tumors deformities caused by treatments of tumors

  13. Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    PubMed

    He, Xiaoxu; Zhang, Heye; Landis, Mark; Sharma, Manas; Warrington, James; Li, Shuo

    2017-02-01

    As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinical routine is extremely tedious and inefficient due to the requirement of physicians' intensively manual delineation. Automated delineation is highly needed but faces big challenges from the complexity and variability in neural foramina images. In this paper, we propose a pure image-driven unsupervised boundary delineation framework for the automated neural foramina boundary delineation. This framework is based on a novel multi-feature and adaptive spectral segmentation (MFASS) algorithm. MFASS firstly utilizes the combination of region and edge features to generate reliable spectral features with a good separation between neural foramina and its surroundings, then estimates an optimal separation threshold for each individual image to separate neural foramina from its surroundings. This self-adjusted optimal separation threshold, estimated from spectral features, successfully overcome the diverse appearance and shape variations. With the robustness from the multi-feature fusion and the flexibility from the adaptively optimal separation threshold estimation, the proposed framework, based on MFASS, provides an automated and accurate boundary delineation. Validation was performed in 280 neural foramina MR images from 56 clinical subjects. Our method was benchmarked with manual boundary obtained by experienced physicians. Results demonstrate that the proposed method enjoys a high and stable consistency with experienced physicians (Dice: 90.58% ± 2.79%; SMAD: 0.5657 ± 0.1544 mm). Therefore, the proposed framework enables an efficient and accurate clinical tool in the diagnosis of neural foramina stenosis.

  14. Distribution of the lingual foramina in mandibular cortical bone in Koreans

    PubMed Central

    Kim, Dae Hyun; Kim, Moon Yong

    2013-01-01

    Objectives The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure. Materials and Methods We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012. Results From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen. Conclusion When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent

  15. The morphology and morphometry of the foramina of the greater wing of the human sphenoid bone.

    PubMed

    Reymond, Jerzy; Charuta, Anna; Wysocki, Jarosław

    2005-08-01

    The greater wing of the human sphenoid bone is pierced by several foramina, which contain, as a main element, the venous anastomoses between the interior of the skull and the extracranial veins. Since data concerning these foramina are scarce in the literature, studies comprising the frequency of occurrence and morphology of the foramina of the greater wing of the human sphenoid bone were undertaken on 100 macerated skulls. We found that the foramen ovale is divided into 2 or 3 components in 4.5% of cases. Moreover, the borders of the foramen ovale in some skulls were irregular and rough. This may suggest, on radiological images, the presence of morbid changes, which might be the sole anatomical variation. Concurrent with the foramen ovale are accessory foramina. The foramen of Vesalius and the cavernous foramen were present in 17% and 33% of cases, respectively. The foramen of Vesalius was always single and the cavernous foramen also occurred in multiple form. The foramen spinosus and the foramen rotundum occurred as permanent elements of the skulls studied. The mean area of the foramina measured, excluding the foramen ovale, was not considerable, which may suggest that they play a minor role in the dynamics of blood circulation in the venous system of the head.

  16. Craniofacial morphogenesis workshop report.

    PubMed

    Solursh, M; Murray, J

    1994-05-01

    The following report highlights the discussions and interaction at the workshop on craniofacial morphogenesis, sponsored by The Human Frontier Science Program, held in April 1993 at the University of Iowa. A brief summary of selected sessions is included to exemplify the benefits of bringing together individuals from various disciplines and backgrounds in order to establish a unified theory of craniofacial morphogenesis. The synthesis of information and experience of a wide range of approaches made the 4-day period an invaluable experience for the participants from nine different countries.

  17. Accessory mental foramina, incisive nerve plexus and lingual canals with unusual emergence paths: Report of two rare cases

    PubMed Central

    Haghanifar, Sina; Poorsattar Bejeh Mir, Arash

    2015-01-01

    Being knowledgeable of neurovascularization of anterior mandible is crucial for successful local anesthesia and for safe minor and major oral surgeries of this part. The first case was 62 years old and was found to have two accessory mental foramina with buccal emergence on the left side and two accessory mental foramina with buccal and lingual emergence paths on the right side (overall five mental foramina). Incisive nerve plexus with multiple cephalic branching was obvious on both sides. The second case was 60 years of age and had two lingual foramina on the lingual side with two accessory foramina on the buccal side of the symphysis. Considering our findings, a pre-operation limited cone beam computed tomography is suggested to avoid inadvertent damage, especially when planning a surgery in the mandibular inter-mental region. PMID:25767360

  18. [Craniofacial fibrous dysplasia].

    PubMed

    Couturier, A; Aumaître, O; Mom, T; Gilain, L; André, M

    2016-12-01

    Fibrous dysplasia of bone is a benign, uncommon, sporadic, congenital skeletal disorder resulting in deformity. This disease arises from activating somatic mutation in GNAS which encodes the α subunit of the G stimulatory protein associated with proliferation of undifferentiated osteogenic cells resulting in marrow fibrosis, abnormal matrix production, and stimulation of osteoclastic resorption upon overproduction of IL-6 observed in dysplastic cells. Fibrous dysplasia may be monostotic or polyostotic. This mutation affecting many tissues, café au lait skin macules and endocrinopathies (precocious puberty, hyperthyroidism, growth hormone excess, Cushing syndrome) may be associated in McCune-Albright syndrome, but also myxoma in Mazabraud syndrome or phosphate diabetes. Diagnosis of craniofacial fibrous dysplasia should be considered in the presence of headache, neuralgia, sensory disorders (vision, hearing, balance, smelling), functional disorders (nasal obstruction, nasolacrimal duct obstruction, non-matching occlusion), infectious complications (sinusitis, otitis, mastoiditis). Such symptoms should lead to perform craniofacial CT scan completed with MRI. Bone biopsy is not systematic. Surgical treatment is discussed in cases of nervous complication, facial deformity or active lesions. In case of pain resistant to conventional analgesics, intravenous bisphosphonates can be proposed. In non-responder patients, several case reports suggest the efficacy of a monoclonal antibody directed against the IL-6 receptor which requires to be confirmed by randomized studies.

  19. Bilateral Osseous Interclinoid Bridges Associated with Foramina of Vesalius: A Case Report.

    PubMed

    Paraskevas, George; Nitsa, Zoi; Koutsouflianiotis, Konstantinos

    2015-07-01

    The current study displays a very rare combination of ossified interclinoid ligaments at the sella turcica region associated with bilateral foramina of Vesalius. In a macerated skull four osseous bars interconnecting the clinoid processes bilaterally were detected. Specifically, two bilateral osseous bars were observed bridging the gap between the anterior and middle clinoid processes forming the so called caroticoclinoid foramen on each side and two additional osseous bridges linked the anterior and posterior clinoid processes, bilaterally. Furthermore, two distinct bilateral foramina of Vesalius were documented just anterior and medial to the foramen ovale. The awareness of the osseous sellar bridges is crucial for the physician and especially the neurosurgeon since their presence may complicate the removal of clinoid processes and induce damage of the internal carotid artery and oculomotor nerves. Furthermore, the likely existence of the foramen of Vesalius may lead to transfer of an infected thrombus into the cranial cavity and complicate a percutaneous trigeminal rhizotomy.

  20. Bilateral Osseous Interclinoid Bridges Associated with Foramina of Vesalius: A Case Report

    PubMed Central

    Nitsa, Zoi; Koutsouflianiotis, Konstantinos

    2015-01-01

    The current study displays a very rare combination of ossified interclinoid ligaments at the sella turcica region associated with bilateral foramina of Vesalius. In a macerated skull four osseous bars interconnecting the clinoid processes bilaterally were detected. Specifically, two bilateral osseous bars were observed bridging the gap between the anterior and middle clinoid processes forming the so called caroticoclinoid foramen on each side and two additional osseous bridges linked the anterior and posterior clinoid processes, bilaterally. Furthermore, two distinct bilateral foramina of Vesalius were documented just anterior and medial to the foramen ovale. The awareness of the osseous sellar bridges is crucial for the physician and especially the neurosurgeon since their presence may complicate the removal of clinoid processes and induce damage of the internal carotid artery and oculomotor nerves. Furthermore, the likely existence of the foramen of Vesalius may lead to transfer of an infected thrombus into the cranial cavity and complicate a percutaneous trigeminal rhizotomy. PMID:26393114

  1. The anomalous canal between two accessory foramina on the mandibular ramus: the temporal crest canal

    PubMed Central

    Han, S-S; Hwang, J-J

    2014-01-01

    Objectives: The temporal crest canal (TCC) is a variation of the bony canal with two accessory foramina that correspond to an entrance and an exit on the mandibular ramus. This study investigated the anatomical characteristics of the TCC using CBCT. Methods: The study population consisted 446 patients who had undergone CBCT. Sagittal, cross-sectional and three-dimensional images were evaluated for the presence of a TCC. The canals were classified into two types according to the configuration, and the location of the posterior accessory foramen of the TCC was also recorded. Results: 6 TCCs were present in 4 of 446 patients (0.90% of the total population). All of the TCCs were observed in males, and all of the posterior foramina were located superior to the mandibular foramina on the medial aspect of the mandibular ramus. There were five noticeably curved and increasingly narrow canals (Type 1) and one slightly curved and uniformly wide canal (Type 2). Conclusions: Precise knowledge of the TCC is clinically important for suitable local anaesthetic nerve block and the planning of surgical procedures that involve the mandibular ramus. Three-dimensional images of CBCT data are particularly effective for confirming the presence of this variation. PMID:24959708

  2. Regenerative Strategies for Craniofacial Disorders

    PubMed Central

    Garland, Catharine B.; Pomerantz, Jason H.

    2012-01-01

    Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders. PMID:23248598

  3. Apraxia and the Parietal Lobes

    ERIC Educational Resources Information Center

    Goldenberg, Georg

    2009-01-01

    The widely held belief in a central role of left parietal lesions for apraxia can be traced back to Liepmann's model of a posterior to anterior stream converting mental images of intended action into motor execution. Although this model has undergone significant changes, its modern descendants still attribute the parietal contribution to the…

  4. Craniofacial surgery: present and future.

    PubMed Central

    Whitaker, L A; Schut, L; Randall, P

    1976-01-01

    The possibilities for radical craniofacial restructuring have increased dramatically in the past 6 years with the development of craniofacial surgery. The field developed from a background of patients with major craniofacial birth defects allowing orderly planning and expansion to correction of a multitude of other craniofacial structural problems. The procedures concentrate upon changing the skeletal structures using extensive subperiostial dissection of soft tissue, and adding bone to fill in areas of deficiency. There are three grades of complexity in craniofacial procedures. After extensive soft tissue sub-periostial stripping about the orbits and upper face, the simplest form consists of onlay bone grafts. The next most complicated involves osteotomies to shift the face into a more normal position. In its most complicated form, abnormal proportions of bone are removed and the orbits or cranium are shifted into a new or normal position. We have had experience with 69 patients since September, 1972. Thirty-six have had intracranial procedures. Infection has been the most serious problem, and there have been no instances of death or blindness. A number of lesser problems occur. Future applications of craniofacial surgery are appearing with great frequency as more experience is gained with its uses. It has particular application in acute and late reconstruction of patients with traumatic defects about the face. Preventive osteotomies are an area with great potential, by releasing stenotic areas of bone and allowing the developing brain to mold the upper face and orbits. There is also applicability in surgery of tumors about the craniofacial structure and in cosmetic surgery. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 1d. Fig. 1e. Fig. 2a. Fig. 2b. Fig. 2c. PMID:984925

  5. Mastoid emissary foramina: an anatomical morphological study with discussion on their evolutionary and clinical implications

    PubMed Central

    Chettiar, Ganesh Kumar; Prameela, M. D.; Tonse, Mamatha; Kumar, Naveen; Saralaya, Vasudha V.; Prabhu, Latha V.

    2014-01-01

    The identification of mastoidal emissary veins is of importance in the neurosurgical practice to diagnose abnormal and normal structures. In the present study, the objectives were to estimate the prevalence rate of mastoidal emissary foramina in the temporal bones of the adult skull and to study their number and morphology. The present study included 48 adult human skulls which were obtained from the gross anatomy laboratory of our institution. The mastoid parts of 96 temporal bones were macroscopically observed for the prevalence, number and morphology of the emissary foramina. It is observed that, the mastoidal emissary foramen was present in 88 temporal bones (91.7%) of our specimens. The foramen was observed single in 60 temporal bones (62.5%), double in 22 bones (22.9%), and triple in 6 temporal bones (6.2%). The mastoidal emissary foramen was absent in 8 (8.3%) temporal bones. The foramen was bilaterally absent in 3 (3.1%) skulls. It was unilaterally absent in 2 (2.1%) skulls and both were on the left side. The mastoidal emissary vein is prevalent in a large number (91.7%) of cases. It was observed that the accessory mastoidal emissary foramina were present in 29.1% of cases. Recognition of the mastoid emissary veins and accessory mastoid emissary veins during the otologic surgery is critical to avoid the significant bleeding. In the neurosurgical practice, the knowledge is important due to variability in the number of mastoidal emissary veins and their connection to the venous sinuses. PMID:25276480

  6. [Parietal Cortices and Body Information].

    PubMed

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  7. Understanding Cleft and Craniofacial Team Care

    MedlinePlus

    ... Donor Spotlight Fundraising Ideas Vehicle Donation Volunteer Efforts Cleft Lip/Palate & Craniofacial Specialists in Your Area skip to submenu Parents & Individuals Cleft Lip/Palate & Craniofacial Specialists in Your Area Team Disclaimer States: ...

  8. New insights into craniofacial malformations

    PubMed Central

    Twigg, Stephen R.F.; Wilkie, Andrew O.M.

    2015-01-01

    Development of the human skull and face is a highly orchestrated and complex three-dimensional morphogenetic process, involving hundreds of genes controlling the coordinated patterning, proliferation and differentiation of tissues having multiple embryological origins. Craniofacial malformations that occur because of abnormal development (including cleft lip and/or palate, craniosynostosis and facial dysostoses), comprise over one-third of all congenital birth defects. High-throughput sequencing has recently led to the identification of many new causative disease genes and functional studies have clarified their mechanisms of action. We present recent findings in craniofacial genetics and discuss how this information together with developmental studies in animal models is helping to increase understanding of normal craniofacial development. PMID:26085576

  9. Imaging of craniofacial fibrous dysplasia.

    PubMed

    Lisle, D A; Monsour, P A J; Maskiell, C D

    2008-08-01

    Fibrous dysplasia is a relatively common disorder of bone. It may affect the bones of the face and skull and, in so doing, produce a wide variety of clinical presentations. Plain film assessment of craniofacial fibrous dysplasia may be difficult because of varying appearances and complex, overlapping structures. The MRI appearances of fibrous dysplasia are often non-specific and may be confusing. Findings on CT are also variable, but more commonly lead to a specific diagnosis. This is because of the characteristic ground-glass appearance of woven bone, seen on CT in most if not all cases of craniofacial fibrous dysplasia.

  10. Space and the parietal cortex

    PubMed Central

    Husain, Masud; Nachev, Parashkev

    2007-01-01

    Current views of the parietal cortex have difficulty accommodating the human inferior parietal lobe (IPL) within a simple dorsal versus ventral stream dichotomy. In humans, lesions of the right IPL often lead to syndromes such as hemispatial neglect that are seemingly in accord with the proposal that this region has a crucial role in spatial processing. However, recent imaging and lesion studies have revealed that inferior parietal regions have non-spatial functions, such as in sustaining attention, detecting salient events embedded in a sequence of events and controlling attention over time. Here, we review these findings and show that spatial processes and the visual guidance of action are only part of the repertoire of parietal functions. Although sub-regions in the human superior parietal lobe and intraparietal sulcus contribute to vision-for-action and spatial functions, more inferior parietal regions have distinctly non-spatial attributes that are neither conventionally ‘dorsal’ nor conventionally ‘ventral’ in nature. PMID:17134935

  11. Summarizing craniofacial genetics and developmental biology (SCGDB).

    PubMed

    Hall, Brian K

    2014-04-01

    This overview article highlights active areas of research in craniofacial genetics and developmental biology as reflected in presentations given at the 34th annual meeting of the Society of Craniofacial Genetics and Developmental Biology (SCGDB) in Montreal, Quebec on October 11, 2011. This 1-day meeting provided a stimulating occasion that demonstrated the present status of research in craniofacial genetics and developmental biology and where the field is heading. To accompany the abstracts published in this issue I have selected several themes that emerged from the meeting. After discussing the basis on which craniofacial defects/syndromes are classified and investigated, I address the multi-gene basis of craniofacial syndromes with an examination of the roles of Sox9 and FGF receptors in normal and abnormal craniofacial development. I then turn to the knowledge being gained from population-wide and longitudinal cohort studies and from the discovery of new signaling centers that regulate craniofacial development.

  12. Neurophysiological assessment of craniofacial pain.

    PubMed

    Galeotti, Francesca; Truini, Andrea; Cruccu, Giorgio

    2006-04-01

    This review deals with the diagnostic usefulness of neurophysiological testing in patients with craniofacial pain. Neurophysiological testing of trigeminal nerve function relies on trigeminal reflexes and laser-evoked potentials (LEPs). This review briefly describes the physiology of trigeminal reflexes and LEPs, reports normal values and highlights the neurophysiological abnormalities in the main clinical conditions.

  13. Biomaterials for Craniofacial Bone Engineering

    PubMed Central

    Tevlin, R.; McArdle, A.; Atashroo, D.; Walmsley, G.G.; Senarath-Yapa, K.; Zielins, E.R.; Paik, K.J.; Longaker, M.T.; Wan, D.C.

    2014-01-01

    Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell–based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development. PMID:25139365

  14. Bone Grafts in Craniofacial Surgery

    PubMed Central

    Elsalanty, Mohammed E.; Genecov, David G.

    2009-01-01

    Reconstruction of cranial and maxillofacial defects is a challenging task. The standard reconstruction method has been bone grafting. In this review, we shall describe the biological principles of bone graft healing, as pertinent to craniofacial reconstruction. Different types and sources of bone grafts will be discussed, as well as new methods of bone defect reconstruction. PMID:22110806

  15. Craniofacial clefting and sutural dystopia.

    PubMed

    Moore, M H; Edwards, T J; David, D J

    1991-07-01

    Sutural anomalies in conjunction with craniofacial clefting are unusual. A case of median frontal clefting is presented in which there was an absence of a normal metopic suture and replacement by paramedian frontal sutures. The association of an underlying brain anomaly, with attendant surgical difficulties, is noted, as are the radiological techniques of preoperative diagnosis.

  16. The crescent of foramina in Australopithecus afarensis and other early hominids.

    PubMed

    Rak, Y; Kimbel, W H; Johanson, D C

    1996-09-01

    The crescent of foramina of the cerebral surface of the sphenoid bone (superior orbital fissure, foramen rotundum, foramen ovale, foramen spinosum) differs morphologically in the African great apes and modern humans. New discoveries of Australopithecus afarensis at Hadar, Ethiopia, draw attention to the similarity of the crescent, particularly the "foramen" shape of the superior orbital fissure and its close proximity to the foramen rotundum, in this species, the African apes, and many other primates. Australopithecus africanus also shows this primitive pattern, whereas "robust" australopiths and humans share a configuration in which a true, laterally extended superior orbital fissure intervenes between the greater and lesser wings of the sphenoid and a broad bridge of bone separates the fissure from the foramen rotundum. This shared morphology may be added to the list of putative "robust" australopith-Homo synapomorphies.

  17. Anatomic study of cranial nerve emergence and associated skull foramina in cats using CT and MRI.

    PubMed

    Gomes, Eymeric; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique

    2009-01-01

    Magnetic resonance (MR) images of the brain of four normal cats were reviewed retrospectively to assess the emergence and course of the cranial nerves (CNs). Two-millimeter-thick images were obtained in transverse, sagittal, and dorsal planes using a 1.5 T unit. CN skull foramina, as anatomic landmarks for MR imaging, were identified by computed tomography performed on an isolated cat skull using thin wire within each skull foramen. Thin slice (1 mm slice thickness) images were obtained with a high-resolution bone filter scan protocol. The origins of CNs II, V, VII, and VIII and the group of IX, X, XI, and XII could be identified. The pathway and proximal divisions of CNs V were described. CNs III, IV, and VI were not distinguished from each other but could be seen together in the orbital fissure. CN V was characterized by slight contrast enhancement.

  18. Multisensory maps in parietal cortex☆

    PubMed Central

    Sereno, Martin I; Huang, Ruey-Song

    2014-01-01

    Parietal cortex has long been known to be a site of sensorimotor integration. Recent findings in humans have shown that it is divided up into a number of small areas somewhat specialized for eye movements, reaching, and hand movements, but also face-related movements (avoidance, eating), lower body movements, and movements coordinating multiple body parts. The majority of these areas contain rough sensory (receptotopic) maps, including a substantial multisensory representation of the lower body and lower visual field immediately medial to face VIP. There is strong evidence for retinotopic remapping in LIP and face-centered remapping in VIP, and weaker evidence for hand-centered remapping. The larger size of the functionally distinct inferior parietal default mode network in humans compared to monkeys results in a superior and medial displacement of middle parietal areas (e.g., the saccade-related LIP's). Multisensory superior parietal areas located anterior to the angular gyrus such as AIP and VIP are less medially displaced relative to macaque monkeys, so that human LIP paradoxically ends up medial to human VIP. PMID:24492077

  19. Virtual Surgical Planning in Craniofacial Surgery

    PubMed Central

    Chim, Harvey; Wetjen, Nicholas; Mardini, Samir

    2014-01-01

    The complex three-dimensional anatomy of the craniofacial skeleton creates a formidable challenge for surgical reconstruction. Advances in computer-aided design and computer-aided manufacturing technology have created increasing applications for virtual surgical planning in craniofacial surgery, such as preoperative planning, fabrication of cutting guides, and stereolithographic models and fabrication of custom implants. In this review, the authors describe current and evolving uses of virtual surgical planning in craniofacial surgery. PMID:25210509

  20. Carotico-clinoid foramina and a double optic canal: A case report with neurosurgical implications

    PubMed Central

    Zdilla, Matthew J.; Cyrus, Leah M.; Lambert, H. Wayne

    2015-01-01

    Background: The lesser wing of the sphenoid is a clinically important structure, particularly with regard to its anatomical relationship with neurovascular structures including the optic nerve, ophthalmic artery, and internal carotid artery. Anterior clinoidectomy, a neurosurgical procedure utilized to access paraclinoid aneurysms and neoplasms, is often complicated by the presence of anatomical variants including the carotico-clinoid foramen and the accessory optic canal. Case Description: A rare case report is presented documenting the simultaneous occurrence of bilateral carotico-clinoid foramina and a unilateral accessory optic canal. Conclusion: The presence of an accessory optic canal may be misconstrued as a carotico-clinoid foramen or pneumatization of the anterior clinoid process, lesser sphenoidal wing, or optic strut. The case report documents two clinically important variant structures occurring ipsilaterally, each with the potential to masquerade as the other radiographically and present complications to both neurosurgeons and radiologists. Knowledge of the unique combination of anatomical variants presented in this report may prevent adverse surgical events during anterior clinoidectomy procedures including hemorrhage of the ophthalmic artery or internal carotid artery and subsequent vision loss or death. PMID:25657866

  1. Parietal bone osteomyelitis in melioidosis

    PubMed Central

    Shetty, Hariprasad Sadanand; Mallela, Ajay Raj; Shastry, Barkur Ananthakrishna; Acharya, Vasudeva

    2015-01-01

    We report a case of a 55-year-old man with uncontrolled diabetes who presented with pneumonia. During his hospital stay his clinical status worsened and he had a focal seizure. MRI showed central nervous system involvement and parietal bone osteomyelitis. As the patient's blood culture and endotracheal aspirate grew Burkholderia pseudomallei, melioidosis was diagnosed. He was treated with meropenem after failure to respond to ceftazidime. He gradually improved over a period of 4 weeks and was discharged. Early diagnosis and therapy resulted in improved outcome. PMID:25725029

  2. Craniofacial Tissue Engineering by Stem Cells

    PubMed Central

    Mao, J.J.; Giannobile, W.V.; Helms, J.A.; Hollister, S.J.; Krebsbach, P.H.; Longaker, M.T.; Shi, S.

    2008-01-01

    Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures—such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue—have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss. PMID:17062735

  3. Surgical options for complex craniofacial pain.

    PubMed

    Sharma, Mayur; Shaw, Andrew; Deogaonkar, Milind

    2014-10-01

    Complex craniofacial pain can be a challenging condition to manage both medically and surgically, but there is a resurgence of interest in the role of neurostimulation therapy. Surgical options for complex craniofacial pain syndromes include peripheral nerve/field stimulation, ganglion stimulation, spinal cord stimulation, dorsal nerve root entry zone lesioning, motor cortex stimulation, and deep brain stimulation. Peripheral nerve/field stimulation is rapidly being explored and is preferred by both patients and surgeons. Technological advances and improved understanding of the interactions of pain pathways with its affective component will widen the scope of neurostimulation therapy for craniofacial pain syndromes.

  4. Core issues in craniofacial myogenesis

    SciTech Connect

    Kelly, Robert G.

    2010-11-01

    Branchiomeric craniofacial muscles control feeding, breathing and facial expression. These muscles differ on multiple counts from all other skeletal muscles and originate in a progenitor cell population in pharyngeal mesoderm characterized by a common genetic program with an adjacent population of cardiac progenitor cells, the second heart field, that gives rise to much of the heart. The transcription factors and signaling molecules that trigger the myogenic program at sites of branchiomeric muscle formation are correspondingly distinct from those in somite-derived muscle progenitor cells. Here new insights into the regulatory hierarchies controlling branchiomeric myogenesis are discussed. Differences in embryological origin are reflected in the lineage, transcriptional program and proliferative and differentiation properties of branchiomeric muscle satellite cells. These recent findings have important implications for our understanding of the diverse myogenic strategies operative both in the embryo and adult and are of direct biomedical relevance to deciphering the mechanisms underlying the cause and progression of muscle restricted myopathies.

  5. Working with DICOM craniofacial images

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Proffit, William R.

    2009-01-01

    The increasing use of cone-beam computed tomography (CBCT) requires changes in our diagnosis and treatment planning methods as well as additional training. The standard for digital computed tomography images is called digital imaging and communications in medicine (DICOM). In this article we discuss the following concepts: visualization of CBCT images in orthodontics, measurement in CBCT images, creation of 2-dimensional radiographs from DICOM files, segmentation engines and multimodal images, registration and superimposition of 3-dimensional (3D) images, special applications for quantitative analysis, and 3D surgical prediction. CBCT manufacturers and software companies are continually working to improve their products to help clinicians diagnose and plan treatment using 3D craniofacial images. PMID:19732681

  6. Osteodistraction in the craniofacial region.

    PubMed

    Bertelè, G; Mercanti, M; Stella, F; Albanese, M; De Santis, D

    2005-04-01

    In the specific field of maxillofacial surgery, the use of osseous distraction is always more and more helpful not only in the rehabilitation of malformation pathologies, but also in the clinical situations that require bone deficit correction resulting from traumatic events and postsurgical effects, for example oncologic surgery. The reason for this versatility in the distraction protocols is, undoubtedly, due to the fact that, at present, they are valid surgical methods in alternative to or supporting maxillofacial surgery, since they are feasible from a very early age and they obtain a level of distraction that is often higher than with orthopedic devices or conventional surgery. There are multiple indications for osteodistraction and they range from cases of hyper- or hypodevelopment of the maxilla and mandible, of both their anteroposterior and transverse components, to complex syndromes such as cleft lip and palate. Even the clinical distraction of the upper and middle thirds of the cranium, through a coronal craniotomy, has been shown to be a safe surgical procedure and it allows, for example, the successful rehabilitation of adult patients suffering from hemifacial microsomia or craniosynostosis. With the continuous and constant evolution of the integration of osteodistraction principles in the rehabilitation of the craniofacial region, an ever-more effective interdisciplinary relationship between orthodontics and osteodistraction has been seen with growing interest. More often treatment plans are programmed in which the orthodontic and osteodistractive phases are integrated and complete each other, each supporting the other. Scientific and clinical progress achieved in this field in recent years, allows more and more refined therapeutic solutions to be programmed, permitting craniofacial operations and to repair an ankylotic dental arch or reposition osteointegrated implants to the most convenient bone sites.

  7. New developments in craniofacial surgery research.

    PubMed

    Mehrara, B J; Longaker, M T

    1999-09-01

    The recent explosion in our understanding of developmental biology and genetics has enhanced our understanding of craniofacial biology. While it is not possible to summarize all new developments in craniofacial research, this article will review three areas: fetal models and surgery for craniofacial disorders, the biology of distraction osteogenesis, and the molecular mechanisms of cranial suture fusion. Numerous models of craniofacial disorders have been described, including small, short gestation and large, long gestation. The benefits and shortcomings of each are discussed. In addition, we discuss recent studies investigating the molecular mechanisms of mandibular distraction osteogenesis. Finally, we present a review of recent advances in the understanding of mechanisms of craniosynostosis, with particular emphasis on the biology of programmed cranial suture fusion in rodents.

  8. Relationships between craniofacial pain and bruxism.

    PubMed

    Svensson, P; Jadidi, F; Arima, T; Baad-Hansen, L; Sessle, B J

    2008-07-01

    A still commonly held view in the literature and clinical practice is that bruxism causes pain because of overloading of the musculoskeletal tissue and craniofacial pain, on the other hand, triggers more bruxism. Furthermore, it is often believed that there is a dose-response gradient so that more bruxism (intensity, duration) leads to more overloading and pain. Provided the existence of efficient techniques to treat bruxism, it would be straightforward in such a simple system to target bruxism as the cause of pain and hence treat the pain. Of course, human biological systems are much more complex and therefore, it is no surprise that the relationship between bruxism and pain is far from being simple or even linear. Indeed, there are unexpected relationships, which complicate the establishment of adequate explanatory models. Part of the reason is the complexity of the bruxism in itself, which presents significant challenges related to operationalized criteria and diagnostic tools and underlying pathophysiology issues, which have been dealt with in other reviews in this issue. However, another important reason is the multifaceted nature of craniofacial pain. This review will address our current understanding of classification issues, epidemiology and neurobiological mechanisms of craniofacial pain. Experimental models of bruxism may help to further the understanding of the relationship between craniofacial pain and bruxism in addition to insights from intervention studies. The review will enable clinicians to understand the reasons why simple cause-effect relationships between bruxism and craniofacial pain are inadequate and the current implications for management of craniofacial pain.

  9. Hidden aqueductal stenosis associated to bilateral idiopathic foramina of Monro stenosis mimicking a Chiari I malformation? Case report.

    PubMed

    Bartoli, Andrea; Ghinda, Cristina Diana; Radovanovic, Ivan; Momjian, Shahan

    2012-11-01

    A 39-year old man came to our outpatient clinic with long history of unspecific symptoms and signs. Cerebral MRI showed herniation of the cerebellar tonsils of more than 1 cm below the foramen magnum and a triventricular hydrocephalus. A diagnosis of Chiari I malformation was retained. After an osteo-dural decompression of the posterior fossa, post-operative MRI revealed an aqueductal stenosis with triventricular hydrocephalus. An endoscopic-third- ventriculostomy showed an idiopathic stenosis of the right foramen of Monro. Residual symptoms and persistence of biventricular hydrocephalus justified a ventriculo-peritoneal shunt. Aqueductal and foramina of Monro stenosis can mimick a Chiari I malformation.

  10. Anatomical study of cranial nerve emergence and skull foramina in the dog using magnetic resonance imaging and computed tomography.

    PubMed

    Couturier, Laurent; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique

    2005-01-01

    Twenty-two magnetic resonance imaging (MRI) brain studies of different breeds of dogs were reviewed to assess the anatomy of cranial nerve (CN) origins and associated skull foramina. These included five anatomic studies of normal brains using 2-mm-thick slices and 17 studies using conventional clinical protocols with 3- or 4-mm slices on both normal and abnormal brains. Images were obtained in transverse, sagittal, and dorsal planes to allow a thorough comparison between studies. CNs II, III, V (and its divisions), and VIII were observed consistently on conventional studies. On the thin-slice studies, the origins and proximal portions of CNN IV, VII, and the group of IX, X, and XI could be seen. The origins of CNN VI and XII were not observed with certainty. In parallel, a computed tomography study of an isolated skull was performed with a thin copper wire within each of the skull foramina to determine precisely each CN exit and to facilitate recognition of the course of CNs when exiting the skull on MRI images.

  11. ANATOMICAL STUDY OF CRANIAL NERVE EMERGENCE AND SKULL FORAMINA IN THE HORSE USING MAGNETIC RESONANCE IMAGING AND COMPUTED TOMOGRAPHY.

    PubMed

    Gonçalves, Rita; Malalana, Fernando; McConnell, James Fraser; Maddox, Thomas

    2015-01-01

    For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross-sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2-weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin-slice MR sequences were also acquired using transverse 3D-CISS sequences that allowed mutliplanar reformatting. Transverse thin-slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images.

  12. Parietal connectivity mediates multisensory facilitation.

    PubMed

    Brang, David; Taich, Zachary J; Hillyard, Steven A; Grabowecky, Marcia; Ramachandran, V S

    2013-09-01

    Our senses interact in daily life through multisensory integration, facilitating perceptual processes and behavioral responses. The neural mechanisms proposed to underlie this multisensory facilitation include anatomical connections directly linking early sensory areas, indirect connections to higher-order multisensory regions, as well as thalamic connections. Here we examine the relationship between white matter connectivity, as assessed with diffusion tensor imaging, and individual differences in multisensory facilitation and provide the first demonstration of a relationship between anatomical connectivity and multisensory processing in typically developed individuals. Using a whole-brain analysis and contrasting anatomical models of multisensory processing we found that increased connectivity between parietal regions and early sensory areas was associated with the facilitation of reaction times to multisensory (auditory-visual) stimuli. Furthermore, building on prior animal work suggesting the involvement of the superior colliculus in this process, using probabilistic tractography we determined that the strongest cortical projection area connected with the superior colliculus includes the region of connectivity implicated in our independent whole-brain analysis.

  13. Photographic protocol for image acquisition in craniofacial microsomia

    PubMed Central

    2011-01-01

    Craniofacial microsomia (CFM) is a congenital condition associated with orbital, mandibular, ear, nerve, and soft tissue anomalies. We present a standardized, two-dimensional, digital photographic protocol designed to capture the common craniofacial features associated with CFM. PMID:22208766

  14. Craniofacial reconstruction evaluation by geodesic network.

    PubMed

    Zhao, Junli; Liu, Cuiting; Wu, Zhongke; Duan, Fuqing; Wang, Kang; Jia, Taorui; Liu, Quansheng

    2014-01-01

    Craniofacial reconstruction is to estimate an individual's face model from its skull. It has a widespread application in forensic medicine, archeology, medical cosmetic surgery, and so forth. However, little attention is paid to the evaluation of craniofacial reconstruction. This paper proposes an objective method to evaluate globally and locally the reconstructed craniofacial faces based on the geodesic network. Firstly, the geodesic networks of the reconstructed craniofacial face and the original face are built, respectively, by geodesics and isogeodesics, whose intersections are network vertices. Then, the absolute value of the correlation coefficient of the features of all corresponding geodesic network vertices between two models is taken as the holistic similarity, where the weighted average of the shape index values in a neighborhood is defined as the feature of each network vertex. Moreover, the geodesic network vertices of each model are divided into six subareas, that is, forehead, eyes, nose, mouth, cheeks, and chin, and the local similarity is measured for each subarea. Experiments using 100 pairs of reconstructed craniofacial faces and their corresponding original faces show that the evaluation by our method is roughly consistent with the subjective evaluation derived from thirty-five persons in five groups.

  15. Distraction Osteogenesis of the Craniofacial Skeleton.

    PubMed

    Yu, Jack C.; Fearon, Jeffrey; Havlik, Robert J.; Buchman, Steve R.; Polley, John W.

    2004-07-01

    LEARNING OBJECTIVES:: After studying this article, the participant should be able to: 1. Review the biomechanical principles and pertinent cellular and molecular biology of distraction osteogenesis of the craniofacial skeleton. 2. Describe the clinical indications and applications of distraction osteogenesis of the craniofacial skeleton. 3. Describe maxillary, mandibular, midface, and calvarial procedures in distraction osteogenesis. 4. Discuss the clinical outcomes and complications of distraction osteogenesis of the craniofacial skeleton.The year 2002 marked the end of the first decade in clinical distraction osteogenesis of the craniofacial skeleton. In this short period, its application has increased exponentially. More than 3000 cases have been performed according to a recent survey, and more than 700 articles have been written on this subject in the MEDLINE database since 1996. It is a powerful surgical tool and enables surgeons to achieve results not previously attainable. Despite all this, distraction osteogenesis is practiced by only a small number of plastic surgeons. This article reviews the biomechanical principles; the pertinent cellular and molecular biology; and the clinical indications, applications, controversies, and complications of distraction osteogenesis of the craniofacial skeleton.

  16. Distraction osteogenesis in craniofacial surgery: a review.

    PubMed

    Tavakoli, K; Stewart, K J; Poole, M D

    1998-01-01

    Distraction osteogenesis is a technique of new bone formation by the gradual separation of bony fragments. The method, although initially developed for limb lengthening, is now being applied in the treatment of craniofacial deformities. A number of principles have been established through careful scientific study to guide clinical practice, such as the ideal rate and rhythm of distraction, the need for periosteal preservation during bone division, a "latent period" of neutral fixation before, and a "consolidation period" after distraction. The technique is being applied in craniofacial surgery particularly for mandibular deformities and offers considerable advantages over previous methods such as osteotomy and inlay bone grafting. Donor site morbidity is avoided, the investing soft tissue envelope is concurrently expanded, and the magnitude of the procedure is less. However, the technique is still in its infancy and requires further modification and refinement before widespread acceptance as a treatment in mainstream craniofacial surgery. Problems with cutaneous scarring and socially undesirable external hardware, particularly in the pediatric population, have led to the emergence of intraoral miniature devices, with the ultimate goal of development of a multiplanar internal autodistractor. Furthermore, many principles well established in leg lengthening, such as the rate and rhythm of distraction, need to be reexamined and the parameters redefined with particular reference to the craniofacial skeleton. Distraction osteogenesis has an expanding role in craniofacial surgery.

  17. Craniofacial neurofibromatosis: treatment of the midface deformity.

    PubMed

    Singhal, Dhruv; Chen, Yi-Chieh; Tsai, Yueh-Ju; Yu, Chung-Chih; Chen, Hung Chang; Chen, Yu-Ray; Chen, Philip Kuo-Ting

    2014-07-01

    Craniofacial Neurofibromatosis is a benign but devastating disease. While the most common location of facial involvement is the orbito-temporal region, patients often present with significant mid-face deformities. We reviewed our experience with Craniofacial Neurofibromatosis from June 1981 to June 2011 and included patients with midface soft tissue deformities defined as gross alteration of nasal or upper lip symmetry. Data reviewed included the medical records and photobank. Over 30 years, 52 patients presented to and underwent surgical management for Craniofacial Neurofibromatosis at the Chang Gung Craniofacial Center. 23 patients (43%) demonstrated gross mid-facial deformities at initial evaluation. 55% of patients with lip deformities and 28% of patients with nasal deformities demonstrated no direct tumour involvement. The respective deformity was solely due to secondary gravitational effects from neurofibromas of the cheek subunit. Primary tumour infiltration of the nasal and/or labial subunits was treated with excision followed by various methods of reconstruction including lower lateral cartilage repositioning, forehead flaps, free flaps, and/or oral commissure suspension. Soft tissue deformities of the midface are very common in patients with Craniofacial Neurofibromatosis and profoundly affect overall aesthetic outcomes. Distinguishing primary from secondary involvement of the midface assists in surgical decision making.

  18. Gelastic seizures involving the left parietal lobe.

    PubMed

    Machado, René Andrade; Astencio, Adriana Goicoechea

    2012-01-01

    Gelastic seizures have been described in various epilepsies arising from the temporal or frontal lobes, although the most commonly encountered form is related to the presence of a hypothalamic hamartoma. We describe a patient with gelastic seizures involving the left parietal lobe. Our patient, an 8-year-old girl, underwent interictal video/EEG monitoring and MRI. The seizures consisted of brief staring followed by smiling and laughing. Electroencephalography during the gelastic seizures showed rhythmic spikes and waves in the left parietal lobe. MRI revealed the characteristic features of focal cortical dysplasia. Our findings suggest that the left parietal lobe may actively participate in the particular epileptogenic network generating gelastic seizures.

  19. Anosognosia in parietal lobe syndrome.

    PubMed

    Ramachandran, V S

    1995-03-01

    Patients with right parietal lesions often deny their paralysis (anosognosia), but do they have "tacit" knowledge of their paralysis? I devised three novel tests to explore this. First, the patients were given a choice between a bimanual task (e.g., tying shoe laces) vs a unimanual one (e.g., threading a bolt). They chose the former on 17 of 18 trials and, surprisingly, showed no frustration or learning despite repeated failed attempts. I conclude that they have no tacit knowledge of paralysis (or, if such knowledge exists, it is not available for this particular task). Second, I used a "virtual reality box" to convey the optical illusion to the patient that she was moving her paralyzed left hand up and down to the rhythm of a metronome, and yet she showed no sign of surprise. Third, I irrigated patient BM's left ear canal with cold water, a procedure that is known to shift that patient's spatial frame of reference by stimulating the vestibular system. Surprisingly, this allowed her "repressed" memory of the paralysis to come to the surface; she said she had been paralyzed continuously for several days. I suggest that the vestibular stimulation produces these remarkable effects by mimicking REM sleep. These patients also employ a whole arsenal of grossly exaggerated Freudian "defense mechanisms" to account for their paralysis. To explain this, I propose that in normal individuals the left hemisphere ordinarily deals with small, local anomalies by trying to impose consistency but, when the anomaly exceeds threshold, an interaction with the right hemisphere forces a "paradigm shift." A failure of this process, in patients with right hemisphere damage, might partially account for anosognosia. Finally, I present a new conceptual framework that may help link several psychological and neurological phenomena such as Freudian defense mechanisms, vestibular stimulation, anosognosia, memory repression, visual illusions, anterograde amnesia, REM sleep, dreaming, and humor.

  20. Craniofacial ontogeny in Centrosaurus apertus

    PubMed Central

    Tumarkin-Deratzian, Allison R.

    2014-01-01

    Centrosaurus apertus, a large bodied ceratopsid from the Late Cretaceous of North America, is one of the most common fossils recovered from the Belly River Group. This fossil record shows a wide diversity in morphology and size, with specimens ranging from putative juveniles to fully-grown individuals. The goal of this study was to reconstruct the ontogenetic changes that occur in the craniofacial skeleton of C. apertus through a quantitative cladistic analysis. Forty-seven cranial specimens were independently coded in separate data matrices for 80 hypothetical multistate growth characters and 130 hypothetical binary growth characters. Both analyses yielded the max-limit of 100,000 most parsimonious saved trees and the strict consensus collapsed into large polytomies. In order to reduce conflict resulting from missing data, fragmentary individuals were removed and the analyses were rerun. Among both the complete and the reduced data sets the multistate analyses recovered a shorter tree with a higher consistency index (CI) than the additive binary data sets. The arrangement within the trees shows a progression of specimens with a recurved nasal horn in the least mature individuals, followed by specimens with straight nasal horns in relatively more mature individuals, and finally specimens with procurved nasal horns in the most mature individuals. The most mature individuals are further characterized by the reduction of the cranial horn ornamentations in late growth stages, a trait that similarly occurs in the growth of other dinosaurs. Bone textural changes were found to be sufficient proxies for relative maturity in individuals that have not reached adult size. Additionally, frill length is congruent with relative maturity status and makes an acceptable proxy for ontogenetic status, especially in smaller individuals. In adult-sized individuals, the fusion of the epiparietals and episquamosals and the orientation of the nasal horn are the best indicators of relative

  1. Craniofacial ontogeny in Centrosaurus apertus.

    PubMed

    Frederickson, Joseph A; Tumarkin-Deratzian, Allison R

    2014-01-01

    Centrosaurus apertus, a large bodied ceratopsid from the Late Cretaceous of North America, is one of the most common fossils recovered from the Belly River Group. This fossil record shows a wide diversity in morphology and size, with specimens ranging from putative juveniles to fully-grown individuals. The goal of this study was to reconstruct the ontogenetic changes that occur in the craniofacial skeleton of C. apertus through a quantitative cladistic analysis. Forty-seven cranial specimens were independently coded in separate data matrices for 80 hypothetical multistate growth characters and 130 hypothetical binary growth characters. Both analyses yielded the max-limit of 100,000 most parsimonious saved trees and the strict consensus collapsed into large polytomies. In order to reduce conflict resulting from missing data, fragmentary individuals were removed and the analyses were rerun. Among both the complete and the reduced data sets the multistate analyses recovered a shorter tree with a higher consistency index (CI) than the additive binary data sets. The arrangement within the trees shows a progression of specimens with a recurved nasal horn in the least mature individuals, followed by specimens with straight nasal horns in relatively more mature individuals, and finally specimens with procurved nasal horns in the most mature individuals. The most mature individuals are further characterized by the reduction of the cranial horn ornamentations in late growth stages, a trait that similarly occurs in the growth of other dinosaurs. Bone textural changes were found to be sufficient proxies for relative maturity in individuals that have not reached adult size. Additionally, frill length is congruent with relative maturity status and makes an acceptable proxy for ontogenetic status, especially in smaller individuals. In adult-sized individuals, the fusion of the epiparietals and episquamosals and the orientation of the nasal horn are the best indicators of relative

  2. The craniofacial complex in 47, XXX females.

    PubMed

    Krusinskiene, Viktorija; Krusinskie, Viktorija; Alvesalo, Lassi; Sidlauskas, Antanas

    2005-08-01

    A study of the craniofacial complex in four 47, XXX Finnish females, or females with an extra X chromosome, was carried out using cephalometric analysis comprising linear and angular measurements. The lengths of the anterior and posterior cranial bases, the calvarium, mandibular ramus and posterior and upper anterior face heights were found to be significantly shorter than in female controls, while the angles between the foraminal and clival planes, the mandibular plane and cranial base, the maxillary and occlusal planes, the maxillary and mandibular planes and the foraminal and mandibular planes, and also the gonial angle, were significantly enlarged. The present findings of reduced linear measurements, together with the results of studies on the craniofacial complex of 47, XXY and 47, XYY males, suggest dimensional variation between these groups from the promoting effect of an extra Y chromosome and the retarding effect of an extra X chromosome on craniofacial growth.

  3. Ovine craniofacial malformation: a morphometrical study.

    PubMed

    Eriksen, T; Kuiper, H; Pielmeier, R; Ganter, M; Distl, O; Staszyk, C

    2012-12-01

    Craniofacial malformation in 64 sheep was phenotypically described as mandibular distoclusion. Digital radiographs were examined in order to determine the degree of morphological changes in certain bones of the skull. Therefore, laterolateral standardised digital radiographs were used to determine anatomic reference points. Subsequently, five reference lines were defined and 16 linear and seven angular measurements were determined to describe malformations in the bones of the skull. Statistical analysis revealed a significant shortening of the rostral part of the corpus mandibulae and of the ramus mandibulae. However, the molar part of the mandible remained unchanged. These morphological changes caused premolar and molar malocclusion. No further craniofacial abnormalities, such as an elongation of the maxilla or of the incisive bone, were identified. In conclusion, the phenotypically observed mandibular distoclusion is caused by a shortening of specific parts of the mandible. This form of ovine craniofacial malformation is therefore best described as brachygnathia inferior.

  4. Gelastic seizures involving the right parietal lobe.

    PubMed

    Shin, Hee-Young; Hong, Seung Bong; Joo, Eun Yeon; Tae, Woo Suk; Han, Sun Jung; Cho, Jae Wook; Seo, Dae Won; Kim, Sun Hyung; Lee, Jong-Min; Kim, Sun I

    2006-09-01

    Gelastic seizures have been described in various epilepsies arising from the temporal or frontal lobes, although the most commonly encountered form is related to the presence of an hypothalamic hamartoma. We report a patient with gelastic seizures involving the right parietal lobe. Our patient, a 32-year-old man, underwent video-EEG monitoring, interictal and ictal brain SPECTs during gelastic seizures. Subtraction ictal SPECT co-registered to MRI (SISCOM), was performed to localize any ictal hyperperfusion during these gelastic seizures. The seizures consisted of brief staring followed by smiling and laughing. Electroencephalography during the gelastic seizures showed rhythmic sharp waves in the right parietal lobe. SISCOM showed ictal hyperperfusion in the right parietal lobe and medial portions of right cerebellum. Our findings suggest that the right parietal lobe may actively participate in the particular epileptogenic network generating gelastic seizures.

  5. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  6. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  7. Prostate Cancer Presenting with Parietal Bone Metastasis

    PubMed Central

    Pare, Abdoul Karim; Abubakar, Babagana Mustapha; Kabore, Moussa

    2017-01-01

    Bone metastases from prostate cancer are very common. They are usually located on the axial skeleton. However, cranial bone metastases especially to the parietal bone are rare. We report a case of metastatic prostate cancer presenting with left parietal bone metastasis in a patient with no urological symptoms or signs. We should consider prostate cancer in any man above 60 years presenting unusual bone lesions.

  8. Dramatic Cataplexy Improvement Following Right Parietal Surgery

    PubMed Central

    Fam, David J.; Shammi, Prathiba; Mainprize, Todd G.; Murray, Brian J.

    2015-01-01

    This is the case of a 34-year-old woman with severe narcolepsy with cataplexy who experienced a dramatic reduction in cataplexy symptoms after resection of a right parietal astrocytoma. The patient underwent detailed neurological exam, neuropsychological testing, polysomnography and multiple sleep latency testing following surgery. Citation: Fam DJ, Shammi P, Mainprize TG, Murray BJ. Dramatic cataplexy improvement following right parietal surgery. J Clin Sleep Med 2015;11(7):829–830. PMID:25902819

  9. Effect of prenatal alcohol exposure on bony craniofacial development: a mouse MicroCT study.

    PubMed

    Shen, Li; Ai, Huisi; Liang, Yun; Ren, Xiaowei; Anthony, Charles Bruce; Goodlett, Charles R; Ward, Richard; Zhou, Feng C

    2013-08-01

    Craniofacial bone dysmorphology is an important but under-explored potential diagnostic feature of fetal alcohol spectrum disorders. This study used longitudinal MicroCT 3D imaging to examine the effect of prenatal alcohol exposure on craniofacial bone growth in a mouse model. C57BL/6J dams were divided into 3 groups: alcohol 4.2% v/v in PMI® liquid diet (ALC), 2 weeks prior to and during pregnancy from embryonic (E) days 7-E16; pair-fed controls (PF), isocalorically matched to the ALC group; chow controls (CHOW), given ad libitum chow and water. The MicroCT scans were performed on pups on postnatal days 7 (P7) and P21. The volumes of the neurocranium (volume encased by the frontal, parietal, and occipital bones) and the viscerocranium (volume encased by the mandible and nasal bone), along with total skull bone volume, head size, and head circumference were evaluated using general linear models and discriminant analyses. The pups in the alcohol-treated group, when compared to the chow-fed controls (ALC vs CHOW) and the isocaloric-fed controls (ALC vs PF), showed differences in head size and circumference at P7 and P21, the total skull volume and parietal bone volume at P7, and volume of all the tested bones except nasal at P21. There was a growth trend of ALC < CHOW and ALC < PF. While covarying for gender and head size or circumference, the treatment affected the total skull and mandible at P7 (ALC > CHOW), and the total skull, parietal bone, and occipital bone at P21 (ALC < CHOW, ALC < PF). While covarying for the P7 measures, the treatment affected only the 3 neurocranial bones at P21 (ALC < CHOW, ALC < PF). Discriminant analysis sensitively selected between ALC and CHOW (AUC = 0.967), between ALC and PF (AUC = 0.995), and between PF and CHOW (AUC = 0.805). These results supported our hypothesis that craniofacial bones might be a reliable and sensitive indicator for the diagnosis of prenatal alcohol exposure. Significantly, we found that the neurocranium (upper

  10. Family Members as Participants on Craniofacial Teams.

    ERIC Educational Resources Information Center

    Andrews, James; Seaver, Earl; Stevens, George; Whiteley, Joseph

    1998-01-01

    Family members (N=83) who participated in professional team staffing concerning treatment plans for their child with a craniofacial difference (typically, cleft lip and/or palate) were surveyed. Ninety-seven percent of respondents said they would choose to meet with the team on their next visit to the clinic. The role of early interventionists on…

  11. Discrimination among adults with craniofacial conditions.

    PubMed

    Roberts, Rachel M

    2014-01-01

    The primary goal of this study was to establish the level of perceived discrimination experienced by adults with congenital craniofacial conditions in Australia and to examine predictors of discrimination. Specifically, this study tested whether social support mediates the relationship between discrimination and health. Adults (n = 93) who had been treated at the Australian Craniofacial Unit, Women's and Children's Hospital, Adelaide for congenital craniofacial conditions (not including cleft lip and/or palate) completed questionnaires examining satisfaction with life, quality of life, anxiety and depression, self-esteem, satisfaction with social support, and satisfaction with appearance. A substantial minority of adults with congenital craniofacial conditions reported that they experience discrimination almost every day in a range of areas. Higher reports of discrimination were related to older age, being male, and less education. Other factors related to higher discrimination included lower levels of satisfaction with life, self-esteem, satisfaction with appearance and mental quality of life, as well as higher levels of anxiety and depression. Social support partially mediated the relationship between discrimination and mental health outcomes. The current study shows that discrimination experiences continue into adulthood confirming the importance of ensuring patients are well supported both by psychosocial services as well as within their own social support networks.

  12. Translational genetics: advancing fronts for craniofacial health.

    PubMed

    D'Souza, R N; Dunnwald, M; Dunnvald, M; Frazier-Bowers, S; Polverini, P J; Wright, J T; de Rouen, T; Vieira, A R

    2013-12-01

    Scientific opportunities have never been better than today! The completion of the Human Genome project has sparked hope and optimism that cures for debilitating conditions can be achieved and tailored to individuals and communities. The availability of reference genome sequences and genetic variations as well as more precise correlations between genotype and phenotype have facilitated the progress made in finding solutions to clinical problems. While certain craniofacial and oral diseases previously deemed too difficult to tackle have benefited from basic science and technological advances over the past decade, there remains a critical need to translate the fruits of several decades' worth of basic and clinical research into tangible therapies that can benefit patients. The fifth Annual Fall Focused Symposium, "Translational Genetics - Advancing Fronts for Craniofacial Health", was created by the American Association for Dental Research (AADR) to foster its mission to advance interdisciplinary research that is directed toward improving oral health. The symposium showcased progress made in identifying molecular targets that are potential therapeutics for common and rare dental diseases and craniofacial disorders. Speakers focused on translational and clinical applications of their research and, where applicable, on strategies for new technologies and therapeutics. The critical needs to transfer new knowledge to the classroom and for further investment in the field were also emphasized. The symposium underscored the importance of basic research, chairside clinical observations, and population-based studies in driving the new translational connections needed for the development of cures for the most common and devastating diseases involving the craniofacial complex.

  13. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  14. Psychosocial adjustment and craniofacial malformations in childhood.

    PubMed

    Pertschuk, M J; Whitaker, L A

    1985-02-01

    Forty-three children between the ages of 6 and 13 years with congenital facial anomalies underwent psychosocial evaluation prior to surgery. Also evaluated were healthy children matched to the craniofacial subjects by sex, age, intelligence, and economic background. Relative to this comparison group, the craniofacial children were found to have poorer self-concept, greater anxiety at the time of evaluation, and more introversion. Parents of the craniofacial children noted more frequent negative social encounters for their children and more hyperactive behavior at home. Teachers reported more problematic classroom behavior. Examination of these results revealed craniofacial malformations to be associated with psychosocial limitations rather than marked deficits. These children tended to function less well than the comparison children, but with few exceptions, they were not functioning in a psychosocially deviant range. Explanations for the observed circumscribed impact of facial deformity include the use of denial as a coping mechanism, possible diminished significance of appearance for younger children, and the restricted environment experienced by most of the subjects. It can be predicted that time would render these protective influences ineffective, so that adolescent and young adult patients could be at far greater psychosocial risk.

  15. Injectable Biomaterials for Regenerating Complex Craniofacial Tissues**

    PubMed Central

    Kretlow, James D.; Young, Simon; Klouda, Leda; Wong, Mark; Mikos, Antonios G.

    2009-01-01

    Engineering complex tissues requires a precisely formulated combination of cells, spatiotemporally released bioactive factors, and a specialized scaffold support system. Injectable materials, particularly those delivered in aqueous solution, are considered ideal delivery vehicles for cells and bioactive factors and can also be delivered through minimally invasive methods and fill complex 3D shapes. In this review, we examine injectable materials that form scaffolds or networks capable of both replacing tissue function early after delivery and supporting tissue regeneration over a time period of weeks to months. The use of these materials for tissue engineering within the craniofacial complex is challenging but ideal as many highly specialized and functional tissues reside within a small volume in the craniofacial structures and the need for minimally invasive interventions is desirable due to aesthetic considerations. Current biomaterials and strategies used to treat craniofacial defects are examined, followed by a review of craniofacial tissue engineering, and finally an examination of current technologies used for injectable scaffold development and drug and cell delivery using these materials. PMID:19750143

  16. A new autosomal dominant craniofacial deafness syndrome.

    PubMed

    Kassutto, S; Kassutto, Z; Ben-Ami, T; Goodman, R M

    1987-11-01

    A Jewish family is reported in which the proband and her father had congenital hearing loss and unusual facies consisting of facial asymmetry, temporal alopecia with frontal bossing, a broad nasal root and small nasal alae. In addition, both were born with a short frenulum of the tongue. We believe these findings represent a new autosomal dominant deafness syndrome with distinct craniofacial features.

  17. Gastrin receptors on isolated canine parietal cells

    SciTech Connect

    Soll, A.H.; Amirian, D.A.; Thomas, L.P.; Reedy, T.J.; Elashoff, J.D.

    1984-05-01

    The receptors in the fundic mucosa that mediate gastrin stimulation of acid secretion have been studied. Synthetic human gastrin-17-I (G17) with a leucine substitution in the 15th position ((Leu15)-G17) was iodinated by chloramine T; high saturable binding was found to enzyme-dispersed canine fundic mucosal cells. /sup 127/I-(Leu15)-G17, but not /sup 127/I-G17, retained binding potency and biological activity comparable with uniodinated G17. Fundic mucosal cells were separated by size by using an elutriator rotor, and specific /sup 125/I-(Leu-15)-G17 binding in the larger cell fractions was highly correlated with the distribution of parietal cells. There was, however, specific gastrin binding in the small cell fractions, not accounted for by parietal cells. Using sequential elutriation and stepwise density gradients, highly enriched parietal and chief cell fractions were prepared; /sup 125/I-(Leu15)-G17 binding correlated positively with the parietal cell (r . 0.98) and negatively with chief cell content (r . -0.96). In fractions enriched to 45-65% parietal cells, specific /sup 125/I-(Leu15)-G17 binding was rapid, reaching a steady state at 37 degrees C within 30 min. Dissociation was also rapid, with the rate similar after 100-fold dilution or dilution plus excess pentagastrin. At a tracer concentration from 10 to 30 pM, saturable binding was 7.8 +/- 0.8% per 10(6) cells (mean +/- SE) and binding in the presence of excess pentagastrin accounted for 11% of total binding. G17 and carboxyl terminal octapeptide of cholecystokinin (26-33) were equipotent in displacing tracer binding and in stimulating parietal cell function ((/sup 14/C)aminopyrine accumulation), whereas the tetrapeptide of gastrin (14-17) had a much lower potency. Proglumide inhibited gastrin binding and selectively inhibited gastrin stimulation of parietal cell function.

  18. Abnormal parietal encephalomalacia associated with schizophrenia

    PubMed Central

    Pan, Fen; Wang, Jun-Yuan; Xu, Yi; Huang, Man-Li

    2017-01-01

    Abstract Rationale: It is widely believed that structural abnormalities of the brain contribute to the pathophysiology of schizophrenia. The parietal lobe is a central hub of multisensory integration, and abnormities in this region might account for the clinical features of schizophrenia. However, few cases of parietal encephalomalacia associated with schizophrenia have been described. Patient concerns and Diagnoses: In this paper, we present a case of a 25-year-old schizophrenia patient with abnormal parietal encephalomalacia. The patient had poor nutrition and frequently had upper respiratory infections during childhood and adolescence. She showed severe schizophrenic symptoms such as visual hallucinations for 2 years. After examining all her possible medical conditions, we found that the patient had a lesion consistent with the diagnosis of encephalomalacia in her right parietal lobe and slight brain atrophy. Interventions: The patient was prescribed olanzapine (10 mg per day). Outcomes: Her symptoms significantly improved after antipsychotic treatment and were still well controlled 1 year later. Lessons: This case suggested that parietal encephalomalacia, which might be caused by inflammatory and infectious conditions in early life and be aggravated by undernutrition, might be implicated in the etiology of schizophrenia. PMID:28272261

  19. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  20. Apraxia, pantomime and the parietal cortex.

    PubMed

    Niessen, E; Fink, G R; Weiss, P H

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  1. Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication.

    PubMed

    Kaifu, Yousuke; Baba, Hisao; Sutikna, Thomas; Morwood, Michael J; Kubo, Daisuke; Saptomo, E Wahyu; Jatmiko; Awe, Rokhus Due; Djubiantono, Tony

    2011-12-01

    This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the

  2. The craniofacial team and the Navajo patient.

    PubMed

    Smoot, E C; Kucan, J O; Cope, J S; Aase, J M

    1988-10-01

    The craniofacial team at the University of New Mexico Medical Center in Albuquerque, New Mexico has treated a large population of Navajo Indians. Team awareness of the Navajo concept of health as man in balance with his environment has resulted in more expedient treatment of the Navajo children. An understanding of Navajo concerns with ghosts, skinwalkers, and rules for orderly living has allowed team members to integrate the family and the Navajo medicine man in caring for the children with craniofacial disease. Special concerns for informed surgical consent and genetic counseling of the Navajo are reviewed. Respect for the traditional Navajo healing ceremonies and special handling of disposed body parts in surgery are required of the health professionals caring for these people.

  3. The concept of pattern in craniofacial growth.

    PubMed

    Moyers, R E; Bookstein, F L; Guire, K E

    1979-08-01

    1. There are semantic and associated problems with the word pattern in biology, particularly in orthodontics and facial growth. 2. Pattern, as we use the term, is invariance of relationships--"a set of constraints operating to preserve the integration of parts under varying conditions and through time." 3. Craniofacial pattern can be described and quantified by the identification of craniofacial constants, measures that are relatively invariant. 4. Growth is change and is best identified by studying those measures of size and shape that vary most sensitively through time over development stages. 5. The many traditional cephalometric measures that represent well neither pattern nor growth (mixed) are of less clinical utility than either pure pattern indices or growth indices. 6. The analytical and conceptual separation of pattern and growth seems useful in analysis of morphology, analysis of growth, prediction of growth, and clinical treatment planning.

  4. Gene Therapy: Implications for Craniofacial Regeneration

    PubMed Central

    Scheller, Erica L.; Villa-Diaz, Luis G; Krebsbach, Paul H.

    2011-01-01

    Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that over 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past twenty years the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, periodontium, and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery as well as more clinically efficacious, though potentially more hazardous, viral methods. Though hundreds of gene therapy clinical trials have taken place in the past twenty years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex. PMID:22337437

  5. Craniofacial ballpoint pen injury: endoscopic management.

    PubMed

    LaFrentz, J R; Mair, E A; Casler, J D

    2000-02-01

    Penetrating facial injuries are not infrequent. There have been isolated case reports of unusual penetrating craniofacial trauma. We describe an unusual case of a 22-month-old child who suffered an external orbital injury from a ballpoint pen that penetrated the orbit, lamina papyracea, posterior ethmoid sinuses, and sphenoid sinus. Endoscopic sinus surgery was performed to extract the ballpoint pen nib after localization with computed tomography. Careful pediatric endoscopic sinus surgery techniques permitted safe foreign body extraction with minimal morbidity.

  6. Representation of numerosity in posterior parietal cortex

    PubMed Central

    Roitman, Jamie D.; Brannon, Elizabeth M.; Platt, Michael L.

    2012-01-01

    Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition. PMID:22666194

  7. The craniofacial complex in 47,XYY males.

    PubMed

    Grön, M; Pietilä, K; Alvesalo, L

    1997-08-01

    Eight adult, Finnish 47,XYY males were compared with population male and female controls and, in addition, three of them were compared with first-degree male relatives. Linear and angular measurements were made from standardized lateral cephalograms of patients and normal population controls from the "Kvantti" study series. In both comparisons the craniofacial dimensions in 47,XYY males were larger than those in population male and female controls. Their craniofacial proportions and plane angles were similar to those of normal men except for a larger lower facial height with posterior rotation of the mandible and a tendency to bimaxillary protrusion, a longer cranial base and a lesser cranial-base angle. Thus the supernumerary Y chromosomal gene(s) in 47,XYY males may result in larger craniofacial dimensions than in normal males, without substantial effects on dimensional ratios and plane angles. This general metric pattern is similar to that observed in relation to many adult body and head dimensions, and the dental arches and tooth crowns, of 47,XYY males. The foramen magnum in 47,XYY males was smaller in the sagittal plane than that of normal males and females.

  8. Elastic Properties of Chimpanzee Craniofacial Cortical Bone.

    PubMed

    Gharpure, Poorva; Kontogiorgos, Elias D; Opperman, Lynne A; Ross, Callum F; Strait, David S; Smith, Amanda; Pryor, Leslie C; Wang, Qian; Dechow, Paul C

    2016-12-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3  > E2  > E1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc.

  9. Craniofacial abnormalities among patients with Edwards Syndrome

    PubMed Central

    Rosa, Rafael Fabiano M.; Rosa, Rosana Cardoso M.; Lorenzen, Marina Boff; Zen, Paulo Ricardo G.; Graziadio, Carla; Paskulin, Giorgio Adriano

    2013-01-01

    OBJECTIVE To determine the frequency and types of craniofacial abnormalities observed in patients with trisomy 18 or Edwards syndrome (ES). METHODS This descriptive and retrospective study of a case series included all patients diagnosed with ES in a Clinical Genetics Service of a reference hospital in Southern Brazil from 1975 to 2008. The results of the karyotypic analysis, along with clinical data, were collected from medical records. RESULTS: The sample consisted of 50 patients, of which 66% were female. The median age at first evaluation was 14 days. Regarding the karyotypes, full trisomy of chromosome 18 was the main alteration (90%). Mosaicism was observed in 10%. The main craniofacial abnormalities were: microretrognathia (76%), abnormalities of the ear helix/dysplastic ears (70%), prominent occiput (52%), posteriorly rotated (46%) and low set ears (44%), and short palpebral fissures/blepharophimosis (46%). Other uncommon - but relevant - abnormalities included: microtia (18%), orofacial clefts (12%), preauricular tags (10%), facial palsy (4%), encephalocele (4%), absence of external auditory canal (2%) and asymmetric face (2%). One patient had an initial suspicion of oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome. CONCLUSIONS: Despite the literature description of a characteristic clinical presentation for ES, craniofacial alterations may be variable among these patients. The OAVS findings in this sample are noteworthy. The association of ES with OAVS has been reported once in the literature. PMID:24142310

  10. Airway adequacy, head posture, and craniofacial morphology.

    PubMed

    Solow, B; Siersbaek-Nielsen, S; Greve, E

    1984-09-01

    Previous studies of different samples have demonstrated associations between craniocervical angulation and craniofacial morphology, between airway obstruction by adenoids and craniofacial morphology, and between airway obstruction and craniocervical angulation. A hypothesis to account for the different sets of associations was suggested by Solow and Kreiborg in 1977. In the present study, the three sets of associations were examined in a single group of nonpathologic subjects with no history of airway obstruction. Cephalometric radiographs taken in the natural head position and rhinomanometric recordings were obtained from twenty-four children 7 to 9 years of age. Correlations were calculated between twenty-seven morphologic, eight postural, and two airway variables. A large craniocervical angle was, on the average, seen in connection with small mandibular dimensions, mandibular retrognathism, and a large mandibular inclination. Obstructed nasopharyngeal airways (defined as a small pm-ad 2 radiographic distance and a large nasal respiratory resistance, NRR, determined rhinomanometrically) were, on the average, seen in connection with a large craniocervical angle and with small mandibular dimensions, mandibular retrognathism, a large mandibular inclination, and retroclination of the upper incisors. The observed correlations were in agreement with the predicted pattern of associations between craniofacial morphology, craniocervical angulation, and airway resistance, thus suggesting the simultaneous presence of such associations in the sample of nonpathologic subjects with no history of airway obstruction.

  11. [Current gene study in etiological analysis of congenital craniofacial abnormalities].

    PubMed

    Feng, Yi-miao; Fang, Bing

    2007-04-01

    The cause of congenital craniofacial abnormalities are very complicated. Understanding of the gene mechanisms of abnormalities taking place are very important for prevention and therapy.DNA sequence analysis provides the fundaments of gene study of the congenital craniofacial abnormalities. Human genome project (HGP) paved the confirmation of candidate gene of the congenital craniofacial abnormalities.Transgenic animal models and gene knockout techniques are effective methods in study of gene function. This paper reviews current gene study in etiopathogenisis analysis of the congenital craniofacial abnormalities.

  12. The Quadratojugal of Eryops studied by computed tomography and the morphological variability of foramina and canals in the quadratojugal of basal tetrapods.

    PubMed

    Čerňanský, Andrej; Witzmann, Florian; Klembara, Jozef; van Heteren, Anneke H

    2016-08-01

    With respect to its large size and abundance, Eryops is an important representative of Permo-Carboniferous basal tetrapods and one of the best-known large temnospondyl amphibians of this period. This taxon forms a significant component of the Early Permian tetrapod fauna of Texas and New Mexico and here we describe a new record of skull remains, the first one from Brushy Creek (30 km northeast of Seymour) in Texas (Petrolia Formation, Wichita Group; Lower Permian - lower Artinskian). Our material, found in 2015, consists of a left nasal, a jaw fragment (premaxilla or maxilla), left quadratojugal fragments, and a partial left mandible. We used computed tomography methods (micro-CT) for imaging both internal and external structures, for the first time, for Eryops. The quadratojugal presented here is exceptional compared to all known basal tetrapods in having four different internal foramina. CT data show that these foramina are interconnected by canals within the bone. This indicates that the morphology of the foramina and the course of the canals in the quadratojugal of basal tetrapods are more variable than hitherto thought. Anat Rec, 299:1073-1079, 2016. © 2016 Wiley Periodicals, Inc.

  13. From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation.

    PubMed Central

    Arbib, M A

    1997-01-01

    This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal-premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems-level model of hippocampo parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurones in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal-parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions. PMID:9368931

  14. Atrophy of the Parietal Lobe in Preclinical Dementia

    ERIC Educational Resources Information Center

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  15. OCT imaging of craniofacial anatomy in xenopus embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deniz, Engin; Jonas, Stephan M.; Griffin, John; Hooper, Michael C.; Choma, Michael A.; Khokha, Mustafa K.

    2016-03-01

    The etiology of craniofacial defects is incompletely understood. The ability to obtain large amounts of gene sequence data from families affected by craniofacial defects is opening up new ways to understand molecular genetic etiological factors. One important link between gene sequence data and clinical relevance is biological research into candidate genes and molecular pathways. We present our recent research using OCT as a nondestructive phenotyping modality of craniofacial morphology in Xenopus embryos, an important animal model for biological research in gene and pathway discovery. We define 2D and 3D scanning protocols for a standardized approach to craniofacial imaging in Xenopus embryos. We define standard views and planar reconstructions for visualizing normal anatomy and landmarks. We compare these views and reconstructions to traditional histopathology using alcian blue staining. In addition to being 3D, nondestructive, and having much faster throughout, OCT can identify craniofacial features that are lost during traditional histopathological preparation. We also identify quantitative morphometric parameters to define normative craniofacial anatomy. We also note that craniofacial and cardiac defects are not infrequently present in the same patient (e.g velocardiofacial syndrome). Given that OCT excels at certain aspects of cardiac imaging in Xenopus embryos, our work highlights the potential of using OCT and Xenopus to study molecular genetic factors that impact both cardiac and craniofacial development.

  16. Facing up to the Challenges of Advancing Craniofacial Research

    PubMed Central

    Trainor, Paul A.; Richtsmeier, Joan T.

    2015-01-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies. PMID:25820983

  17. 76 FR 30373 - National Institute of Dental & Craniofacial Research; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Institute of Dental & Craniofacial Research; Meeting Notice of Closed Meeting Pursuant to section 10(d) of... could disclose confidential trade secrets or commercial property such as patentable material, and... Institute of Dental and Craniofacial Research Special Emphasis Panel; Review of NIDCR R03 Applications....

  18. Pediatric craniofacial surgery: a review for the multidisciplinary team.

    PubMed

    Taub, Peter J; Lampert, Joshua A

    2011-11-01

    Pediatric craniofacial surgery is a specialty that grew dramatically in the 20th century and continues to evolve today. Out of the efforts to correct facial deformities encountered during World War II, the techniques of modern craniofacial surgery developed. An analysis of the relevant literature allowed the authors to explore this historical progression. Current advances in technology, tissue engineering, and molecular biology have further refined pediatric craniofacial surgery. The development of distraction osteogenesis and the progressive study of craniosynostosis provide remarkable examples of this momentum. The growing study of genetics, biotechnology, the influence of growth factors, and stem cell research provide additional avenues of innovation for the future. The following article is intended to reveal a greater understanding of pediatric craniofacial surgery by examining the past, present, and possible future direction. It is intended both for the surgeon, as well as for the nonsurgical individual specialists vital to the multidisciplinary craniofacial team.

  19. Craniofacial Bone Grafting: Wolff's Law Revisited

    PubMed Central

    Oppenheimer, Adam J.; Tong, Lawrence; Buchman, Steven R.

    2008-01-01

    Bone grafts are used for the reconstruction of congenital and acquired deformities of the facial skeleton and, as such, comprise a vital component of the craniofacial surgeon's armamentarium. A thorough understanding of bone graft physiology and the factors that affect graft behavior is therefore essential in developing a more intelligent use of bone grafts in clinical practice. This article presents a review of the basic physiology of bone grafting along with a survey of pertinent concepts and current research. The factors responsible for bone graft survival are emphasized. PMID:22110789

  20. MEPROCS framework for Craniofacial Superimposition: Validation study.

    PubMed

    Ibáñez, O; Vicente, R; Navega, D; Campomanes-Álvarez, C; Cattaneo, C; Jankauskas, R; Huete, M I; Navarro, F; Hardiman, R; Ruiz, E; Imaizumi, K; Cavalli, F; Veselovskaya, E; Humpire, D; Cardoso, J; Collini, F; Mazzarelli, D; Gibelli, D; Damas, S

    2016-11-01

    Craniofacial Superimposition (CFS) involves the process of overlaying a skull with a number of ante-mortem images of an individual and the analysis of their morphological correspondence. The lack of unified working protocols and the absence of commonly accepted standards, led to contradictory consensus regarding its reliability. One of the more important aims of 'New Methodologies and Protocols of Forensic Identification by Craniofacial Superimposition (MEPROCS)' project was to propose a common framework for CFS, what can be considered the first international standard in the field. The framework aimed to serve as a roadmap for avoiding particular assumptions that could bias the process. At the same time, it provides some empirical support to certain practices, technological means, and morphological criteria expected to facilitate the application of the CFS task and to improve its reliability. In order to confirm the utility and potential benefits of the framework use, there is a need to empirically evaluate it in CFS identification scenarios as close as possible to the reality. Thus, the purpose of this study is to validate the CFS framework developed. For that aim 12 participants were asked to report about a variable number of CFS following all the recommendations of the framework. The results are analysed and discussed according to the framework understanding and fulfilment, the participants' performance, and the correlation between expected decisions and those given by the participants. In view of the quantitative results and qualitative examination criteria we can conclude that those who follow the MEPROCS recommendations improve their performance.

  1. Computer-assisted innovations in craniofacial surgery.

    PubMed

    Rudman, Kelli; Hoekzema, Craig; Rhee, John

    2011-08-01

    Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand.

  2. Autologus parietal grafts in preprosthethic surgery

    PubMed Central

    GHERLONE, E.F.; VINCI, R.; D’AVERSA, L.

    2010-01-01

    SUMMARY Edentulous patients usually request implant supported/fixed rehabilitation. Ridge resorption after teeth loss usually affect three-dimensional implant position. Vertical and/or horizontal bone augmentation procedures are often the only choice the clinician has to deliver prosthetic guided restoration. Gold standard for augmentation procedures such as sinus lift, onlay or inlay grafts, is still autologous bone. The patient in this report underwent a pre-prosthetic reconstruction of the jaws with parietal bone, followed by fixtures insertion and fixed prosthetic rehabilitation. This clinical report aims to underline the importance of multidisciplinary treatment to optimize the results of the rehabilitation. PMID:23285358

  3. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    PubMed Central

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  4. Frequency of craniofacial pain in patients with ischemic heart disease

    PubMed Central

    Bakhshi, Mahin; Rezaei, Rezvan; Baharvand, Maryam

    2017-01-01

    Background Referred craniofacial pain of cardiac origin might be the only symptom of ischemic heart accidents. This study aimed to determine the frequency of craniofacial pain in patients with ischemic heart disease. Material and Methods This cross-sectional study was accomplished on 296 patients who met the criteria of having ischemic heart disease. Data regarding demographics, medical history and referred craniofacial pain were recorded in data forms. In addition, patients underwent oral examination to preclude any source of dental origin. Chi-square test, Student’s t-test and backward regression model were used to analyze the data by means of SPSS software version 21. P<0.05 was considered significant. Results A total of 296 patients were studied comprising of 211 men (71%) and 85 women (29%) with the mean age of 55.8. Craniofacial pain was experienced by 53 patients out of 296, 35 (66%) of whom were male and 18 (34%) were female. None of the patients experienced craniofacial pain solely. The most common sites of craniofacial pain were occipital and posterior neck (52.8%), head (43.3%), throat and anterior neck (41.5%) respectively. We found no relationship between craniofacial pain of cardiac origin with age, diabetes, hypertension, and family history. On the other hand, there was a significant relationship between hyperlipidemia and smoking with craniofacial pain of cardiac origin. Conclusions Radiating pain to face and head can be expected quite commonly during a cardiac ischemic event. Dental practitioners should be thoroughly aware of this symptomatology to prevent misdirected dental treatment and delay of medical care. Key words:Craniofacial pain, ischemic heart disease, myocardial infarction, angina pectoris, referred pain. PMID:28149470

  5. Peripheral nerve stimulation for the treatment of neuropathic craniofacial pain.

    PubMed

    Slavin, K V

    2007-01-01

    Treatment of neuropathic pain in the region of head and face presents a challenging problem for pain specialists. In particular, those patients who do not respond to conventional treatment modalities usually continue to suffer from pain due to lack of reliable medical and surgical approaches. Peripheral nerve stimulation (PNS) has been used for treatment of neuropathic pain for many decades, but only recently it has been systematically applied to the craniofacial region. Here we summarize published experience with PNS in treatment of craniofacial pain and discuss some technical details of the craniofacial PNS procedure.

  6. Growth hormone therapy and craniofacial bones: a comprehensive review.

    PubMed

    Litsas, G

    2013-09-01

    Growth hormone (GH) has significant effects on linear bone growth, bone mass and bone metabolism. The primary role of GH supplementation in children with GH deficiency, those born small for gestational age or with other types of disorders in somatic development is to increase linear growth. However, GH therapy seems to elicit varying responses in the craniofacial region. Whereas the effects of GH administration on somatic development are well documented, comparatively little is known of its effects on the craniofacial region. The purpose of this review was to search the literature and compile results from both animal and human studies related to the impact of GH on craniofacial growth.

  7. [Management of craniofacial type 1 neurofibromatosis].

    PubMed

    Bachelet, J T; Combemale, P; Devic, C; Foray, N; Jouanneau, E; Breton, P

    2015-09-01

    Type I neurofibromatosis (NF) is the most common autosomal dominant disease. It concerns one in 3000 births, the penetrance is close to 100% and 50% of new cases are de novo mutations (17q11.2 chromosome 17 location). Cranio-maxillofacial region is concerned in 10% of the cases, in different forms: molluscum neurofibroma, plexiform neurofibroma, cranio-orbital neurofibroma, parotido-jugal neurofibroma, cervical neurofibroma. These lesions have different prognosis depending on the craniofacial localization: ocular functional risk, upper airway compressive risk, nerve compression risk, aesthetic and social impact. The maxillofacial surgeon in charge of patients with type I NF should follow the patient from the diagnosis and organize the different surgical times in order to take care about the different issues: vital, functional and aesthetic. We describe the treatment of facial localizations of type 1 NF as it is done at the University Hospital of Lyon and at the Rhône-Alpes-Auvergne neurofibromatosis reference center.

  8. Craniofacial Secular Change in Recent Mexican Migrants.

    PubMed

    Spradley, Katherine; Stull, Kyra E; Hefner, Joseph T

    2016-01-01

    Research by economists suggests that recent Mexican migrants are better educated and have higher socioeconomic status (SES) than previous migrants. Because factors associated with higher SES and improved education can lead to positive secular changes in overall body form, secular changes in the craniofacial complex were analyzed within a recent migrant group from Mexico. The Mexican group represents individuals in the act of migration, not yet influenced by the American environment, and thus can serve as a starting point for future studies of secular change in this population group. The excavation of a historic Hispanic cemetery in Tucson, Arizona, also allows for a comparison between historic Hispanics and recent migrants to explore craniofacial trends over a broad time period, as both groups originate from Mexico. The present research addresses two main questions: (1) Are cranial secular changes evident in recent Mexican migrants? (2) Are historic Hispanics and recent Mexican migrants similar? By studying secular changes within a migrant population group, secular trends may be detected, which will be important for understanding the biological variation of the migrants themselves and will serve as a preliminary investigation of secular change within Mexican migrants. The comparison of a sample of recent Mexican migrants with a historic Hispanic sample, predominantly of Mexican origin, allows us to explore morphological similarities and differences between early and recent Mexicans within the United States. Vault and face size and a total of 82 craniofacial interlandmark distances were used to explore secular changes within the recent Mexican migrants (females, n = 38; males, n = 178) and to explore the morphological similarities between historic Hispanics (females, n = 54; males, n = 58) and recent migrants. Sexes were separated, and multivariate adaptive regression splines and basis splines (quadratic with one knot) were used to assess the direction and magnitude

  9. Reforming craniofacial orthodontics via stem cells.

    PubMed

    Mohanty, Pritam; Prasad, N K K; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics.

  10. Quality difference in craniofacial pain of cardiac vs. dental origin.

    PubMed

    Kreiner, M; Falace, D; Michelis, V; Okeson, J P; Isberg, A

    2010-09-01

    Craniofacial pain, whether odontogenic or caused by cardiac ischemia, is commonly referred to the same locations, posing a diagnostic challenge. We hypothesized that the validity of pain characteristics would be high in assessment of differential diagnosis. Pain quality, intensity, and gender characteristics were assessed for referred craniofacial pain from dental (n = 359) vs. cardiac (n = 115) origin. The pain descriptors "pressure" and "burning" were statistically associated with pain from cardiac origin, while "throbbing" and "aching" indicated an odontogenic cause. No gender differences were found. These data should now be added to those craniofacial pain characteristics already known to point to acute cardiac disease rather than dental pathology, i.e., pain provocation/aggravation by physical activity, pain relief at rest, and bilateralism. To initiate prompt and appropriate treatment, dental and medical clinicians as well as the public should be alert to those clinical characteristics of craniofacial pain of cardiac origin.

  11. Sleep disorders and chronic craniofacial pain: Characteristics and management possibilities.

    PubMed

    Almoznino, Galit; Benoliel, Rafael; Sharav, Yair; Haviv, Yaron

    2017-06-01

    Chronic craniofacial pain involves the head, face and oral cavity and is associated with significant morbidity and high levels of health care utilization. A bidirectional relationship is suggested in the literature for poor sleep and pain, and craniofacial pain and sleep are reciprocally related. We review this relationship and discuss management options. Part I reviews the relationship between pain and sleep disorders in the context of four diagnostic categories of chronic craniofacial pain: 1) primary headaches: migraines, tension-type headache (TTH), trigeminal autonomic cephalalgias (TACs) and hypnic headache, 2) secondary headaches: sleep apnea headache, 3) temporomandibular joint disorders (TMD) and 4) painful cranial neuropathies: trigeminal neuralgia, post-herpetic trigeminal neuropathy, painful post-traumatic trigeminal neuropathy (PTTN) and burning mouth syndrome (BMS). Part II discusses the management of patients with chronic craniofacial pain and sleep disorders addressing the factors that modulate the pain experience as well as sleep disorders and including both non-pharmacological and pharmacological modalities.

  12. Vertical Craniofacial Morphology and its Relation to Temporomandibular Disorders

    PubMed Central

    Bavia, Paula Furlan

    2016-01-01

    ABSTRACT Objectives This study investigated the association between craniofacial morphology and temporomandibular disorders in adults. The influence of different craniofacial morphologies on painful temporomandibular disorders was also evaluated. Material and Methods A total of 200 subjects were selected, including 100 with temporomandibular disorders (TMD) and 100 without TMD (control), diagnosed by research diagnostic criteria for temporomandibular disorders. All subjects were submitted to lateral cephalometric radiographs, and classified as brachyfacial, mesofacial, or dolichofacial by Ricketts’ analysis. Data were analysed by Tukey-Kramer and Chi-square tests. Results No association between craniofacial morphology and TMD was found (P = 0.6622). However, brachyfacial morphology influences the presence of painful TMD (P = 0.0077). Conclusions Craniofacial morphology is not related to temporomandibular disorders in general. PMID:27489610

  13. Prolonged ictal monoparesis with parietal Periodic Lateralised Epileptiform Discharges (PLEDs).

    PubMed

    Murahara, Takashi; Kinoshita, Masako; Usami, Kiyohide; Matsui, Masashi; Yamashita, Kouhei; Takahashi, Ryosuke; Ikeda, Akio

    2013-06-01

    We report a patient with prolonged monoparesis and parietal periodic lateralised epileptiform discharges (PLEDs). The patient was a 73-year-old man with chronic myelomonocytic leukaemia who developed persisting monoparesis of the right arm, sensory aphasia, and finger agnosia, initially associated with focal clonic seizures. These neurological deficits remained for seven days without subsequent focal clonic seizures. The EEG showed left-sided PLEDs, maximal in the left occipito-parietal area. Ten days later, following phenytoin treatment, these symptoms suddenly improved and parietal PLEDs disappeared. Sustained PLEDs in the left parietal region may have been causally associated with ictal paresis in this patient.

  14. Alzheimer's disease: the downside of a highly evolved parietal lobe?

    PubMed

    Bruner, Emiliano; Jacobs, Heidi I L

    2013-01-01

    Clinical grade Alzheimer's disease (AD) is only described in humans. Recent imaging studies in early AD patients showed that the parietal areas display the most prominent metabolic impairments. So far, neuroimaging studies have not been able to explain why the medial parietal regions possess this hub characteristic in AD. Paleoneurological and neuroanatomical studies suggest that our species, Homo sapiens, has a unique and derived organization of the parietal areas, which are involved in higher cognitive functions. Combining evidence from neuroimaging, paleontology, and comparative anatomy, we suggest that the vulnerability of the parietal lobe to neurodegenerative processes may be associated with the origin of our species. The species-specific parietal morphology in modern humans largely influenced the brain spatial organization, and it involved changes in vascularization and energy management, which may underlie the sensitivity of these areas to metabolic impairment. Metabolic constraints and anatomical evolutionary changes in the medial parietal regions of modern humans may be important in early AD onset. Taking into account the species-specific adaptations of the modern human parietal areas and their association with AD, we hypothesize that AD can be the evolutionary drawback of the specialized structure of our parietal lobes. The cognitive advantage is associated with increased sensitivity to neurodegenerative processes which, being limited to the post-reproductive period, have a minor effect on the overall genetic fitness. The changes of energy requirements associated with form and size variations at the parietal areas may support the hypothesis of AD as a metabolic syndrome.

  15. Muscarinic responses of gastric parietal cells

    SciTech Connect

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G. )

    1991-06-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.

  16. Computed tomography assessment of peripubertal craniofacial morphology in a sheep model of binge alcohol drinking in the first trimester.

    PubMed

    Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E

    2015-11-01

    Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4-41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker

  17. Computed tomography assessment of peripubertal craniofacial morphology in a sheep model of binge alcohol drinking in the first trimester

    PubMed Central

    Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.

    2015-01-01

    Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4–41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker

  18. The influence of gender and sex steroids on craniofacial nociception.

    PubMed

    Cairns, Brian E

    2007-02-01

    Several pain conditions localized to the craniofacial region show a remarkable sex-related difference in their prevalence. These conditions include temporomandibular disorders and burning mouth syndrome as well as tension-type, migraine, and cluster headaches. The mechanisms that underlie sex-related differences in the prevalence of these craniofacial pain conditions remain obscure and likely involve both physiological and psychosocial factors. In terms of physiological factors relevant to the development of headache, direct evidence of sex-related differences in the properties of dural afferent fibers or durally activated second-order trigeminal sensory neurons has yet to be provided. There is, however, evidence for sex-related differences in the response properties of afferent fibers and second-order trigeminal sensory neurons that convey nociceptive input from other craniofacial tissues associated with sex-related differences in chronic pain conditions, such as those that innervate the masseter muscle and temporomandibular joint. Further, modulation of craniofacial nociceptive input by opioidergic receptor mechanisms appears to be dependent on biological sex. Research into mechanisms that may contribute to sex-related differences in trigeminal nociceptive processing has primarily focused on effect of the female sex hormone estrogen, which appears to alter the excitability of trigeminal afferent fibers and sensory neurons to noxious stimulation of craniofacial tissues. This article discusses current knowledge of potential physiological mechanisms that could contribute to sex-related differences in certain craniofacial pain conditions.

  19. Antimicrobial surfaces for craniofacial implants: state of the art

    PubMed Central

    Actis, Lisa; Gaviria, Laura; Guda, Teja

    2013-01-01

    In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed. PMID:24471018

  20. The Aponeurotic Tension Model of Craniofacial Growth in Man

    PubMed Central

    Standerwick, Richard G; Roberts, W. Eugene

    2009-01-01

    Craniofacial growth is a scientific crossroad for the fundamental mechanisms of musculoskeletal physiology. Better understanding of growth and development will provide new insights into repair, regeneration and adaptation to applied loads. Traditional craniofacial growth concepts are insufficient to explain the dynamics of airway/vocal tract development, cranial rotation, basicranial flexion and the role of the cranial base in expression of facial proportions. A testable hypothesis is needed to explore the physiological pressure propelling midface growth and the role of neural factors in expression of musculoskeletal adaptation after the cessation of anterior cranial base growth. A novel model for craniofacial growth is proposed for: 1. brain growth and craniofacial adaptation up to the age of 20; 2. explaining growth force vectors; 3. defining the role of muscle plasticity as a conduit for craniofacial growth forces; and 4. describing the effect of cranial rotation in the expression of facial form. Growth of the viscerocranium is believed to be influenced by the superficial musculoaponeurotic systems (SMAS) of the head through residual tension in the occipitofrontalis muscle as a result of cephalad brain growth and cranial rotation. The coordinated effects of the regional SMAS develop a craniofacial musculoaponeurotic system (CFMAS), which is believed to affect maxillary and mandibular development. PMID:19572022

  1. Adult psychological functioning of individuals born with craniofacial anomalies.

    PubMed

    Sarwer, D B; Bartlett, S P; Whitaker, L A; Paige, K T; Pertschuk, M J; Wadden, T A

    1999-02-01

    This study represents an initial investigation into the adult psychological functioning of individuals born with craniofacial disfigurement. A total of 24 men and women born with a craniofacial anomaly completed paper and pencil measures of body image dissatisfaction, self-esteem, quality of life, and experiences of discrimination. An age- and gender-matched control group of 24 non-facially disfigured adults also completed the measures. As expected, craniofacially disfigured adults reported greater dissatisfaction with their facial appearance than did the control group. Craniofacially disfigured adults also reported significantly lower levels of self-esteem and quality of life. Dissatisfaction with facial appearance, self-esteem, and quality of life were related to self-ratings of physical attractiveness. More than one-third of craniofacially disfigured adults (38 percent) reported experiences of discrimination in employment or social settings. Among disfigured adults, psychological functioning was not related to number of surgeries, although the degree of residual facial deformity was related to increased dissatisfaction with facial appearance and greater experiences of discrimination. Results suggest that adults who were born with craniofacial disfigurement, as compared with non-facially disfigured adults, experience greater dissatisfaction with facial appearance and lower self-esteem and quality of life; however, these experiences do not seem to be universal.

  2. The aponeurotic tension model of craniofacial growth in man.

    PubMed

    Standerwick, Richard G; Roberts, W Eugene

    2009-05-22

    Craniofacial growth is a scientific crossroad for the fundamental mechanisms of musculoskeletal physiology. Better understanding of growth and development will provide new insights into repair, regeneration and adaptation to applied loads. Traditional craniofacial growth concepts are insufficient to explain the dynamics of airway/vocal tract development, cranial rotation, basicranial flexion and the role of the cranial base in expression of facial proportions. A testable hypothesis is needed to explore the physiological pressure propelling midface growth and the role of neural factors in expression of musculoskeletal adaptation after the cessation of anterior cranial base growth. A novel model for craniofacial growth is proposed for: 1. brain growth and craniofacial adaptation up to the age of 20; 2. explaining growth force vectors; 3. defining the role of muscle plasticity as a conduit for craniofacial growth forces; and 4. describing the effect of cranial rotation in the expression of facial form.Growth of the viscerocranium is believed to be influenced by the superficial musculoaponeurotic systems (SMAS) of the head through residual tension in the occipitofrontalis muscle as a result of cephalad brain growth and cranial rotation. The coordinated effects of the regional SMAS develop a craniofacial musculoaponeurotic system (CFMAS), which is believed to affect maxillary and mandibular development.

  3. Mandatory Housing Requirements: The Constitutionality of Parietal Rules

    ERIC Educational Resources Information Center

    Iowa Law Review, 1975

    1975-01-01

    Analyzes the validity of parietal rules under both the due process and equal protection clauses of the Fourteenth Amendment. Models of substantive due process and equal protection are developed and applied to the various types of parietal rules that have been implemented at universities throughout the nation. (Author/JT)

  4. The Role of Human Parietal Cortex in Attention Networks

    ERIC Educational Resources Information Center

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  5. Craniofacial muscle pain: review of mechanisms and clinical manifestations.

    PubMed

    Svensson, P; Graven-Nielsen, T

    2001-01-01

    Epidemiologic surveys of temporomandibular disorders (TMD) have demonstrated that a considerable proportion of the population--up to 5% or 6%--will experience persistent pain severe enough to seek treatment. Unfortunately, the current diagnostic classification of craniofacial muscle pain is based on descriptions of signs and symptoms rather than on knowledge of pain mechanisms. Furthermore, the pathophysiology and etiology of craniofacial muscle pain are not known in sufficient detail to allow causal treatment. Many hypotheses have been proposed to explain cause-effect relationships; however, it is still uncertain what may be the cause of muscle pain and what is the effect of muscle pain. This article reviews the literature in which craniofacial muscle pain has been induced by experimental techniques in animals and human volunteers and in which the effects on somatosensory and motor function have been assessed under standardized conditions. This information is compared to the clinical correlates, which can be derived from the numerous cross-sectional studies in patients with craniofacial muscle pain. The experimental literature clearly indicates that muscle pain has significant effects on both somatosensory and craniofacial motor function. Typical somatosensory manifestations of experimental muscle pain are referred pain and increased sensitivity of homotopic areas. The craniofacial motor function is inhibited mainly during experimental muscle pain, but phase-dependent excitation is also found during mastication to reduce the amplitude and velocity of jaw movements. The underlying neurobiologic mechanisms probably involve varying combinations of sensitization of peripheral afferents, hyperexcitability of central neurons, and imbalance in descending pain modulatory systems. Reflex circuits in the brain stem seem important for the adjustment of sensorimotor function in the presence of craniofacial pain. Changes in somatosensory and motor function may therefore be

  6. The role of serotonin and neurotransmitters during craniofacial development.

    PubMed

    Moiseiwitsch, J R

    2000-01-01

    Several neurotransmitters, in particular serotonin (5-HT), have demonstrated multiple functions during early development and mid-gestational craniofacial morphogenesis. Early studies indicated that 5-HT is present in the oocyte, where it appears to function as a regulator of cell cleavage. Later, it has a significant role during gastrulation, during which there are significant areas of 5-HT uptake in the primitive streak. Subsequently, in association with neurulation, 5-HT uptake is seen in the floor plate of the developing neural tube. During neural crest formation and branchial arch formation, 5-HT has been demonstrated to facilitate cell migration and stimulate cell differentiation. During morphogenesis of the craniofacial structures, 5-HT stimulates dental development and may aid in cusp formation. All of the most commonly prescribed antidepressant drugs inhibit serotonin uptake, yet they do not appear to cause major craniofacial malformations in vivo. Given the wide spectrum of effects that 5-HT has during development, it is difficult to understand why these anti-depressants are not major teratogens. Redundancy within the system may allow receptor and uptake pathways to function normally even with lower than normal levels of circulating serotonin. Serotonin-binding proteins, that are expressed in most craniofacial regions at critical times during craniofacial development, may have a buffering capacity that maintains adequate 5-HT tissue concentrations over a wide range of 5-HT serum concentrations. Dental development appears to be particularly sensitive to even small fluctuations in concentrations of 5-HT. Therefore, it may be that children of patients who have received selective serotonergic re-uptake inhibitors (such as Prozac and Zoloft) or the less selective tricyclic anti-depressant drugs (such as Elavil) would be at a higher risk for developmental dental defects such as anodontia and hypodontia. In this review, the evidence supporting a role for 5-HT

  7. Morphometrics, 3D Imaging, and Craniofacial Development

    PubMed Central

    Hallgrimsson, Benedikt; Percival, Christopher J.; Green, Rebecca; Young, Nathan M.; Mio, Washington; Marcucio, Ralph

    2017-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  8. Uncertain relational reasoning in the parietal cortex.

    PubMed

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions.

  9. 77 FR 10540 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special ] Emphasis Panel; Collaborative Research on the Transition from Acute to Chronic Pain. Date: March 12,...

  10. 75 FR 7485 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  11. 78 FR 36556 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  12. 77 FR 8268 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  13. 78 FR 67178 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  14. 77 FR 10539 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  15. 77 FR 10539 - National Institute of Dental & Craniofacial Research Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research Notice... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  16. 77 FR 74676 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  17. 76 FR 58284 - National Institute of Dental and Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  18. 77 FR 11563 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  19. 75 FR 52537 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  20. 77 FR 6812 - National Institute of Dental and Craniofacial Research, Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  1. 76 FR 1444 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  2. 77 FR 40369 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  3. 76 FR 28996 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  4. 76 FR 78013 - National Institute of Dental and Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  5. Cranio-facial clefts in pre-hispanic America.

    PubMed

    Marius-Nunez, A L; Wasiak, D T

    2015-10-01

    Among the representations of congenital malformations in Moche ceramic art, cranio-facial clefts have been portrayed in pottery found in Moche burials. These pottery vessels were used as domestic items during lifetime and funerary offerings upon death. The aim of this study was to examine archeological evidence for representations of cranio-facial cleft malformations in Moche vessels. Pottery depicting malformations of the midface in Moche collections in Lima-Peru were studied. The malformations portrayed on pottery were analyzed using the Tessier classification. Photographs were authorized by the Larco Museo.Three vessels were observed to have median cranio-facial dysraphia in association with midline cleft of the lower lip with cleft of the mandible. ML001489 portrays a median cranio-facial dysraphia with an orbital cleft and a midline cleft of the lower lip extending to the mandible. ML001514 represents a median facial dysraphia in association with an orbital facial cleft and a vertical orbital dystopia. ML001491 illustrates a median facial cleft with a soft tissue cleft. Three cases of midline, orbital and lateral facial clefts have been portrayed in Moche full-figure portrait vessels. They represent the earliest registries of congenital cranio-facial malformations in ancient Peru.

  6. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  7. Endodontic treatment of a C-shaped mandibular second premolar with four root canals and three apical foramina: a case report

    PubMed Central

    Bertrand, Thikamphaa

    2016-01-01

    This case report describes a unique C-shaped mandibular second premolar with four canals and three apical foramina and its endodontic management with the aid of cone-beam computer tomography (CBCT). C-shaped root canal morphology with four canals was identified under a dental operating microscope. A CBCT scan was taken to evaluate the aberrant root canal anatomy and devise a better instrumentation strategy based on the anatomy. All canals were instrumented to have a 0.05 taper using 1.0 mm step-back filing with appropriate apical sizes determined from the CBCT scan images and filled using a warm vertical compaction technique. A C-shaped mandibular second premolar with multiple canals is an anatomically rare case for clinicians, yet its endodontic treatment may require a careful instrumentation strategy due to the difficulty in disinfecting the canals in the thin root area without compromising the root structure. PMID:26877993

  8. Parietal contributions to visual working memory depend on task difficulty.

    PubMed

    Jones, Kevin T; Berryhill, Marian E

    2012-01-01

    The nature of parietal contributions to working memory (WM) remain poorly understood but of considerable interest. We previously reported that posterior parietal damage selectively impaired WM probed by recognition (Berryhill and Olson, 2008a). Recent studies provided support using a neuromodulatory technique, transcranial direct current stimulation (tDCS) applied to the right parietal cortex (P4). These studies confirmed parietal involvement in WM because parietal tDCS altered WM performance: anodal current tDCS improved performance in a change detection task, and cathodal current tDCS impaired performance on a sequential presentation task. Here, we tested whether these complementary results were due to different degrees of parietal involvement as a function of WM task demands, WM task difficulty, and/or participants' WM capacity. In Experiment 1, we applied cathodal and anodal tDCS to the right parietal cortex and tested participants on both previously used WM tasks. We observed an interaction between tDCS (anodal, cathodal), WM task difficulty, and participants' WM capacity. When the WM task was difficult, parietal stimulation (anodal or cathodal) improved WM performance selectively in participants with high WM capacity. In the low WM capacity group, parietal stimulation (anodal or cathodal) impaired WM performance. These nearly equal and opposite effects were only observed when the WM task was challenging, as in the change detection task. Experiment 2 probed the interplay of WM task difficulty and WM capacity in a parametric manner by varying set size in the WM change detection task. Here, the effect of parietal stimulation (anodal or cathodal) on the high WM capacity group followed a linear function as WM task difficulty increased with set size. The low WM capacity participants were largely unaffected by tDCS. These findings provide evidence that parietal involvement in WM performance depends on both WM capacity and WM task demands. We discuss these findings

  9. Bleeding management for pediatric craniotomies and craniofacial surgery.

    PubMed

    Goobie, Susan M; Haas, Thorsten

    2014-07-01

    Pediatric patients when undergoing craniotomies and craniofacial surgery may potentially have significant blood loss. The amount and extent will be dictated by the nature of the surgical procedure, the proximity to major blood vessels, and the age, and weight of the patient. The goals should be to maintain hemodynamic stability and oxygen carrying capacity and to prevent and treat hyperfibrinolysis and dilutional coagulopathy. Over transfusion and transfusion-related side effects should be minimized. This article will highlight the pertinent considerations for managing massive blood loss in pediatric patients undergoing craniotomies and craniofacial surgery. North American and European guidelines for intraoperative administration of fluid and blood products will be discussed.

  10. The fourth dimension in simulation surgery for craniofacial surgical procedures.

    PubMed

    Kurihara, T

    2001-03-01

    The intracranial volume was measured in all 18 cases of craniosynostosis and craniofacial synostosis with 3DCT using a modification of Miyake's formula, with a 6 years' follow-up. 1: There were no cases where the intracranial volume was less than the modified Miyake's formula. 2: Total cranial reshaping, compared to the local forehead advancement, was effective in increasing the intracranial cavity and growth postoperatively. 3: In cases of craniofacial synostosis, there is a possibility that mental retardation will develop if the intracranial volume tends to increase rapidly and more than expected.

  11. An annotated history of craniofacial surgery and intentional cranial deformation.

    PubMed

    Goodrich, J T; Tutino, M

    2001-01-01

    The history of craniofacial surgery and the use of intentional cranial deformation is a long and varied one. Researching some of the earliest medical writings and reviews of early terracotta and stone figures from throughout the world clearly revealed that these two forms of treatment were widely extant. Intentional cranial deformation was used for a number of reasons including beautification, tribal identification, and social stature. The development of craniofacial surgery is a more modern practice and its historical evolution is reviewed in the context of techniques and the personalities involved.

  12. The oral and craniofacial relevance of chemically modified RNA therapeutics.

    PubMed

    Elangovan, Satheesh; Kormann, Michael S D; Khorsand, Behnoush; Salem, Aliasger K

    2016-01-01

    Several tissue engineering strategies in the form of protein therapy, gene therapy, cell therapy, and their combinations are currently being explored for oral and craniofacial regeneration and repair. Though each of these approaches has advantages, they all have common inherent drawbacks of being expensive and raising safety concerns. Using RNA (encoding therapeutic protein) has several advantages that have the potential to overcome these limitations. Chemically modifying the RNA improves its stability and mitigates immunogenicity allowing for the potential of RNA to become an alternative to protein and gene based therapies. This brief review article focuses on the potential of RNA therapeutics in the treatment of disorders in the oral and craniofacial regions.

  13. Obstructive sleep apnoea in children with craniofacial syndromes

    PubMed Central

    Cielo, Christopher M.

    2014-01-01

    Summary Obstructive sleep apnoea syndrome (OSAS) is common in children. Craniofacial anomalies such as cleft palate are among the most common congenital conditions. Children with a variety of craniofacial conditions, including cleft palate, micrognathia, craniosynostosis, and midface hypoplasia are at increased risk for OSAS. Available evidence, which is largely limited to surgical case series and retrospective studies, suggests that OSAS can be successfully managed in these children through both surgical and non-surgical techniques. Prospective studies using larger cohorts of patients and including polysomnograms are needed to better understand the risk factors for this patient population and the efficacy of treatment options for OSAS and their underlying conditions. PMID:25555676

  14. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others.

  15. Content Specific Fronto-Parietal Synchronization during Visual Working Memory

    PubMed Central

    Salazar, RF; Dotson, NM; Bressler, SL; Gray, CM

    2014-01-01

    Lateral prefrontal and posterior parietal cortical areas exhibit task-dependent activation during working memory tasks in humans and monkeys. Neurons in these regions become synchronized during attention demanding tasks, but the contribution of these interactions to working memory is largely unknown. Using simultaneous recordings of neural activity from multiple areas in both regions, we find widespread, task-dependent and content specific synchronization of activity across the fronto-parietal network during visual working memory. The patterns of synchronization are prevalent among stimulus selective neurons and are governed by influences arising in parietal cortex. These results indicate that short-term memories are represented by large-scale patterns of synchronized activity across the fronto-parietal network. PMID:23118014

  16. Parietal cortex and representation of the mental Self

    PubMed Central

    Lou, Hans C.; Luber, Bruce; Crupain, Michael; Keenan, Julian P.; Nowak, Markus; Kjaer, Troels W.; Sackeim, Harold A.; Lisanby, Sarah H.

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit “autonoetic consciousness” is thought to emerge by retrieval of memory of personally experienced events (“episodic memory”). During episodic retrieval, functional imaging studies consistently show differential activity in medial prefrontal and medial parietal cortices. With positron-emission tomography, we here show that these medial regions are functionally connected and interact with lateral regions that are activated according to the degree of self-reference. During retrieval of previous judgments of Oneself, Best Friend, and the Danish Queen, activation increased in the left lateral temporal cortex and decreased in the right inferior parietal region with decreasing self-reference. Functionally, the former region was preferentially connected to medial prefrontal cortex, the latter to medial parietal. The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self-representation, we used transcranial magnetic stimulation over the region to transiently disturb neuronal circuitry. There was a decrease in the efficiency of retrieval of previous judgment of mental Self compared with retrieval of judgment of Other with transcranial magnetic stimulation at a latency of 160 ms, confirming the hypothesis. This network is strikingly similar to the network of the resting conscious state, suggesting that self-monitoring is a core function in resting consciousness. PMID:15096584

  17. Parietal lesion effects on cued recall following pair associate learning.

    PubMed

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations.

  18. Parietal and frontal eye field neglect in the rat.

    PubMed

    Crowne, D P; Richardson, C M; Dawson, K A

    1986-12-01

    Rats were given unilateral aspiration lesions of parietal, medial frontal, or dorsolateral frontal (motor) cortex and then tested for visual, auditory and tactile neglect, and for circling. All medial frontal lesion animals showed contralateral neglect in each modality and circled ipsiversively. The parietal lesion rats initially displayed contralateral visual and auditory neglect as severe as that in the medial frontal group. Three weeks after the lesions, the parietal group had a smaller residual deficit on the visual test than the medial frontal group. In the first week, parietal animals responded less than the medial frontals to stroking the vibrissae but were more responsive to mild pinching of a toe contralateral to the lesion side. In striking contrast to the medial frontal animals, the parietal group circled strongly to the contralateral side. No rat with a motor cortex lesion neglected or circled preferentially. Like medial frontal cortex, unilateral parietal lesions also produce neglect and circling, but there are important features distinguishing unilateral lesion effects in these two regions.

  19. Mechanisms of spatial attention control in frontal and parietal cortex

    PubMed Central

    Szczepanski, Sara M.; Konen, Christina S.; Kastner, Sabine

    2010-01-01

    Theories of spatial attentional control have been largely based upon studies of patients suffering from visuo-spatial neglect, resulting from circumscribed lesions of frontal and posterior parietal cortex. In the intact brain, the control of spatial attention has been related to a distributed fronto-parietal attention network. Little is known about the nature of the control mechanisms exerted by this network. Here, we used a novel region-of-interest approach to relate activations of the attention network to recently described topographic areas in frontal (FEF, PreCC/IFS) and parietal cortex (IPS1-IPS5, SPL1) and to examine their spatial attention signals. We found that attention signals in most topographic areas were spatially-specific, with stronger responses when attention was directed to the contralateral than to the ipsilateral visual field. Importantly, two hemispheric asymmetries were found. First, a region in only right, but not left superior parietal lobule (SPL1) carried spatial attention signals. Second, left FEF and left posterior parietal cortex (IPS1/2) generated stronger contralateral biasing signals than their counterparts in the right hemisphere. These findings are the first to characterize spatial attention signals in topographic frontal and parietal cortex and provide a neural basis in support of an interhemispheric competition account of spatial attentional control. PMID:20053897

  20. Trigeminal branch stimulation for the treatment of intractable craniofacial pain.

    PubMed

    Ellis, Jason A; Mejia Munne, Juan C; Winfree, Christopher J

    2015-07-01

    OBJECT Trigeminal branch stimulation has been used in the treatment of craniofacial pain syndromes. The risks and benefits of such an approach have not been clearly delineated in large studies, however. The authors report their experience in treating craniofacial pain with trigeminal branch stimulation and share the lessons they have learned after 93 consecutive electrode placements. METHODS A retrospective review of all patients who underwent trigeminal branch electrode placement by the senior author (C.J.W.) for the treatment of craniofacial pain was performed. RESULTS Thirty-five patients underwent implantation of a total of 93 trial and permanent electrodes between 2006 and 2013. Fifteen patients who experienced improved pain control after trial stimulation underwent implantation of permanent stimulators and were followed for an average of 15 months. At last follow-up 73% of patients had improvement in pain control, whereas only 27% of patients had no pain improvement. No serious complications were seen during the course of this study. CONCLUSIONS Trigeminal branch stimulation is a safe and effective treatment for a subset of patients with intractable craniofacial pain.

  1. Surgical treatment of craniofacial fibrous dysplasia in adults.

    PubMed

    Bowers, Christian A; Taussky, Philipp; Couldwell, William T

    2014-01-01

    Craniofacial fibrous dysplasia (FD) is a rare disorder that may require neurosurgical expertise for definitive management; however, surgical management of FD in adult patients is uncommon. Although other therapies have been shown to slow progression, the only definitive cure for adult craniofacial FD is complete resection with subsequent reconstruction. The authors review the biological, epidemiologic, clinical, genetic, and radiographic characteristics of adult FD, with an emphasis on surgical management of FD. They present a small series of three adult patients with complex FD that highlights the surgical complexity required in some adult patients with FD. Because of the complex nature of these adult polyostotic craniofacial cases, the authors used neurosurgical techniques specific to the different surgical indications, including a transsphenoidal approach for resection of sphenoidal sinus FD, a transmaxillary approach to decompress the maxillary branch of the trigeminal nerve with widening of the foramen rotundum, and complete calvarial craniectomy with cranioplasty reconstruction. These cases exemplify the diverse range of skull base techniques required in the spectrum of surgical management of adult FD and demonstrate that novel variations on standard neurosurgical approaches to the skull base can provide successful outcomes with minimal complications in adults with complex craniofacial FD.

  2. Analysis of the 50 most cited papers in craniofacial surgery.

    PubMed

    Tahiri, Youssef; Fleming, Tara M; Greathouse, Travis; Tholpady, Sunil S

    2015-12-01

    The intent of this study is to discuss the most prominent literature in craniofacial surgery. To do so, using the ISI Web of Science, a ranking by average number of citations per year of the top 50 craniofacial surgery articles was compiled. All plastic surgery journals listed in the "Surgery" category in the ISI Web of Knowledge Journal Citation Reports 2013 Science Edition were considered. Journal of publication, country of origin, collaborating institutions, topic of interest, and level of evidence were analyzed. The total number of citations ranged from 47 to 1017. Average number of citations per year ranged from 46.2 to 8.6. The oldest article in the top 50 was published in 1988 and the most recent in 2009. The majority of the articles came from Plastic and Reconstructive Surgery with 28 of the 50. The majority of the articles, originated from the United States (56%). Reconstruction of acquired defects was the most commonly examined topic at 46.2%; followed by articles discussing reconstruction of congenital defects (23.1%). The most common level of evidence was level 3. This extensive examination of the craniofacial literature highlights the important part that craniofacial surgery takes in the field of plastic surgery.

  3. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified.

  4. Hutchinson-Gilford progeria syndrome: Oral and craniofacial phenotypes

    PubMed Central

    Domingo, D.L.; Trujillo, M.I.; Council, S.E.; Merideth, M.A.; Gordon, L.B.; Wu, T.; Introne, W.J.; Gahl, W.A.; Hart, T.C.

    2008-01-01

    OBJECTIVE Hutchinson-Gilford progeria syndrome (HGPS) is a rare early-onset accelerated senescence syndrome. In HGPS, a recently identified de novo dominant mutation of the lamin A gene (LMNA) produces abnormal lamin A, resulting in compromised nuclear membrane integrity. Clinical features include sclerotic skin, cardiovascular and bone abnormalities, and marked growth retardation. Craniofacial features include “bird-like” facies, alopecia, craniofacial disproportion and dental crowding. Our prospective study describes dental, oral soft tissue, and craniofacial bone features in HGPS. METHODS Fifteen patients with confirmed p.G608G LMNA mutation (1–17 years, 7 males, 8 females) received comprehensive oral evaluations. Anomalies of oral soft tissue, gnathic bones and dentition were identified. RESULTS Radiographic findings included hypodontia (n=7), dysmorphic teeth (n=5), steep mandibular angles (n=11), and thin basal bone (n=11). Soft tissue findings included ogival palatal arch (n=8), median sagittal palatal fissure (n=7), and ankyloglossia (n=7). Calculated dental ages (9months–11y2m) were significantly lower than chronological ages (1y6m–17y8m) (p=0.002). Eleven children manifested a shorter mandibular body, anterior/posterior cranial base and ramus, but a larger gonial angle, compared to age/gender/race norms. CONCLUSION Novel oral-craniofacial phenotypes and quantification of previously reported features are presented. Our findings expand the HGPS phenotype and provide additional insight into the complex pathogenesis of HGPS. PMID:19236595

  5. Craniofacial pain and jaw-muscle activity during sleep.

    PubMed

    Yachida, W; Castrillon, E E; Baad-Hansen, L; Jensen, R; Arima, T; Tomonaga, A; Ohata, N; Svensson, P

    2012-06-01

    This study compared the jaw-muscle electromyographic (EMG) activity during sleep in patients with craniofacial pain (n = 63) or no painful conditions (n = 52) and between patients with tension-type headache (TTH: n = 30) and healthy control individuals (n = 30). All participants used a portable single-channel EMG device (Medotech A/S) for four nights. There was no significant difference in EMG activity between craniofacial pain (24.5 ± 17.9 events/hr) and no painful conditions (19.7 ± 14.5), or between TTH (20.8 ± 15.0) and healthy control individuals (15.2 ± 11.6, p >.050). There were positive correlations between EMG activity and number of painful muscles (r = 0.188; p = 0.044), characteristic pain intensity (r = 0.187; p = 0.046), McGill Pain Questionnaire (r = 0.251; p = 0.008), and depression scores (r = 0.291; p = 0.002). Patients with painful conditions had significantly higher night-to-night variability compared with pain-free individuals (p < 0.050). This short-term observational study suggests that there are no major differences between patients with different craniofacial pain conditions and pain-free individuals in terms of jaw-muscle EMG activity recorded with a single-channel EMG device during sleep. However, some associations may exist between the level of EMG activity and various parameters of craniofacial pain. Longitudinal studies are warranted to further explore the relationship between sleep bruxism and craniofacial pain.

  6. A survey of dentists in the United States regarding a specialty in craniofacial pain.

    PubMed

    Simmons, H Clifton; Kilpatrick, Steven R

    2004-01-01

    In an effort to explore whether a specialty for craniofacial pain is warranted, the American Academy of Craniofacial Pain (AACP) commissioned an opinion survey of dentists. The survey population (N=4000) was stratified by specialty, so that dentists in affected areas would be adequately represented: 500 orthodontists and dentofacial orthopedists, 500 oral and maxillofacial surgeons, 500 periodontists, 500 prosthodontists, and 2,000 general practitioners. A total of 930 dentists responded for a 23.2% response rate. The survey had multiple purposes: 1. to measure the percentage of craniofacial pain patients perceived in dental patient populations; 2. to determine whether each dentist prefers to treat the disorder or; 3. prefers to refer craniofacial pain patients to clinicians specializing in the disorder; and 4. whether dentists favor/oppose the formation of a craniofacial pain specialty. The respondents' perception of the prevalence of craniofacial pain among their patients was 13.9%. A majority of the responding dentists, 54.7%, are in favor of a craniofacial pain specialty. Overall, 65% of dentists treat craniofacial pain patients, although more than half, 55%, of all dentists also refer such patients. Even 43.6% of dentists who regularly treat craniofacial pain favor a specialty, while 76% of those who do not treat such patients favor the specialty. The data presented here advocate development of a dental specialty in craniofacial pain.

  7. Effects of tongue volume reduction on craniofacial growth

    PubMed Central

    Liu, Zi-Jun; Shcherbatyy, Volodymyr; Gu, Gaoman; Perkins, Jonathan A.

    2008-01-01

    The interaction between tongue size/volume and craniofacial skeletal growth is essential for understanding the mechanism of specific types of malocclusion and objectively measuring outcomes of various surgical and/or orthodontic treatments. Currently available information on this interaction is limited. This study was designed to examine how tongue body volume reduction affects craniofacial skeleton and dental arch formation during the rapid growth period in five 12-week-old Yucatan minipig sibling pairs. One of each pair received a standardized reduction glossectomy to reduce tongue volume by 15-17% (reduction group), and the other had the reduction glossectomy incisions without tissue removal (sham group). Before surgery, five stainless steel screws were implanted into standardized craniofacial skeletal locations. A series of cephalograms, lateral and axial, were obtained longitudinally at 1 week preoperative, and 2 and 4 weeks postoperative. These images were traced using superimposition, and linear and angular variables were measured digitally. Upon euthanasia, direct osteometric measurements were obtained from harvested skulls. Five en-bloc bone pieces were further cut for bone mineral examination by dual photon/energy X-ray absorptiometry (DEXA). The results indicate that: (1) while daily food consumption and weekly body weight were not significantly affected, tongue volume reduction showed an overall negative effect on the linear expansion of craniofacial skeletons; (2) premaxilla and mandibular symphysis lengths, and anterior dental arch width were significantly less in reduction than sham animals at 2 and/or 4 weeks after the surgery; (3) both premaxilla/maxilla and mandible bone mineral density and content were lower in reduction than sham animals, significantly lower in anterior mandible; (4) craniofacial skeletal and dental arch size were significantly smaller in reduction than sham animals, being most significant in the mandibular anterior length and

  8. Attenuating illusory binding with TMS of the right parietal cortex

    PubMed Central

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of features (colors and shape) was unaffected. No perceptual effects were found following left IPS stimulation, or stimulation of the right angular gyrus at the junction of the transverse occipital sulcus (IPS/TOS). These results support a role for the parietal cortex in feature binding but in ways that may require rethinking. PMID:17336097

  9. Parietal hemineglect and motor deficits in the monkey.

    PubMed

    Deuel, R K; Regan, D J

    1985-01-01

    To study the parietal hemineglect syndrome, we trained and operated nine Macaca fasicularis monkeys. Contralateral to the lesion they showed response abnormalities to visual and somatic sensory stimuli, and misreaching toward targets in visual space, abberant finger and wrist postures and lack of pincer grasp. The latter did not appear during performance of a preoperatively practised task, nor depend for severity upon lesion size, whereas sensory response abnormalities did. We conclude that abnormal motor patterns are separable from hemineglect in parietal animals, and are worst when the movement is directed to a visual target in extrapersonal space.

  10. Fibrous dysplasia of bone: craniofacial and dental implications.

    PubMed

    Burke, A B; Collins, M T; Boyce, A M

    2016-08-05

    Fibrous dysplasia (FD) is a rare bone disease caused by postzygotic somatic activating mutations in the GNAS gene, which lead to constitutive activation of adenylyl cyclase and elevated levels of cyclic AMP, which act on downstream signaling pathways and cause normal bone to be replaced with fibrous tissue and abnormal (woven) bone. The bone disease may occur in one bone (monostotic), multiple bones (polyostotic), or in combination with hyperfunctioning endocrinopathies and hyperpigmented skin lesions (in the setting of McCune-Albright Syndrome). FD is common in the craniofacial skeleton, causing significant dysmorphic features, bone pain, and dental anomalies. This review summarizes the pathophysiology, clinical findings, and treatment of FD, with an emphasis on the craniofacial and oral manifestations of the disease.

  11. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  12. Coordinate systems integration for development of malaysian craniofacial database.

    PubMed

    Rajion, Zainul; Suwardhi, Deni; Setan, Halim; Chong, Albert; Majid, Zulkepli; Ahmad, Anuar; Rani Samsudin, Ab; Aziz, Izhar; Wan Harun, W A R

    2005-01-01

    This study presents a data registration method for craniofacial spatial data of different modalities. The data consists of three dimensional (3D) vector and raster data models. The data is stored in object relational database. The data capture devices are Laser scanner, CT (Computed Tomography) scan and CR (Close Range) Photogrammetry. The objective of the registration is to transform the data from various coordinate systems into a single 3-D Cartesian coordinate system. The standard error of the registration obtained from multimodal imaging devices using 3D affine transformation is in the ranged of 1-2 mm. This study is a step forward for storing the spatial craniofacial data in one reference system in database.

  13. Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome.

    PubMed

    Ullrich, N J; Silvera, V M; Campbell, S E; Gordon, L B

    2012-09-01

    HGPS is a rare syndrome of segmental premature aging. Our goal was to expand the scope of structural bone and soft-tissue craniofacial abnormalities in HGPS through CT or MR imaging. Using The Progeria Research Foundation Medical and Research Database, 98 imaging studies on 25 patients, birth to 14.1 years of age, were comprehensively reviewed. Eight newly identified abnormalities involving the calvaria, skull base, and soft tissues of the face and orbits were present with prevalences between 43% and 100%. These included J-shaped sellas, a mottled appearance and increased vascular markings of the calvaria, abnormally configured mandibular condyles, hypoplastic articular eminences, small zygomatic arches, prominent parotid glands, and optic nerve kinking. This expanded craniofacial characterization helps link disease features and improves our ability to evaluate how underlying genetic and cellular abnormalities culminate in a disease phenotype.

  14. Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.

    PubMed

    Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina

    2016-01-01

    Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion.

  15. The Oral and Craniofacial Relevance of Chemically Modified RNA Therapeutics

    PubMed Central

    Kormann, Michael S.D.; Khorsand, Behnoush

    2016-01-01

    Several tissue engineering strategies in the form of protein therapy, gene therapy, cell therapy and its combinations are currently being explored for oral and cranio-facial regeneration and repair. Though each of these approaches has advantages, they all have common inherent drawbacks of being expensive and raising safety concerns. Using RNA (encoding therapeutic protein) has several advantages that have the potential to overcome these limitations. Chemically modifying the RNA improves its stability and mitigates immunogenicity allowing for the potential of RNA to become an alternative to protein and gene based therapies. This brief review article focuses on the potential of RNA therapeutics in the treatment of disorders in the oral and craniofacial regions. PMID:26896600

  16. Craniofacial Deviations in the Children With Nasal Obstruction.

    PubMed

    Ant, Ayca; Kemaloglu, Yusuf Kemal; Yilmaz, Metin; Dilci, Alper

    2017-01-20

    Nasal obstruction mainly caused by adenoid hypertrophy in children affects the craniofacial growth and development process, and the craniofacial deviations and/or differences reported in the children are very similar to those in the adults with obstructive sleep apnea syndrome (OSAS). The authors aimed to look for relationships of the linear craniofacial dimensions in the children suffering from nasal obstruction with age, degree of clinical nasal obstruction score (CNOS), and relative size of the adenoid mass within the nasopharynx in their study.Fifty-five children suffering from nasal obstruction were retrospectively enrolled, and clinical data was used to calculate CNOS. On the lateral cephalometric radiographies, 9 linear variables were measured and adenoidal-nasopharyngeal ratio (ANR) was calculated.The data presented that, not CNOS, but ANR shown decrease by age, while many skeletal variables with exception of the nasopharyngeal and adenoidal postero-anterior dimensions were increased by age. Further, it was found that while CNOS were negatively correlated with the anterior cranial base length, anterior-superior facial height, and maxillary depth, ANR disclosed significant correlation only with the anteriorsuperior facial height. The authors' results support that nasal obstruction in the children was related not only to the adenoidal hypertrophy. Although relative size of the adenoidal mass in relation to the nasopharynx decreased by age, nasal obstruction was still present. Further, these results support that craniofacial deviations and/or differences in the children with nasal obstruction is similar to the adult OSAS patients. Smaller dimensions related to the naso-maxillary complex in the children with more severe nasal obstruction appear to be continuous by age. Hence, it could be said that narrow naso-maxillary complex could contribute to proceed nasal obstruction by age, which may contribute to OSAS in the adults.

  17. Sagittal back contour and craniofacial morphology in preadolescents.

    PubMed

    Lippold, Carsten; Segatto, Emil; Végh, András; Drerup, Burkhard; Moiseenko, Tatjana; Danesh, Gholamreza

    2010-03-01

    The aim of this study was to analyze the correlation ratios between the sagittal back contour (flèche cervicale and lombaire, trunk inclination) and selected parameters of craniofacial morphology in children. The patient sample consisted of 66 healthy children with a mean age of 11.2 years (SD 1.6 years), of which 34 were male (mean age 11.5 years, SD 1.3 years) and 32 were females (mean age 10.9 years, SD 1.9 years). The children were recruited during the preparation of the initial orthodontic treatment records. Craniofacial morphology was analyzed by six angular measurements: facial axis, mandibular plane angle, inner gonial angle, lower facial height, facial depth and maxilla position. Rasterstereography was used for reconstruction of the spinal back sagittal profile. From the profile flèche cervicale, flèche lombaire and trunk inclination were determined and the correlations with the craniofacial morphology were calculated (Pearson and Mann-Whitney U test). Significant correlations were found with respect to the inner gonial angle and the flèche cervicale, the mandibular plane angle and the flèche lombaire, the inner gonial angle and the flèche lombaire, and the angular lower facial height and the flèche lombaire, as well as the inner gonial angle and the trunk inclination. The craniofacial vertical growth pattern, presented by mandibular plane angle, inner gonial angle and the angular lower facial height, and the correlation to flèche cervicale and lombaire as well as trunk inclination reveal correlations between growth pattern and sagittal back contour.

  18. Sagittal back contour and craniofacial morphology in preadolescents

    PubMed Central

    Lippold, Carsten; Végh, András; Drerup, Burkhard; Moiseenko, Tatjana; Danesh, Gholamreza

    2009-01-01

    The aim of this study was to analyze the correlation ratios between the sagittal back contour (flèche cervicale and lombaire, trunk inclination) and selected parameters of craniofacial morphology in children. The patient sample consisted of 66 healthy children with a mean age of 11.2 years (SD 1.6 years), of which 34 were male (mean age 11.5 years, SD 1.3 years) and 32 were females (mean age 10.9 years, SD 1.9 years). The children were recruited during the preparation of the initial orthodontic treatment records. Craniofacial morphology was analyzed by six angular measurements: facial axis, mandibular plane angle, inner gonial angle, lower facial height, facial depth and maxilla position. Rasterstereography was used for reconstruction of the spinal back sagittal profile. From the profile flèche cervicale, flèche lombaire and trunk inclination were determined and the correlations with the craniofacial morphology were calculated (Pearson and Mann–Whitney U test). Significant correlations were found with respect to the inner gonial angle and the flèche cervicale, the mandibular plane angle and the flèche lombaire, the inner gonial angle and the flèche lombaire, and the angular lower facial height and the flèche lombaire, as well as the inner gonial angle and the trunk inclination. The craniofacial vertical growth pattern, presented by mandibular plane angle, inner gonial angle and the angular lower facial height, and the correlation to flèche cervicale and lombaire as well as trunk inclination reveal correlations between growth pattern and sagittal back contour. PMID:19946733

  19. RSK2 Is a Modulator of Craniofacial Development

    PubMed Central

    Laugel-Haushalter, Virginie; Paschaki, Marie; Marangoni, Pauline; Pilgram, Coralie; Langer, Arnaud; Kuntz, Thibaut; Demassue, Julie; Morkmued, Supawich; Choquet, Philippe; Constantinesco, André; Bornert, Fabien; Schmittbuhl, Matthieu; Pannetier, Solange; Viriot, Laurent; Hanauer, André; Dollé, Pascal; Bloch-Zupan, Agnès

    2014-01-01

    Background The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized. Methodology/Principal Findings We examined, using X-Ray microtomographic analysis, the variable craniofacial dysmorphism and dental anomalies present in Rsk2 knockout mice, a model of Coffin-Lowry syndrome, as well as in triple Rsk1,2,3 knockout mutants. We report Rsk mutation produces surpernumerary teeth midline/mesial to the first molar. This highly penetrant phenotype recapitulates more ancestral tooth structures lost with evolution. Most likely this leads to a reduction of the maxillary diastema. Abnormalities of molar shape were generally restricted to the mesial part of both upper and lower first molars (M1). Expression analysis of the four Rsk genes (Rsk1, 2, 3 and 4) was performed at various stages of odontogenesis in wild-type (WT) mice. Rsk2 is expressed in the mesenchymal, neural crest-derived compartment, correlating with proliferative areas of the developing teeth. This is consistent with RSK2 functioning in cell cycle control and growth regulation, functions potentially responsible for severe dental phenotypes. To uncover molecular pathways involved in the etiology of these defects, we performed a comparative transcriptomic (DNA microarray) analysis of mandibular wild-type versus Rsk2-/Y molars. We further demonstrated a misregulation of several critical genes, using a Rsk2 shRNA knock-down strategy in molar tooth germs cultured in vitro. Conclusions This study reveals RSK2 regulates craniofacial development including tooth development and patterning via novel transcriptional targets. PMID:24416220

  20. Multimodality imaging for precise localization of craniofacial osteomyelitis.

    PubMed

    Strumas, Nick; Antonyshyn, Oleh; Caldwell, Curtis B; Mainprize, James

    2003-03-01

    Functional imaging identifies areas of abnormal bone turnover, providing a useful adjunct in the treatment of osteomyelitis and bone tumors. The low resolution and lack of anatomical detail limit the application of bone scans in craniofacial surgery, however. Multimodality image registration addresses this problem by fusing functional images (single photon emission computed tomography [SPECT]) to high-resolution structural images (computed tomography [CT]) for precise anatomical delineation of bone activity. This article describes a technique for spatial registration of CT and SPECT images to provide precise anatomical delineation of abnormal bone turnover, thereby guiding the extent of resection in the management of craniofacial osteomyelitis. Standard CT and SPECT imaging protocols were used in imaging the skull from the vertex to the mentum. Image data were imported into Analyze (Biomedical Imaging Resource; Mayo Foundation, Rochester, MN) on a dedicated Windows NT (Microsoft Corporation, Redmond, WA) workstation. Using the CT data, the craniofacial skeleton, osteotomy segments, and bone grafts were interactively mapped out. Consecutive axial slices were then reconstructed to form a three-dimensional volume of interest. The CT-derived volume of interest was registered to the technetium Tc 99m-methylene diphosphonate SPECT scan using the Analyze program to provide a fused multimodality image. The imaging technique was used to localize osteomyelitis in a complex craniofacial reconstruction. The fused images guided the extent of resection during surgery, and postoperative microbiological and histological testing confirmed the diagnosis. Multimodality image registration provides a readily available method to relate facial skeletal anatomy and physiology. This technique is valuable in planning and monitoring therapeutic interventions in clinical conditions in which bone turnover is abnormal.

  1. The society for craniofacial genetics and developmental biology 38th annual meeting.

    PubMed

    Taneyhill, Lisa A; Hoover-Fong, Julie; Lozanoff, Scott; Marcucio, Ralph; Richtsmeier, Joan T; Trainor, Paul A

    2016-07-01

    The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, post doctoral researchers, clinicians, orthodontists, scientists, and academicians who share an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology. © 2016 Wiley Periodicals, Inc.

  2. Endoscopic delivery of calcium phosphate cement for secondary craniofacial reconstruction.

    PubMed

    Francis, Cameron S; Wong, Ryan K; Cohen, Steven R

    2012-11-01

    Contour defects are common following primary craniofacial procedures including cranial vault remodeling, fronto-orbital and midface advancements, and complex posttraumatic reconstructions. When onlayed as fast-setting pastes, calcium phosphate cements (CPCs) have been used to effectively correct contour defects in open secondary reconstruction procedures. Here, we describe an endoscopic procedure using an injectable CPC and compare surgical outcomes with the open technique. A retrospective review was conducted for 36 consecutive patients aged 3.0-28.9 years (mean, 10.1 years) who underwent secondary craniofacial reconstruction over a 3-year period. Patients were stratified into endoscopic or open groups depending on the surgical approach utilized. Mean operative time was significantly shorter (P < 0.001) for the endoscopic group (64 minutes) than for the open group (131 minutes). Similarly, hospital stay was significantly shorter (P = 0.005) in the endoscopic group than in the open group. There was also a significant difference with respect to cost (P < 0.001), with the endoscopic approach resulting in a per-patient cost savings of $2208.05. In conclusion, endoscopic delivery of CPC appears to be a safe, efficacious, and cost-effective method of performing secondary craniofacial reconstruction, with the additional benefits of decreased operative time and shorter postoperative hospital stay when compared with an open procedure.

  3. Craniofacial sexual dimorphism patterns and allometry among extant hominids.

    PubMed

    Schaefer, Katrin; Mitteroecker, Philipp; Gunz, Philipp; Bernhard, Markus; Bookstein, Fred L

    2004-12-01

    Craniofacial sexual dimorphism in primates varies in both magnitude and pattern among species. In the past two decades, there has been an increasing emphasis in exploring the correlations of these patterns with taxonomy and the variation in patterns within and among the craniofacial regions. Scrutinising these relationships for hominids, we decompose the craniofacial morphology in five taxa: Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. 3D coordinates of 35 traditional landmarks and 61 semilandmarks, covering five ridge curves, are measured for each of 268 adult and sub-adult specimens and analysed using geometric morphometric methods. A multivariate analysis in size-shape space shows that ontogenetic scaling contributes to the development of sexual dimorphism in all five taxa, but to a varying extent. In absolute as well as in relative terms P. pygmaeus shows the greatest allometric component, followed by G. gorilla. Homo is intermediate, while in Pan the non-allometric constituent part contributes a large fraction to the actual sexual dimorphism, most markedly in the pygmy chimpanzee. An eigendecomposition of the five vectors of sexual dimorphism reveals two dimensions independent of allometry. One separates orang-utan sexual dimorphism from the African apes and Homo, and the other differentiates between the great apes and Homo with Pan mediating. We discuss these patterns and speculate on their use as characters for taxonomic analysis in the fossil record.

  4. Study on the performance of different craniofacial superimposition approaches (I).

    PubMed

    Ibáñez, O; Vicente, R; Navega, D S; Wilkinson, C; Jayaprakash, P T; Huete, M I; Briers, T; Hardiman, R; Navarro, F; Ruiz, E; Cavalli, F; Imaizumi, K; Jankauskas, R; Veselovskaya, E; Abramov, A; Lestón, P; Molinero, F; Cardoso, J; Çağdır, A S; Humpire, D; Nakanishi, Y; Zeuner, A; Ross, A H; Gaudio, D; Damas, S

    2015-12-01

    As part of the scientific tasks coordinated throughout The 'New Methodologies and Protocols of Forensic Identification by Craniofacial Superimposition (MEPROCS)' project, the current study aims to analyse the performance of a diverse set of CFS methodologies and the corresponding technical approaches when dealing with a common dataset of real-world cases. Thus, a multiple-lab study on craniofacial superimposition has been carried out for the first time. In particular, 26 participants from 17 different institutions in 13 countries were asked to deal with 14 identification scenarios, some of them involving the comparison of multiple candidates and unknown skulls. In total, 60 craniofacial superimposition problems divided in two set of females and males. Each participant follow her/his own methodology and employed her/his particular technological means. For each single case they were asked to report the final identification decision (either positive or negative) along with the rationale supporting the decision and at least one image illustrating the overlay/superimposition outcome. This study is expected to provide important insights to better understand the most convenient characteristics of every method included in this study.

  5. A review of craniofacial disorders caused by spliceosomal defects.

    PubMed

    Lehalle, D; Wieczorek, D; Zechi-Ceide, R M; Passos-Bueno, M R; Lyonnet, S; Amiel, J; Gordon, C T

    2015-11-01

    The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNA transcripts. Mutations in EFTUD2, encoding a component of the major spliceosome, have recently been identified as the cause of mandibulofacial dysostosis, Guion-Almeida type (MFDGA), characterized by mandibulofacial dysostosis, microcephaly, external ear malformations and intellectual disability. Mutations in several other genes involved in spliceosomal function or linked aspects of mRNA processing have also recently been identified in human disorders with specific craniofacial malformations: SF3B4 in Nager syndrome, an acrofacial dysostosis (AFD); SNRPB in cerebrocostomandibular syndrome, characterized by Robin sequence and rib defects; EIF4A3 in the AFD Richieri-Costa-Pereira syndrome, characterized by Robin sequence, median mandibular cleft and limb defects; and TXNL4A in Burn-McKeown syndrome, involving specific craniofacial dysmorphisms. Here, we review phenotypic and molecular aspects of these syndromes. Given the apparent sensitivity of craniofacial development to defects in mRNA processing, it is possible that mutations in other proteins involved in spliceosomal function will emerge in the future as causative for related human disorders.

  6. Web-based cephalometric procedure for craniofacial and dentition analyses

    NASA Astrophysics Data System (ADS)

    Arun Kumar, N. S.; Kamath, Srijit R.; Ram, S.; Muthukumaran, B.; Venkatachalapathy, A.; Nandakumar, A.; Jayakumar, P.

    2000-05-01

    Craniofacial analysis is a very important and widely used procedure in orthodontic caphalometry, which plays a key role in diagnosis and treatment planning. This involves establishing reference standards and specification of landmarks and variables. The manual approach takes up a tremendous amount of the orthodontist's time. In this paper, we developed a web-based approach for the craniofacial and dentition analyses. A digital computed radiography (CR) system is utilized for obtaining the craniofacial image, which is stored as a bitmap file. The system comprises of two components - a server and a client. The server component is a program that runs on a remote machine. To use the system, the user has to connect to the website. The client component is now activated, which uploads the image from the PC and displays it on the canvas area. The landmarks are identified using a mouse interface. The reference lines are generated. The resulting image is then sent to the server which performs all measurement and calculates the mean, standard deviation, etc. of the variables. The results generated are sent immediately to the client where it is displayed on a separate frame along with the standard values for comparison. This system eliminates the need for every user to load other expensive programs on his machine.

  7. Craniofacial skeletal architecture and obstructive sleep apnoea syndrome severity.

    PubMed

    Costa E Sousa, Rui Augusto; dos Santos Gil, Nuno Alexandre

    2013-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a sleep related breathing disorder caused by pharynx obstruction that often terminates in abrupt arousals and is capable of disrupting physiological sleep profile. Its' severity has been associated, among others, with craniofacial skeletal morphology. To investigate this relationship and elucidate craniofacial skeleton patterns in individuals without obvious maxillofacial abnormalities, 171 OSAS patients were studied with nocturnal polysomnographic record and cephalometric X-ray (24 variables). Cephalometric variables were compared between three apnoea/hypopnoea index (AHI) groups (AHI ≤ 15; 15 < AHI < 30; AHI ≥ 30) and uni/multivariate analysis between cephalometric variables and AHI were performed. The patients were predominantly men (83%), with a mean age of 48.1 years. Mean BMI and AHI were 28.4 kg/m(2) and 26.2, respectively. Most cephalometric variables differed among the three AHI groups. Fifteen cephalometric variables showed a correlation with AHI. Five cephalometric variables and BMI were independent AHI predictors. Cephalometric variables were better AHI predictors in normal weight patients. Significant evidence of craniofacial skeleton influence was found on OSAS severity, caudalization of the hyoid and lower sagittal facial projection being the most important patterns. From the cephalometric variables analysed, the hypopharynx calibre demonstrated a higher predictive value for AHI, independently of BMI.

  8. The role of parietal cortex during sustained visual spatial attention.

    PubMed

    Thakral, Preston P; Slotnick, Scott D

    2009-12-11

    The control of spatial attention-shifting attention between visual field locations or sustaining attention to one location-involves the prefrontal cortex and parietal cortex. Within the parietal cortex, shifting attention has been linked to the superior parietal lobule; however, the neural substrates associated with sustained attention are still unknown. In the present fMRI study, we aimed to identify generalized control regions associated with sustained attention using two different protocols. The motion protocol alternated between periods of moving or stationary dots, and the flicker protocol alternated between periods of flickering or stationary checkerboards (each period lasted 14 s). During moving and flickering periods, the behavioral task alternated between sustained attention and perception. A region-of-interest analysis confirmed that the motion but not flicker protocol produced attention effects-greater activity associated with sustained attention than perception-in motion processing region MT+. A whole brain conjunction analysis identified regions commonly associated with sustained attention for both protocols, which included the right intraparietal sulcus (BA 7/40), the right middle frontal gyrus (BA 9/46), the right superior temporal gyrus (BA 22), the right insula (BA 13), and the left cerebellum. Coupled with previous results, the present findings suggest a functional-anatomic organization of parietal cortex where shifts in attention are mediated by superior regions and sustained attention is mediated by more lateral regions.

  9. Body and movement: consciousness in the parietal lobes.

    PubMed

    Daprati, Elena; Sirigu, Angela; Nico, Daniele

    2010-02-01

    A critical issue related to the notion of identity concerns our ability to discriminate between internally and externally generated stimuli. This basic mechanism likely relies on perceptual and motor information, and requires that both motor plans and the resulting activity be continuously mapped on a reliable body representation. It has been widely demonstrated that the parietal cortices of the two hemispheres play a crucial role, albeit differently specialized, in both monitoring internal representation of our own actions and sustaining body representation. Ample neuropsychological evidence indicates that while damage to the left parietal cortex affects the ability to generate and/or monitor an internal model of one's own movement, lesions of the right parietal lobe are largely responsible for severe perturbations of the internal representation of one's own body. In the present paper, we discuss the processes involved in body perception and self-recognition and propose a tentative model describing how the right and left parietal cortices contribute in integrating various sources of information to produce the unique, elementary experience of one's own body in motion. The ecological value of this process in constructing identity and autobiographical experience will be discussed.

  10. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    PubMed

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery.

  11. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate.

  12. Alzheimer's disease with asymmetric parietal lobe atrophy: a case report.

    PubMed

    Kaida, K; Takeda, K; Nagata, N; Kamakura, K

    1998-09-18

    A 52-year-old, right-handed female presented with visuospatial dysfunction including left hemineglect, incomplete Balint's syndrome, and environmental agnosia, together with left-sided motor symptoms such as unskillful movement, dystonic postures, and myoclonus in the left hand, without significant dementia. Symptoms progressed to akinetic mutism prior to her death 10 years after onset of illness. Imaging studies such as MRI, SPECT, and PET studies showed severe, predominantly right-sided involvement of parietal and parieto-occipital areas. The motor signs might originate from the right parietal lesions such as area five or somatosensory area. Neuropathologic studies including immunocytochemistry showed tau-positive neurofibrillary tangles and abundant neuritic plaques with amyloid deposits, confirming the diagnosis of Alzheimer's disease. An analysis of serum apolipoprotein E revealed epsilon3/epsilon3 homozygosity. This case represents a variant of Alzheimer's disease conspicuous for progressive motor signs and visuospatial dysfunction with a striking laterality, reflecting asymmetric parietal involvement. Alzheimer's disease with asymmetric parietal atrophy is difficult to be clinically distinguished from corticobasal degeneration characterized by progressive unilateral motor signs and focal cortical signs.

  13. Histamine-stimulated phosphorylation of gastric parietal cell proteins

    SciTech Connect

    Chew, C.S.; Brown, M.R.

    1987-05-01

    Parietal cells from rabbit gastric mucosa respond to histamine with increased HCl secretion. Histamine also increases cAMP and activates cAMP-dependent protein kinase(s) in these cells. cAMP analogues and forskolin appear to mimic these effects. More recently histamine and forskolin but not cAMP-stimulated increases in (Ca/sup 2 +/)/sub i/ have been detected in parietal cells enriched to 98 +/- 2% (n=10) purity using a combined Nycodenz density gradient/centrifugal elutriation technique. In the present experiments parietal cells were loaded with /sup 32/P to label ATP pools then stimulated with histamine or chlorophenylthio-cAMP plus the H/sub 2/ receptor antagonist, cimetidine. Total cell extracts were separated via 2D-gel electrophoresis and analyzed with a Masscomp computer and PDQuest software. Results indicate that histamine stimulates phosphorylation of at least two proteins with molecular weights 49 and 33 kDa and respective pI's of 6.4 and 6.0. Changes in phosphorylation are detected within 1 min of stimulation and remain elevated for at least 15 min. No change in specific activity of samples was detected during this time. A third protein also showed increased phosphorylation but the response appeared more transient. They conclude that histamine increases phosphorylation of several parietal cell proteins via a cAMP-dependent mechanism. The relationship between changes in phosphorylation and onset of HCl secretion remains to be determined.

  14. Impairments in Tactile Search Following Superior Parietal Damage

    ERIC Educational Resources Information Center

    Skakoon-Sparling, Shayna P.; Vasquez, Brandon P.; Hano, Kate; Danckert, James

    2011-01-01

    The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior…

  15. Topographic Maps of Visual Spatial Attention in Human Parietal Cortex

    PubMed Central

    Silver, Michael A.; Ress, David; Heeger, David J.

    2008-01-01

    Functional magnetic resonance imaging (fMRI) was used to measure activity in human parietal cortex during performance of a visual detection task in which the focus of attention systematically traversed the visual field. Critically, the stimuli were identical on all trials (except for slight contrast changes in a fully randomized selection of the target locations) whereas only the cued location varied. Traveling waves of activity were observed in posterior parietal cortex consistent with shifts in covert attention in the absence of eye movements. The temporal phase of the fMRI signal in each voxel indicated the corresponding visual field location. Visualization of the distribution of temporal phases on a flattened representation of parietal cortex revealed at least two distinct topographically organized cortical areas within the intraparietal sulcus (IPS), each representing the contralateral visual field. Two cortical areas were proposed based on this topographic organization, which we refer to as IPS1 and IPS2 to indicate their locations within the IPS. This nomenclature is neutral with respect to possible homologies with well-established cortical areas in the monkey brain. The two proposed cortical areas exhibited relatively little response to passive visual stimulation in comparison with early visual areas. These results provide evidence for multiple topographic maps in human parietal cortex. PMID:15817643

  16. Replenishment of the podocyte compartment by parietal epithelial cells.

    PubMed

    Kopp, Jeffrey B

    2015-11-01

    While progressive podocytopenia is a characteristic feature of chronic glomerular disease, the visceral epithelial niche can be replenished from the parietal epithelium. Two new reports demonstrate this process in genetically engineered mice, using fate mapping, and in human renal biopsies manifesting segmental glomerulosclerosis in diverse settings, using cellular and extracellular matrix markers.

  17. Emerging peripheral receptor targets for deep-tissue craniofacial pain therapies.

    PubMed

    Ambalavanar, R; Dessem, D

    2009-03-01

    While effective therapies are available for some types of craniofacial pain, treatments for deep-tissue craniofacial pain such as temporomandibular disorders are less efficacious. Several ion channels and receptors which are prominent in craniofacial nociceptive mechanisms have been identified on trigeminal primary afferent neurons. Many of these receptors and channels exhibit unusual distributions compared with extracranial regions. For example, expression of the ATP receptor P2X(3) is strongly implicated in nociception and is more abundant on trigeminal primary afferent neurons than analogous extracranial neurons, making them potentially productive targets specifically for craniofacial pain therapies. The initial part of this review therefore focuses on P2X(3) as a potential therapeutic target to treat deep-tissue craniofacial pain. In the trigeminal ganglion, P2X(3) receptors are often co-expressed with the nociceptive neuropeptides CGRP and SP. Therefore, we discuss the role of CGRP and SP in deep-tissue craniofacial pain and suggest that neuropeptide antagonists, which have shown promise for the treatment of migraine, may have wider therapeutic potential, including the treatment of deep-tissue craniofacial pain. P2X(3), TRPV1, and ASIC3 are often co-expressed in trigeminal neurons, implying the formation of functional complexes that allow craniofacial nociceptive neurons to respond synergistically to altered ATP and pH in pain. Future therapeutics for craniofacial pain thus might be more efficacious if targeted at combinations of P2X(3), CGRP, TRPV1, and ASIC3.

  18. Emerging Peripheral Receptor Targets for Deep-tissue Craniofacial Pain Therapies

    PubMed Central

    Ambalavanar, R.; Dessem, D.

    2009-01-01

    While effective therapies are available for some types of craniofacial pain, treatments for deep-tissue craniofacial pain such as temporomandibular disorders are less efficacious. Several ion channels and receptors which are prominent in craniofacial nociceptive mechanisms have been identified on trigeminal primary afferent neurons. Many of these receptors and channels exhibit unusual distributions compared with extracranial regions. For example, expression of the ATP receptor P2X3 is strongly implicated in nociception and is more abundant on trigeminal primary afferent neurons than analogous extracranial neurons, making them potentially productive targets specifically for craniofacial pain therapies. The initial part of this review therefore focuses on P2X3 as a potential therapeutic target to treat deep-tissue craniofacial pain. In the trigeminal ganglion, P2X3 receptors are often co-expressed with the nociceptive neuropeptides CGRP and SP. Therefore, we discuss the role of CGRP and SP in deep-tissue craniofacial pain and suggest that neuropeptide antagonists, which have shown promise for the treatment of migraine, may have wider therapeutic potential, including the treatment of deep-tissue craniofacial pain. P2X3, TRPV1, and ASIC3 are often co-expressed in trigeminal neurons, implying the formation of functional complexes that allow craniofacial nociceptive neurons to respond synergistically to altered ATP and pH in pain. Future therapeutics for craniofacial pain thus might be more efficacious if targeted at combinations of P2X3, CGRP, TRPV1, and ASIC3. PMID:19329451

  19. 78 FR 39740 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... applications. Place: National Institutes of Health, One Democracy Plaza, 6701 Democracy Boulevard, Bethesda, MD..., Scientific Review Branch, National Institute of Dental and Craniofacial Research, 6701 Democracy Blvd.,...

  20. Exploring the Underlying Genetics of Craniofacial Morphology through Various Sources of Knowledge

    PubMed Central

    Roosenboom, Jasmien; Hens, Greet; Mattern, Brooke C.; Shriver, Mark D.

    2016-01-01

    The craniofacial complex is the billboard of sorts containing information about sex, health, ancestry, kinship, genes, and environment. A thorough knowledge of the genes underlying craniofacial morphology is fundamental to understanding craniofacial biology and evolution. These genes can also provide an important foundation for practical efforts like predicting faces from DNA and phenotype-based facial diagnostics. In this work, we focus on the various sources of knowledge regarding the genes that affect patterns of craniofacial development. Although tremendous successes recently have been made using these sources in both methodology and biology, many challenges remain. Primary among these are precise phenotyping techniques and efficient modeling methods. PMID:28053980

  1. Functional connectivity of parietal cortex during temporal selective attention.

    PubMed

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients.

  2. Extracellular calcium and cholinergic stimulation of isolated canine parietal cells.

    PubMed Central

    Soll, A H

    1981-01-01

    The role of calcium gating in cholinergic stimulation of the function of parietal cells was studied using cells isolated from canine fundic mucosa by treatment with collagenase and EDTA and enriched by velocity separation in an elutriator rotor. Monitoring the accumulation of [14C[ aminopyrine as an index of parietal cell response, stimulation by carbachol, but not by histamine, was highly dependent upon the concentration of extracellular calcium. Incubation of parietal cells in 0-.1 mM calcium, rather than the usual 1.8 mM concentration, reduced the response to 100 microM carbachol by 92 +/- 2%, whereas histamine stimulation was impaired by 28 +/- 5%. A similar reduction in extracellular calcium suppressed the response to gastrin (100 nM) by 67 +/- 7%. The impairment of cholinergic stimulation found at low extracellular calcium concentrations was rapidly reversed with the readdition of calcium. Lanthanum, which blocks calcium movement across membranes, caused a similar pattern of effects on secretagogue stimulation of aminopyrine accumulation, with 100 microM lanthanum suppressing carbachol stimulation by 83 +/- 2%. This concentration of lanthanum suppressed gastrin stimulation by 40 +/- 7% and histamine stimulation by only 12 +/- 9%. Carbachol, but not histamine nor gastrin, stimulated 45Ca++ uptake. The magnitude of carbachol-stimulated calcium uptake correlated with the parietal cell content of the fractions examined (r = 0.88), and was dose responsive over carbachol concentrations from 1 microM to 1 mM. Atropine (100 nM) caused surmountable inhibition, and these effects of carbachol and atropine on calcium uptake correlated with their effects on oxygen consumption (r = 0.93) and [14C]-aminopyrine accumulation (r = 0.90). Cells preloaded with 45Ca++ lost cellular calcium in a time-dependent fashion; however, this rate of egress was not accelerated by treatment with histamine, gastrin, or carbachol, thus failing to implicate mobilization of intracellular calcium

  3. 75 FR 28031 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Management in Pain Research. Date: June 17, 2010. Time: 1 p.m. to 3 p.m. Agenda: To review and evaluate...

  4. 75 FR 26762 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Institute of Dental & Craniofacial Research; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Institute of Dental and Craniofacial Research Special Emphasis Panel; RFA (DE-10-003). Date: June 7,...

  5. 75 FR 7486 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special Emphasis Panel Review of R01 Application for RFA- DE-10-001, Oral Mucosal Vaccination against HIV...

  6. 76 FR 38193 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... confidential trade secrets or commercial property such as patentable material, and personal information... Institute of Dental and Craniofacial Research Special Emphasis Panel, Review of PAR-11-144 NIDCR...

  7. 78 FR 24761 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  8. 76 FR 80953 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  9. 75 FR 13561 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  10. 76 FR 51995 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  11. 77 FR 23488 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  12. 75 FR 51275 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  13. 76 FR 23612 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  14. 78 FR 50066 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research.... App.), notice is ] hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  15. 77 FR 49820 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  16. 77 FR 74674 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... or other reasonable accommodations, should notify the Contact Person listed below in advance of...

  17. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    ERIC Educational Resources Information Center

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  18. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    ERIC Educational Resources Information Center

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  19. Optic ataxia: from Balint's syndrome to the parietal reach region.

    PubMed

    Andersen, Richard A; Andersen, Kristen N; Hwang, Eun Jung; Hauschild, Markus

    2014-03-05

    Optic ataxia is a high-order deficit in reaching to visual goals that occurs with posterior parietal cortex (PPC) lesions. It is a component of Balint's syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching in the contralesional visual field, difficulty preshaping the hand for grasping, and an inability to correct reaches online. Recent research in nonhuman primates (NHPs) suggests that many aspects of Balint's syndrome and optic ataxia are a result of damage to specific functional modules for reaching, saccades, grasp, attention, and state estimation. The deficits from large lesions in humans are probably composite effects from damage to combinations of these functional modules. Interactions between these modules, either within posterior parietal cortex or downstream within frontal cortex, may account for more complex behaviors such as hand-eye coordination and reach-to-grasp.

  20. [Right parietal lesions, spatial neglect and egocentric reference].

    PubMed

    Bartolomeo, P; Chokron, S; Degos, J D

    2000-02-01

    Using a proprioceptive "straight-ahead" pointing task, we determined the position of the subjective sagittal middle in thirty unselected patients with unilateral vascular lesions in the right hemisphere and twenty-two normal controls. Patients with extensive right parietal damage (n = 16) showed an ipsilesional (rightward) deviation of their egocentric reference, whereas patients with lesions that substantially spared the right parietal lobe (n = 14) showed a contralesional (leftward) deviation. No significant correlation emerged between the position of the egocentric reference and the performance on a neglect battery. These results can help explain some dissociations between left neglect signs and ipsilesional deviation of the egocentric reference, and raise some questions about the links among lesion location, neglect signs and egocentric frame of reference.

  1. Gelastic seizures and fever originating from a parietal cortical dysplasia.

    PubMed

    Chaouki, Sana; Boujraf, Saïd; Atmani, Samir; Elarqam, Larbi; Messouak, Wafae

    2013-01-01

    Gelastic seizures (GS) is an uncommon seizure type characterized by sudden inappropriate attacks of uncontrolled and unmotivated laugh and its diagnostic criteria were elaborated by Gascon. These criteria included stereotypical recurrence of laugh, which is unjustified by the context, associated signs compatible with seizure, and ictal or interictal abnormalities. GS can be cryptogenic or symptomatic of a variety of cerebral lesions, the most common being hypothalamic hamartoma. However, GS associated with other types of cerebral lesions are exceedingly rare. The physiopathologic mechanisms of this type of seizure are still undefined. Two reports have described a non-lesional GS arising from a parietal focus. In this paper, we report the first case of lesional GS associated to the parietal area of the brain in a child and this case has associated fever that is likely an ictal symptom.

  2. SP8 regulates signaling centers during craniofacial development.

    PubMed

    Kasberg, Abigail D; Brunskill, Eric W; Steven Potter, S

    2013-09-15

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  3. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  4. Blepharocheilodontic (BCD) syndrome: New insights on craniofacial and dental features.

    PubMed

    Awadh, Wael; Kiukkonen, Anu; Nieminen, Pekka; Arte, Sirpa; Hurmerinta, Kirsti; Rice, David P

    2017-04-01

    Blepharocheilodontic (BCD) syndrome is a rare condition characterized by bilateral cleft lip and palate (BCLP), eyelid abnormalities, and oligodontia. Despite orofacial clefting and oligodontia being central features of the condition, detailed reports of dental and craniofacial characteristics are scarce. The aim of this study was to analyze the dental and craniofacial features in a group of patients with BCD syndrome (three of which were related). Cephalometric radiographic analyses were performed on BCD syndrome patients (all radiographs taken at age 8 years) and compared to 40 randomly selected age-matched controls (20 non-syndromic BCLP, 20 non-cleft). Also, we assessed clinical records, photographs, dental study casts, and dental radiographs to determine the extent and pattern of tooth agenesis, dental morphology and malocclusion. BCD syndrome patients showed a very severe skeletal III malocclusion (maxillary-mandibular sagittal discrepancy) and reduced anterior lower face measurement compared to non-syndromic BCLP and non-cleft controls (P = 0.001, P = 0.027). All patients exhibited oligodontia (mean number of missing permanent teeth 13.7, range 7-17). All patients exhibited missing upper central and lateral incisor, upper canine and premolar teeth. Variations in dental morphology included taurodontism, conical-shaped teeth, and notching of the incisal edges. All patients had a short and narrow maxilla which translated into anterior and posterior cross bites. We conclude that, in our BCD syndrome group, the craniofacial skeletal defects are more severe than patients with BCLP. The pattern of tooth agenesis is unusual as it included teeth that are normally highly resistant to agenesis, namely upper central incisor and canine teeth. © 2017 Wiley Periodicals, Inc.

  5. Antibacterial coating on biocomposites for cranio-facial reconstruction

    PubMed Central

    LAZAR, MADALINA ANCA; VODNAR, DAN; PRODAN, DOINA; ROTARU, HORATIU; ROMAN, CALIN RARES; SORCOI, LIDIA ADRIANA; BACIUT, GRIGORE; CAMPIAN, RADU SEPTIMIU

    2016-01-01

    Background and aims Despite the fact that implants are sterilized, antiseptic techniques are applied and systemic antibiotics are routinely administered prior to and after craniofacial surgery, infection rates between 3% and 40% are still reported for alloplastic implants, urging for implant removal. The present study focuses on the development of a fiber-reinforced composite (FRC) implant for craniofacial reconstruction with antimicrobial properties. Methods A new fiber-reinforced composite coated with gentamicin was developed and tested for bacterial adherence and antibacterial efficiency, using two of the most involved bacterial strains in the postoperative infections: Staphylococcus aureus and Pseudomonas aeruginosa. Results Bacteria were efficiently inactivated in direct contact with gentamicin coatings (p<0.05). The inhibition zone for Staphylococcus aureus ranged from 17.21 mm to 20.13 mm and for Pseudomonas aeruginosa ranged from 12.93 mm to 15.33 mm. Although no significant statistical results were found for bacterial adhesion and gentamicin concentration, (Staphylococcus aureus: β= −0.974; p=0.144>0.05 and Pseudomonas aeruginosa: β = −0.921; p=0.255>0.05), a negative relation was observed, indicating the reversed relation between the antibiotic dosage and the bacterial adherence. Conclusion The results of the two applied microbiological protocols used in the study suggested that gentamicin eluting coating inhibited not only the bacterial growth, but also led to a lower initial bacterial adhesion to the surface of the implant. Thus, antibiotic coating of craniofacial implants may reduce the infection rate related to reconstructive surgery. PMID:27547065

  6. First molar health status in different craniofacial relationships

    PubMed Central

    Linjawi, Amal I

    2016-01-01

    Objective To investigate the association between the health status of permanent first molars and different craniofacial relationships among adolescents. Study design This is a retrospective study on patients’ records aged 11–15 years. Sex, skeletal relationship, vertical growth pattern, malocclusion, overjet, and overbite were assessed. The health status of permanent first molars was recorded from the orthopantomograms and intraoral photographs as “sound” and “not sound”. Chi-square, Mann–Whitney U and Kruskal–Wallis tests, and Pearson’s correlation coefficient were used to analyze and correlate the assessed variables. Significance level was set at P<0.05. Results A total of 210 records were evaluated; 81 were male, 68 had Class I and 91 had Class II skeletal relationships. More than half of the subjects had normal (n=67) to moderate deep bite (n=72); normal (n=91), moderately increased (n=54), to severely increased (n=50) overjet; and Class I (n=106) and Class II division 1 (n=75) malocclusion. Significant differences were found in the health status of the permanent first molars with respect to sex (P=0.034), vertical growth pattern (P=0.01), and overbite (P=0.047). Strong correlations were only found between the health status of the permanent first molars and the following variables: sex (P=0.036) and vertical growth pattern (P=0.004). Significant correlation was further found between the upper left first molar health status and sex (P=0.019) and the lower right first molar health status and the vertical growth pattern (P=0.001). No significant association was found with the anteroposterior craniofacial relationships (P>0.05). Conclusion Sex difference and vertical growth patterns were found to be potential predictors of the health status of the permanent first molars. No significant association was found with the anteroposterior craniofacial relationships. PMID:27462176

  7. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  8. The Future in Craniofacial Surgery: Computer-Assisted Planning

    PubMed Central

    Schendel, Stephen A.; Hazan-Molina, Hagai; Rachmiel, Adi; Aizenbud, Dror

    2012-01-01

    Advancements in computers, prototyping, and imaging, especially over the last 10 years, have permitted the adoption of three-dimensional imaging protocols in the health care field. In this article, the authors present an integrated simulation system for craniofacial surgical planning and treatment. Image fusion technology, which involves combining different imaging modalities, was utilized to create a realistic prototype and virtual image that can be manipulated in real time. The resultant data can then be shared over the Internet with distantly located practitioners. PMID:23908836

  9. Gestalt perception is associated with reduced parietal beta oscillations.

    PubMed

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex.

  10. Bottom-up Visual Integration in the Medial Parietal Lobe.

    PubMed

    Pflugshaupt, Tobias; Nösberger, Myriam; Gutbrod, Klemens; Weber, Konrad P; Linnebank, Michael; Brugger, Peter

    2016-03-01

    Largely based on findings from functional neuroimaging studies, the medial parietal lobe is known to contribute to internally directed cognitive processes such as visual imagery or episodic memory. Here, we present 2 patients with behavioral impairments that extend this view. Both had chronic unilateral lesions of nearly the entire medial parietal lobe, but in opposite hemispheres. Routine neuropsychological examination conducted >4 years after the onset of brain damage showed little deficits of minor severity. In contrast, both patients reported persistent unusual visual impairment. A comprehensive series of tachistoscopic experiments with lateralized stimulus presentation and comparison with healthy participants revealed partial visual hemiagnosia for stimuli presented to their contralesional hemifield, applying inferential single-case statistics to evaluate deficits and dissociations. Double dissociations were found in 4 experiments during which participants had to integrate more than one visual element, either through comparison or formation of a global gestalt. Against the background of recent neuroimaging findings, we conclude that of all medial parietal structures, the precuneus is the most likely candidate for a crucial involvement in such bottom-up visual integration.

  11. Spatio-Temporal Updating in the Left Posterior Parietal Cortex

    PubMed Central

    Wada, Makoto; Takano, Kouji; Ikegami, Shiro; Ora, Hiroki; Spence, Charles; Kansaku, Kenji

    2012-01-01

    Adopting an unusual posture can sometimes give rise to paradoxical experiences. For example, the subjective ordering of successive unseen tactile stimuli delivered to the two arms can be affected when people cross them. A growing body of evidence now highlights the role played by the parietal cortex in spatio-temporal information processing when sensory stimuli are delivered to the body or when actions are executed; however, little is known about the neural basis of such paradoxical feelings resulting from such unusual limb positions. Here, we demonstrate increased fMRI activation in the left posterior parietal cortex when human participants adopted a crossed hands posture with their eyes closed. Furthermore, by assessing tactile temporal order judgments (TOJs) in the same individuals, we observed a positive association between activity in this area and the degree of reversal in TOJs resulting from crossing arms. The strongest positive association was observed in the left intraparietal sulcus. This result implies that the left posterior parietal cortex may be critically involved in monitoring limb position and in spatio-temporal binding when serial events are delivered to the limbs. PMID:22768126

  12. Decoding Movement Goals from the Fronto-Parietal Reach Network

    PubMed Central

    Gertz, Hanna; Lingnau, Angelika; Fiehler, Katja

    2017-01-01

    During reach planning, fronto-parietal brain areas need to transform sensory information into a motor code. It is debated whether these areas maintain a sensory representation of the visual cue or a motor representation of the upcoming movement goal. Here, we present results from a delayed pro-/anti-reach task which allowed for dissociating the position of the visual cue from the reach goal. In this task, the visual cue was combined with a context rule (pro vs. anti) to infer the movement goal. Different levels of movement goal specification during the delay were obtained by presenting the context rule either before the delay together with the visual cue (specified movement goal) or after the delay (underspecified movement goal). By applying functional magnetic resonance imaging (fMRI) multivoxel pattern analysis (MVPA), we demonstrate movement goal encoding in the left dorsal premotor cortex (PMd) and bilateral superior parietal lobule (SPL) when the reach goal is specified. This suggests that fronto-parietal reach regions (PRRs) maintain a prospective motor code during reach planning. When the reach goal is underspecified, only area PMd but not SPL represents the visual cue position indicating an incomplete state of sensorimotor integration. Moreover, this result suggests a potential role of PMd in movement goal selection. PMID:28286476

  13. Early recurrence and ongoing parietal driving during elementary visual processing

    PubMed Central

    Plomp, Gijs; Hervais-Adelman, Alexis; Astolfi, Laura; Michel, Christoph M.

    2015-01-01

    Visual stimuli quickly activate a broad network of brain areas that often show reciprocal structural connections between them. Activity at short latencies (<100 ms) is thought to represent a feed-forward activation of widespread cortical areas, but fast activation combined with reciprocal connectivity between areas in principle allows for two-way, recurrent interactions to occur at short latencies after stimulus onset. Here we combined EEG source-imaging and Granger-causal modeling with high temporal resolution to investigate whether recurrent and top-down interactions between visual and attentional brain areas can be identified and distinguished at short latencies in humans. We investigated the directed interactions between widespread occipital, parietal and frontal areas that we localized within participants using fMRI. The connectivity results showed two-way interactions between area MT and V1 already at short latencies. In addition, the results suggested a large role for lateral parietal cortex in coordinating visual activity that may be understood as an ongoing top-down allocation of attentional resources. Our results support the notion that indirect pathways allow early, evoked driving from MT to V1 to highlight spatial locations of motion transients, while influence from parietal areas is continuously exerted around stimulus onset, presumably reflecting task-related attentional processes. PMID:26692466

  14. A Parcellation Scheme for Human Left Lateral Parietal Cortex

    PubMed Central

    Nelson, Steven M.; Cohen, Alexander L.; Power, Jonathan D.; Wig, Gagan S.; Miezin, Francis M.; Wheeler, Mark E.; Velanova, Katerina; Donaldson, David I.; Phillips, Jeffrey S.; Schlaggar, Bradley L.; Petersen, Steven E.

    2010-01-01

    SUMMARY The parietal lobe has long been viewed as a collection of architectonic and functional subdivisions. Though much parietal research has focused on mechanisms of visuospatial attention and control-related processes, more recent functional neuroimaging studies of memory retrieval have reported greater activity in left lateral parietal cortex (LLPC) when items are correctly identified as previously studied (“old”) vs. unstudied (“new”). These studies have suggested functional divisions within LLPC that may provide distinct contributions towards recognition memory judgments. Here, we define regions within LLPC by developing a novel parcellation scheme that integrates data from resting state functional connectivity MRI (rsfcMRI) and functional MRI (fMRI). This combined approach results in a six-fold parcellation of LLPC based on the presence (or absence) of memory retrieval-related activity, dissociations in the profile of task-evoked timecourses, and membership in large-scale brain networks. This parcellation should serve as a roadmap for future investigations aimed at understanding LLPC function. PMID:20624599

  15. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    PubMed Central

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  16. Rare Bone Diseases and Their Dental, Oral, and Craniofacial Manifestations

    PubMed Central

    Foster, B.L.; Ramnitz, M.S.; Gafni, R.I.; Burke, A.B.; Boyce, A.M.; Lee, J.S.; Wright, J.T.; Akintoye, S.O.; Somerman, M.J.; Collins, M.T.

    2014-01-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690

  17. Thermal shell fragment craniofacial injury: biophysics, pathophysiology, and management.

    PubMed

    Shuker, Sabri T

    2015-01-01

    This article aims to bring attention to unique risks and burns by thermal shell fragment craniofacial soft tissue injury. Hot shrapnel may inflict burns to major vessel walls and lead to life-threatening hemorrhaging or death, which adds a new challenge for craniofacial surgeons. Morbidity of thermal deep tissue may lead to deep tissue necrosis and infection.Thermal energy (TE) physics, biophysics, and pathophysiological effects relate directly to the amount of heat generated from shell casing detonation, which transfers to skin, deep tissue, as well as brain and leads to life-threatening burning of organs; this is different from shrapnel kinetic energy injury.The unprecedented increase in using a large range of explosives and high-heat thermobaric weapons contributes to the superfluous and unnecessary suffering caused by thermal injury wounds.Surgeons and medics should recognize that a surprising amount of TE can be found in an explosion or detonation of a steel-encased explosive, resulting in TEs ranging from 400 F up to 1000 F.

  18. Craniofacial and dental phenotype of Smith-Magenis syndrome.

    PubMed

    Tomona, Natalia; Smith, Ann C M; Guadagnini, Jean Pierre; Hart, Thomas C

    2006-12-01

    The aim of this study was to assess and characterize dental and craniofacial findings in individuals with a confirmed diagnosis of Smith-Magenis syndrome (SMS). Extraoral and intraoral examination including dental and craniofacial radiographs and three-dimensional facial photoimaging were performed for 15 cases between ages 4 and 19 years old. Tooth agenesis (13/15 cases) affecting primarily the mandibular second premolars and taurodontism (13/15 cases) were common findings. Dilaceration of the tooth roots was present in one-third of the cases. At least one dental anomaly was present in each case. These findings occur with greater frequency than in the general population (P < 0.001). An age-related increase in decayed and restored teeth was found. Poorer oral hygiene, increased dental plaque, and increased gingival inflammation progressed from childhood to teenage years. Radiographic findings suggest the prognathic appearance is not caused by excessive mandibular growth. Other findings including protrusion of the mandibular anterior teeth, increased bony chin size, and macroglossia were noted, which may contribute to the prognathic appearance. The high prevalence of dental anomalies (>90%) further expands the phenotype and indicates that dental evaluation may aid in the diagnosis of SMS.

  19. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  20. Craniofacial morphologic parameters in a Persian population: an anthropometric study.

    PubMed

    Amini, Fariborz; Mashayekhi, Ziba; Rahimi, Hajir; Morad, Golnaz

    2014-09-01

    Limited data are available regarding the reference ranges of facial proportions of the Persian population in Iran. This study aimed to establish the reference range of craniofacial anthropometric measurements in an adult Iranian population. On 100 individuals (men = women), aged 18 to 30 years with normal faces and occlusions, 34 linear and 7 angular measurements as well as 24 indices were calculated. The difference of measurements between men and women were evaluated by paired t-test. The data were compared with the norms of North American whites using 1-sample t-test. The subjects belonged to 5 ethnic groups (57% from Fars, 14% from Kord, 11% from Azari, 10% from Gilaki-Mazani, and 2% from Lor). All head measurements were greater in men except for the head index and the head height. The subjects had leptoprosopic faces. The intercanthal width was almost one third of the biocular width and greater than the eye fissure length. Although the nose width of women was significantly smaller, both sexes had leptorrhine noses. The chin height and lower chin height were greater in men. In comparison with North American whites, considerable differences were found regarding head height and width, biocular width, nose height, face height, mouth width, and upper chin height. In conclusion, the reference range of craniofacial anthropometric measurements established for the Iranian population might be efficiently used for esthetic treatments.

  1. Rare bone diseases and their dental, oral, and craniofacial manifestations.

    PubMed

    Foster, B L; Ramnitz, M S; Gafni, R I; Burke, A B; Boyce, A M; Lee, J S; Wright, J T; Akintoye, S O; Somerman, M J; Collins, M T

    2014-07-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease.

  2. Creation of three-dimensional craniofacial standards from CBCT images

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  3. Craniofacial development in marsupial mammals: developmental origins of evolutionary change.

    PubMed

    Smith, Kathleen K

    2006-05-01

    Biologists have long studied the evolutionary consequences of the differences in reproductive and life history strategies of marsupial and eutherian mammals. Over the past few decades, the impact of these strategies on the development of the marsupial embryo and neonate has received attention. In this review, the differences in development in the craniofacial region in marsupial and eutherian mammals will be discussed. The review will highlight differences at the organogenic and cellular levels, and discuss hypotheses for shifts in the expression of important regulatory genes. The major difference in the organogenic period is a whole-scale shift in the relative timing of central nervous system structures, in particular those of the forebrain, which are delayed in marsupials, relative to the structures of the oral-facial apparatus. Correlated with the delay in development of nervous system structures, the ossification of the bones of the neurocranium are delayed, while those of the face are accelerated. This study will also review work showing that the neural crest, which provides much of the cellular material to the facial skeleton and may also carry important patterning information, is notably accelerated in its development in marsupials. Potential consequences of these observations for hypotheses on constraint, evolutionary integration, and the existence of developmental modules is discussed. Finally, the implications of these results for hypotheses on the genetic modulation of craniofacial patterning are presented.

  4. A gene expression atlas of early craniofacial development.

    PubMed

    Brunskill, Eric W; Potter, Andrew S; Distasio, Andrew; Dexheimer, Phillip; Plassard, Andrew; Aronow, Bruce J; Potter, S Steven

    2014-07-15

    We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical microregions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the cranial mesenchyme, composed of mixed neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. At E9.5 cells from the cranial mesenchyme, overlying olfactory placode/epidermal ectoderm, and underlying neuroepithelium, as well as the emerging mandibular and maxillary arches were sampled. At E10.5, as the facial prominences form, cells from the medial and lateral prominences, the olfactory pit, multiple discrete regions of underlying neuroepithelium, the mandibular and maxillary arches, including both their mesenchymal and ectodermal components, as well as Rathke's pouch, were similarly sampled and profiled using both microarray and RNA-seq technologies. Further, we performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm. Taken together, and analyzable by a variety of biological network approaches, these data provide a complementing and cross validating resource capable of fueling discovery of novel compartment specific markers and signatures whose combinatorial interactions of transcription factors and growth factors/receptors are responsible for providing the master genetic blueprint for craniofacial development.

  5. Wnt Signaling and Its Contribution to Craniofacial Tissue Homeostasis.

    PubMed

    Yin, X; Li, J; Salmon, B; Huang, L; Lim, W H; Liu, B; Hunter, D J; Ransom, R C; Singh, G; Gillette, M; Zou, S; Helms, J A

    2015-11-01

    A new field of dental medicine seeks to exploit nature's solution for repairing damaged tissues, through the process of regeneration. Most adult mammalian tissues have limited regenerative capacities, but in lower vertebrates, the molecular machinery for regeneration is an elemental part of their genetic makeup. Accumulating data suggest that the molecular pathways responsible for the regenerative capacity of teleosts, amphibians, and reptiles have fallen into disuse in mammals but that they can be "jumpstarted" by the selective activation of key molecules. The Wnt family of secreted proteins constitutes one such critical pathway: Wnt proteins rank among the most potent and ubiquitous stem cell self-renewing factors, with tremendous potential for promoting human tissue regeneration. Wnt reporter and lineage-tracing strains of mice have been employed to create molecular maps of Wnt responsiveness in the craniofacial tissues, and these patterns of Wnt signaling colocalize with stem/progenitor populations in the rodent incisor apex, the dental pulp, the alveolar bone, the periodontal ligament, the cementum, and oral mucosa. The importance of Wnt signaling in both the maintenance and healing of these craniofacial tissues is summarized, and the therapeutic potential of Wnt-based strategies to accelerate healing through activation of endogenous stem cells is highlighted.

  6. Study on the performance of different craniofacial superimposition approaches (II): Best practices proposal.

    PubMed

    Damas, S; Wilkinson, C; Kahana, T; Veselovskaya, E; Abramov, A; Jankauskas, R; Jayaprakash, P T; Ruiz, E; Navarro, F; Huete, M I; Cunha, E; Cavalli, F; Clement, J; Lestón, P; Molinero, F; Briers, T; Viegas, F; Imaizumi, K; Humpire, D; Ibáñez, O

    2015-12-01

    Craniofacial superimposition, although existing for one century, is still a controversial technique within the scientific community. Objective and unbiased validation studies over a significant number of cases are required to establish a more solid picture on the reliability. However, there is lack of protocols and standards in the application of the technique leading to contradictory information concerning reliability. Instead of following a uniform methodology, every expert tends to apply his own approach to the problem, based on the available technology and deep knowledge on human craniofacial anatomy, soft tissues, and their relationships. The aim of this study was to assess the reliability of different craniofacial superimposition methodologies and the corresponding technical approaches to this type of identification. With all the data generated, some of the most representative experts in craniofacial identification joined in a discussion intended to identify and agree on the most important issues that have to be considered to properly employ the craniofacial superimposition technique. As a consequence, the consortium has produced the current manuscript, which can be considered the first standard in the field; including good and bad practices, sources of error and uncertainties, technological requirements and desirable features, and finally a common scale for the craniofacial matching evaluation. Such a document is intended to be part of a more complete framework for craniofacial superimposition, to be developed during the FP7-founded project MEPROCS, which will favour and standardize its proper application.

  7. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development.

    PubMed

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2015-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone.

  8. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development

    PubMed Central

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2014-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone. PMID:25511173

  9. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development

    PubMed Central

    TeSlaa, Jessica J.; Keller, Abigail N.; Nyholm, Molly K.; Grinblat, Yevgenya

    2013-01-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) Neural crest induction and migration, and (2) early

  10. Refractory Lesional Parietal Lobe Epilepsy: Clinical, Electroencephalographic and Neurodiagnostic Findings

    PubMed Central

    KURŞUN, Oğuzhan; KARATAŞ, Hülya; DERİCİOĞLU, Neşe; SAYGI, Serap

    2016-01-01

    Introduction Specialized centers, in the management and surgical treatment of medically refractory epilepsy, emphasize the importance of differentiating the varieties of localization related epilepsies. There has been considerable recent interest in temporal and frontal lobe epileptic syndromes and less attention has been paid to parietal and occipital lobe epilepsies. Methods Here we report the clinical, electroencephalographic and neuroimaging characteristics of 46 patients with medically refractory lesional parietal lobe epilepsy who have been followed up for 1–10 years. Results In this study auras were reported in 78.3% of the patients and included sensory symptoms (72.2%), headache (36.1%), nausea and vomiting (36.1%), psychic symptoms (36.1%) and visual symptoms (16.6%). The most common ictal behavioral changes were paresthesia (69.6%) and focal clonic activity (39.1%). Tonic posture, various automatisms, head deviation, staring, sensation of pain and speech disturbances occurred to a lesser extent. Simple partial seizures were present in 69.6%. Complex partial seizures occurred in 43.5% and secondary generalized tonic clonic seizures were reported in 58.7% of the patients. Interictal routine EEG disclosed abnormal background activity in 1/3 of the patients. Nonlocalising epileptiform abnormalities were found in 34.8% of the patients. EEG findings were normal in 34.8% of the patients. The most common presumed etiologic factors were as follows: posttraumatic encephalomalacia, stroke, tumor, malformation of cortical development, atrophy, and arteriovenous malformation. Conclusion Clinical, electrophysiological and neuroimaging features of the lesional symptomatic partial epilepsy patients may help us to localize the seizure focus in some patients with cryptogenic partial epilepsy. So that, the timing decision of the parietal lobe sampling with more invasive techniques like intracranial electrodes prior to epilepsy surgery would be easier. PMID:28373797

  11. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    PubMed

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.

  12. Environmental reduplication associated with right frontal and parietal lobe injury.

    PubMed

    Ruff, R L; Volpe, B T

    1981-05-01

    Four patients with environmental reduplication, a specific form of spatial disorientation and confabulation are described. The patients maintained that their hospital rooms were located in their homes. Each patients had evidence of right frontal or right parietal injury based upon computed tomography, neurosurgery, and neuropsychological testing. The factors associated with environmental reduplication were: impaired spatial perception and visual memory, inability of the patients to recognise the inconsistency between their believed location and their actual location, confusion soon after admission to hospital, and a strong desire to be at home.

  13. Posterior Parietal Cortex: An Interface between Attention and Learning?

    PubMed Central

    Bucci, David J.

    2009-01-01

    The posterior parietal cortex (PPC) of rats has most recently been defined based on patterns of thalamic and cortical connectivity. The anatomical characteristics of this area suggest that it may be homologous to the PPC of primates and contribute to similar functions. This review summarizes evidence for and against a role for the rat PPC in attention and working memory and evaluates how the function of the rat PPC compares to that of primates on these dimensions. Theories of how the rat PPC contributes to behavior are presented, including the notion that PPC may serve as an interface between attention and learning. Finally, several avenues for future research are considered. PMID:18675370

  14. Neural activity in the parietal eye of a lizard.

    PubMed

    MILLER, W H; WOLBARSHT, M L

    1962-01-26

    Electrical signs of activity in response to illumination of the parietal eye of the American chameleon, Anolis carolinensis, have been investigated. The responses were of two types. Under conditions of direct-coupled amplification, with glass pipette electrodes recording extracellularly from the retinal surface, the response consisted of an increase in negativity maintained throughout prolonged illumination. With capacitance-coupled amplification and metal electrodes, brisk mass discharges of nerve impulses were detected at the onset and cessation of illumination. During illumination a less vigorous maintained discharge was observed.

  15. Genome-wide approaches (GWA) in oral and craniofacial diseases research

    PubMed Central

    Kim, H; Gordon, S; Dionne, R

    2012-01-01

    Underlying molecular genetic mechanisms of diseases can be deciphered with unbiased strategies using recently developed technologies enabling genome-wide scale investigations. These technologies have been applied in scanning for genetic variations, gene expression profiles, and epigenetic changes for oral and craniofacial diseases. However, these approaches as applied to oral and craniofacial conditions are in the initial stages, and challenges remain to be overcome, including analysis of high throughput data and their interpretation. Here, we review methodology and studies using genome-wide approaches in oral and craniofacial diseases and suggest future directions. PMID:22913301

  16. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    PubMed Central

    Knaus, Tracey A.; Tager-Flusberg, Helen; Foundas, Anne L.

    2012-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF) and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years), matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions. PMID:22713374

  17. Stature estimation from craniofacial anthropometry in Bangladeshi Garo adult females.

    PubMed

    Akhter, Z; Banu, L A; Alam, M M; Rahman, M F

    2012-07-01

    Estimation of stature is an important tool in forensic examination especially in unknown, highly decomposed, fragmentary and mutilated human remains. When the evidences are skeletal remains; forensic anthropology has put forward means to estimate the stature from the skeletal and even from fragmentary bones. Sometimes, craniofacial remains are brought in for forensic and postmortem examination. In such a situation, estimation of stature becomes equally important along with other parameters like age, sex, race, etc. Today, anthropometry plays an important role in industrial design, clothing design, ergonomics and architecture where statistical data about the distribution of body dimensions in the population are used to optimize products. It is well established that a single standard of craniofacial aesthetics is not appropriate for application to diverse racial and ethnic groups. Bangladesh is a country not only for the Bengalis; the country harbours many cultures and people of different races because of the colonial rules of the past regimes. Like other ethnic groups, the Garos (study subjects) have their own set of language, social structure, cultures and economic activities and religious values. In the above context, the present study was attempted to establish ethnic specific anthropometric data for the Bangladeshi Garo adult females. The study also attempted to find out the correlation of the craniofacial dimensions with stature and to determine multiplication factors. The study was an observational, cross-sectional and primarily descriptive in nature with some analytical components. The study was carried out with a total number of one hundred Garo adult females, aged between 25-45 years. Craniofacial dimension such as head circumference, head length, facial height from 'nasion' to 'gnathion', bizygomatic breadth and stature were measured using a measuring tape, spreading caliper, steel plate and steel tape and sliding caliper. The data were then statistically

  18. "False" migration of rigid fixation appliances in pediatric craniofacial surgery.

    PubMed

    Papay, F A; Hardy, S; Morales, L; Walker, M; Enlow, D

    1995-07-01

    Osseous fixation techniques have been widely used to provide rigid stabilization in the craniofacial skeleton. Reported sequelae of its usage has been limited to palpation of the screw-plate system and radiological imaging artifacts. Over the past 3 years we have identified miniplates, microplates, and wire sutures on the inner cranial table of the growing child. The observation of "false" migration of these appliances has provided the impetus to review these patients in more detail. Twenty patients underwent secondary cranial remodeling within a two-year period; 7 of these patients were seen to have "false" migration. There were no untoward sequelae in removal of these appliances, and no adverse neurological symptoms were seen.

  19. Anterior throat pain syndromes: causes for undiagnosed craniofacial pain.

    PubMed

    Shankland, Wesley E

    2010-01-01

    It is not uncommon for practitioners who treat craniofacial pain to see patients with undiagnosed throat and submandibular pain. Usually, these patients will already have been seen by their primary care physician and frequently, several others doctors including otolaryngologists, oral and maxillofacial surgeons, and even neurologists. Far too often these patients have three common features: 1. they have endured multiple expensive diagnostic tests; 2. they have received treatment of multiple courses of antibiotics; and 3. no specific diagnosis for their pain complaints has been determined and their pain persists. In this article, five disorders, Ernest syndrome, Eagle's syndrome, carotid artery syndrome, hyoid bone syndrome and superior pharyngeal constrictor syndrome are briefly described. All five produce common symptoms, making diagnosis difficult, which is often followed by ineffective or no treatment being provided to the patient. Diagnostic criteria and suggested treatment modalities are also presented.

  20. Implant-retained craniofacial prostheses for facial defects

    PubMed Central

    Federspil, Philipp A.

    2012-01-01

    Craniofacial prostheses, also known as epistheses, are artificial substitutes for facial defects. The breakthrough for rehabilitation of facial defects with implant-retained prostheses came with the development of the modern silicones and bone anchorage. Following the discovery of the osseointegration of titanium in the 1950s, dental implants have been made of titanium in the 1960s. In 1977, the first extraoral titanium implant was inserted in a patient. Later, various solitary extraoral implant systems were developed. Grouped implant systems have also been developed which may be placed more reliably in areas with low bone presentation, as in the nasal and orbital region, or the ideally pneumatised mastoid process. Today, even large facial prostheses may be securely retained. The classical atraumatic surgical technique has remained an unchanged prerequisite for successful implantation of any system. This review outlines the basic principles of osseointegration as well as the main features of extraoral implantology. PMID:22073096

  1. Clinical guidelines for the management of craniofacial fibrous dysplasia

    PubMed Central

    2012-01-01

    Fibrous dysplasia (FD) is a non-malignant condition caused by post-zygotic, activating mutations of the GNAS gene that results in inhibition of the differentiation and proliferation of bone-forming stromal cells and leads to the replacement of normal bone and marrow by fibrous tissue and woven bone. The phenotype is variable and may be isolated to a single skeletal site or multiple sites and sometimes is associated with extraskeletal manifestations in the skin and/or endocrine organs (McCune-Albright syndrome). The clinical behavior and progression of FD may also vary, thereby making the management of this condition difficult with few established clinical guidelines. This paper provides a clinically-focused comprehensive description of craniofacial FD, its natural progression, the components of the diagnostic evaluation and the multi-disciplinary management, and considerations for future research. PMID:22640797

  2. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids

    PubMed Central

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-01-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565

  3. The emerging roles of ribosome biogenesis in craniofacial development

    PubMed Central

    Ross, Adam P.; Zarbalis, Konstantinos S.

    2014-01-01

    Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA). PMID:24550838

  4. Mirror agnosia and mirror ataxia constitute different parietal lobe disorders.

    PubMed

    Binkofski, F; Buccino, G; Dohle, C; Seitz, R J; Freund, H J

    1999-07-01

    We describe two new clinical syndromes, mirror agnosia and mirror ataxia, both characterized by the deficit of reaching for an object through a mirror in association with a lesion of either parietal lobe. Clinical investigation of 13 patients demonstrated that the impairments affected both sides of the body. In mirror agnosia, the patients always reached toward the virtual object in the mirror and they were not capable of changing their behavior even after presentation of the position of the object in real visual space. In mirror ataxia (resembling optic ataxia) although some patients initially tended to reach for the virtual object in the mirror, they soon learned to guide their arms toward the real object, all of them producing many directional errors. Both patient groups performed poorly on mental rotation, but only the patients with mirror agnosia were impaired in line orientation. Only 1 of the patients suffered from neglect and 3 from apraxia. Magnetic resonance imaging showed that in mirror agnosia the common zone of lesion overlap was scattered around the posterior angular gyrus/superior temporal gyrus and in mirror ataxia around the postcentral sulcus. We propose that both these clinical syndromes may represent different types of dissociation of retinotopic space and body scheme, or likewise, of allocentric and egocentric space normally adjusted in the parietal lobe.

  5. Parietal cortex mediates conscious perception of illusory gestalt.

    PubMed

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas

    2013-01-09

    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  6. Fronto-parietal network supports context-dependent speech comprehension.

    PubMed

    Smirnov, Dmitry; Glerean, Enrico; Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri

    2014-10-01

    Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking.

  7. Fronto-parietal network supports context-dependent speech comprehension

    PubMed Central

    Smirnov, Dmitry; Glerean, Enrico; Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking. PMID:25218167

  8. Frontal monitoring and parietal evidence: mechanisms of error correction

    PubMed Central

    Cebrian, Ana Navarro; Knight, Robert T.; Kayser, Andrew S.

    2016-01-01

    When we respond to a stimulus, our decisions are based not only on external stimuli but also on our ongoing performance. If the response deviates from our goals, monitoring and decision-making brain areas interact so that future behavior may change. By taking advantage of natural variation in error salience, as measured by the reaction time taken to correct an error (RTEC), here we argue that an evidence accumulation framework provides a potential underlying mechanism for this variable process of error identification and correction, as evidenced by covariation of frontal monitoring and parietal decision-making processes. We study two early EEG signals linked to monitoring within medial prefrontal cortex – the error-related negativity (ERN) and fronto-central theta activity – and a third EEG signal, the error positivity (Pe), that is thought to share the same parietal substrates as a signal (the P3b) proposed to reflect evidence accumulation. As predicted, our data show that on slow RTEC trials, frontal monitoring resources are less strongly employed, and the latency of the Pe is longer. Critically, the speed of the RTEC also covaries with the magnitude of subsequent neural (inter-trial alpha power) and behavioral (post-error slowing) adjustments following the correction. These results are synthesized to describe a timing diagram for adaptive decision-making after errors, and support a potential evidence accumulation mechanism in which error signaling is followed by rapid behavioral adjustments. PMID:27027420

  9. Positional changes of the ocular organs during craniofacial development.

    PubMed

    Osaka, Miho; Ishikawa, Aoi; Yamada, Shigehito; Uwabe, Chigako; Imai, Hirohiko; Matsuda, Tetsuya; Yoneyama, Akio; Takeda, Tohoru; Takakuwa, Tetsuya

    2017-03-13

    The present study aimed to describe the positional changes of the ocular organs during craniofacial development; moreover, we examined the relationships among the ocular organs and other internal structures. To do this, we traced the positions of the ocular organs in 56 human early fetal samples at different stages of development using high-resolution magnetic resonance imaging and phase-contrast X-ray computed tomography. The eyes were located on the lateral side in the ventral view at Carnegie stage (CS) 16, and then changed their positions medially during development. The eyes remained in the neurocranium until CS17. However, the eyes changed their positions medially and caudally in the viscerocranium after CS18. The positional relationship between the eyes and pituitary gland changed in the lateral view as development progressed. Specifically, they were close to each other at CS17, but moved apart during the later stages of development. These positional changes were also demonstrated quantitatively with morphometric analyses. Based on the present data, the positional changes of the eyes can be categorized into phases, as follows: phase 1, dramatic positional changes (early fetal period until CS23); and phase 2, mild positional changes (stabilized; early fetal period after CS23). Notably, all absolute lengths measured in the present study linearly increased as the crown-rump length increased irrespective of the phase, while features of the measured angles and ratios differentially changed in phases 1 and 2. The present data may help improve our understanding of both the normal and abnormal development of the ocular organs and craniofacial area. This article is protected by copyright. All rights reserved.

  10. Craniocervical postural relations and craniofacial morphology in 30 blind subjects.

    PubMed

    Fjellvang, H; Solow, B

    1986-10-01

    Previous studies have shown that head posture is dependent on vision. The head posture of blind persons therefore can be expected to differ from that of normal subjects. This is of interest in the current analyses of the relation between head posture and craniofacial morphology. The purpose of the present investigation was to describe the posture of the head and cervical column and the craniofacial morphology in a group of blind subjects, and to compare the findings with those previously found in male and female groups of normal subjects. The sample comprised 30 blind subjects--18 men and 12 women, aged 15 to 35 years, all of whom had been without perception of light since birth. The control group comprised 120 male dental students in the age range 22 to 30 years and 51 female dental students in the age range 22 to 27 years. The analysis of head posture showed that the intra-and interindividual variabilities of the craniovertical angles were significantly larger than those of the craniocervical angles in the blind group. The interindividual variabilities of the craniovertical angles were significantly larger in the blind than in the control group, but the variabilities of the craniocervical angles were similar in both groups. Craniovertical relations thus were more variable in the blind subjects, whereas craniocervical relations showed the same variability as normal subjects. On the average, the head was carried in a 4.3 degrees lower position in the neck was 4.5 degrees more forward inclined in the blind group. No differences were found in the position of the head in relation to the cervical column between the two groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Sella turcica-Its importance in orthodontics and craniofacial morphology

    PubMed Central

    Sathyanarayana, Haritha Pottipalli; Kailasam, Vignesh; Chitharanjan, Arun B

    2013-01-01

    The sella turcica is a structure which can be readily seen on lateral cephalometric radiographs and sella point is routinely traced for various cephalometric analyses. The search was carried out using the following key words (sella turcica, bridging of sella, size, shape of sella turcica) and with the following search engine (Pubmed, Cochrane, Google scholar). The morphology is very important for the cephalometric position of the reference point sella, not only for evaluating craniofacial morphology, but also when growth changes and orthodontic treatment results are to be evaluated. This makes it a good source of additional diagnostic information related to pathology of the pituitary gland, or to various syndromes that affect the craniofacial region. Clinicians should be familiar with the normal radiographic anatomy and morphologic variability of this area, in order to recognize and investigate deviations that may reflect pathological situations, even before these become clinically apparent. During embryological development, the sella turcica area is the key point for the migration of the neural crest cells to the frontonasal and maxillary developmental fields. The neural crest cells are involved in the formation and development of sella turcica and teeth. The size of sella turcica ranges from 4 to 12 mm for the vertical and 5 to 16 mm for the anteroposterior dimension. There are many classification systems regarding the shape of sella turcica. Majority of the studies show that about 67% of the subjects had normal appearance and about 33% showed variations. The prevalence of sella turcica bridging is high in class III malocclusions and dental anomalies. PMID:24348611

  12. The visual parietal areas in the macaque monkey: current structural knowledge and ignorance.

    PubMed

    Cavada, C

    2001-07-01

    Classic and current parcellations of the posterior parietal cortex are reviewed. Whereas earlier studies relied on subjective observation of cortical cytoarchitecture, present parcellations are mostly based on connectional and physiological criteria. These criteria have led to the identification of five areas in the intraparietal sulcus with alleged visual function: VIP, MIP, PIP, AIP, and LIP. Other visual parietal areas are 7a, in the lateral parietal surface, and, in the medial parietal wall, 7m, and V6A. Present knowledge of the dimensions, boundaries, and connections of the various visual parietal areas is uneven: whereas LIP, 7a, and 7m have been extensively explored in anatomical and physiological studies, only scant information is available for most of the intraparietal areas. It is suggested that future studies address the anatomical and functional parcellation of the posterior parietal cortex using manifold objective means of study that allow comparison by independent researchers.

  13. Identifying craniofacial features associated with prenatal exposure to androgens and testing their relationship with brain development.

    PubMed

    Marečková, Klára; Chakravarty, Mallar M; Lawrence, Claire; Leonard, Gabriel; Perusse, Daniel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2015-11-01

    We used magnetic resonance (MR) images obtained in same-sex and opposite-sex dizygotic twins (n = 119, 8 years of age) to study possible effects of prenatal androgens on craniofacial features. Using a principal component analysis of 19 craniofacial landmarks placed on the MR images, we identified a principal component capturing craniofacial features that distinguished females with a presumed differential exposure to prenatal androgens by virtue of having a male (vs. a female) co-twin (Cohen's d = 0.76). Subsequently, we tested the possibility that this craniofacial "signature" of prenatal exposure to androgens predicts brain size, a known sexually dimorphic trait. In an independent sample of female adolescents (singletons; n = 462), we found that the facial signature predicts up to 8% of variance in brain size. These findings are consistent with the organizational effects of androgens on brain development and suggest that the facial signature derived in this study could complement other indirect measures of prenatal exposure to androgens.

  14. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A.

    2016-01-01

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype–phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1+/− mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies. PMID:26792133

  15. The influence of incompetent lip seal on the growth and development of craniofacial complex.

    PubMed

    Drevensek, Martina; Stefanac-Papić, Jadranka; Farcnik, Franc

    2005-12-01

    Abnormal orofacial functions in the period of growth and development can cause morphological anomalies of the craniofacial complex. The aim of this study was to determine the correlation between open mouth posture and morphology of craniofacial complex. The shape, size and relationships of skeletal parts of craniofacial complex were determined by analysis of lateral cephalograms in the sample of 84 children--45 girls and 39 boys (aged 8.96 +/- 0.66 years). The sample was divided into two groups--lip competence and lip incompetence group. Differences in cephalometric values between observed groups were found. The values of inclination of lower central incisors (angle ILi/NB), interbasal angle (NL/NSL), angle between occlusal and mandibular plane and anterior lower facial height were significantly higher in the group with open mouth posture. It can be concluded that lip incompetence plays an important role in growth and development of craniofacial complex.

  16. 76 FR 20693 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Emphasis Panel; Review RFA-DE-12-001, NIDCR Behavioral or Social Intervention Planning and Pilot Data Grant..., National Institute of Dental and Craniofacial Research, One Democracy Plaza, Room 670, Bethesda, MD...

  17. 76 FR 28793 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... commercial property such as patentable material, and personal information concerning individuals associated... review and evaluate grant applications. Place: The Dupont Hotel, 1500 New Hampshire Avenue,...

  18. PATHOGENESIS OF METHANOL-INDUCED CRANIOFACIAL DEFECTS IN C57BL/6J MICE

    EPA Science Inventory

    BACKGROUND: Methanol administered to C57BL/6J mice during gastrulation causes severe craniofacial dysmorphology. We describe dysmorphogenesis, cell death, cell cycle assessment, and effects on development of cranial ganglia and nerves observed following administration of methanol...

  19. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A

    2016-01-21

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype-phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1(+/-) mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies.

  20. Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss

    PubMed Central

    Saenz, Jose B.; Burclaff, Joseph; Mills, Jason C.

    2016-01-01

    Parietal cell loss represents the initial step in the sequential progression toward gastric adenocarcinoma. In the setting of chronic inflammation, the expansion of the mucosal response to parietal cell loss characterizes a crucial transition en route to gastric dysplasia. Here, we detail methods for using the selective estrogen receptor modulator tamoxifen as a novel tool to rapidly and reversibly induce parietal cell loss in mice in order to study the mechanisms that underlie these pre-neoplastic events. PMID:27246044

  1. The role of distraction osteogenesis in the management of craniofacial syndromes

    PubMed Central

    Heggie, Andrew A.; Kumar, Ricky; Shand, Jocelyn M.

    2013-01-01

    Distraction osteogenesis (DO) has been established as a useful technique in the correction of skeletal anomalies of the long bones for several decades. However, the use of DO in the management of craniofacial deformities has been evolving over the past 20 years, with initial experience in the mandible, followed by the mid-face and subsequently, the cranium. This review aims to provide an overview of the current role of DO in the treatment of patients with craniofacial anomalies. PMID:23662252

  2. The extracellular matrix of muscle--implications for manipulation of the craniofacial musculature.

    PubMed

    Lewis, M P; Machell, J R; Hunt, N P; Sinanan, A C; Tippett, H L

    2001-08-01

    Successful adaptation of craniofacial skeletal muscle is dependent upon the connective tissue component of the muscle. This is exemplified by procedures such as distraction histo/osteogenesis. The mechanisms underlying remodelling of intramuscular connective tissue are complex and multifactorial and involve extracellular matrix (ECM) molecules, receptors for the ECM (integrins) and enzymes that remodel the ECM (MMPs). This review discusses the current state of knowledge and clinical implications of connective tissue biology as applied to craniofacial skeletal muscle.

  3. An Atypical Presentation of Multiple Central Osteomas Mimicking Craniofacial Fibrous Dysplasia – A Pictorial Essay

    PubMed Central

    Mhapuskar, Amit A; Hebbale, Manjula; Tepan, Meenal; Ayushee

    2016-01-01

    Osteoma is benign neoplasm with slow growth characterized by deposition of compact lamellar cortical or cancellous bone creating a tumour mass. It is still unclear whether osteomas are benign neoplasms or hamartomas. They have typical clinical presentations and are easily diagnosed with the help of radiographs. We present a rare case of non-syndromic multiple osteomas in the craniofacial region which are typically restricted to the midline and presents radiographically as craniofacial fibrous dysplasia causing a diagnostic dilemma. PMID:28050513

  4. Two cases of orbital dystopia: Tessier III cleft and craniofacial osteomas.

    PubMed

    Furnas, D W; Achauer, B M

    1981-01-01

    Two cases of orbital dystopia are reported. One was caused by a Tessier III cleft and was treated by cranio-facial osteotomies of three walls of the orbit, allowing the left to be moved upward. The second involved multiple craniofacial osteomas and was treated by extractional osteotomies of four walls of the orbit including a transverse split of the roof. These osteotomies were entirely extramucosal.

  5. Cerebello-thalamo-cortical projections to the posterior parietal cortex in the macaque monkey.

    PubMed

    Amino, Y; Kyuhou, S; Matsuzaki, R; Gemba, H

    2001-08-17

    The cerebello-thalamo-posterior parietal cortical projections were investigated electrophysiologically and morphologically in macaque monkeys. In anesthetized monkeys, electrical stimulation of every cerebellar nucleus evoked marked surface-positive, depth-negative (s-P, d-N) cortical field potentials in the superior parietal lobule and the cortical bank of the intraparietal sulcus, but no responses in the inferior parietal lobule. Tract-tracing experiments combining the anterograde method with the retrograde one indicated that the interposed and lateral cerebellar nuclei projected to the posterior parietal cortex mainly through the nucleus ventral lateralis caudalis of the thalamus. The significance of the projections is discussed in connection with cognitive functions.

  6. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression

    PubMed Central

    Quintana, Anita M.; Geiger, Elizabeth A.; Achilly, Nate; Rosenblatt, David S.; Maclean, Kenneth N.; Stabler, Sally P.; Artinger, Kristin B.; Appel, Bruce; Shaikh, Tamim H.

    2014-01-01

    Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression. PMID:25281006

  7. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis.

    PubMed

    Hu, D; Helms, J A

    1999-11-01

    There is growing evidence that implicates a role for Sonic hedgehog (SHH) in morphogenesis of the craniofacial complex. Mutations in human and murine SHH cause midline patterning defects that are manifested in the head as holoprosencephaly and cyclopia. In addition, teratogens such as jervine, which inhibit the response of tissues to SHH, also produce cyclopia. Thus, the loss of SHH signaling during early stages of neural plate patterning has a profound influence of craniofacial morphogenesis. However, the severity of these defects precludes analyses of SHH function during later stages of craniofacial development. We have used an embryonic chick system to study the role of SHH during these later stages of craniofacial development. Using a combination of surgical and molecular experiments, we show here that SHH is essential for morphogenesis of the frontonasal and maxillary processes (FNP and MXPs), which give rise to the mid- and upper face. Transient loss of SHH signaling in the embryonic face inhibits growth of the primordia and results in defects analogous to hypotelorism and cleft lip/palate, characteristics of the mild forms of holoprosencephaly. In contrast, excess SHH leads to a mediolateral widening of the FNP and a widening between the eyes, a condition known as hypertelorism. In severe cases, this widening is accompanied by facial duplications. Collectively, these experiments demonstrate that SHH has multiple and profound effects on the entire spectrum of craniofacial development, and perturbations in SHH signaling are likely to underlie a number of human craniofacial anomalies.

  8. Common mechanisms in development and disease: BMP signaling in craniofacial development

    PubMed Central

    Graf, Daniel; Malik, Zeba; Hayano, Satoru; Mishina, Yuji

    2015-01-01

    BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early pattering of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering. PMID:26747371

  9. Partial craniofacial duplication: a review of the literature and case report.

    PubMed

    Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P

    2014-06-01

    Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity.

  10. [Balint syndrome and spatial functions of the parietal lobe].

    PubMed

    Biotti, D; Pisella, L; Vighetto, A

    2012-10-01

    Balint's syndrome corresponds to the combination of optic ataxia, simultanagnosia and gaze apraxia. It generally results from a bilateral dysfunction of the posterior parietal cortex. Since its early descriptions the syndrome has been subject to many interpretations and controversies. In this article we will reconsider the current concept of Balint's syndrome. A first part will develop the clinical aspects, causes, description of symptoms, examination techniques and neuroanatomical correlations. In a second part, we will discuss how this syndrome can be included in the background of visual neurosciences, particularly through a visual attentional aspect. We will discuss the phenomenon of remapping and some recent data that may contribute to explain the pathophysiology of manifestations as optic ataxia, simultanagnosia or gaze apraxia.

  11. Diverse spatial reference frames of vestibular signals in parietal cortex

    PubMed Central

    Chen, Xiaodong; DeAngelis, Gregory C; Angelaki, Dora E

    2013-01-01

    Summary Reference frames are important for understanding how sensory cues from different modalities are coordinated to guide behavior, and the parietal cortex is critical to these functions. We compare reference frames of vestibular self-motion signals in the ventral intraparietal area (VIP), parietoinsular vestibular cortex (PIVC), and dorsal medial superior temporal area (MSTd). Vestibular heading tuning in VIP is invariant to changes in both eye and head positions, indicating a body (or world)-centered reference frame. Vestibular signals in PIVC have reference frames that are intermediate between head- and body-centered. In contrast, MSTd neurons show reference frames between head- and eye-centered, but not body-centered. Eye and head position gain fields were strongest in MSTd and weakest in PIVC. Our findings reveal distinct spatial reference frames for representing vestibular signals, and pose new challenges for understanding the respective roles of these areas in potentially diverse vestibular functions. PMID:24239126

  12. A Nexus Model of the Temporal-Parietal Junction

    PubMed Central

    Carter, R. McKell; Huettel, Scott A.

    2013-01-01

    The temporal-parietal junction (TPJ) has been proposed to support either specifically social functions or non-specific processes of cognition like memory and attention. To account for diverse prior findings, we propose a Nexus Model for TPJ function: overlap of basic processes produces novel secondary functions at their convergence. We present meta-analytic evidence that is consistent with the anatomical convergence of attention, memory, language, and social processing in the TPJ – leading to a higher-order role in the creation of a social context for behavior. The Nexus Model accounts for recent examples of TPJ contributions specifically to decision making in a social context, and it provides a potential reconciliation for competing claims about TPJ function. PMID:23790322

  13. Transient contribution of left posterior parietal cortex to cognitive restructuring

    PubMed Central

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-01-01

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring. PMID:25775998

  14. Scalp Medical Tattooing Technique to Camouflage Bifid Parietal Whorls

    PubMed Central

    You, Seung Hyun

    2016-01-01

    Background: To the best of the authors’ knowledge, no reports have described cosmetic problems arising from the hair direction around the parietal whorl (PW). This study was performed to evaluate the efficacy of scalp medical tattooing technique for camouflaging bifid PWs. Methods: We retrospectively examined the outcomes of scalp medical tattooing in 38 patients who were admitted for camouflage of a bifid PW. Results: All patients’ cosmetic appearance was judged, by both the patients and the surgeon, to be markedly improved. No specific complications occurred, such as infection, hair loss in the operative field, or other problems. Conclusion: Scalp medical tattooing appears to be an effective method that helps to camouflage the see-through appearance of bifid PWs. PMID:27200232

  15. Subcortical mapping of calculation processing in the right parietal lobe.

    PubMed

    Della Puppa, Alessandro; De Pellegrin, Serena; Lazzarini, Anna; Gioffrè, Giorgio; Rustemi, Oriela; Cagnin, Annachiara; Scienza, Renato; Semenza, Carlo

    2015-05-01

    Preservation of calculation processing in brain surgery is crucial for patients' quality of life. Over the last decade, surgical electrostimulation was used to identify and preserve the cortical areas involved in such processing. Conversely, subcortical connectivity among different areas implicated in this function remains unclear, and the role of surgery in this domain has not been explored so far. The authors present the first 2 cases in which the subcortical functional sites involved in calculation were identified during right parietal lobe surgery. Two patients affected by a glioma located in the right parietal lobe underwent surgery with the aid of MRI neuronavigation. No calculation deficits were detected during preoperative assessment. Cortical and subcortical mapping were performed using a bipolar stimulator. The current intensity was determined by progressively increasing the amplitude by 0.5-mA increments (from a baseline of 1 mA) until a sensorimotor response was elicited. Then, addition and multiplication calculation tasks were administered. Corticectomy was performed according to both the MRI neuronavigation data and the functional findings obtained through cortical mapping. Direct subcortical electrostimulation was repeatedly performed during tumor resection. Subcortical functional sites for multiplication and addition were detected in both patients. Electrostimulation interfered with calculation processing during cortical mapping as well. Functional sites were spared during tumor removal. The postoperative course was uneventful, and calculation processing was preserved. Postoperative MRI showed complete resection of the tumor. The present preliminary study shows for the first time how functional mapping can be a promising method to intraoperatively identify the subcortical functional sites involved in calculation processing. This report therefore supports direct electrical stimulation as a promising tool to improve the current knowledge on

  16. [Personal identification using information from cranio-facial region].

    PubMed

    Minaguchi, Kiyoshi

    2007-11-01

    Much of Forensic Odontology is concerned with personal identification, through examination of cranio-facial region. This paper describes several studies in which we worked with materials derived from cranio-facial region. The following topics are addressed : (1) Human saliva contains proteins specific to salivary glands, proteins which are highly polymorphic compared with those found in other body fluids. In particular, six genes for proline-rich proteins coded many proteins found in human saliva, and we found several of them. At least five kinds of cystatin are secreted in saliva. We constructed recombinant polymorphic proteins, cystatin SAl and SA2. Using these proteins, we compared effects of amino acid mutation on protease inhibitor activity, and demonstrated a novel function for type-2 cystatin cytokine-inducing activity. (2) Among autosomal STR loci, we identified the D12S67 locus as highly polymorphic, with a heterozygosity of 95%, by investigating differences in nucleotide repeat units. Highly polymorphic autosomal STR loci offer an effective forensic tool under certain conditions, in addition to multiplex PCR, and therefore merit further study in forensic practice. (3) Although digitalization is prevalent in photography, analog images are preferable in certain circumstances as they offer better resolution. (4) Usually, information on mtDNA polymorphisms from HV1 and HV2 in the control region is used in forensic practice. However, information from the coding region considerably increases the discrimination power of mtDNA polymorphisms. It is important to increase the volume of coding region information available with regard to mtDNA polymorphisms for future forensic practice. (5) Y-STR polymorphisms are closely associated with binary haplogroups, and it is possible to estimate a binary haplogroup from an STR haplotype. (6) Mitochondrial DNA and Y-chromosomal polymorphisms can be used to determine geographic origin in individuals from East Asia, something

  17. Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome.

    PubMed

    McElyea, Samantha D; Starbuck, John M; Tumbleson-Brink, Danika M; Harrington, Emily; Blazek, Joshua D; Ghoneima, Ahmed; Kula, Katherine; Roper, Randall J

    2016-09-05

    Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene-phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS.

  18. Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample.

    PubMed

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Yajima, Daisuke; Inokuchi, Go; Makino, Yohsuke; Motomura, Ayumi; Chiba, Fumiko; Yamaguchi, Rutsuko; Hashimoto, Mari; Hoshioka, Yumi; Iwase, Hirotaro

    2015-07-01

    The aim of this study was to assess the mechanical properties and thickness of adult frontal and parietal bones. The heads of 114 Japanese cadavers (78 male cadavers and 36 female cadavers) of known age and sex were used. A total of 912 cranial samples, 8 from each skull, were collected. Samples were imaged using multidetector computed tomography to measure sample thickness. The fracture load of each sample was measured using a bending test with calculation of flexural strength. Statistical analyses demonstrated no significant bilateral difference in either the mechanical properties or thickness of frontal or parietal bones. The mechanical properties and thicknesses of frontal bones were significantly greater than those of parietal bones regardless of sex. Therefore, the skull may have a great ability to resist frontal impacts compared with parietal impacts. In female samples, parietal bones were found to have a more uniform structure when compared with male samples. Male parietal bones were found to be thicker at medial sites than at lateral sites. This study also revealed parietal bones at lateral sites in female samples were thicker than in male samples. No strong association was observed between age and flexural strength of frontal or parietal bones. However, the fracture load was negatively correlated with age most likely due to the reduction of thickness.

  19. The Contribution of the Inferior Parietal Cortex to Spoken Language Production

    ERIC Educational Resources Information Center

    Geranmayeh, Fatemeh; Brownsett, Sonia L. E.; Leech, Robert; Beckmann, Christian F.; Woodhead, Zoe; Wise, Richard J. S.

    2012-01-01

    This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with…

  20. The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers

    ERIC Educational Resources Information Center

    Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D.; Price, Cathy J.

    2010-01-01

    Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention,…

  1. 30-year International Pediatric Craniofacial Surgery Partnership: Evolution from the “Third World” Forward

    PubMed Central

    Swanson, Jordan W.; Skirpan, Jan; Stanek, Beata; Kowalczyk, Maciej

    2016-01-01

    Background: Craniofacial diseases constitute an important component of the surgical disease burden in low- and middle-income countries. The consideration to introduce craniofacial surgery into such settings poses different questions, risks, and challenges compared with cleft or other forms of plastic surgery. We report the evolution, innovations, and challenges of a 30-year international craniofacial surgery partnership. Methods: We retrospectively report a partnership between surgeons at the Uniwersytecki Szpital Dzieciecy in Krakow, Poland, and a North American craniofacial surgeon. We studied patient conditions, treatment patterns, and associated complications, as well as program advancements and limitations as perceived by surgeons, patient families, and hospital administrators. Results: Since partnership inception in 1986, the complexity of cases performed increased gradually, with the first intracranial case performed in 1995. In the most recent 10-year period (2006–2015), 85 patients have been evaluated, with most common diagnoses of Apert syndrome, Crouzon syndrome, and single-suture craniosynostosis. In the same period, 55 major surgical procedures have been undertaken, with LeFort III midface distraction, posterior vault distraction, and frontoorbital advancement performed most frequently. Key innovations have been the employment of craniofacial distraction osteogenesis, the use of Internet communication and digital photography, and increased understanding of how craniofacial morphology may improve in the absence of surgical intervention. Ongoing challenges include prohibitive training pathways for pediatric plastic surgeons, difficulty in coordinating care with surgeons in other institutions, and limited medical and material resources. Conclusion: Safe craniofacial surgery can be introduced and sustained in a resource-limited setting through an international partnership. PMID:27200233

  2. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.

    PubMed

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.

  3. Frontal and parietal EEG asymmetries interact to predict attentional bias to threat.

    PubMed

    Grimshaw, Gina M; Foster, Joshua J; Corballis, Paul M

    2014-10-01

    Frontal and parietal electroencephalographic (EEG) asymmetries mark vulnerability to depression and anxiety. Drawing on cognitive theories of vulnerability, we hypothesise that cortical asymmetries predict attention to threat. Participants completed a dot-probe task in which bilateral face displays were followed by lateralised targets at either short (300ms) or long (1050ms) SOA. We also measured N2pc to face onset as an index of early attentional capture. At long SOA only, frontal and parietal asymmetry interacted to predict attentional bias to angry faces. Those with leftward frontal asymmetry showed no attentional bias. Among those with rightward frontal asymmetry those with low right parietal activity showed vigilance for threat, and those with high right parietal activity showed avoidance. Asymmetry was not related to the N2pc or to attentional bias at the short SOA. Findings suggest that trait asymmetries reflect function in a fronto-parietal network that controls attention to threat.

  4. [Genes, forces and forms: mechanical aspects of prenatal craniofacial development].

    PubMed

    Radlanski, Ralf J; Renz, Herbert

    2007-12-01

    Current knowledge of molecular signaling during craniofacial development is advancing rapidly. We know that cells can respond to mechanical stimuli by biochemical signaling. Thus, the link between mechanical stimuli and gene expression has become a new and important area of the morphological sciences. This field of research seems to be a revival of the old approach of developmental mechanics, which goes back to the embryologists His [36], Carey [13, 14], and Blechschmidt [5]. These researchers argued that forces play a fundamental role in tissue differentiation and morphogenesis. They understood morphogenesis as a closed system with living cells as the active part and biological, chemical, and physical laws as the rules. This review reports on linking mechanical aspects of developmental biology with the contemporary knowledge of tissue differentiation. We focus on the formation of cartilage (in relation to pressure), bone (in relation to shearing forces), and muscles (in relation to dilation forces). The cascade of molecules may be triggered by forces, which arise during physical cell and tissue interaction. Detailed morphological knowledge is mandatory to elucidate the exact location and timing of the regions where forces are exerted. Because this finding also holds true for the exact timing and location of signals, more 3D images of the developmental processes are required. Further research is also required to create methods for measuring forces within a tissue. The molecules whose presence and indispensability we are investigating appear to be mediators rather than creators of form.

  5. Genes, forces, and forms: mechanical aspects of prenatal craniofacial development.

    PubMed

    Radlanski, Ralf J; Renz, Herbert

    2006-05-01

    Current knowledge of molecular signaling during craniofacial development is advancing rapidly. We know that cells can respond to mechanical stimuli by biochemical signaling. Thus, the link between mechanical stimuli and gene expression has become a new and important area of the morphological sciences. This field of research seems to be a revival of the old approach of developmental mechanics, which goes back to the embryologists His (1874), Carey (1920), and Blechschmidt (1948). These researchers argued that forces play a fundamental role in tissue differentiation and morphogenesis. They understood morphogenesis as a closed system with living cells as the active part and biological, chemical, and physical laws as the rules. This review reports on linking mechanical aspects of developmental biology with the contemporary knowledge of tissue differentiation. We focus on the formation of cartilage (in relation to pressure), bone (in relation to shearing forces), and muscles (in relation to dilation forces). The cascade of molecules may be triggered by forces, which arise during physical cell and tissue interaction. Detailed morphological knowledge is mandatory to elucidate the exact location and timing of the regions where forces are exerted. Because this finding also holds true for the exact timing and location of signals, more 3D images of the developmental processes are required. Further research is also required to create methods for measuring forces within a tissue. The molecules whose presence and indispensability we are investigating appear to be mediators rather than creators of form.

  6. STRAIN-SPECIFIC MODIFIER GENES GOVERNING CRANIOFACIAL PHENOTYPES

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M

    2012-01-01

    BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski−/− mice on a C57BL6J (B6) background exhibit facial clefting, while Ski−/− mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was utilized to identify potential strain-specific modifier gene candidates present in wild-type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from E8.5, B6 embryos when compared to expression levels in neural tubes derived from E8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified. PMID:22371338

  7. Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.

    PubMed

    Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan

    2016-03-01

    Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.

  8. A standardized nomenclature for craniofacial and facial anthropometry.

    PubMed

    Caple, Jodi; Stephan, Carl N

    2016-05-01

    Standardized terms and methods have long been recognized as crucial to reduce measurement error and increase reliability in anthropometry. The successful prior use of craniometric landmarks makes extrapolation of these landmarks to the soft tissue context, as analogs, intuitive for forensic craniofacial analyses and facial photogrammetry. However, this extrapolation has not, so far, been systematic. Instead, varied nomenclature and definitions exist for facial landmarks, and photographic analyses are complicated by the generalization of 3D craniometric landmarks to the 2D face space where analogy is subsequently often lost, complicating anatomical assessments. For example, landmarks requiring palpation of the skull or the examination of the 3D surface typology are impossible to legitimately position; similar applies to median landmarks not visible in lateral photographs. To redress these issues without disposing of the craniometric framework that underpins many facial landmarks, we provide an updated and transparent nomenclature for facial description. This nomenclature maintains the original craniometric intent (and base abbreviations) but provides clear distinction of ill-defined (quasi) landmarks in photographic contexts, as produced when anatomical points are subjectively inferred from shape-from-shading information alone.

  9. Independence of biomechanical forces and craniofacial pneumatization in Cebus.

    PubMed

    Rae, Todd C; Koppe, Thomas

    2008-11-01

    Several different factors have been hypothesized as explanations of variation in primate paranasal sinus size. Biomechanical forces, particularly those associated with mastication, are frequently evoked to account for differences in primate craniofacial pneumatization. To test whether masticatory stresses are responsible for maxillary sinus volume diversity, two platyrrhine species of the genus Cebus (C. apella and C. albifrons) were examined. The former has been identified as a hard object feeder, and many morphological differences between the two species are attributable to differences in the mechanical properties of their respective diets. Sinus volumes were derived from serial coronal CT scans of the crania of adults. Several external cranial measurements were used to scale sinus volume relative to the size of the face. Relative measures of maxillary sinus volume were compared using standard statistical techniques. In all comparisons, the two capuchin species do not differ from one another significantly at P < 0.05. Thus, this "natural experiment" fails to support the interpretation that biomechanical forces acting on the facial skeleton substantially affect the degree of paranasal pneumatization in primates. This result suggests that it is unlikely that the maxillary sinus performs any function in relation to masticatory stress; other factors must be responsible for the variation in sinus volume among primates.

  10. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review

    PubMed Central

    Adameyko, Igor; Fried, Kaj

    2016-01-01

    Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration. PMID:26924989

  11. Scanning Electron Microscopy And Data Digitization Of Craniofacial Growth

    NASA Astrophysics Data System (ADS)

    Rice, Robert W.; Oyen, Ordean J.; Walker, Alan C.

    1980-07-01

    The scanning electron microscope (SEM), combining high resolution and large depth of focus, affords detailed observation of surface microstructure in a three-dimensional perspective. It also allows large specimen dimensions and avoids the processing and sectioning limitations of light and transmission electron microscopic procedures. For these reasons the SEM is ideally suited for analyses of bone, a rigid tissue whose surface topography and internal architecture accurately reflect the developmental, metabolic and mechanical influences exerted upon it. Furthermore, SEM photomicrographs are compatible with devices for quantification, mathematical manipulation and graphic reconstruction of the image. Features of a photo may be traced with a stylus on the electromagnetically activated surface of a data digitizer, which converts the outlined path to x and y axis coordinates. Interfaced with a programmed calculator these data undergo algebraic and geometrical computation and may be stored for statistical analyses. Alternatively, stereopairs of micrograph transparencies may be utilized in micro-stereophotogrammetric procedures in which x, y and z axis coordinates are generated for selected morphologic points. Our research concerns spatiotemporal interrelationships of primate craniofacial growth as evidenced by changes in the skeletal gross morphology and microanatomy of the orbital region, jaws and teeth during their growth and development. Applications of SEM and digitization techniques to these studies and an evaluation of the derived data will be presented.

  12. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone

    PubMed Central

    Si, Jia-Wen; Wang, Xu-Dong; Shen, Steve GF

    2015-01-01

    In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application. PMID:25621114

  13. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

    PubMed

    Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E

    2015-09-01

    Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side.

  14. A systematic review of the oral and craniofacial manifestations of cri du chat syndrome.

    PubMed

    Corcuera-Flores, José-Ramón; Casttellanos-Cosano, Lizett; Torres-Lagares, Daniel; Serrera-Figallo, María Ángeles; Rodríguez-Caballero, Ángela; Machuca-Portillo, Guillermo

    2016-07-01

    Cri du chat syndrome is an autosomal disorder. Because it affects few people in the population it is considered a rare disease, yet it is one of the most common autosomal chromosomal syndromes in humans. It entails pathognomonic alterations that affect the craniofacial and oral anatomy of patients. The aim of this study is to review these craniofacial and oral abnormalities in patients with Cri du chat syndrome. The PubMed Medline database was searched using two different strategies. First, we used "Dentistry" and "Cri du chat" as keywords; second, we used "Cri du chat" and "craniofacial." Seven articles in which the main orofacial and cranio-skeletal characteristics of patients with Cri du chat syndrome were described were selected according to the inclusion and exclusion criteria. Cri du Chat syndrome entails pathognomonic characteristics in the craniofacial area (epicanthus, short philtrum, and wide nasal bridge), the oral area (mandibular retrognathism and anterior open bite) and the cranial region (alterations at the cranial base angle and a small upper airway). However, more studies on larger samples are needed to specify the orofacial and craniofacial characteristics of patients with Cri du chat syndrome more accurately. Clin. Anat. 29:555-560, 2016. © 2015 Wiley Periodicals, Inc.

  15. Psychological and Social Factors in Undergoing Reconstructive Surgery Among Individuals With Craniofacial Conditions: An Exploratory Study

    PubMed Central

    Bemmels, Heather; Biesecker, Barbara; Schmidt, Johanna L.; Krokosky, Alyson; Guidotti, Rick; Sutton, Erica J.

    2012-01-01

    Objective Reconstructive surgery to improve psychological well-being is commonly offered to children with craniofacial conditions. Few studies have explored the challenges of reconstructive surgery beyond the physical risks: poor treatment outcomes, infection, brain damage, and death. This qualitative study aims to understand the psychological and social implications such interventions can have for individuals with craniofacial conditions. Design A total of 38 individuals between the ages of 12 and 61 with such craniofacial conditions as Sturge-Weber syndrome, Treacher Collins syndrome, Möbius syndrome, cleft lip and palate, Noonan syndrome, Crouzon syndrome, and amniotic band syndrome participated in semistructured video-recorded interviews. Participants were recruited at conferences, through study flyers, and by word of mouth. Descriptive, thematic analysis was used to identify themes related to reconstructive surgery. Results Dominant themes included undergoing surgery to reduce stigmatization, the psychological and social implications of the interventions, outcome satisfaction, parental involvement in decision making about surgery, and recommendations for parents considering surgery for their children with craniofacial conditions. Experiences with reconstructive surgery varied, with some participants expressing surgical benefits and others, disillusionment. Conclusions The range of participant attitudes and experiences reflect the complexity of reconstructive surgery. Pediatric health care teams involved in the care of children with craniofacial conditions play an important role in advising patients (and their parents) about existing treatment options. The psychological and social implications of reconstructive surgery should be relayed to help families weigh the risks and benefits of surgery in an informed and meaningful way. PMID:22315960

  16. Craniofacial and cervical morphology related to sagittal spinal posture in children and adolescents.

    PubMed

    Segatto, Emil; Segatto, Angyalka; Braunitzer, Gábor; Kirschneck, Christian; Fanghänel, Jochen; Danesh, Gholamreza; Lippold, Carsten

    2014-01-01

    Studies on the relationship between body posture and craniofacial parameters often focus on the cervical spine. Thus, less attention has been paid to the morphology of the vertebra C2 that serves as both a structural and functional link between the craniofacial area and the other part of the spine. The objective of this study was to assess the relation of craniofacial features to certain morphological and positional characteristics of the cervical vertebrae and the spine during growth. We determined body posture indices for 69 children and adolescents by means of a radiation-free method (rasterstereography). The morphological and positional analysis of the craniofacial area and the cervical vertebrae was based on standardized lateral X-ray cephalograms. Medium to strong correlations were found between body posture, C2 morphology, and craniofacial parameters. We found significant correlations between the C2 dens axis height and maxillary indices as well as between the C2 dens axis inclination and cephalometrical values of the mandibular area. Similarly the correlation between the C2 dens axis inclination and the postural index flèche cervicale was highly significant (P < 0.05, r = 0.333). These results suggest that morphological features of the odontoid process may serve as valuable predictive markers in interdisciplinary orthopedic-orthodontic diagnostics.

  17. Craniofacial and Cervical Morphology Related to Sagittal Spinal Posture in Children and Adolescents

    PubMed Central

    Segatto, Angyalka; Braunitzer, Gábor

    2014-01-01

    Studies on the relationship between body posture and craniofacial parameters often focus on the cervical spine. Thus, less attention has been paid to the morphology of the vertebra C2 that serves as both a structural and functional link between the craniofacial area and the other part of the spine. The objective of this study was to assess the relation of craniofacial features to certain morphological and positional characteristics of the cervical vertebrae and the spine during growth. We determined body posture indices for 69 children and adolescents by means of a radiation-free method (rasterstereography). The morphological and positional analysis of the craniofacial area and the cervical vertebrae was based on standardized lateral X-ray cephalograms. Medium to strong correlations were found between body posture, C2 morphology, and craniofacial parameters. We found significant correlations between the C2 dens axis height and maxillary indices as well as between the C2 dens axis inclination and cephalometrical values of the mandibular area. Similarly the correlation between the C2 dens axis inclination and the postural index flèche cervicale was highly significant (P < 0.05, r = 0.333). These results suggest that morphological features of the odontoid process may serve as valuable predictive markers in interdisciplinary orthopedic-orthodontic diagnostics. PMID:25276804

  18. Correlation between maximum bite force and craniofacial morphology of young adults in Indonesia.

    PubMed

    Sondang, P; Kumagai, H; Tanaka, E; Ozaki, H; Nikawa, H; Tanne, K; Hamada, T

    2003-11-01

    The present study was conducted to evaluate the relationship between maximum bite force and craniofacial morphology. Sixty-four Indonesian female dental students aged 19-27 years with normal occlusion served as the subjects. The Dental Prescale System was used to measure the maximum bite force using a pressure sensitive sheets while craniofacial morphology measurements were determined from conventional lateral radiograms. The antero-posterior and right-left position of the occlusal load centre (the OLC) were measured also. Stepwise multiple regression analysis was performed to evaluate the relationship between bite force and craniofacial morphology while correlation analysis was used to evaluate the antero-posterior position of the OLC related to craniofacial morphology. Fifty-five per cent of the bite force could be explained by variations in the posterior facial height, gonial angle, antero-posterior size of the maxilla, and posterior length of the cranial base. The result showed a larger bite force implies a greater posterior facial height, smaller gonial angle, larger maxilla and straighter posterior length of the cranial base. This study suggests that among Indonesians, maximum bite force could be explained by craniofacial morphology as found in Caucasians. In addition, we proposed a clinical standard of the OLC for the comprehensive evaluation of occlusion.

  19. Craniofacial pain can be the sole prodromal symptom of an acute myocardial infarction: an interdisciplinary study.

    PubMed

    Kreiner, Marcelo; Álvarez, Ramón; Michelis, Virginia; Waldenström, Anders; Isberg, Annika

    2016-04-01

    We recently found craniofacial pain to be the sole symptom of an acute myocardial infarction (AMI) in 4% of patients. We hypothesized that this scenario is also true for symptoms of prodromal (pre-infarction) angina. We studied 326 consecutive patients who experienced myocardial ischemia. Intra-individual variability analyses with respect to ECG findings and pain characteristics were performed for those 150 patients who experienced at least one recurrent ischemic episode. AMI patients (n=113) were categorized into two subgroups: "abrupt onset" (n=81) and "prodromal angina" (n=32). Age, gender and risk factor comparisons were performed between groups. Craniofacial pain constituted the sole prodromal symptom of an AMI in 5% of patients. In those who experienced two ischemic episodes, women were more likely than men to experience craniofacial pain in both episodes (p<0.01). There was no statistically significant difference between episodes regarding either ECG findings or the use of the two typical pain quality descriptors "pressure" and "burning". This study is to our knowledge the first to report that craniofacial pain can be the only symptom of a pre-infarction angina. Craniofacial pain constitutes the sole prodromal AMI symptom in one out of 20 AMI patients. Recognition of this atypical symptom presentation is low because research on prodromal AMI symptoms has to date studied only patients with chest pain. To avoid a potentially fatal misdiagnosis, awareness of this clinical presentation needs to be brought to the attention of clinicians, researchers and the general public.

  20. Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle.

    PubMed

    Czajkowski, Maciej T; Rassek, Claudia; Lenhard, Diana C; Bröhl, Dominique; Birchmeier, Carmen

    2014-11-15

    Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network - MyoD, Myf5 and Mrf4 - executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1(LacZ/Ki) mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1(LacZ/Ki) mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.

  1. Customized Polymethyl Methacrylate Implants for the Reconstruction of Craniofacial Osseous Defects

    PubMed Central

    Fernandes da Silva, André Luis; Borba, Alexandre Meireles; Simão, Niverso Rodrigues; Pedro, Fábio Luis Miranda

    2014-01-01

    Craniofacial defects represent alterations in the anatomy and morphology of the cranial vault and the facial bones that potentially affect an individual's psychological and social well-being. Although a variety of techniques and restorative procedures have been described for the reconstruction of the affected area, polymethyl methacrylate (PMMA), a biocompatible and nondegradable acrylic resin-based implant, is the most widely used alloplastic material for such craniomaxillofacial reconstruction. The aim of this study was to describe a technique for aesthetic and functional preoperative customized reconstruction of craniofacial bone defects from a small series of patients offered by the Brazilian public health system. Three adult male patients attended consultation with chief complaints directly related to their individual craniofacial bone defects. With the aid of multislice computed tomography scans and subsequent fabrication of the three-dimensional craniofacial prototype, custom-made PMMA implants were fabricated preoperatively. Under general anesthesia, with access to the craniofacial defects with a coronal approach, the PMMA implants were adapted and fixated to the facial skeleton with titanium plates and screws. Postoperative evaluation demonstrated uneventful recovery and an excellent aesthetic result. Customized prefabricated PMMA implants manufactured over the rapid prototyping models proved to be effective and feasible. PMID:25093139

  2. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  3. Radiation-induced craniofacial deformities: a new classification and management algorithm.

    PubMed

    Allam, Karam A; Lim, Alan A; Elsherbiny, Ahmed; Bradley, James P; Kawamoto, Henry K

    2013-08-01

    Little is written about the spectrum of late radiation-induced craniofacial abnormalities and the guidelines for treating these abnormalities. The clinical records of 13 patients (eight males and five females) who received childhood craniofacial radiation between birth and 11 years of age and who subsequently had reconstructive surgery were reviewed. Eleven patients had their irradiation at the age from 1 to 5 years. The other two patients received their treatment at a relatively older age (9 and 11 years). Their deformities ranged from isolated soft-tissue deficiency with no or minimal bony deficiency to cases having osseous deformities with or without soft-tissue deficiency but still the normal or near-normal craniofacial form can be obtained with surgical intervention and the outermost extreme of the deformity is the patients whose normal or near-normal craniofacial form and function cannot be regained even with much sophisticated surgeries. Our new classification is based on two factors: the tissue component of the deformity and the possibility of regaining a normal or near-normal craniofacial form and function with the planned surgical intervention. Based on this classification, a new treatment algorithm was created.

  4. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development.

    PubMed

    Sørhus, Elin; Incardona, John P; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B; Meier, Sonnich

    2016-08-10

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  5. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    NASA Astrophysics Data System (ADS)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  6. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI.

    PubMed

    Iacoboni, Marco

    2006-01-01

    The posterior parietal cortex is a fundamental structure for visuo-motor integration and control. Here I discuss recent transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies that I interpret as suggesting four concepts. The evolutionary process has enlarged the human posterior parietal cortex while still preserving the internal structure of the posterior parietal cortex of other primates. Visuo-motor control in the posterior parietal cortex may be implemented by coding primarily action goals. The lateralization of visuo-motor functions in the posterior parietal cortex suggests that the left posterior parietal cortex is more concerned with tool use and the right posterior parietal cortex is more concerned with imitation of the actions of others. Finally, visuo-motor inter-hemispheric transfer through parietal callosal fibers occurs at the level of 'motor intention'.

  7. Morphogenesis of callosal arbors in the parietal cortex of hamsters.

    PubMed

    Hedin-Pereira, C; Lent, R; Jhaveri, S

    1999-01-01

    The morphogenesis of callosal axons originating in the parietal cortex was studied by anterograde labeling with Phaseolus lectin or biocytin injected in postnatal (P) hamsters aged 7-25 days. Some labeled fibers were serially reconstructed. At P7, some callosal fibers extended as far as the contralateral rhinal fissure, with simple arbors located in the homotopic region of the opposite cortical gray matter, and two or three unbranched sprouts along their trajectory. From P7 to P13, the homotopic arbors became more complex, with branches focused predominantly, but not exclusively, in the supra- and infragranular layers of the homotopic region. Simultaneously, the lateral extension of the trunk axon in the white matter became shorter, finally disappearing by P25. Arbors in the gray matter were either bilaminar (layers 2/3 and 5) or supragranular. A heterotopic projection to the lateral cortex was consistently seen at all ages; the heterotopic arbors follow a similar sequence of events to that seen in homotopic regions. These observations document that callosal axons undergo regressive tangential remodeling during the first postnatal month, as the lateral extension of the trunk fiber gets eliminated. Radially, however, significant arborization occurs in layer-specific locations. The protracted period of morphogenesis suggests a correspondingly long plastic period for this system of cortical fibers.

  8. True and false memories, parietal cortex, and confidence judgments.

    PubMed

    Urgolites, Zhisen J; Smith, Christine N; Squire, Larry R

    2015-11-01

    Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory). Accordingly, it has often been difficult to know whether a finding is related to memory confidence or memory accuracy. In the current study, participants made recognition memory judgments with confidence ratings in response to previously studied scenes and novel scenes. The left hippocampus and 16 other brain regions distinguished true and false memories when confidence ratings were different for the two conditions. Only three regions (all in the parietal cortex) distinguished true and false memories when confidence ratings were equated. These findings illustrate the utility of taking confidence ratings into account when identifying brain regions associated with true and false memories. Neural correlates of true and false memories are most easily interpreted when confidence ratings are similar for the two kinds of memories.

  9. The planar cell polarity pathway directs parietal endoderm migration.

    PubMed

    LaMonica, Kristi; Bass, Maya; Grabel, Laura

    2009-06-01

    Parietal endoderm (PE) contributes to the yolk sac and is the first migratory cell type in the mammalian embryo. We can visualize PE migration in vitro using the F9 teratocarcinoma derived embryoid body outgrowth system and, show here that PE migration is directed by the non-canonical Wnt planar cell polarity (PCP) pathway via Rho/ROCK. Based on golgi apparatus localization and microtubule orientation, 68.6% of cells in control outgrowths are oriented in the direction of migration. Perturbation of Wnt signaling via sFRP treatment results in a loss of orientation coupled with an increase in cell migration. Inhibition of the PCP pathway at the level of Daam1 also results in a loss of cell orientation along with an increase in cell migration, as seen with sFRP treatment. Constitutively active Daam can inhibit the loss of orientation that occurs with sFRP treatment. We previously demonstrated that ROCK inhibition leads to an increase in cell migration, and we now show that these cells also lack oriented migration. Canonical Wnt signaling or the Rac arm of the PCP pathway does not appear to play a role in PE oriented migration. These data suggest the PCP pathway via Rho/ROCK modulates migration of PE.

  10. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity.

    PubMed

    Vermet, G; Degoutin, S; Chai, F; Maton, M; Flores, C; Neut, C; Danjou, P E; Martel, B; Blanchemain, N

    2017-02-12

    The use of textile meshes in hernia repair is widespread in visceral surgery. Though, mesh infection is a complication that may prolong the patient recovery period and consequently presents an impact on public health economy. Such concern can be avoided thanks to a local and extended antibiotic release on the operative site. In recent developments, poly-l-lactic acid (PLLA) has been used in complement of polyethyleneterephthalate (Dacron®) (PET) or polypropylene (PP) yarns in the manufacture of semi-resorbable parietal implants. The goal of the present study consisted in assigning drug reservoir properties and prolonged antibacterial effect to a 100% PLLA knit through its functionalization with a cyclodextrin polymer (polyCD) and activation with ciprofloxacin. The study focused i) on the control of degree of polyCD functionalization of the PLLA support and on its physical and biological characterization by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and cell viability, ii) on the understanding of drug/meshes interaction using mathematic model and iii) on the correlation between drug release studies in phosphate buffer saline (PBS) and microbiological evaluation of meshes and release medium against E. coli and S. aureus. All above mentioned tests highlighted the contribution of polyCD on the improved performances of the resulting antibacterial implantable material.

  11. TMS of posterior parietal cortex disrupts visual tactile multisensory integration.

    PubMed

    Pasalar, Siavash; Ro, Tony; Beauchamp, Michael S

    2010-05-01

    Functional neuroimaging studies have implicated a number of brain regions, especially the posterior parietal cortex (PPC), as being potentially important for visual-tactile multisensory integration. However, neuroimaging studies are correlational and do not prove the necessity of a region for the behavioral improvements that are the hallmark of multisensory integration. To remedy this knowledge gap, we interrupted activity in the PPC, near the junction of the anterior intraparietal sulcus and the postcentral sulcus, using MRI-guided transcranial magnetic stimulation (TMS) while subjects localized touches delivered to different fingers. As the touches were delivered, subjects viewed a congruent touch video, an incongruent touch video, or no video. Without TMS, a strong effect of multisensory integration was observed, with significantly better behavioral performance for discrimination of congruent multisensory touch than for unisensory touch alone. Incongruent multisensory touch produced a smaller improvement in behavioral performance. TMS of the PPC eliminated the behavioral advantage of both congruent and incongruent multisensory stimuli, reducing performance to unisensory levels. These results demonstrate a causal role for the PPC in visual-tactile multisensory integration. Taken together with converging evidence from other studies, these results support a model in which the PPC contains a map of space around the hand that receives input from both the visual and somatosensory modalities. Activity in this map is likely to be the neural substrate for visual-tactile multisensory integration.

  12. Beyond natural numbers: negative number representation in parietal cortex.

    PubMed

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  13. The posterior parietal cortex remaps touch into external space.

    PubMed

    Azañón, Elena; Longo, Matthew R; Soto-Faraco, Salvador; Haggard, Patrick

    2010-07-27

    Localizing tactile events in external space is required for essential functions such as orienting, haptic exploration, and goal-directed action in peripersonal space. In order to map somatosensory input into a spatiotopic representation, information about skin location must be integrated with proprioceptive information about body posture. We investigated the neural bases of this tactile remapping mechanism in humans by disrupting neural activity in the putative human homolog of the monkey ventral intraparietal area (hVIP), within the right posterior parietal cortex (rPPC), which is thought to house external spatial representations. Participants judged the elevation of touches on their (unseen) forearm relative to touches on their face. Arm posture was passively changed along the vertical axis, so that elevation judgments required the use of an external reference frame. Single-pulse transcranial magnetic stimulation (TMS) over the rPPC significantly impaired performance compared to a control site (vertex). Crucially, proprioceptive judgments of arm elevation or tactile localization on the skin remained unaffected by rPPC TMS. This selective disruption of tactile remapping suggests a distinct computational process dissociable from pure proprioceptive and somatosensory localization. Furthermore, this finding highlights the causal role of human PPC, putatively VIP, in remapping touch into external space.

  14. The parietal cortex and saccade planning: lessons from human lesion studies.

    PubMed

    Ptak, Radek; Müri, René M

    2013-01-01

    The parietal cortex is a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in this region exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint's syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.

  15. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat.

    PubMed

    Wilber, Aaron A; Clark, Benjamin J; Demecha, Alexis J; Mesina, Lilia; Vos, Jessica M; McNaughton, Bruce L

    2014-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  16. Cell replication in craniofacial periosteum: appositional vs. resorptive sites

    PubMed Central

    Ochareon, Pannee; Herring, Susan W

    2011-01-01

    The size and the shape of craniofacial bones results from periosteal activity, which can be either appositional or resorptive. The periosteum is often used as a source of graft material for osteogenesis, but differences in cellular makeup and proliferative capacity may render resorptive regions unsuitable for transplant. This study was undertaken to characterize the cells in appositional and resorptive periosteum, and to assess variation in proliferative activity. Young pigs (n = 9) were injected with bromodeoxyuridine to label replicating cells and killed 3 h later. The mandibular ramus, hard palate and zygomatic arch were examined for patterns of periosteal activity, and replicating cells were quantified in 16 appositional and eight resorptive regions. Sections were also reacted for markers of osteogenic (Runx2) and osteoclastic [CTR (calcitonin receptor), RANK, TRAP, CD14] lineage, and for an endothelial label (lectin). Replicating cells were often associated with the vasculature; most were unreactive for markers of differentiation. Although the fibrous layers of periosteum had fewer replicating cells per unit area than inner layers (P < 0.005), this was in part due to lower cellularity. Appositional periostea differed from resorptive periostea in having thicker fibrous layers (197 vs. 89 μm, P = 0.02) and higher replication density in the inner layers (606 vs. 329 labeled cells mm−2, P = 0.02). Osteoprogenitors were numerous in the inner layers of appositional but very scarce in resorptive periostea. Multinucleated osteoclasts were never seen in appositional regions, but mononuclear cells positive for osteoclastic lineage markers were plentiful, especially in the most rapidly growing areas. These cells appeared to be macrophages accompanying a growth rate so rapid as to resemble a response to trauma. In conclusion, appositional and resorptive periostea differ strikingly in morphology and cell content. Resorptive periosteum is a poor choice for osteogenic

  17. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    PubMed Central

    Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  18. Oral and Craniofacial Clinical Signs Associated to Genetic Conditions in Human Identification Part I: A Review

    PubMed Central

    Ayoub, Fouad; Aoun, Nicole; el Husseini, Hassan; Jassar, Houssam; Sayah, Fida; Salameh, Ziad

    2015-01-01

    Background: Forensic dentistry is one of the most reliable methods used in human identification when other technique as fingerprint, DNA, visual identification cannot be used. Genetic disorders have several manifestations that can target the intra-oral cavity, the cranio-facial area or any location in the human body. Materials and Methods: A literature search of the scientific database (Medline and Science Direct) for the years 1990 to 2014 was carried out to find out all the available papers that indicate oral, cranio-facial signs, genetic and human identification. Results: A table with 10 genetic conditions was described with oral and cranio-facial signs that can help forensic specialist in human identification. Conclusion: This review showed a correlation between genetics, facial and intra-oral signs that would help forensic ondontologist in the identification procedures. PMID:26028912

  19. 3D modeling, custom implants and its future perspectives in craniofacial surgery.

    PubMed

    Parthasarathy, Jayanthi

    2014-01-01

    Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction.

  20. CRANIAL NEURAL CREST CELLS ON THE MOVE: THEIR ROLES IN CRANIOFACIAL DEVELOPMENT

    PubMed Central

    Cordero, Dwight R.; Brugmann, Samantha; Chu, Yvonne; Bajpai, Ruchi; Jame, Maryam; Helms, Jill A.

    2010-01-01

    The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders. PMID:21271641

  1. 3D modeling, custom implants and its future perspectives in craniofacial surgery

    PubMed Central

    Parthasarathy, Jayanthi

    2014-01-01

    Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction. PMID:24987592

  2. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach

    PubMed Central

    Hughes, Declan; Song, Bing

    2016-01-01

    Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration. PMID:27143979

  3. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration

    PubMed Central

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-Jen; Hsu, Wei

    2016-01-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine. PMID:26830436

  4. Creation and implementation of standardised craniofacial views for the Institute Of Medical Illustrators National Guidelines.

    PubMed

    Rowe, Stephanie

    2013-12-01

    Vetter (1) states, "Standardisation is the key word in all discussions of clinical photography". As part of clinical photography standardised guidelines form an integral part of providing a basis to obtaining standardised images. The Institute of Medical Illustrators (IMI) provides sets of standardised guidelines that have been developed in consultation with relevant clinicians, providing theory and standardised images that are to be considered as guides to good clinical photography practice. At the time of the study there were no official standardised IMI guidelines for craniofacial photography, for this reason, the primary objective of this project was to produce a set of standardised craniofacial guidelines that could be utilised by other clinical photographers for guidance on taking craniofacial images. This paper describes the development, evaluation and implementation of the guidelines.

  5. Clinical application of three-dimensional printing technology in craniofacial plastic surgery.

    PubMed

    Choi, Jong Woo; Kim, Namkug

    2015-05-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

  6. Best face forward: Virtual modeling and custom device fabrication to optimize craniofacial vascularized composite allotransplantation.

    PubMed

    Jacobs, Jordan M S; Dec, Wojciech; Levine, Jamie P; McCarthy, Joseph G; Weimer, Katie; Moore, Kurt; Ceradini, Daniel J

    2013-01-01

    Craniofacial vascularized composite allotransplantation is especially challenging when bony components are required. Matching the complex three-dimensional anatomy of the donor and recipient craniofacial skeletons to optimize bony contact and dental occlusion is a time-consuming step in the operating room. Currently, few tools exist to facilitate this process. The authors describe the development of a virtual planning protocol and patient-specific device design to efficiently match the donor and recipient skeletal elements in craniofacial vascularized composite allotransplantation. The protocol was validated in a cadaveric transplant. This innovative planning method allows a "snap-fit" reconstruction using custom surgical guides while maintaining facial height and width and functional occlusion. Postoperative overlay technology in the virtual environment provides an objective outcome analysis.

  7. A Neuropsychological Examination of the Underlying Deficit in Attention Deficit Hyperactivity Disorder: Frontal Lobe Versus Right Parietal Lobe Theories.

    ERIC Educational Resources Information Center

    Aman, Christine J.; Roberts, Ralph J., Jr.; Pennington, Bruce F.

    1998-01-01

    Examined front and right parietal lobe theories of attention deficit hyperactivity disorder (ADHD); subjects were 10- to 14-year-old boys with or without ADHD. Found that non-ADHD boys performed better on frontal- and parietal-domain tasks than unmedicated ADHD boys, unmedicated AHDH boys had greater impairments on frontal than parietal tasks, and…

  8. Where are your body parts? A pure case of heterotopagnosia following left parietal stroke.

    PubMed

    Auclair, Laurent; Noulhiane, Marion; Raibaut, Patrick; Amarenco, Gerard

    2009-12-01

    We studied the involvement of the parietal cortex in interpersonal body representation in a left parietal stroke patient. We used tasks assessing different types of body representations and localization of object parts. The patient performed normally on all tasks of body knowledge. However, she was unable to locate body parts on another person or on body representations. In contrast, she pointed correctly to the same body parts on herself or object representations. The data support the important role of the left parietal cortex in the transformation of intrinsic spatial coding of body parts localization in extrinsic body part coordinates.

  9. Potential relationship of self-injurious behavior to right temporo-parietal lesions.

    PubMed

    Borah, Shaina; McConnell, Brice; Hughes, Richard; Kluger, Benzi

    2016-06-01

    Self-injurious behavior (SIB) is associated with several neurologic and psychiatric syndromes but rarely with focal lesions. Two patients with lesions of the right temporo-parietal junction presented to psychiatric inpatient services with SIB in the absence of notable neurologic deficits or suicidal ideation. Right temporo-parietal lesions may be associated with disturbances of agency and body ownership, both of which may facilitate SIB. Misoplegia, or hatred of a limb, may be associated with SIB and has been reported without hemiplegia with a right temporo-parietal lesion. Further study is warranted to improve our understanding of the mechanisms underlying SIB.

  10. Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes

    PubMed Central

    de Peralta, Mauro S Porcel; Mouguelar, Valeria S; Sdrigotti, María Antonella; Ishiy, Felipe A A; Fanganiello, Roberto D; Passos-Bueno, Maria R; Coux, Gabriela; Calcaterra, Nora B

    2016-01-01

    Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/− mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies. PMID:27711076

  11. Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes.

    PubMed

    de Peralta, Mauro S Porcel; Mouguelar, Valeria S; Sdrigotti, María Antonella; Ishiy, Felipe A A; Fanganiello, Roberto D; Passos-Bueno, Maria R; Coux, Gabriela; Calcaterra, Nora B

    2016-10-06

    Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1(+/-) mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.

  12. The society for craniofacial genetics and developmental biology 39th annual meeting.

    PubMed

    Fish, Jennifer L; Albertson, Craig; Harris, Matthew P; Lozanoff, Scott; Marcucio, Ralph S; Richtsmeier, Joan T; Trainor, Paul A

    2017-04-01

    The Society for Craniofacial Genetics and Developmental Biology (SCGDB) aims to promote education, research, and communication, about normal and abnormal development of the tissues and organs of the head. Membership of the SCGDB is broad and diverse-including clinicians, orthodontists, scientists, and academics-but with all members sharing an interest in craniofacial biology. Each year, the SCGDB hosts a meeting where members can share their latest research, exchange ideas and resources, and build on or establish new collaborations. © 2017 Wiley Periodicals, Inc.

  13. Dental and craniofacial characteristics in a patient with Hutchinson-Gilford progeria syndrome.

    PubMed

    Reichert, Christoph; Gölz, Lina; Götz, Werner; Wolf, Michael; Deschner, James; Jäger, Andreas

    2014-07-01

    The Hutchinson-Gilford progeria syndrome (HGPS) is an exceptionally rare medical disorder caused by mutations in the lamin A/C gene. Affected patients display typical features of premature aging. Beside general medical disorders, these patients have several specific features related to the craniofacial phenotype and the oral cavity. In this article, the dental and craniofacial characteristics of a 9-year-old girl with HGPS are presented. It is the first report addressing orthodontic tooth movement and microbiological features in a HGPS patient. We describe and discuss pathologic findings and provide a detailed histology of the teeth which had to be extracted during initial treatment.

  14. An eye on the head: the development and evolution of craniofacial muscles.

    PubMed

    Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim

    2011-06-01

    Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.

  15. Heritability of Craniofacial Structures in Normal Subjects and Patients with Sleep Apnea

    PubMed Central

    Chi, Luqi; Comyn, Francois-Louis; Keenan, Brendan T.; Cater, Jacqueline; Maislin, Greg; Pack, Allan I.; Schwab, Richard J.

    2014-01-01

    Objectives: Accumulating evidence has shown that there is a genetic contribution to obstructive sleep apnea (OSA).The objectives were to use magnetic resonance imaging (MRI) cephalometry to (1) confirm heritability of craniofacial risk factors for OSA previously shown by cephalometrics; and (2) examine the heritability of new craniofacial structures that are measurable with MRI. Design: A sib pair “quad” design examining apneics, apneic siblings, controls, and control siblings. The study design used exact matching on ethnicity and sex, frequency matching on age, and statistical control for differences in age, sex, ethnicity, height, and weight. Setting: Academic medical center. Patients: We examined 55 apneic probands (apnea-hypopnea index [AHI]: 46.8 ± 33.5 events/h), 55 proband siblings (AHI: 11.1 ± 15.9 events/h), 55 controls (AHI: 2.2 ± 1.7 events/h), and 55 control siblings (AHI: 4.1 ± 4.0 events/h). Interventions: N/A. Measurements and Results: Five independent domains reflecting different aspects of the craniofacial structure were examined. We confirmed heritability of sella–nasion–subspinale (38%, P = 0.002), saddle angle (55%, P < 0.0001), mandibular length (24%, P = 0.02) and lower facial height (33%, P = 0.006) previously measured by cephalometry. In addition, the current study added new insights by demonstrating significant heritability of mandibular width (30%, P = 0.005), maxillary width (47%, P < 0.0001), distance from the hyoid bone to the retropogonion (36%, P = 0.0018) and size of the oropharyngeal space (31%, P = 0.004). Finally, our data indicate that heritability of the craniofacial structures is similar in normal patients and those with apnea. Conclusions: The data support our a priori hypothesis that the craniofacial structures that have been associated with obstructive sleep apnea (OSA) are heritable. We have demonstrated heritability for several intermediate craniofacial phenotypes for OSA. Thus, we believe that future studies

  16. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  17. Hand Shape Representations in the Human Posterior Parietal Cortex

    PubMed Central

    Klaes, Christian; Kellis, Spencer; Aflalo, Tyson; Lee, Brian; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles

    2015-01-01

    Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. SIGNIFICANCE STATEMENT This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities. PMID:26586832

  18. Distinct relationships of parietal and prefrontal cortices to evidence accumulation

    PubMed Central

    Hanks, Timothy; Kopec, Charles D.; Brunton, Bingni W.; Duan, Chunyu A.; Erlich, Jeffrey C.; Brody, Carlos D.

    2014-01-01

    Gradual accumulation of evidence is thought to be fundamental for decision-making, and its neural correlates have been found in multiple brain regions1–8. Here we develop a generalizable method to measure tuning curves that specify the relationship between neural responses and mentally-accumulated evidence, and apply it to distinguish the encoding of decision variables in posterior parietal cortex (PPC) and prefrontal cortex (frontal orienting fields, FOF). We recorded the firing rates of neurons in PPC and FOF from rats performing a perceptual decision-making task. Classical analyses uncovered correlates of accumulating evidence, similar to previous observations in primates and also similar across the two regions. However, tuning curve assays revealed that while the PPC encodes a graded value of the accumulating evidence, the FOF has a more categorical encoding that indicates, throughout the trial, the decision provisionally favored by the evidence accumulated so far. Contrary to current views3,5,7–9, this suggests that premotor activity in frontal cortex does not play a role in the accumulation process, but instead has a more categorical function, such as transforming accumulated evidence into a discrete choice. To causally probe the role of FOF activity, we optogenetically silenced it during different timepoints of the trial. Consistent with a role in committing to a categorical choice at the end of the evidence accumulation process, but not consistent with a role during the accumulation itself, a behavioral effect was observed only when FOF silencing occurred at the end of the perceptual stimulus. Our results place important constraints on the circuit logic of brain regions involved in decision-making. PMID:25600270

  19. Cuboidal epithelium lining of the parietal layer of Bowman's capsule in Afghan pikas (Ochotona rufescens rufescens).

    PubMed

    Madarame, H; Kumagai, M; Motooka, N; Konno, S

    1991-01-01

    Kidneys of 64 Afghan pikas (Ochotona rufescens rufescens) were examined histologically. Seven of 21 males and two of 21 females over 6 months of age had a cuboidal epithelium lining of the parietal layer of Bowman's capsule.

  20. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex

    PubMed Central

    Humphreys, Gina F.; Lambon Ralph, Matthew A.

    2015-01-01

    How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661

  1. TMS in the parietal cortex: updating representations for attention and action.

    PubMed

    Rushworth, M F S; Taylor, P C J

    2006-01-01

    Transcranial magnetic stimulation (TMS) is one of the most recent techniques to have been used in investigations of the parietal cortex but already a number of studies have employed it as a tool in investigations of attentional and sensorimotor processes in the human parietal cortices. The high temporal resolution of TMS has proved to be a particular strength of the technique and the experiments have led to hypotheses about when circumscribed regions of parietal cortex are critical for specific attentional and sensorimotor processes. A consistent theme that runs through many reports is that of a critical contribution of parietal areas when attention or movements are re-directed and representations for attention or action must be updated.

  2. Involuntary hand levitation associated with parietal damage: another alien hand syndrome.

    PubMed

    Carrilho, P E; Caramelli, P; Cardoso, F; Barbosa, E R; Buchpiguel, C A; Nitrini, R

    2001-09-01

    The alien hand syndrome (AHS) usually consists of an autonomous motor activity perceived as an involuntary and purposeful movement, with a feeling of foreignness of the involved limb, commonly associated with a failure to recognise ownership of the limb in the absence of visual clues. It has been described in association to lesions of the frontal lobes and corpus callosum. However, parietal damage can promote an involuntary, but purposeless, hand levitation, which, sometimes, resembles AHS. In the present study, four patients (cortico-basal ganglionic degeneration - n=2; Alzheimer's disease - n=1 and parietal stroke - n=1) who developed alien hand motor behaviour and whose CT, MRI and/or SPECT have disclosed a major contralateral parietal damage or dysfunction are described. These results reinforce the idea that parietal lobe lesions may also play a role in some patients with purposeless involuntary limb levitation, which is different from the classic forms of AHS.

  3. Global increase in task-related fronto-parietal activity after focal frontal lobe lesion.

    PubMed

    Woolgar, Alexandra; Bor, Daniel; Duncan, John

    2013-09-01

    A critical question for neuropsychology is how complex brain networks react to damage. Here, we address this question for the well-known executive control or multiple-demand (MD) system, a fronto-parietal network showing increased activity with many different kinds of cognitive demand, including standard tests of fluid intelligence. Using fMRI, we ask how focal frontal lobe damage affects MD activity during a standard fluid intelligence task. Despite poor behavioral performance, frontal patients showed increased fronto-parietal activity relative to controls. The activation difference was not accounted for by difference in IQ. Moreover, rather than specific focus on perilesional or contralesional cortex, additional recruitment was distributed throughout the MD regions and surrounding cortex and included parietal MD regions distant from the injury. The data suggest that, following local frontal lobe damage, there is a global compensatory recruitment of an adaptive and integrated fronto-parietal network.

  4. The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder.

    PubMed

    Stewart, Jennifer L; Towers, David N; Coan, James A; Allen, John J B

    2011-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n=143) and without (n=163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity.

  5. Force regulation is deficient in patients with parietal lesions: a system-analytic approach.

    PubMed

    Scholle, H C; Bradl, U; Hefter, H; Dohle, C; Freund, H J

    1998-06-01

    By means of a quantitative system-analytic investigation strategy, the postural motor control of the fingers was evaluated, to characterise the possible deficit of force regulation in patients with parietal lesions. In spite of a normal response to short torque pulses, the parietal-lesion patients had difficulties in returning to the preload level after the application of an additional step torque load to fingers II-IV of their left or right hands. The control offset (measured 500 ms after step torque application) was significantly larger in the patient group. This deficit in the investigated patients with parietal lesions to compensate for step torque loads was not due to a paresis, but rather resulted from a disturbance in the generation of a sufficient counterforce against the applied step torque within an adequate time window and motor pattern. This distinct force-regulation deficit was found in patients with left- and right-sided parietal lesions.

  6. Tactile apraxia: unimodal apractic disorder of tactile object exploration associated with parietal lobe lesions.

    PubMed

    Binkofski, F; Kunesch, E; Classen, J; Seitz, R J; Freund, H J

    2001-01-01

    Tactile apraxia is characterized by an isolated disturbance of hand movements for use of and interaction with an object (transitive movements) in the presence of preserved intransitive movements (movements without use of an object, for example repetitive movements or gestures). It is, however, still unclear whether motor and sensory abnormalities represent causal or associated features of tactile apraxia. To address this question, quantitative kinematic recordings of exploratory finger movements (transitive movements) and rapid alternating finger movements (intransitive movements) were studied in 20 healthy volunteers and 22 patients with focal lesions of the parietal, anterofrontal and motor cortex. The most severe deficits of manual object exploration were found in patients with parietal lesions, using the hand contralateral to the lesion. Patients with lesions of the anterior parietal lobe who exhibited prominent sensory deficits and astereognosia showed a decrease in frequency and regularity of exploratory finger movements and a marked increase in exploration space. Patients with posterior parietal lesions exhibiting severe astereognosia, apraxia and deficits in dexterity had a greater decrease in frequency and regularity of manipulative movements, but a less pronounced increase of exploration space than the patients with anterior parietal lesions. Although the patients with parietal lobe lesions could generate rapid alternating finger movements, the regularity of these movements was also impaired. In comparison, patients with frontal lobe lesions exhibited impaired contralesional manipulatory and rapid alternating finger movements but no sensory abnormalities or astereognosia. We conclude that tactile apraxia represents a deficit in the programming of exploratory finger movements mediated by the parietal lobe. The comparison with lesions of other regions participating in the cortical network for tactile exploration reveals that apraxia of exploratory movements

  7. Neural correlates of learning and working memory in the primate posterior parietal cortex.

    PubMed

    Rawley, Justin B; Constantinidis, Christos

    2009-02-01

    The posterior parietal cortex has been traditionally associated with coordinate transformations necessary for interaction with the environment and with visual-spatial attention. More recently, involvement of posterior parietal cortex in other cognitive functions such as working memory and task learning has become evident. Neurophysiological experiments in non-human primates and human imaging studies have revealed neural correlates of memory and learning at the single neuron and at the brain network level. During working memory, posterior parietal neurons continue to discharge and to represent stimuli that are no longer present. This activation resembles the responses of prefrontal neurons, although important differences have been identified in terms of the ability to resist stimulation by distracting stimuli, which is more evident in the prefrontal than the posterior parietal cortex. Posterior parietal neurons also become active during tasks that require the organization of information into larger structured elements and their activity is modulated according to learned context-dependent rules. Neural correlates of learning can be observed in the mean discharge rate and spectral power of neuronal spike trains after training to perform new task sets or rules. These findings demonstrate the importance of posterior parietal cortex in brain networks mediating working memory and learning.

  8. Left superior parietal cortex involvement in writing: integrating fMRI with lesion evidence.

    PubMed

    Menon, V; Desmond, J E

    2001-10-01

    Writing is a uniquely human skill that we utilize nearly everyday. Lesion studies in patients with Gerstmann's syndrome have pointed to the parietal cortex as being critical for writing. Very little information is, however, available about the precise anatomical location of brain regions subserving writing in normal healthy individuals. In this study, we used functional magnetic resonance imaging (fMRI) to investigate parietal lobe function during writing to dictation. Significant clusters of activation were observed in left superior parietal lobe (SPL) and the dorsal aspects of the inferior parietal cortex (IPC) bordering the SPL. Localized clusters of activation were also observed in the left premotor cortex, sensorimotor cortex and supplementary motor area. No activation cluster was observed in the right hemisphere. These results clearly indicate that writing appears to be primarily organized in the language-dominant hemisphere. Further analysis revealed that within the parietal cortex, activation was significantly greater in the left SPL, compared to left IPC. Together with lesion studies, findings from the present study provide further evidence for the essential role of the left SPL in writing. Deficits to the precise left hemisphere parietal cortex regions identified in the present study may specifically underlie disorders of writing observed in Gerstmann's syndrome and apractic agraphia.

  9. Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex.

    PubMed

    Bracci, Stefania; Daniels, Nicky; Op de Beeck, Hans

    2017-01-01

    The dorsal, parietal visual stream is activated when seeing objects, but the exact nature of parietal object representations is still under discussion. Here we test 2 specific hypotheses. First, parietal cortex is biased to host some representations more than others, with a different bias compared with ventral areas. A prime example would be object action representations. Second, parietal cortex forms a general multiple-demand network with frontal areas, showing similar task effects and representational content compared with frontal areas. To differentiate between these hypotheses, we implemented a human neuroimaging study with a stimulus set that dissociates associated object action from object category while manipulating task context to be either action- or category-related. Representations in parietal as well as prefrontal areas represented task-relevant object properties (action representations in the action task), with no sign of the irrelevant object property (category representations in the action task). In contrast, irrelevant object properties were represented in ventral areas. These findings emphasize that human parietal cortex does not preferentially represent particular object properties irrespective of task, but together with frontal areas is part of a multiple-demand and content-rich cortical network representing task-relevant object properties.

  10. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    PubMed

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions.

  11. Language outcomes after resection of dominant inferior parietal lobule gliomas.

    PubMed

    Southwell, Derek G; Riva, Marco; Jordan, Kesshi; Caverzasi, Eduardo; Li, Jing; Perry, David W; Henry, Roland G; Berger, Mitchel S

    2017-01-06

    OBJECTIVE The dominant inferior parietal lobule (IPL) contains cortical and subcortical regions essential for language. Although resection of IPL tumors could result in language deficits, little is known about the likelihood of postoperative language morbidity or the risk factors predisposing to this outcome. METHODS The authors retrospectively examined a series of patients who underwent resections of gliomas from the dominant IPL. Postoperative language outcomes were characterized across the patient population. To identify factors associated with postoperative language morbidity, the authors then compared features between those patients who experienced postoperative deficits and those who experienced no postoperative language dysfunction. RESULTS Twenty-four patients were identified for analysis. Long-term language deficits occurred in 29.2% of patients (7 of 24): 3 of these patients had experienced preoperative language deficits, whereas new long-term language deficits occurred in 4 patients (16.7%; 4 of 24). Of those patients who exhibited preoperative language deficits, 62.5% (5 of 8) experienced long-term resolution of their language deficits with surgical treatment. All patients underwent intraoperative brain mapping by direct electrical stimulation. Awake, intraoperative cortical language mapping was performed on 17 patients (70.8%). Positive cortical language sites were identified in 23.5% of these patients (4 of 17). Awake, intraoperative subcortical language mapping was performed in 8 patients (33.3%). Positive subcortical language sites were identified in 62.5% of these patients (5 of 8). Patients with positive cortical language sites exhibited a higher rate of long-term language deficits (3 of 4, 75%), compared with those who did not (1 of 13, 7.7%; p = 0.02). Although patients with positive subcortical language sites exhibited a higher rate of long-term language deficits than those who exhibited only negative sites (40.0% vs 0.0%, respectively), this

  12. 75 FR 82033 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Advisory Dental and Craniofacial Research Council. The meeting will be open to the public as indicated..., 2011. Open: 8:30 a.m. to 11:30 a.m. Agenda: Report to the Director, NIDCR. Place: National Institutes...-32746 Filed 12-28-10; 8:45 am] BILLING CODE 4140-01-P...

  13. Contribution of FGFR1 Variants to Craniofacial Variations in East Asians

    PubMed Central

    Yamaguchi, Tetsutaro; Tomita, Daisuke; Nakawaki, Takatoshi; Kim, Yong-Il; Hikita, Yu; Haga, Shugo; Takahashi, Masahiro; Nadim, Mohamed A.; Kawaguchi, Akira; Isa, Mutsumi; El-Kenany, Walid H.; El-Kadi, Abbadi A.; Park, Soo-Byung; Ishida, Hajime; Maki, Koutaro; Kimura, Ryosuke

    2017-01-01

    FGFR1 plays an important role in the development of the nervous system as well as the regulation of the skeletal development and bone homeostasis. Mutations in FGFR1 genes affect skull development, specifically suture and synchondrosis, resulting in craniosynostosis and facial abnormalities. We examined subjects with normal skull morphology for genetic polymorphisms that might be associated with normal craniofacial variations. Genomic DNA was obtained from 216 Japanese and 227 Korean subjects. Four FGFR1 SNPs, namely, rs881301, rs6996321, rs4647905, and rs13317, were genotyped. These SNPs were tested for association with craniofacial measurements obtained from lateral and posteroanterior cephalometries, in which principle component analysis was performed to compress the data of the craniofacial measurements. We observed that SNPs rs13317 and rs6996321 were correlated with the overall head size and midfacial development, indicating that FGFR1 SNPs played crucial roles in the normal variation of human craniofacial morphology. Subjects with the derived alleles of SNPs rs13317 and rs6996321 had a small face and a facial pattern associated with a retruded midface and relatively wide-set eyes. These facial features were similar to but were milder than those of individuals with Pfeiffer syndrome, which is caused by a dysfunctional mutation in FGFR1. PMID:28129408

  14. A tissue-specific role for intraflagellar transport genes during craniofacial development

    PubMed Central

    Williams, Trevor J.; Snedeker, John; Brugmann, Samantha A.

    2017-01-01

    Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development. PMID:28346501

  15. Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey.

    PubMed

    Wang, Qian; Dechow, Paul C

    2006-11-01

    Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.

  16. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis.

  17. 45,X/46,XX karyotype mitigates the aberrant craniofacial morphology in Turner syndrome.

    PubMed

    Rizell, Sara; Barrenäs, Marie-Louise; Andlin-Sobocki, Anna; Stecksén-Blicks, Christina; Kjellberg, Heidrun

    2013-08-01

    The aim of this project was to study the impact on craniofacial morphology from Turner syndrome (TS) karyotype, number of intact X chromosomal p-arms, and age as well as to compare craniofacial morphology in TS with healthy females. Lateral radiographs from 108 females with TS, ranging from 5.4 to 61.6 years, were analysed. The TS females were divided into four karyotype groups: 1. monosomy (45,X), 2. mosaic (45,X/46,XX), 3. isochromosome, and 4. other, as well as according to the number of intact X chromosomal p-arms. The karyotype was found to have an impact on craniofacial growth, where the mosaic group, with presence of 46,XX cell lines, seems to exhibit less mandibular retrognathism as well as fewer statistically significant differences compared to the reference group than the 45,X karyotype. Isochromosomes had more significant differences versus the reference group than 45,X/46,XX but fewer than 45,X. To our knowledge, this is the first time the 45,X/46,XX and isochromosome karyotypes are divided into separate groups studying craniofacial morphology. Impact from p-arm was found on both maxillary and mandibular length. Compared to healthy females, TS expressed a shorter posterior and flattened cranial base, retrognathic, short and posteriorly rotated maxilla and mandible, increased height of ramus, and relatively shorter posterior facial height. The impact of age was found mainly on mandibular morphology since mandibular retrognathism and length were more discrepant in older TS females than younger.

  18. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.

    PubMed

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R

    2012-01-01

    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  19. The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig

    PubMed Central

    Bright, Jen A.

    2012-01-01

    Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results. PMID:22363727

  20. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis

    PubMed Central

    Wei, Yanxia; Chen, Min; Weinstein, Lee S.; Hong, Yang; Zhu, Minyan; Li, Hongchang; Li, Huashun

    2016-01-01

    The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development. PMID:26859889

  1. In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates

    PubMed Central

    Ross, Callum F; Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Porro, Laura B; Richmond, Brian G; Spencer, Mark; Strait, David

    2011-01-01

    Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraorbital torus, postorbital bar and postorbital septum, the anterior surface of the postorbital bar, and the anterior root of the zygoma are combined with published data from the supraorbital region and zygomatic arch to evaluate the validity of a finite-element model (FEM) of a macaque cranium during mastication. The behavior of this model is then used to test hypotheses regarding the overall deformation regime in the craniofacial haft of macaques. This FEM constitutes a hypothesis regarding deformation of the facial skeleton during mastication. A simplified verbal description of the deformation regime in the macaque FEM is as follows. Inferior bending and twisting of the zygomatic arches about a rostrocaudal axis exerts inferolaterally directed tensile forces on the lateral orbital wall, bending the wall and the supraorbital torus in frontal planes and bending and shearing the infraorbital region and anterior zygoma root in frontal planes. Similar deformation regimes also characterize the crania of Homo and Gorilla under in vitro loading conditions and may be shared among extant catarrhines. Relatively high strain magnitudes in the anterior root of the zygoma suggest that the morphology of this region may be important for resisting forces generated during feeding. PMID:21105871

  2. The FaceBase Consortium: a comprehensive resource for craniofacial researchers.

    PubMed

    Brinkley, James F; Fisher, Shannon; Harris, Matthew P; Holmes, Greg; Hooper, Joan E; Jabs, Ethylin Wang; Jones, Kenneth L; Kesselman, Carl; Klein, Ophir D; Maas, Richard L; Marazita, Mary L; Selleri, Licia; Spritz, Richard A; van Bakel, Harm; Visel, Axel; Williams, Trevor J; Wysocka, Joanna; Chai, Yang

    2016-07-15

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.

  3. The influence of craniofacial to standing height proportion on perceived attractiveness.

    PubMed

    Naini, F B; Cobourne, M T; McDonald, F; Donaldson, A N A

    2008-10-01

    An idealised male image, based on Vitruvian Man, was created. The craniofacial height was altered from a proportion of 1/6 to 1/10 of standing height, creating 10 images shown in random order to 89 observers (74 lay people; 15 clinicians), who ranked the images from the most to the least attractive. The main outcome was the preference ranks of image attractiveness given by the observers. Linear regressions were used to assess what influences the choice for the most and the least attractive images, followed by a multivariate rank ordinal logistic regression to test the influence of age, gender, ethnicity and professional status of the observer. A craniofacial height to standing height proportion of 1/7.5 was perceived as the most attractive (36%), followed by a proportion of 1/8 (26%). The images chosen as most attractive by more than 10% of observers had a mean proportion of 1/7.8(min=1/7; max=1/8.5). The images perceived as most unattractive had a proportion of 1/6 and 1/10. The choice of images was not influenced by the age, gender, ethnicity or professional status of the observers. The ideal craniofacial height to standing height proportion is in the range 1/7 to 1/8.5. This finding should be considered when planning treatment to alter craniofacial or facial height.

  4. The FaceBase Consortium: a comprehensive resource for craniofacial researchers

    PubMed Central

    Brinkley, James F.; Fisher, Shannon; Harris, Matthew P.; Holmes, Greg; Hooper, Joan E.; Wang Jabs, Ethylin; Jones, Kenneth L.; Kesselman, Carl; Klein, Ophir D.; Maas, Richard L.; Marazita, Mary L.; Selleri, Licia; Spritz, Richard A.; van Bakel, Harm; Visel, Axel; Williams, Trevor J.; Wysocka, Joanna

    2016-01-01

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  5. Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex.

    PubMed

    Marconi, B; Genovesio, A; Battaglia-Mayer, A; Ferraina, S; Squatrito, S; Molinari, M; Lacquaniti, F; Caminiti, R

    2001-06-01

    The anatomical and physiological substrata of eye-hand coordination during reaching were studied through combined anatomical and physiological techniques. The association connections of parietal areas V6A and PEc, and those of dorso-rostral (F7) and dorso-caudal (F2) premotor cortex were studied in monkeys, after physiological characterization of the parietal regions where retrograde tracers were injected. The results show that parieto-occipital area V6A is reciprocally connected with F7, and receives a smaller projection from F2. Local parietal projections to V6A arise from areas MIP and, to a lesser extent, 7m, PEa and PEC: On the contrary, parietal area PEc is strongly and reciprocally connected with the part of F2 located close to the pre-central dimple (pre-CD). Local parietal projections to PEc come from a distributed network, including PEa, MIP, PEci and, to a lesser extent, 7m, V6A, 7a and MST. Premotor area F7 receives parietal projections mainly from 7m and V6A, and local frontal projections mainly from F2. On the contrary, premotor area F2 in the pre-CD zone receives parietal inputs from PEc and, to a lesser extent, PEci, while in the peri-arcuate zone F2 receives parietal projections from PEa and MIP. Local frontal projections to F2 pre-CD mostly stem from F4, and, to a lesser extent, from F7 and F3, and CMAd; those addressed to peri-arcuate zone of F2 arise mainly from F5 and, to a lesser extent, from F7, F4, dorsal (CMAd) and ventral (CMAv) cingulate motor areas, pre-supplementary (F6) and supplementary (F3) motor areas. The distribution of association cells in both frontal and parietal cortex was characterized through a spectral analysis that revealed an arrangement of these cells in the form of bands, composed of cell clusters, or 'columns'. The reciprocal connections linking parietal and frontal cortex might explain the presence of visually related and eye-position signals in premotor cortex, as well as the influence of information about arm

  6. Cranio-facial remodeling in domestic dogs is associated with changes in larynx position.

    PubMed

    Plotsky, Kyle; Rendall, Drew; Chase, Kevin; Riede, Tobias

    2016-06-01

    The hyo-laryngeal complex is a multi-segmented structure integrating the oral and pharyngeal cavities and thus a variety of critical functions related to airway control, feeding, and vocal communication. Currently, we lack a complete understanding of how the hyoid complex, and the functions it mediates, can also be affected by changes in surrounding cranio-facial dimensions. Here, we explore these relationships in a breed of domestic dog, the Portuguese Water Dog, which is characterized by strong cranio-facial variation. We used radiographic images of the upper body and head of 55 adult males and 51 adult females to obtain detailed measures of cranio-facial variation and hyoid anatomy. Principal components analysis revealed multiple orthogonal dimensions of cranio-facial variation, some of which were associated with significant differences in larynx position: the larynx occupied a more descended position in individuals with shorter, broader faces than in those with longer, narrower faces. We then tested the possibility that caudal displacement of the larynx in brachycephalic individuals might reflect a degree of tongue crowding resulting from facial shortening and reduction of oral and pharyngeal spaces. A cadaver sample was used to obtain detailed measurements of constituent bones of the hyoid skeleton and of the tongue body, and their relationships to cranio-facial size and shape and overall body size supported the tongue-crowding hypothesis. Considering the presence of descended larynges in numerous mammalian taxa, our findings establish an important precedent for the possibility that laryngeal descent can be initiated, and even sustained, in part in response to remodeling of the face and cranium for selective pressures unrelated to vocal production. These integrated changes could also have been involved in hominin evolution, where the different laryngeal positions in modern humans compared with nonhuman primates have been traditionally linked to the evolution

  7. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    PubMed

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition.

  8. Genetics of murine craniofacial morphology: Diallel analysis of the eight founders of the Collaborative Cross

    PubMed Central

    Percival, Christopher J.; Liberton, Denise K.; de Villena, Fernando Pardo-Manuel; Spritz, Richard; Marcucio, Ralph

    2016-01-01

    Summary Using eight inbred founder strains of the mouse Collaborative Cross (CC) project and their reciprocal F1 hybrids, we quantified variation in craniofacial morphology across mouse strains, explored genetic contributions to craniofacial variation that distinguish the founder strains, and tested whether specific or summary measures of craniofacial shape display stronger additive genetic contributions. This study thus provides critical information about phenotypic diversity among CC founder strains and about the genetic contributions to this phenotypic diversity, which is relevant to understanding the basis of variation in standard laboratory strains and natural populations. Craniofacial shape was quantified as a series of size-adjusted linear dimensions (RDs) and by principal components (PC) analysis of morphological landmarks captured from computed tomography images from 62 out of the 64 reciprocal crosses of the CC founder strains. We first identified aspects of skull morphology that vary between these phenotypically ‘normal’ founder strains and that are defining characteristics of these strains. We estimated the contributions of additive and various non-additive genetic factors to phenotypic variation using diallel analyses of a subset of these strongly differing RDs and the first 8 PCs of skull shape variation. We find little difference in the genetic contributions to RD measures and PC scores, suggesting fundamental similarities in the magnitude of genetic contributions to both specific and summary measures of craniofacial phenotypes. Our results indicate that there are stronger additive genetic effects associated with defining phenotypic characteristics of specific founder strains, suggesting these distinguishing measures are good candidates for use in genotype-phenotype association studies of CC mice. Our results add significantly to understanding of genotype-phenotype associations in the skull, which serve as a foundation for modeling the origins of

  9. A regional method for craniofacial reconstruction based on coordinate adjustments and a new fusion strategy.

    PubMed

    Deng, Qingqiong; Zhou, Mingquan; Wu, Zhongke; Shui, Wuyang; Ji, Yuan; Wang, Xingce; Liu, Ching Yiu Jessica; Huang, Youliang; Jiang, Haiyan

    2016-02-01

    Craniofacial reconstruction recreates a facial outlook from the cranium based on the relationship between the face and the skull to assist identification. But craniofacial structures are very complex, and this relationship is not the same in different craniofacial regions. Several regional methods have recently been proposed, these methods segmented the face and skull into regions, and the relationship of each region is then learned independently, after that, facial regions for a given skull are estimated and finally glued together to generate a face. Most of these regional methods use vertex coordinates to represent the regions, and they define a uniform coordinate system for all of the regions. Consequently, the inconsistence in the positions of regions between different individuals is not eliminated before learning the relationships between the face and skull regions, and this reduces the accuracy of the craniofacial reconstruction. In order to solve this problem, an improved regional method is proposed in this paper involving two types of coordinate adjustments. One is the global coordinate adjustment performed on the skulls and faces with the purpose to eliminate the inconsistence of position and pose of the heads; the other is the local coordinate adjustment performed on the skull and face regions with the purpose to eliminate the inconsistence of position of these regions. After these two coordinate adjustments, partial least squares regression (PLSR) is used to estimate the relationship between the face region and the skull region. In order to obtain a more accurate reconstruction, a new fusion strategy is also proposed in the paper to maintain the reconstructed feature regions when gluing the facial regions together. This is based on the observation that the feature regions usually have less reconstruction errors compared to rest of the face. The results demonstrate that the coordinate adjustments and the new fusion strategy can significantly improve the

  10. Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism

    PubMed Central

    Parsons, Kevin J.; Wang, Jason; Anderson, Graeme; Albertson, R. Craig

    2015-01-01

    Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male–female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape. PMID:26038365

  11. Ellis Van Creveld2 is Required for Postnatal Craniofacial Bone Development.

    PubMed

    Badri, Mohammed K; Zhang, Honghao; Ohyama, Yoshio; Venkitapathi, Sundharamani; Kamiya, Nobuhiro; Takeda, Haruko; Ray, Manas; Scott, Greg; Tsuji, Takehito; Kunieda, Tetsuo; Mishina, Yuji; Mochida, Yoshiyuki

    2016-08-01

    Ellis-van Creveld (EvC) syndrome is a genetic disorder with mutations in either EVC or EVC2 gene. Previous case studies reported that EvC patients underwent orthodontic treatment, suggesting the presence of craniofacial bone phenotypes. To investigate whether a mutation in EVC2 gene causes a craniofacial bone phenotype, Evc2 knockout (KO) mice were generated and cephalometric analysis was performed. The heads of wild type (WT), heterozygous (Het) and homozygous Evc2 KO mice (1-, 3-, and 6-week-old) were prepared and cephalometric analysis based on the selected reference points on lateral X-ray radiographs was performed. The linear and angular bone measurements were then calculated, compared between WT, Het and KO and statistically analyzed at each time point. Our data showed that length of craniofacial bones in KO was significantly lowered by ∼20% to that of WT and Het, the growth of certain bones, including nasal bone, palatal length, and premaxilla was more affected in KO, and the reduction in these bone length was more significantly enhanced at later postnatal time points (3 and 6 weeks) than early time point (1 week). Furthermore, bone-to-bone relationship to cranial base and cranial vault in KO was remarkably changed, i.e. cranial vault and nasal bone were depressed and premaxilla and mandible were developed in a more ventral direction. Our study was the first to show the cause-effect relationship between Evc2 deficiency and craniofacial defects in EvC syndrome, demonstrating that Evc2 is required for craniofacial bone development and its deficiency leads to specific facial bone growth defect. Anat Rec, 299:1110-1120, 2016. © 2016 Wiley Periodicals, Inc.

  12. Craniofacial anomalies associated with hypospadias. Description of a hospital based population in South America

    PubMed Central

    Fernandez, Nicolas; Escobar, Rebeca; Zarante, Ignacio

    2016-01-01

    ABSTRACT Introduction: Hypospadias is a congenital abnormality of the penis, in which there is incomplete development of the distal urethra. There are numerous reports showing an increase of prevalence of hypospadias. Association of craniofacial malformations in patients diagnosed with hypospadias is rare. The aim of this study is to describe the association between hypospadias and craniofacial congenital anomalies. Materials and Methods: A retrospective review of the Latin-American collaborative study of congenital malformations (ECLAMC) data was performed between January 1982 and December 2011. We included children diagnosed with associated hypospadias and among them we selected those that were associated with any craniofacial congenital anomaly. Results: Global prevalence was 11.3 per 10.000 newborns. In this population a total of 809 patients with 1117 associated anomalies were identified. On average there were 1.7 anomalies per patient. Facial anomalies were present in 13.2%. The most commonly major facial anomaly associated to hypospadias was cleft lip/palate with 52 cases. We identified that 18% have an association with other anomalies, and found an association between craniofacial anomalies and hypospadias in 0.59 cases/10.000 newborns. Discussion: Hypospadias is the most common congenital anomaly affecting the genitals. Its association with other anomalies is rare. It has been reported that other malformations occur in 29.3% of the cases with hypospadias. The more proximal the meatus, the higher the risk for having another associated anomaly. Conclusion: Associated hypospadias are rare, and it is important to identify the concurrent occurrence of craniofacial anomalies to better treat patients that might need a multidisciplinary approach. PMID:27564292

  13. American Association of Orthodontists Foundation Craniofacial Growth Legacy Collection: Overview of a powerful tool for orthodontic research and teaching.

    PubMed

    Baumrind, Sheldon; Curry, Sean

    2015-08-01

    This article reports on the current status of the American Association of Orthodontists Foundation (AAOF) Craniofacial Growth Legacy Collection--an AAOF-supported multi-institutional project that uses the Internet and cloud computing to collect and share craniofacial images and data for orthodontic research and education. The project gives investigators and clinicians all over the world online access to longitudinal information on craniofacial development in untreated children with malocclusions of various types. It also is a unique source of control samples for testing the validity of consensually accepted beliefs about the effects of orthodontic treatment or of failure to treat.

  14. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    PubMed Central

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15–30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15–30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state. PMID:24572093

  15. Identification of ezrin as a target of gastrin in immature mouse gastric parietal cells.

    PubMed

    Pagliocca, Adelina; Hegyi, Peter; Venglovecz, Viktoria; Rackstraw, Stephen A; Khan, Zara; Burdyga, Galina; Wang, Timothy C; Dimaline, Rod; Varro, Andrea; Dockray, Graham J

    2008-11-01

    The gastric acid-secreting parietal cell exhibits profound morphological changes on stimulation. Studies in gastrin null (Gas-KO) mice indicate that maturation of parietal cell function depends on the hormone gastrin acting at the G-protein-coupled cholecystokinin 2 receptor. The relevant cellular mechanisms are unknown. The application of differential mRNA display to samples of the gastric corpus of wild-type (C57BL/6) and Gas-KO mice identified the cytoskeletal linker protein, ezrin, as a previously unsuspected target of gastrin. Gastrin administered in vivo or added to gastric glands in vitro increased ezrin abundance in Gas-KO parietal cells. In parietal cells of cultured gastric glands from wild-type mice treated with gastrin, histamine or carbachol, ezrin was localized to vesicular structures resembling secretory canaliculi. In contrast, in cultured parietal cells from Gas-KO mice, ezrin was typically distributed in the cytosol, and this did not change after incubation with gastrin, histamine or carbachol. However, priming with gastrin for approximately 24 h, either in vivo prior to cell culture or by addition to cultured gastric glands, induced the capacity for secretagogue-stimulated localization of ezrin to large vesicular structures in Gas-KO mice. Similarly, in a functional assay based on measurement of intracellular pH, cultured parietal cells from Gas-KO mice were refractory to gastrin unless primed. The priming effect of gastrin was not attributable to the paracrine mediator histamine, but was prevented by inhibitors of protein kinase C and transactivation of the epidermal growth factor receptor. We conclude that in gastrin null mice there is reduced ezrin expression and a defect in ezrin subcellular distribution in gastric parietal cells, and that both can be reversed by priming with gastrin.

  16. Reward-Based Decision Signals in Parietal Cortex Are Partially Embodied

    PubMed Central

    Snyder, Lawrence H.

    2015-01-01

    Recordings in the lateral intraparietal area (LIP) reveal that parietal cortex encodes variables related to spatial decision-making, the selection of desirable targets in space. It has been unclear whether parietal cortex is involved in spatial decision-making in general, or whether specific parietal compartments subserve decisions made using specific actions. To test this, we engaged monkeys (Macaca mulatta) in a reward-based decision task in which they selected a target based on its desirability. The animals' choice behavior in this task followed the molar matching law, and in each trial was governed by the desirability of the choice targets. Critically, animals were instructed to make the choice using one of two actions: eye movements (saccades) and arm movements (reaches). We recorded the discharge activity of neurons in area LIP and the parietal reach region (PRR) of the parietal cortex. In line with previous studies, we found that both LIP and PRR encode a reward-based decision variable, the target desirability. Crucially, the target desirability was encoded in LIP at least twice as strongly when choices were made using saccades compared with reaches. In contrast, PRR encoded target desirability only for reaches and not for saccades. These data suggest that decisions can evolve in dedicated parietal circuits in the context of specific actions. This finding supports the hypothesis of an intentional representation of developing decisions in parietal cortex. Furthermore, the close link between the cognitive (decision-related) and bodily (action-related) processes presents a neural contribution to the theories of embodied cognition. PMID:25810518

  17. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex

    PubMed Central

    Jeong, Su Keun

    2016-01-01

    The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been

  18. Frontal and parietal lobe involvement in the processing of pretence and intention.

    PubMed

    Chiavarino, Claudia; Apperly, Ian A; Humphreys, Glyn W

    2009-09-01

    We assessed whether different processes might be at play during pretence understanding by examining breakdowns of performance in participants with acquired brain damage. In Experiment 1 patients with frontal or parietal lesions and neurologically intact adults were asked to categorize videos of pretend and real actions. In Experiment 2 participants saw three types of videos: real intentional actions, real accidental actions, and pretend actions. In one session they judged whether the actions they saw were intentional or accidental, and in a second session they judged whether the actions were real or pretend. Parietal patients had particular difficulties in the identification of pretend actions, and both parietal and frontal patients were more impaired than controls in understanding the intentional nature of pretence. Analyses of individual patients' performance revealed that parietal lesions, and in particular lesions to the temporo-parietal junction, impaired the ability to discriminate pretend from real actions. However, this did not necessarily affect the discrimination of intentional from unintentional actions, which instead may be independently disrupted by damage to frontal areas. Moreover, spared ability to discriminate pretend actions from real actions, and intentional actions from accidental actions, did not grant a full conceptual understanding of the intentional nature of pretence. The implications for pretence understanding are discussed.

  19. Early math achievement and functional connectivity in the fronto-parietal network.

    PubMed

    Emerson, Robert W; Cantlon, Jessica F

    2012-02-15

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg, 2003). Specifically, we tested 4-11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects' overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific.

  20. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination

    PubMed Central

    Muthukumaraswamy, Suresh D.; Hibbs, Carina S.; Shapiro, Kimron L.; Bracewell, R. Martyn; Singh, Krish D.; Linden, David E. J.

    2011-01-01

    The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination. PMID:21940605

  1. Early Math Achievement and Functional Connectivity in the Fronto-Parietal Network

    PubMed Central

    Emerson, Robert W.; Cantlon, Jessica F.

    2011-01-01

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg 2003). Specifically, we tested 4- to 11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects’ overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. PMID:22682903

  2. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility.

    PubMed

    Tapia, Evelina; Mazzi, Chiara; Savazzi, Silvia; Beck, Diane M

    2014-06-01

    Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0-130 ms after the onset of the stimulus in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window.

  3. Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects.

    PubMed

    Göbel, Silke M; Calabria, Marco; Farnè, Alessandro; Rossetti, Yves

    2006-01-01

    Patients with left-sided visuospatial neglect, typically after damage to the right parietal lobe, show a systematic bias towards larger numbers when asked to bisect a numerical interval. This has been taken as further evidence for a spatial representation of numbers, perhaps akin to a mental number line with smaller numbers represented to the left and larger numbers to the right. Previously, contralateral neglect-like symptoms in physical line bisection have been induced in healthy subjects with repetitive transcranial magnetic stimulation (rTMS) over right posterior parietal lobe. Here we used rTMS over parietal and occipital sites in healthy subjects to investigate spatial representations in a number bisection task. Subjects were asked to name the midpoint of numerical intervals without calculating. On control trials subjects' behaviour was similar to performance reported in physical line bisection experiments. Subjects underestimated the midpoint of the numerical interval. Repetitive transcranial magnetic stimulation produced representational neglect-like symptoms in number bisection when applied over right posterior parietal cortex (right PPC). Repetitive TMS over right PPC shifted the perceived midpoint of the numerical interval significantly to the right while occipital TMS had no effect on bisection performance. Our study therefore provides further evidence that subjects use spatial representations, perhaps akin to a mental number line, in basic numerical processing tasks. Furthermore, we showed that the right posterior parietal cortex is crucially involved in spatial representation of numbers.

  4. Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases

    PubMed Central

    Bisbing, Teagan A.; Olm, Christopher A.; McMillan, Corey T.; Rascovsky, Katya; Baehr, Laura; Ternes, Kylie; Irwin, David J.; Clark, Robin; Grossman, Murray

    2015-01-01

    We often estimate an unknown value based on available relevant information, a process known as cognitive estimation. In this study, we assess the cognitive and neuroanatomic basis for quantitative estimation by examining deficits in patients with focal neurodegenerative disease in frontal and parietal cortex. Executive function and number knowledge are key components in cognitive estimation. Prefrontal cortex has been implicated in multilevel reasoning and planning processes, and parietal cortex has been associated with number knowledge required for such estimations. We administered the Biber cognitive estimation test (BCET) to assess cognitive estimation in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia (bvFTD), to 17 patients with parietal disease due to corticobasal syndrome (CBS) or posterior cortical atrophy (PCA) and 11 patients with mild cognitive impairment (MCI). Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive estimation than controls. MCI were not impaired on BCET relative to controls. Regression analyses related BCET performance to gray matter atrophy in right lateral prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal cortex, right insula, and fusiform cortices in CBS/PCA. These results are consistent with the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation. PMID:26089786

  5. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination.

    PubMed

    Morgan, Helen M; Muthukumaraswamy, Suresh D; Hibbs, Carina S; Shapiro, Kimron L; Bracewell, R Martyn; Singh, Krish D; Linden, David E J

    2011-12-01

    The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80-100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination.

  6. Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex.

    PubMed

    Iacoboni, Marco; Zaidel, Eran

    2004-01-01

    We used event-related functional magnetic resonance imaging (fMRI) to investigate the neural correlates of basic interhemispheric visuo-motor integration. In a simple reaction time task, subjects responded to lateralized left and right light flashes with unimanual left and right hand responses. Typically, reaction times are faster for uncrossed responses (that is, visual stimulus and response hand on the same side) than for crossed responses (that is, visual stimulus and response hand on opposite sides). The chronometric difference between crossed and uncrossed responses is called crossed-uncrossed difference (CUD) and it is typically taken to represent a behavioral estimate of interhemispheric transfer time. The fMRI results obtained in normal right-handers show that the crossed conditions yielded greater activity, compared to the uncrossed conditions, in bilateral prefrontal, bilateral dorsal premotor, and right superior parietal areas. These results suggest that multiple transfers between the hemispheres occur in parallel at the functional levels of sensory-motor integration (posterior parietal), decision-making (prefrontal) and preparation of motor response (premotor). To test the behavioral significance of these multiple transfers, we correlated the individual CUDs with the difference in signal intensity between crossed and uncrossed responses in the prefrontal, dorsal premotor, and right superior parietal activated areas. The analyses demonstrated a strong correlation between the CUD and signal intensity difference between crossed and uncrossed responses in the right superior parietal cortex. These data suggest a critical role of the superior parietal cortex in interhemispheric visuo-motor integration.

  7. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.

    PubMed

    Eickhoff, Simon B; Amunts, Katrin; Mohlberg, Hartmut; Zilles, Karl

    2006-02-01

    In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of functional imaging results. The human parietal operculum consists of four distinct cytoarchitectonic areas (OP 1-4) as shown in the preceding publication. The 10 cytoarchitectonically examined brains were 3-D-reconstructed and spatially normalized to the T1-weighted single-subject template of the Montreal Neurological Institute (MNI). A probabilistic map was calculated for each area in this standard stereotaxic space. A cytoarchitectonic summary map of the four cortical areas on the human parietal operculum which combines these probabilistic maps was subsequently computed for the comparison with a meta-analysis of functional locations of SII. The meta-analysis used the results from 57 fMRI and PET studies and allowed the comparison of the functionally defined SII region to the cytoarchitectonic map of the parietal operculum. The functional localization of SII showed a good match to the cytoarchitectonically defined region. Therefore the cytoarchitectonic maps of OP 1-4 of the human parietal operculum can be interpreted as an anatomical correlate of the (functionally defined) human SII region. Our results also suggest that the SII foci reported in functional imaging studies may actually reflect activations in either of its architectonic subregions.

  8. Modelling dynamic fronto-parietal behaviour during minimally invasive surgery--a Markovian trip distribution approach.

    PubMed

    Leff, Daniel Richard; Orihuela-Espina, Felipe; Leong, Julian; Darzi, Ara; Yang, Guang-Zhong

    2008-01-01

    Learning to perform Minimally Invasive Surgery (MIS) requires considerable attention, concentration and spatial ability. Theoretically, this leads to activation in executive control (prefrontal) and visuospatial (parietal) centres of the brain. A novel approach is presented in this paper for analysing the flow of fronto-parietal haemodynamic behaviour and the associated variability between subjects. Serially acquired functional Near Infrared Spectroscopy (fNIRS) data from fourteen laparoscopic novices at different stages of learning is projected into a low-dimensional 'geospace', where sequentially acquired data is mapped to different locations. A trip distribution matrix based on consecutive directed trips between locations in the geospace reveals confluent fronto-parietal haemodynamic changes and a gravity model is applied to populate this matrix. To model global convergence in haemodynamic behaviour, a Markov chain is constructed and by comparing sequential haemodynamic distributions to the Markov's stationary distribution, inter-subject variability in learning an MIS task can be identified.

  9. Thalamo-cortical projections to the posterior parietal cortex in the monkey.

    PubMed

    Matsuzaki, Ryuichi; Kyuhou, Shin-ichi; Matsuura-Nakao, Kazuko; Gemba, Hisae

    2004-01-23

    Thalamo-cortical projections to the posterior parietal cortex (PPC) were investigated electrophysiologically in the monkey. Cortical field potentials evoked by the thalamic stimulation were recorded with electrodes chronically implanted on the cortical surface and at a 2.0-3.0 mm cortical depth in the PPC. The stimulation of the nucleus lateralis posterior (LP), nucleus ventralis posterior lateralis pars caudalis (VPLc), and nucleus pulvinaris lateralis (Pul.l) and medialis (Pul.m) induced surface-negative, depth-positive potentials in the PPC. The LP and VPLc projected mainly to the superior parietal lobule (SPL) and the anterior bank of the intraparietal sulcus (IPS), and the Pul.m mainly to the inferior parietal lobule (IPL) and the posterior bank of the IPS. The Pul.l had projections to all of the SPL, the IPL and both the banks. The significance of the projections is discussed in connection with motor functions.

  10. Preparative activities in posterior parietal cortex for self-paced movement in monkeys.

    PubMed

    Gemba, Hisae; Matsuura-Nakao, Kazuko; Matsuzaki, Ryuichi

    2004-02-26

    Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0-3.0 mm depth in various cortices in monkeys performing self-paced finger, toe, mouth, hand or trunk movements. Surface-negative, depth-positive potentials (readiness potential) appeared in the posterior parietal cortex about 1.0 s before onset of every self-paced movement, as well as in the premotor, motor and somatosensory cortices. Somatotopical distribution was seen in the readiness potential in the posterior parietal cortex, although it was not so distinct as that in the motor or somatosensory cortex. This suggests that the posterior parietal cortex is involved in preparation for self-paced movement of any body part. This study contributes to the investigation of central nervous mechanisms of voluntary movements initiated by internal stimulus.

  11. The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation

    PubMed Central

    Varnava, Alice; Dervinis, Martynas; Chambers, Christopher D.

    2013-01-01

    Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as ‘pseudoneglect’. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias), but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism. PMID:23823975

  12. Only coherent spiking in posterior parietal cortex coordinates looking and reaching.

    PubMed

    Dean, Heather L; Hagan, Maureen A; Pesaran, Bijan

    2012-02-23

    Here, we report that temporally patterned, coherent spiking activity in the posterior parietal cortex (PPC) coordinates the timing of looking and reaching. Using a spike-field approach, we identify a population of parietal area LIP neurons that fire spikes coherently with 15 Hz beta-frequency LFP activity. The firing rate of coherently active neurons predicts the reaction times (RTs) of coordinated reach-saccade movements but not of saccades when made alone. Area LIP neurons that do not fire coherently do not predict RT of either movement type. Similar beta-band LFP activity is present in the parietal reach region but not nearby visual area V3d. This suggests that coherent spiking activity in PPC can control reaches and saccades together. We propose that the neural mechanism of coordination involves a shared representation that acts to slow or speed movements together.

  13. Physiological implications of the abnormal absence of the parietal foramen in a late Permian cynodont (Therapsida)

    NASA Astrophysics Data System (ADS)

    Benoit, Julien; Abdala, Fernando; Van den Brandt, Marc J.; Manger, Paul R.; Rubidge, Bruce S.

    2015-12-01

    The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye.

  14. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG

    PubMed Central

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L.; Iriye, Heather; Seth, Anil K.; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant’s individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  15. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    PubMed

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  16. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents.

    PubMed

    Lam, David K; Sessle, Barry J; Hu, James W

    2009-01-28

    We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5 M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents.

  17. Dental Approach to Craniofacial Syndromes: How Can Developmental Fields Show Us a New Way to Understand Pathogenesis?

    PubMed Central

    Kjær, Inger

    2012-01-01

    The paper consists of three parts. Part 1: Definition of Syndromes. Focus is given to craniofacial syndromes in which abnormal traits in the dentition are associated symptoms. In the last decade, research has concentrated on phenotype, genotype, growth, development, function, and treatment. Part 2: Syndromes before Birth. How can the initial malformation sites in these syndromes be studied and what can we learn from it? In this section, deviations observed in syndromes prenatally will be highlighted and compared to the normal human embryological craniofacial development. Specific focus will be given to developmental fields studied on animal tissue and transferred to human cranial development. Part 3: Developmental Fields Affected in Two Craniofacial Syndromes. Analysis of primary and permanent dentitions can determine whether a syndrome affects a single craniofacial field or several fields. This distinction is essential for insight into craniofacial syndromes. The dentition, thus, becomes central in diagnostics and evaluation of the pathogenesis. Developmental fields can explore and advance the concept of dental approaches to craniofacial syndromes. Discussion. As deviations in teeth persist and do not reorganize during growth and development, the dentition is considered useful for distinguishing between syndrome pathogenesis manifested in a single developmental field and in several fields. PMID:23091490

  18. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  19. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus

    PubMed Central

    Griffin, John N.; Sondalle, Samuel B.; del Viso, Florencia; Baserga, Susan J.; Khokha, Mustafa K.

    2015-01-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  20. Vacuolar-type H+-ATPase-mediated proton transport in the rat parietal cell.

    PubMed

    Kopic, Sascha; Wagner, Maximilian E H; Griessenauer, Christoph; Socrates, Thenral; Ritter, Markus; Geibel, John P

    2012-03-01

    The vacuolar-type H-ATPase (V-ATPase) plays an important role in the active acidification of intracellular organelles. In certain specialized cells, such as the renal intercalated cell, apical V-ATPase can also function as a proton secretion pathway. In the parietal cells of the stomach, it has been thought that acid secretion is controlled solely via the H,K-ATPase. However, recent observations suggest that functional V-ATPase is necessary for acid secretion to take place. This study aimed to investigate and characterize the role of V-ATPase in parietal cell proton transport. Individual rat gastric glands were incubated with the pH-sensitive dye (BCECF) to monitor changes in intracellular pH in real time. Parietal cell V-ATPase activity was measured by quantifying the rate of intracellular alkalinization (ΔpH/minute) following an acid load, while excluding the contribution of non-V-ATPase proton transport mechanisms through pharmacological inhibition or ion substitution. Expression of V-ATPase was confirmed by immunohistochemistry. We observed concanamycin A-sensitive V-ATPase activity in rat parietal cells following intracellular acidification and H,K-ATPase inhibition. Furthermore, V-ATPase-mediated proton transport could be abolished by inhibiting trafficking mechanisms with paclitaxel and by stimulating H,K-ATPase with acid secretagogues. Our results propose that parietal cells contain a functional V-ATPase that can be mobilized using a microtubule network. V-ATPase may function as an auxiliary acid secretion or proton-buffering pathway in parietal cells, which is inactive during H,K-ATPase activity. Our findings may have important implications for patients experiencing acid breakthrough under proton pump inhibitor therapy.

  1. Neuronal activity in the parietal cortex of EL and DDY mice.

    PubMed

    Suzuki, Jiro; Ozawa, Nobuyuki; Murashima, Yoshiya L; Shinba, Tosikazu; Yoshii, Mitsunobu

    2012-06-15

    To elucidate the mechanism of epileptogenesis, seizures were investigated in the EL mouse, which is an excellent model for epilepsy. In these mice, epileptic seizures initiate in the parietal cortex, where markers of GABA-mediated inhibition are reduced compared with the parietal cortex of DDY mice (the parent strain). This is the first report on units of neuronal activity in the parietal cortex of EL and DDY mice (14 each) using an extracellular microelectrode in vivo under moderate pentobarbital anesthesia. The parietal cortex neurons of the EL mice were less active at rest than those of the DDY mice, but they responded more actively to proprioceptive afferent input from muscle stimulation than the DDY neurons. Three types of spontaneous firing were classified in both EL and DDY cortical neurons: periodically firing, Type A; continuously firing, Type B; and random firing, Type C. The proportions of these three types of neurons were almost the same in the EL mice as in the DDY mice. The peak frequency of the periodical cycle of Type A neurons in the EL mice (375 ms) was longer than that of the Type A neurons in the DDY mice (225 ms). Four patterns of responses to stimulation were observed in the parietal cortex neurons. More excitatory patterns were observed in the EL mice than in the DDY mice. The trans-laminar distribution of cells with different response patterns was also different between the EL and DDY mice. These characteristics of parietal cortex neurons may help determine the seizure susceptibility or ictogenesis in EL mice because the mechanisms underlying these patterns could provide the basis for hypersynchronized discharges in epileptic seizures.

  2. Primary culture of secretagogue-responsive parietal cells from rabbit gastric mucosa

    SciTech Connect

    Chew, C.S.; Ljungstroem, M.S.; Smolka, A.; Brown, M.R.

    1989-01-01

    A new procedure for isolation and primary culture of gastric parietal cells is described. Parietal cells from rabbit gastric mucosa are enriched to greater than 95% purity by combining a Nycodenz gradient separation with centrifugal elutriation. Cells are plated on the basement membrane matrix, Matrigel, and maintained in culture for at least 1 wk. Parietal cells cultured in this manner remain differentiated, cross-react with monoclonal H+-K+-ATPase antibodies, and respond to histamine, gastrin, and cholinergic stimulation with increased acid production as measured by accumulation of the weak base, (/sup 14/C)aminopyrine. When stimulated, cultured cells undergo ultrastructural changes in which intracellular canaliculi expand and numerous microvilli are observed. These ultrastructural changes are similar to those previously found to occur in vivo and in acutely isolated parietal cells. Morphological transformations in living cells can also be observed with differential interference contrast optics in the light microscope. After histamine stimulation, intracellular canaliculi gradually expand to form large vacuolar spaces. When the H2 receptor antagonist, cimetidine, is added to histamine-stimulated cells, these vacuoles gradually disappear. The ability to maintain hormonally responsive parietal cells in primary culture should make it possible to study direct, long-term effects of a variety of agonists and antagonists on parietal cell secretory-related activity. These cultured cells should also prove to be useful for the study of calcium transients, ion fluxes, and intracellular pH as related to acid secretion in single cells, particularly since morphological transformations can be used to monitor physiological responses at the same time within the same cell.

  3. Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception.

    PubMed

    Cavdaroglu, Seda; Katz, Curren; Knops, André

    2015-08-01

    It has been widely debated whether the parietal cortex stores an abstract representation of numerosity that is activated for Arabic digits as well as for non-symbolic stimuli in a sensory modality independent fashion. Some studies suggest that numerical information in time-invariant (simultaneous) symbolic and non-symbolic visual stimuli is represented in the parietal cortex. In humans, whether the same representation is activated for time-variant (sequential) stimuli and for stimuli coming from different modalities has not been determined. To investigate this idea, we measured the brain activation of healthy adults performing estimation and/or comparison of sequential visual (series of dots) and auditory (series of beeps) numerosities. Our experimental design allowed us to separate numerosity estimation from comparison and response related factors. The BOLD response in the parietal cortex increased only when participants were engaged in the comparison of two consecutive numerosities that required a response. Using multivariate pattern analysis we trained a classifier to decode numerosity in various regions of interest (ROI). We failed to find any parietal ROI where the classifier could decode numerosities during the estimation phase. Rather, when participants were not engaged in comparison we were able to decode numerosity in an auditory cortex ROI for auditory stimuli and in a visual cortex ROI for visual stimuli. On the other hand, during the response period the classifier successfully decoded numerosity information in a parietal ROI for both visual and auditory numerosities. These results were further confirmed by support vector regression. In sum, our study does not support the involvement of the parietal cortex during estimation of sequential numerosity in the absence of an active task with a response requirement.

  4. [Responses of neurons of the associative parietal cortex during acute extinction restoration of a conditioned reflex].

    PubMed

    Prikhodchenko, N N

    1977-01-01

    The dynamics of spike neuronal activity in the parietal associative cortex was studied in the course of acute extinction and restoration of a conditioned reflex. Certain similarities have been found in neuronal firing during the reorganization of behavioral acts (transient processes in neuronal activity, general types of neuronal responses, etc.) The data obtained suggest the involvement of neurones of the parietal associative cortex in the processes related to the reorganization of behavioral acts, and the existence of common mechanisms of search for an optimal regime of neuronal assemblies functioning in different types of conditioned activity.

  5. [Ictal Gerstmann's syndrome in a patient with symptomatic parietal lobe epilepsy].

    PubMed

    Shimotake, Akihiro; Fujita, Youshi; Ikeda, Akio; Tomimoto, Hidekazu; Takahashi, Jun; Takahashi, Ryosuke

    2008-03-01

    A 34-year-old man with astrocytoma in the left parietal lobe had symptomatic partial epilepsy, and he presented transient episodes of acalculia, agraphia and finger agnosia. Occasionally he had difficulty in finding appropriate letters when making an e-mail, and difficulty in writing and calculation. Neurological examinations revealed ictal symptoms of Gerstmann's syndrome without right to left disorientation. No other higher cortical dysfunction or neurological deficits were noted. Scalp EEGs showed frequent, regional ictal discharges in the left parietal area lasting for 60-240 seconds. These clinico-electrographical observations strongly support that epileptic seizures produced a loss of cortical higher function manifesting Gerstmann's syndrome.

  6. Altered prefronto-striato-parietal network response to mental rotation in HIV.

    PubMed

    Schweinsburg, Brian C; Scott, J Cobb; Schweinsburg, Alecia Dager; Jacobus, Joanna; Theilmann, Rebecca J; Frank, Larry R; Weber, Erica; Grant, Igor; Woods, Steven Paul

    2012-02-01

    The present study used functional magnetic resonance imaging to examine the neural substrates of mental rotation in 11 individuals with HIV infection and 13 demographically similar HIV seronegative volunteers. Individuals with HIV showed increased brain response to mental rotation in prefrontal and posterior parietal cortices, striatum, and thalamus, with significant HIV by angle interactions emerging in the prefrontal cortex and caudate. Results indicate that HIV infection is associated with altered brain response to mental rotation in fronto-striato-parietal pathways, which may reflect compensatory strategies, recruitment of additional brain regions, and/or increased neuroenergetic demands during mental rotation needed to offset underlying HIV-associated neural injury.

  7. The contribution of the human posterior parietal cortex to episodic memory.

    PubMed

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  8. Midsagittal surface measurement of the head: an assessment of craniofacial asymmetry

    NASA Astrophysics Data System (ADS)

    Christensen, Gary E.; Johnson, Hans J.; Darvann, Tron; Hermann, Nuno; Marsh, Jeffrey L.

    1999-05-01

    Left/right craniofacial asymmetry is typically measured by comparing distances between standard anatomical landmarks. However, these measurements are of limited use for visualizing and quantifying the asymmetry at non-landmark locations. This work presents a method for calculating, measuring and visualizing the planar deviation of the midsagittal surface for the purpose of craniofacial dysmorphology assessment, pre-operative corrective surgery planning, and post-operative evaluation. A set of midsagittal landmarks are used to define a reference midsagittal plane and to define a non-planar surface that passes through the landmarks. The surface is modeled as a thin-plate spline that can be visualized in 3D using a virtual reality markup language browser and it can be fused with the original volume rendered CT data using VoxelViewTM.

  9. Patients seeking treatment for craniofacial pain: a retrospective study of 300 patients.

    PubMed

    Shankland, Wesley E

    2008-10-01

    Those engaged in any type of pain practice will encounter patients who have seen many practitioners. This is especially true for clinicians who treat craniofacial pain and temporomandibular disorders. In this retrospective study of 300 patients seeking treatment for various types of craniofacial pain, the average age was 43.05 years. A mean average of 3.92 clinicians was consulted with the range of practitioners being one to 26. The average time of pain was 4.15 years. Most of the subjects (210) were in the age groups 21 years to 60 years old. Females comprised 85.30% of the subjects with a mean average age of 43.43 years; 14.70% were male with a mean average age of 41.02 years.

  10. Dry needling for management of pain in the upper quarter and craniofacial region.

    PubMed

    Kietrys, David M; Palombaro, Kerstin M; Mannheimer, Jeffrey S

    2014-01-01

    Dry needling is a therapeutic intervention that has been growing in popularity. It is primarily used with patients that have pain of myofascial origin. This review provides background about dry needling, myofascial pain, and craniofacial pain. We summarize the evidence regarding the effectiveness of dry needling. For patients with upper quarter myofascial pain, a 2013 systematic review and meta-analysis of 12 randomized controlled studies reported that dry needling is effective in reducing pain (especially immediately after treatment) in patients with upper quarter pain. There have been fewer studies of patients with craniofacial pain and myofascial pain in other regions, but most of these studies report findings to suggest the dry needling may be helpful in reducing pain and improving other pain related variables such as the pain pressure threshold. More rigorous randomized controlled trials are clearly needed to more fully elucidate the effectiveness of dry needling.

  11. New Methods to Evaluate Craniofacial Deformity and to Plan Surgical Correction

    PubMed Central

    Gateno, Jaime; Xia, James J.; Teichgraeber, John F.

    2011-01-01

    The success of cranio-maxillofacial (CMF) surgery depends not only on surgical techniques, but also upon an accurate surgical plan. Unfortunately, traditional planning methods are often inadequate for planning complex cranio-maxillofacial deformities. To this end, we developed 3D computer-aided surgical simulation (CASS) technique. Using our CASS method, we are able to treat patients with significant asymmetries in a single operation which in the past was usually completed in two stages. The purpose of this article is to introduce our CASS method in evaluating craniofacial deformities and planning surgical correction. In addition, we discuss the problems associated with the traditional surgical planning methods. Finally, we discuss the strength and pitfalls of using three-dimensional measurements to evaluate craniofacial deformity. PMID:21927548

  12. Craniofacial skeletal pattern: is it really correlated with the degree of adenoid obstruction?

    PubMed Central

    Feres, Murilo Fernando Neuppmann; Muniz, Tomas Salomão; de Andrade, Saulo Henrique; Lemos, Maurilo de Mello; Pignatari, Shirley Shizue Nagata

    2015-01-01

    OBJECTIVE: The aim of this study was to compare the cephalometric pattern of children with and without adenoid obstruction. METHODS: The sample comprised 100 children aged between four and 14 years old, both males and females, subjected to cephalometric examination for sagittal and vertical skeletal analysis. The sample also underwent nasofiberendoscopic examination intended to objectively assess the degree of adenoid obstruction. RESULTS: The individuals presented tendencies towards vertical craniofacial growth, convex profile and mandibular retrusion. However, there were no differences between obstructive and non-obstructive patients concerning all cephalometric variables. Correlations between skeletal parameters and the percentage of adenoid obstruction were either low or not significant. CONCLUSIONS: Results suggest that specific craniofacial patterns, such as Class II and hyperdivergency, might not be associated with adenoid hypertrophy. PMID:26352848

  13. Angiotensin receptor blockade mediated amelioration of mucopolysaccharidosis type I cardiac and craniofacial pathology

    PubMed Central

    Webber, Beau R.; McElmurry, Ronald T.; Rudser, Kyle D.; DeFeo, Anthony P.; Muradian, Michael; Petryk, Anna; Hallgrimsson, Benedikt; Blazar, Bruce R.; Tolar, Jakub

    2017-01-01

    Mucopolysaccharidosis type I (MPS IH) is a lysosomal storage disease (LSD) caused by inactivating mutations to the alpha-L-iduronidase (IDUA) gene. Treatment focuses on IDUA enzyme replacement and currently employed methods can be non-uniform in their efficacy particularly for the cardiac and craniofacial pathology. Therefore, we undertook efforts to better define the pathological cascade accounting for treatment refractory manifestations and demonstrate a role for the renin angiotensin system (RAS) using the IDUA−/− mouse model. Perturbation of the RAS in the aorta was more profound in male animals suggesting a causative role in the observed gender dimorphism and angiotensin receptor blockade (ARB) resulted in improved cardiac function. Further, we show the ability of losartan to prevent shortening of the snout, a common craniofacial anomaly in IDUA−/− mice. These data show a key role for the RAS in MPS associated pathology and support the inclusion of losartan as an augmentation to current therapies. PMID:27743312

  14. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis

    PubMed Central

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  15. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review.

    PubMed

    Saltz, Adam; Kandalam, Umadevi

    2016-05-01

    Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering.

  16. Study of craniofacial morphology and skeletal maturation in juvenile diabetics (Type I).

    PubMed

    El-Bialy, T; Aboul-Azm, S F; El-Sakhawy, M

    2000-08-01

    The aims of this study were to examine the craniofacial morphology of patients with juvenile diabetes, to investigate the effects of juvenile diabetes on general growth and skeletal maturation, and to analyze the pattern of association between craniofacial morphology and skeletal maturation in these patients. The sample consisted of 20 male patients with juvenile diabetes whose ages ranged from 14 to 16 years and who were affected with the condition at least 5 years before the study. Twenty normal subjects, with the same age range, were chosen as a control group. Height, weight, lateral cephalometric and hand-wrist radiographs were taken for all subjects, corrected for magnification distortion, and analyzed. The diabetic patients showed decreased skeletal maturation and decreased cephalometric linear and angular measurements when compared with the control group. These results should be considered when diabetic patients require orthodontic or orthopedic treatment.

  17. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  18. The organization and delivery of craniofacial health services: the state of the art.

    PubMed

    Strauss, R P

    1999-05-01

    The dominant organizational structure providing care for cleft palate and other craniofacial conditions is the health care team. Various types of health care team organization are profiled, including intradisciplinary, multidisciplinary, and interdisciplinary teams. Effective team-based care delivery has the ability to address the fragmentation and dehumanization that can result when a variety of specialists and disciplines are required to provide assessment and technical care. A team's leadership and its hierarchy of professional authority can be expected to affect its ability to function effectively. Health reform and managed care are considered for their impact on the team and on the doctor-patient relationship. Trends in team regionalization, quality assurance, outcomes research, and consumer advocacy are reviewed. The cleft palate and craniofacial team is profiled as an organizational model that is being affected by the forces of health system change.

  19. The role of physical therapy in craniofacial pain disorders: an adjunct to dental pain management.

    PubMed

    Heinrich, S

    1991-01-01

    Treatment of craniofacial pain disorders is often complicated by diverse factors such as acute or chronic trauma and persistent postural changes. In addition, emotional issues and life stress often cloud the recovery process. Physical therapists, with their diverse knowledge base and highly competent treatment skills, can be quite effective in assisting dentists and physicians with management of the many difficult upper quarter and craniofacial pain syndromes. This article reviews the role of myofascial and craniosacral dysfunction, as well as the function of posture, tension, and stress in the development of these syndromes. Additionally, it provides a comprehensive overview of the many evaluative techniques and treatment options that can be provided by today's physical therapists.

  20. Transdermal scopolamine and perioperative anisocoria in craniofacial surgery: a report of 3 patients.

    PubMed

    Lee, David T; Jenkins, Nelson L; Anastasopulos, Alexandra J; Volpe, A George; Lee, Bernard T; Lalikos, Janice F

    2013-03-01

    Postoperative nausea and vomiting (PONV) is a common complaint after plastic and reconstructive surgery. Transdermal scopolamine is a commonly used agent for prevention of PONV. Anisocoria from transdermal scopolamine use is an adverse effect that has not been reported in the plastic surgery literature. We present a series of 3 craniofacial patients in which ipsilateral mydriasis occurred and spontaneously resolved after removal of the scopolamine patch. Given the various causes and potentially grave implications of unilateral mydriasis, we discourage the use of transdermal scopolamine in craniofacial surgery, and especially in orbital surgery. However, if transdermal scopolamine is decided to be used for PONV prophylaxis, we recommend educating the patient, the operating room staff, and the surgical team regarding this potential adverse effect and to avoid finger-to-eye contamination after patch manipulation.

  1. A New Classification Based on the Kaban's Modification for Surgical Management of Craniofacial Microsomia

    PubMed Central

    Madrid, Jose Rolando Prada; Montealegre, Giovanni; Gomez, Viviana

    2010-01-01

    In medicine, classifications are designed to describe accurately and reliably all anatomic and structural components, establish a prognosis, and guide a given treatment. Classifications should be useful in a universal way to facilitate communication between health professionals and to formulate management protocols. In many situations and particularly with craniofacial microsomia, there have been many different classifications that do not achieve this goal. In fact, when there are so many classifications, one can conclude that there is not a clear one that accomplishes all these ends and defines a treatment protocol. It is our intent to present a new classification based on the Pruzansky's classification, later modified by Kaban, to determine treatment protocols based on the degree of osseous deficiency present in the body, ramus, and temporomandibular joint. Different mandibular defects are presented in two patients with craniofacial microsomia type III and IV according to our classification with the corresponding management proposed for each type and adequate functional results. PMID:22110812

  2. Atypical Case of Congenital Maxillomandibular Fusion with Duplication of the Craniofacial Midline

    PubMed Central

    Martín, Lorena Pingarrón; Pérez, Mercedes Martín; García, Elena Gómez; Martín-Moro, Javier González; González, Jose Ignacio Rodríguez; García, Miguel Burgueño

    2011-01-01

    We report the first case of syngnathia with hypophyseal duplication and describe the central nervous system (CNS) and craniofacial anomalies associated with hypophyseal duplication in the reported autopsy case. We studied clinical reports, scanner images, and autopsy results of a 2-months-old female baby. The propositus had frontonasal dysmorphism, retrognathia, and bifid tongue. She also presented maxillomandibular bony fusion (syngnathia) and an intraoral hairy polyp. In the cranium, the sella turcica was broadened, with two complete hypophyses and two infundibulums. The CNS had both olfactory bulbs and corpus callosum agenesis. There are 27 previous cases of maxillomandibular fusion and seven previous autopsy cases of hypophyseal duplication associated with other frontonasal malformations. As far as the authors know, this is the first case reported in the literature that associates syngnathia with duplication of the craniofacial midline including hypophyseal duplication. PMID:22655122

  3. Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair

    PubMed Central

    Fishero, Brian Alan; Kohli, Nikita; Das, Anusuya; Christophel, John Jared; Cui, Quanjun

    2014-01-01

    Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair. PMID:25709750

  4. Quantitative Comparison of Volume Maintenance between Inlay and Onlay Bone Grafts in the Craniofacial Skeleton

    PubMed Central

    Sugg, Kristoffer B.; Rosenthal, Andrew H.; Ozaki, Wayne; Buchman, Steven R.

    2015-01-01

    Background Nonvascularized autologous bone grafts are the criterion standard in craniofacial reconstruction for bony defects involving the craniofacial skeleton. The authors have previously demonstrated that graft microarchitecture is the major determinant of volume maintenance for both inlay and onlay bone grafts following transplantation. This study performs a head-to-head quantitative analysis of volume maintenance between inlay and onlay bone grafts in the craniofacial skeleton using a rabbit model to comparatively determine their resorptive kinetics over time. Methods Fifty rabbits were divided randomly into six experimental groups: 3-week inlay, 3-week onlay, 8-week inlay, 8-week onlay, 16-week inlay, and 16-week onlay. Cortical bone from the lateral mandible and both cortical and cancellous bone from the ilium were harvested from each animal and placed either in or on the cranium. All bone grafts underwent micro–computed tomographic analysis at 3, 8, and 16 weeks. Results All bone graft types in the inlay position increased their volume over time, with the greatest increase in endochondral cancellous bone. All bone graft types in the onlay position decreased their volume over time, with the greatest decrease in endochondral cancellous bone. Inlay bone grafts demonstrated increased volume compared with onlay bone grafts of identical embryologic origin and microarchitecture at all time points (p < 0.05). Conclusions Inlay bone grafts, irrespective of their embryologic origin, consistently display less resorption over time compared with onlay bone grafts in the craniofacial skeleton. Both inlay and onlay bone grafts are driven by the local mechanical environment to recapitulate the recipient bed. PMID:23629083

  5. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  6. Craniofacial abnormalities induced by retinoic acid: a preliminary histological and scanning electron microscopic (SEM) study.

    PubMed

    Emmanouil-Nikoloussi, E N; Goret-Nicaise, M; Foroglou, C H; Katsarma, E; Dhem, A; Dourov, N; Persaud, T V; Thliveris, J A

    2000-10-01

    Exogenous retinoic acid has been found to be teratogenic in animals and man. Craniofacial defects induced by retinoic acid have stimulated considerable research interest. The present report deals with scanning electron microscopical observations of the craniofacial region concurrent with histological examination of craniofacial dysmorphism induced in rat embryos following maternal treatment treated with varying dosages of all-trans-retinoic acid (tretinoin). Two groups of pregnant rats were treated with rat embryos exposed to retinoic acid suspended in corn oil (100 mg/kg b.w. on gestational day 11.5 and 50 mg/kg b.w. on gestational day 10, 11 and 12 respectively). A third group was treated with corn oil (vehicle) while a fourth group remained untreated. A wide spectrum of congenital abnormalities, including exophthalmos, microphthalmia and anophthalmia, maxillo-mandibular dysostosis, micrognathia of both maxilla and mandible, cleft palate, subdevelopment of ear lobe, preauricular tags and macroglossia, were observed in the offspring of retinoic acid treated animals. The abnormalities were both time and dosage dependent, and characteristic of Treacher Collins syndrome when retinoic-acid was administered on gestational day 11.5. In contrast, when retinoic acid was administered were on gestational days 10-12, the defects were similar to those seen in the first and second pharyngeal arch syndrome, as well as in the oculo-auriculo-vertebral spectrum. Whereas our data support the hypothesis that all-trans retinoic-acid disturbs growth and differentiation of several embryonic cell types essential for normal craniofacial development, its mechanism of action remains unclear.

  7. Developing business opportunities from concept to end point for craniofacial surgeons.

    PubMed

    Brown, Spencer A

    2012-01-01

    Craniofacial surgeons repair a wide variety of soft and hard tissues that produce the clinical expertise to recognize the need for an improved device or novel regenerative stem cell or use of molecules that may dramatically change the way clinical care for improved patient outcomes. The business pathway to bring a concept to clinical care requires knowledge, mentoring, and a team of experts in business and patent law.

  8. Reconstruction of craniofacial image using rational cubic Ball interpolant and soft computing technique

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Piah, Abd Rahni Mt

    2015-10-01

    Spline has been used extensively in engineering design and modelling for representation, analysis and manufacturing purposes. This paper presents an application of spline methods in bio-medical modelling. We reconstruct craniofacial fractured skull bone images using rational cubic Ball interpolant with two free parameters. The free parameters are optimized with the help of genetic algorithm. Our emphasis is placed on the accuracy and smoothness of the reconstructed images.

  9. Orientation of craniofacial planes and temporomandibular disorder in young adults with normal occlusion.

    PubMed

    Ciancaglini, R; Colombo-Bolla, G; Gherlone, E F; Radaelli, G

    2003-09-01

    The aim of this study was to investigate the relationship between orientation of craniofacial planes relative to the true horizontal and temporomandibular disorder (TMD), in normal occlusion. Fourteen university dental students, with full natural dentition and bilateral Angle Class I occlusion, who exhibited signs and symptoms of TMD, were compared with 14 age- and sex-matched healthy controls. Frontal and lateral photographs were taken in natural head position with the subject standing up, clenching a Fox plane and having a facial arch positioned. Photographs were examined by a standardized image analysis. Inter-pupillary axis, Frankfurt, occlusal and Camper planes were evaluated. In frontal view, the Frankfurt plane was right rotated relative to the true horizontal both in TMD subjects (P < 0.01) and controls (P < 0.05), but rotation was larger in TMD subjects (mean difference between groups, 1.1 degrees, 95% confidence interval, 95% CI, 0.2-2.0 degrees ). No significant deviation from the horizontal or difference between groups was observed for the interpupillary axis and occlusal plane. In lateral view, the Frankfurt plane was upward-orientated relative to the true horizontal in TMD group (mean angular deviation 2.8 degrees, 95% CI, 1.0-4.6 degrees ). The occlusal and Camper planes were downward-orientated in both groups (P < 0.0001), but inclination of occlusal plane tended to be smaller in TMD subjects (mean difference between groups, -3.8 degrees, 95% CI, -7.6-0.1 degrees ). Angles between any craniofacial planes did not significantly differ between groups. The findings show that in young adults with normal occlusion, a weak association exists between the orientation of craniofacial planes in natural head position and signs and symptoms of TMD. Furthermore, they suggest that, within this population, TMD might be mainly associated with head posture rather than with craniofacial morphology.

  10. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI

    PubMed Central

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon

    2015-01-01

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150

  11. Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination

    PubMed Central

    Pallares, Luisa F.; Carbonetto, Peter; Gopalakrishnan, Shyam; Parker, Clarissa C.; Ackert-Bicknell, Cheryl L.; Palmer, Abraham A.; Tautz, Diethard

    2015-01-01

    The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. PMID:26523602

  12. The role of transforming growth factor alpha in rat craniofacial development and chondrogenesis.

    PubMed

    Huang, L; Solursh, M; Sandra, A

    1996-08-01

    To explore the possible role of transforming growth factor alpha (TGF-alpha) in craniofacial development, its expression in the craniofacial region of rat embryos from embryonic day (d) 9 to d 20 was examined by in situ hybridisation and immunostaining. The TGF-alpha transcripts were first detected in the neural fold of embryonic d 9 and 10 embryos. In the craniofacial region, the TGF-alpha transcripts were not detected until embryonic d 16 in mesenchyme surrounding the olfactory bulb, within the olfactory bulb, the nasal capsule, vomeronasal organ, and vibrissal follicle. In addition, TGF-alpha message was detected in mesenchyme in the vicinity of Meckel's cartilage, and in the dental epithelium and lamina. This expression pattern of TGF-alpha transcripts persisted until embryonic d 17 but disappeared by d 18. The presence of TGF-alpha protein largely coincided with TGF-alpha message although, unlike the message, it persisted throughout later embryogenesis in the craniofacial region. The possible function of TGF-alpha in chondrogenesis was explored by employing the micromass culture technique. Cartilage nodule formation in mesenchymal cells cultured from rat mandibles in the presence of TGF-alpha was significantly inhibited. This inhibitory effect of TGF-alpha on chondrogenesis was reversed by addition of antibody against the EGF receptor, which crossreacts with the TGF-alpha receptor. The inhibitory effect of TGF-alpha on chondrogenesis in vitro was further confirmed by micromass culture using mesenchymal cells from rat embryonic limb bud. Taken together, these results demonstrate the involvement of TGF-alpha in chondrogenesis during embryonic development, possibly by way of a specific inhibition of cartilage formation from mesenchymal precursor cells.

  13. The role of transforming growth factor alpha in rat craniofacial development and chondrogenesis.

    PubMed Central

    Huang, L; Solursh, M; Sandra, A

    1996-01-01

    To explore the possible role of transforming growth factor alpha (TGF-alpha) in craniofacial development, its expression in the craniofacial region of rat embryos from embryonic day (d) 9 to d 20 was examined by in situ hybridisation and immunostaining. The TGF-alpha transcripts were first detected in the neural fold of embryonic d 9 and 10 embryos. In the craniofacial region, the TGF-alpha transcripts were not detected until embryonic d 16 in mesenchyme surrounding the olfactory bulb, within the olfactory bulb, the nasal capsule, vomeronasal organ, and vibrissal follicle. In addition, TGF-alpha message was detected in mesenchyme in the vicinity of Meckel's cartilage, and in the dental epithelium and lamina. This expression pattern of TGF-alpha transcripts persisted until embryonic d 17 but disappeared by d 18. The presence of TGF-alpha protein largely coincided with TGF-alpha message although, unlike the message, it persisted throughout later embryogenesis in the craniofacial region. The possible function of TGF-alpha in chondrogenesis was explored by employing the micromass culture technique. Cartilage nodule formation in mesenchymal cells cultured from rat mandibles in the presence of TGF-alpha was significantly inhibited. This inhibitory effect of TGF-alpha on chondrogenesis was reversed by addition of antibody against the EGF receptor, which crossreacts with the TGF-alpha receptor. The inhibitory effect of TGF-alpha on chondrogenesis in vitro was further confirmed by micromass culture using mesenchymal cells from rat embryonic limb bud. Taken together, these results demonstrate the involvement of TGF-alpha in chondrogenesis during embryonic development, possibly by way of a specific inhibition of cartilage formation from mesenchymal precursor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 9 PMID:8771398

  14. Craniofacial characteristics of successful responders to mandibular advancement splint therapy: a pilot study.

    PubMed

    Seehra, Jadbinder; Sherriff, Martyn; Winchester, Lindsay

    2014-04-01

    Cephalometric variables that can be used to identify patients with obstructive sleep apnoea who are suitable for mandibular advancement splints and surgical maxillomandibular advancement are lacking. The aim of this pilot study was to describe the craniofacial characteristics of patients whose symptoms of obstructive sleep apnoea were successfully treated with mandibular advancement splints and who were subsequently considered for maxillomandibular advancement. We retrospectively compared the craniofacial characteristics of our patients with data from 2 previously published studies. There were significant differences between the 2 groups for ANB (p<0.000), overjet (p<0.0001), Go-Me (p<0.0002), and ANS-PNS (p<0.0009). Patients, whose symptoms improve with the use of mandibular advancement splints and are potential candidates for maxillomandibular advancement, may have unique craniofacial features consisting of bimaxillary retrusion characterised by a shorter maxilla and mandible, and a greater class II skeletal tendency. The results of this study should be viewed as a pilot. Further research is required.

  15. Craniofacial Morphology Affects Bite Force in Patients with Painful Temporomandibular Disorders.

    PubMed

    Bavia, Paula Furlan; Vilanova, Larissa Soares Reis; Garcia, Renata Cunha Matheus Rodrigues

    2016-01-01

    Craniofacial morphology affects masticatory performance in healthy dentate subjects, but little is known about its effects in patients with painful temporomandibular disorders (TMDs). Forty-eight female patients (mean age of 28±5.8 years) with painful TMDs underwent lateral cephalometric radiography. Using Ricketts' cephalometric analysis and the Vert method, subjects were assigned to three groups according to their craniofacial morphology: brachyfacial (n=22), mesofacial (n=13), and dolichofacial (n=13). Research diagnostic criteria for TMD were used to confirm the TMD diagnosis for each patient. Pain intensity was reported by each patient based on a visual analog scale (VAS). Maximum bite force (MBF) was measured with pressure sensors placed on the first molar site. Masticatory performance (MP) was assessed by chewing a silicone-based artificial material and determining the resulting particle size by the sieve method. Chewing ability (CA) was evaluated for seven food types and analyzed by a VAS questionnaire. Data were analyzed by one-way ANOVA followed by a Tukey-Kramer test (p<0.05). MBF differed in each group, with brachyfacial patients having the highest MBF values. There was no difference in MP among the groups. The groups differed only in their ability to chew one of the seven evaluated food types. In summary, craniofacial morphology affects the MBF without impairing MP or CA in patients with painful TMDs.

  16. Interaction between otorhinolaryngology and orthodontics: correlation between the nasopharyngeal airway and the craniofacial complex.

    PubMed

    Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp

    2010-01-01

    In terms of pathophysiology, an anatomically narrow airway is a predisposing factor for obstruction of the upper respiratory tract. The correlation between the nasopharyngeal airway and the craniofacial structures is discussed in this context. Thus a mutual interaction between the pharynx and the mandibular position was demonstrated, whereby the transverse dimension of the nasopharynx was significantly larger in patients with prognathism than in patients with retrognathism. The influence of chronic obstruction of the nasal airway on craniofacial development was also discussed. The form-and-function interaction, which ought to explain the causal relationship between nasal obstruction and craniofacial growth, appears to be of a multifactorial rather than a one-dimensional, linear nature. It is not disputed, however, that expanding the maxilla improves not only nasal volume and nasal flow, but also the subjective sensation of patients, although it is not possible to make a prognostic statement about the extent of this improvement because of the differing reactions of individuals. Orthodontic appliances for advancing the mandible can also be successfully used in the treatment of mild obstructive sleep apnea syndrome. This treatment method should be considered particularly for patients who are unwilling to undergo or cannot tolerate CPAP (continuous positive airway pressure) treatment.

  17. Indications for Computer-Aided Design and Manufacturing in Congenital Craniofacial Reconstruction.

    PubMed

    Fisher, Mark; Medina, Miguel; Bojovic, Branko; Ahn, Edward; Dorafshar, Amir H

    2016-09-01

    The complex three-dimensional relationships in congenital craniofacial reconstruction uniquely lend themselves to the ability to accurately plan and model the result provided by computer-aided design and manufacturing (CAD/CAM). The goal of this study was to illustrate indications where CAD/CAM would be helpful in the treatment of congenital craniofacial anomalies reconstruction and to discuss the application of this technology and its outcomes. A retrospective review was performed of all congenital craniofacial cases performed by the senior author between 2010 and 2014. Cases where CAD/CAM was used were identified, and illustrative cases to demonstrate the benefits of CAD/CAM were selected. Preoperative appearance, computerized plan, intraoperative course, and final outcome were analyzed. Preoperative planning enabled efficient execution of the operative plan with predictable results. Risk factors which made these patients good candidates for CAD/CAM were identified and compiled. Several indications, including multisuture and revisional craniosynostosis, facial bipartition, four-wall box osteotomy, reduction cranioplasty, and distraction osteogenesis could benefit most from this technology. We illustrate the use of CAD/CAM for these applications and describe the decision-making process both before and during surgery. We explore why we believe that CAD/CAM is indicated in these scenarios as well as the disadvantages and risks.

  18. Inheritance of craniofacial features in Colombian families with class III malocclusion

    PubMed Central

    Otero, L; Quintero, L; Champsaur, D; Simanca, E

    2010-01-01

    Introduction The inheritance of class III malocclusion has been well documented, but the inheritance of craniofacial structures in Colombian families with this malocclusion has been not yet reported. Patients and methods The study sample of 25 families comprised 186 untreated orthodontic individuals from 8 to 60 years old. Pedigrees were drawn using Cyrillic software. Complete family histories for each proband were ascertained and the affection status of relatives was confirmed by lateral cephalograms and facial and dental photographs. Analysis of variance and odds ratio test for each parameter was performed to estimate inheritance from parents to offspring and to determine similar phenotypic features in relatives. Results The analysis of the pedigrees suggests autosomal dominant inheritance. The craniofacial characteristics that showed more resemblance between parents and offspring were middle facial height, shorter anterior cranial base and mandibular prognathism. In contrast the protrusion of upper lip and maxillary retrusion were the phenotypic features that contributed to class III in the majority of families. Conclusion Knowledge of the inheritance of craniofacial phenotypes in class III malocclusion will enable the design of new therapies to treat this malocclusion. PMID:23776347

  19. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton.

    PubMed

    Szwedowski, T D; Fialkov, J; Whyne, C M

    2011-01-01

    Developing a more complete understanding of the mechanical response of the craniofacial skeleton (CFS) to physiological loads is fundamental to improving treatment for traumatic injuries, reconstruction due to neoplasia, and deformities. Characterization of the biomechanics of the CFS is challenging due to its highly complex structure and heterogeneity, motivating the utilization of experimentally validated computational models. As such, the objective of this study was to develop, experimentally validate, and parametrically analyse a patient-specific finite element (FE) model of the CFS to elucidate a better understanding of the factors that are of intrinsic importance to the skeletal structural behaviour of the human CFS. An FE model of a cadaveric craniofacial skeleton was created from subject-specific computed tomography data. The model was validated based on bone strain measurements taken under simulated physiological-like loading through the masseter and temporalis muscles (which are responsible for the majority of craniofacial physiologic loading due to mastication). The baseline subject-specific model using locally defined cortical bone thicknesses produced the strongest correlation to the experimental data (r2 = 0.73). Large effects on strain patterns arising from small parametric changes in cortical thickness suggest that the very thin bony structures present in the CFS are crucial to characterizing the local load distribution in the CFS accurately.

  20. Lyophilized Platelet-Rich Fibrin (PRF) Promotes Craniofacial Bone Regeneration through Runx2

    PubMed Central

    Li, Qi; Reed, David A.; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J.; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering. PMID:24830554

  1. CT and MR Imaging in a Large Series of Patients with Craniofacial Fibrous Dysplasia

    PubMed Central

    Atalar, Mehmet Haydar; Salk, Ismail; Savas, Recep; Uysal, Ismail Onder; Egilmez, Hulusi

    2015-01-01

    Summary Background In this retrospective review of patients with craniofacial fibrous dysplasia (FD), the clinical and radiological findings of CT and MR scan were analyzed. Material/Methods The study material included 32 patients, at 9 to 68 years of age that were directed for differential diagnostics of several disorders in the head. We recorded CT and MRI data related to the lesion number, location, sidedness, appearance, and sex of the cases with craniofacial FD. Results Of 32 patients involved in this study, 17 had monostotic and 15 had polyostotic involvement pattern. Bones most commonly involved by monostotic involvement in females were, in descending order, mandibular, maxillary, and sphenoid bones, while the sphenoid bone was involved the most in males. Leontiasis ossea was observed in 2 patients. Sclerotic and mixed lesion types were more common in both females and males. In T1- and T2-weighted MRI sequences, hypointensity was more common compared to hyperintensity or heterogeneous intensity. The type of enhancement of lesions was found similar after contrast medium administration. Conclusions In the presence of craniofacial FD during CT or MRI imaging of the head, a detailed description of FD lesions may provide an important clinical benefit by increasing radiological experience during the diagnostics of this rare disorder. PMID:26000068

  2. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation.

    PubMed

    Lang, Michael R; Lapierre, Lynne A; Frotscher, Michael; Goldenring, James R; Knapik, Ela W

    2006-10-01

    An increasing number of human disorders have been linked to mutations in genes of the secretory pathway. The chemically induced zebrafish crusher variant results in malformed craniofacial skeleton, kinked pectoral fins and a short body length. By positional cloning, we identified a nonsense mutation converting leucine to a stop codon (L402X) in the sec23a gene, an integral component of the COPII complex, which is critical for anterograde protein trafficking between endoplasmic reticulum and Golgi apparatus. Zebrafish crusher mutants develop normally until the onset of craniofacial chondrogenesis. crusher chondrocytes accumulate proteins in a distended endoplasmic reticulum, resulting in severe reduction of cartilage extracellular matrix (ECM) deposits, including type II collagen. We demonstrate that the paralogous gene sec23b is also an essential component of the ECM secretory pathway in chondrocytes. In contrast, knockdown of the COPI complex does not hinder craniofacial morphogenesis. As SEC23A lesions cause the cranio-lenticulo-sutural dysplasia syndrome, crusher provides the first vertebrate model system that links the biology of endoplasmic reticulum to Golgi trafficking with a clinically relevant dysmorphology.

  3. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    PubMed

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  4. Cephalometric assessment of craniofacial morphology in Japanese male patients with obstructive sleep apnea-hypopnea syndrome.

    PubMed

    Takai, Yujiro; Yamashiro, Yoshihiro; Satoh, Daisuke; Isobe, Kazutoshi; Sakamoto, Susumu; Homma, Sakae

    2012-07-01

    CRANIOFACIAL MORPHOLOGICAL ANOMALIES CAN BE DIVIDED INTO TWO PRINCIPAL CATEGORIES: skeletal anomalies and soft tissue anomalies. This study examined the hypothesis that the assessment of indices representing both skeletal and soft tissue can be used to appropriately identify the risk factor of obstructive sleep apnea-hypopnea syndrome (OSAHS). 232 suspected OSAHS male patients were examined with polysomnography and divided into two groups (202 males with OSAHS and 30 male controls without OSAHS). Cephalometric analysis was performed on all patients to evaluate craniofacial morphological anomalies. The measurement sites were as follows: skeletal morphology; soft tissue morphology; mixed morphology including mandibular plane to hyoid bone (MP-H); and jaw soft tissue (JS) ratio; a novel ratio we defined, between the area of jaw and area of tongue with soft palate. JS ratio increased with AHI as well as MP-H. MP-H and JS ratio showed significant but weak correlation with apnea-hypopnea index. JS ratio was significantly associated with an increased risk for severe OSAHS, even after adjusting age and BMI, its odds ratio was the greatest among these variables. These results showed that mixed craniofacial, skeletal and soft tissue morphology are correlated with AHI, and JS ratio may be a useful parameters to explain the characteristics of OSAHS in male patients.

  5. Endonasal ethmoidectomy and bifrontal craniotomy with craniofacial approach for resection of frontoethmoidal osteoma causing tension pneumocephalus.

    PubMed

    Park, Michael C; Goldman, Marc A; Donahue, John E; Tung, Glenn A; Goel, Ritu; Sampath, Prakash

    2008-01-01

    Tension pneumocephalus is an unusual, potentially life-threatening complication of frontal fossa tumors. We present an uncommon case of a frontoethmoidal osteoma causing a tension pneumocephalus and neurological deterioration prompting a combined endonasal ethmoidectomy and bifrontal craniotomy with craniofacial approach for resection. A 68-year-old man presented with a 1-week history of worsening headache, slowness of speech, and increasing confusion. Standard computed tomography scan revealed a marked tension pneumocephalus with ventricular air and 1-cm midline shift to the right. Further studies showed a calcified left ethmoid mass and a left anterior cranial-base defect. A team composed of neurosurgery and otolaryngology performed a combined endonasal ethmoidectomy and bifrontal craniotomy with craniofacial approach to resect a large frontoethmoid bony tumor. No abscess or mucocele was identified. The skull base defect was repaired with the aid of a transnasal endoscopy, a titanium mesh, and a pedunculated pericranial flap. Postoperatively, the pneumocephalus and the patient's symptoms completely resolved. Pathology was consistent with a benign osteoma. This is an uncommon case of a frontoethmoidal osteoma associated with tension pneumocephalus. Recognition of this entity and timely diagnosis and treatment, consisting of an endonasal ethmoidectomy and a bifrontal craniotomy with craniofacial approach, may prevent potential life-threatening complications.

  6. Interaction between otorhinolaryngology and orthodontics: correlation between the nasopharyngeal airway and the craniofacial complex

    PubMed Central

    Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp

    2011-01-01

    In terms of pathophysiology, an anatomically narrow airway is a predisposing factor for obstruction of the upper respiratory tract. The correlation between the nasopharyngeal airway and the craniofacial structures is discussed in this context. Thus a mutual interaction between the pharynx and the mandibular position was demonstrated, whereby the transverse dimension of the nasopharynx was significantly larger in patients with prognathism than in patients with retrognathism. The influence of chronic obstruction of the nasal airway on craniofacial development was also discussed. The form-and-function interaction, which ought to explain the causal relationship between nasal obstruction and craniofacial growth, appears to be of a multifactorial rather than a one-dimensional, linear nature. It is not disputed, however, that expanding the maxilla improves not only nasal volume and nasal flow, but also the subjective sensation of patients, although it is not possible to make a prognostic statement about the extent of this improvement because of the differing reactions of individuals. Orthodontic appliances for advancing the mandible can also be successfully used in the treatment of mild obstructive sleep apnea syndrome. This treatment method should be considered particularly for patients who are unwilling to undergo or cannot tolerate CPAP (continuous positive airway pressure) treatment. PMID:22073108

  7. Biocompatibility of adhesive complex coacervates modeled after the Sandcastle glue of P. californica for craniofacial reconstruction

    PubMed Central

    Winslow, Brent D.; Shao, Hui; Stewart, Russell J.; Tresco, Patrick A.

    2011-01-01

    Craniofacial reconstruction would benefit from a degradable adhesive capable of holding bone fragments in three-dimensional alignment and gradually being replaced by new bone without loss of alignment or volume changes. Modeled after a natural adhesive secreted by the sandcastle worm, we studied the biocompatibility of adhesive complex coacervates in vitro and in vivo with two different rat calvarial models. We found that the adhesive was non-cytotoxic and supported the attachment, spreading, and migration of a commonly used osteoblastic cell line over the course of several days. In animal studies we found that the adhesive was capable of maintaining three-dimensional bone alignment in freely moving rats over a 12 week indwelling period. Histological evidence indicated that the adhesive was gradually resorbed and replaced by new bone that became lamellar across the defect without loss of alignment, changes in volume, or changes in the adjacent uninjured bone. The presence of inflammatory cells was consistent with what has been reported with other craniofacial fixation methods including metal plates, screws, tacks, calcium phosphate cements and cyanoacrylate adhesives. Collectively, the results suggest that the new bioadhesive formulation is degradable, osteoconductive and appears suitable for use in the reconstruction of craniofacial fractures. PMID:20950851

  8. Human Development Domain of the Ontology of Craniofacial Development and Malformation

    PubMed Central

    Mejino, Jose LV; Travillian, Ravensara S; Cox, Timothy C; Shapiro, Linda G; Brinkley, James F

    2017-01-01

    In this paper we describe an ontological scheme for representing anatomical entities undergoing morphological transformation and changes in phenotype during prenatal development. This is a proposed component of the Anatomical Transformation Abstraction (ATA) of the Foundational Model of Anatomy (FMA) Ontology that was created to provide an ontological framework for capturing knowledge about human development from the zygote to postnatal life. It is designed to initially describe the structural properties of the anatomical entities that participate in human development and then enhance their description with developmental properties, such as temporal attributes and developmental processes. This approach facilitates the correlation and integration of the classical but static representation of embryology with the evolving novel concepts of developmental biology, which primarily deals with the experimental data on the mechanisms of embryogenesis and organogenesis. This is important for describing and understanding the underlying processes involved in structural malformations. In this study we focused on the development of the lips and the palate in conjunction with our work on the pathogenesis and classification of cleft lip and palate (CL/P) in the FaceBase program. Our aim here is to create the Craniofacial Human Development Ontology (CHDO) to support the Ontology of Craniofacial Development and Malformation (OCDM), which provides the infrastructure for integrating multiple and disparate craniofacial data generated by FaceBase researchers.

  9. Coherence and Consciousness: Study of Fronto-Parietal Gamma Synchrony in Patients with Disorders of Consciousness.

    PubMed

    Cavinato, Marianna; Genna, Clara; Manganotti, Paolo; Formaggio, Emanuela; Storti, Silvia Francesca; Campostrini, Stefania; Arcaro, Chiara; Casanova, Emanuela; Petrone, Valeria; Piperno, Roberto; Piccione, Francesco

    2015-07-01

    Evaluation of consciousness needs to be supported by the evidence of brain activation during external stimulation in patients with unresponsive wakefulness syndrome (UWS). Assessment of patients should include techniques that do not depend on overt motor responses and allow an objective investigation of the spontaneous patterns of brain activity. In particular, electroencephalography (EEG) coherence allows to easily measure functional relationships between pairs of neocortical regions and seems to be closely correlated with cognitive or behavioral measures. Here, we show the contribution of higher order associative cortices of patients with disorder of consciousness (N = 26) in response to simple sensory stimuli, such as visual, auditory and noxious stimulation. In all stimulus modalities an increase of short-range parietal and long-range fronto-parietal coherences in gamma frequencies were seen in the controls and minimally conscious patients. By contrast, UWS patients showed no significant modifications in the EEG patterns after stimulation. Our results suggest that UWS patients can not activate associative cortical networks, suggesting a lack of information integration. In fact, fronto-parietal circuits result to be connectively disrupted, conversely to patients that exhibit some form of consciousness. In the light of this, EEG coherence can be considered a powerful tool to quantify the involvement of cognitive processing giving information about the integrity of fronto-parietal network. This measure can represent a new neurophysiological marker of unconsciousness and help in determining an accurate diagnosis and rehabilitative intervention in each patient.

  10. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness.

    PubMed

    Crone, Julia Sophia; Soddu, Andrea; Höller, Yvonne; Vanhaudenhuyse, Audrey; Schurz, Matthias; Bergmann, Jürgen; Schmid, Elisabeth; Trinka, Eugen; Laureys, Steven; Kronbichler, Martin

    2014-01-01

    Recovery of consciousness has been associated with connectivity in the frontal cortex and parietal regions modulated by the thalamus. To examine this model and to relate alterations to deficits in cognitive functioning and conscious processing, we investigated topological network properties in patients with chronic disorders of consciousness recovered from coma. Resting state fMRI data of 34 patients with unresponsive wakefulness syndrome and 25 in minimally conscious state were compared to 28 healthy controls. We investigated global and local network characteristics. Additionally, behavioral measures were correlated with the local metrics of 28 regions within the fronto-parietal network and the thalamus. In chronic disorders of consciousness, modularity at the global level was reduced suggesting a disturbance in the optimal balance between segregation and integration. Moreover, network properties were altered in several regions which are associated with conscious processing (particularly, in medial parietal, and frontal regions, as well as in the thalamus). Between minimally conscious and unconscious patients the local efficiency of medial parietal regions differed. Alterations in the thalamus were particularly evident in non-conscious patients. Most of the regions affected in patients with impaired consciousness belong to the so-called 'rich club' of highly interconnected central nodes. Disturbances in their topological characteristics have severe impact on information integration and are reflected in deficits in cognitive functioning probably leading to a total breakdown of consciousness.

  11. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention

    PubMed Central

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network. PMID:27047351

  12. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    ERIC Educational Resources Information Center

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  13. Sensorimotor integration for speech motor learning involves the inferior parietal cortex.

    PubMed

    Shum, Mamie; Shiller, Douglas M; Baum, Shari R; Gracco, Vincent L

    2011-12-01

    Sensorimotor integration is important for motor learning. The inferior parietal lobe, through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviors other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production, and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech.

  14. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    PubMed

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex.

  15. Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans.

    PubMed

    Carrasco-López, Carmen; Soto-León, Vanesa; Céspedes, Virginia; Profice, Paolo; Strange, Bryan A; Foffani, Guglielmo; Oliviero, Antonio

    2017-03-09

    The role of neuronal oscillations in human somatosensory perception is currently unclear. To address this, here we employ non-invasive brain stimulation to artificially modulate cortical network dynamics in the context of neurophysiological and behavioral recordings. We demonstrate that transcranial static magnetic stimulation (tSMS) over the somatosensory parietal cortex increases oscillatory power specifically in the alpha range, without significantly affecting bottom-up thalamo-cortical inputs indexed by the early cortical component of somatosensory evoked potentials. Critically, we next show that parietal tSMS enhances the detection of near-threshold somatosensory stimuli. Interestingly, this behavioral improvement reflects a decrease of habituation to somatosensation. Our data therefore provide causal evidence that somatosensory perception depends on parietal alpha activity. Artificially increasing alpha power by placing a powerful magnetic field over the parietal cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus.SignificanceStatement Artificially increasing alpha power by placing a powerful magnetic field over the somatosensory cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus.

  16. Parietal Lobe Volume Deficits in Adolescents with Schizophrenia and Adolescents with Cannabis Use Disorders

    ERIC Educational Resources Information Center

    Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin

    2012-01-01

    Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…

  17. A new view of hemineglect based on the response properties of parietal neurones.

    PubMed Central

    Pouget, A; Sejnowski, T J

    1997-01-01

    Lesion studies of the parietal cortex have led to a wide range of conclusions regarding the coordinate reference frame in which hemineglect is expressed. A model of spatial representation in the parietal cortex has recently been developed in which the position of an object is not encoded in a particular frame of reference, but instead involves neurones computing basis functions of sensory inputs. In this type of representation, a nonlinear sensorimotor transformation of an object is represented in a population of units having the response properties of neurones that are observed in the parietal cortex. A simulated lesion in a basis-function representation was found to replicate three of the most important aspects of hemineglect: (i) the model behaved like parietal patients in line-cancellation and line-bisection experiments; (ii) the deficit affected multiple frames of reference; and (iii) the deficit could be object-centred. These results support the basis-function hypothesis for spatial representations and provide a testable computational theory of hemineglect at the level of single cells. PMID:9368933

  18. Contralateral somatosensory neglect in unrestrained rats after lesion of the parietal cortex of the left hemisphere.

    PubMed

    Holm, S; Mogensen, J

    1993-01-01

    Three groups of rats were studied: a sham operated control group and two groups in which the parietal "association" cortex had been ablated in the left and right hemispheres respectively. Twenty-four hours and 8 days postoperatively the animals were subjected to a test in which their responsiveness to lateralized somatosensory stimuli was measured while the rats were left unrestrained. Additionally, an activity cage locomotion test followed immediately upon both tests of somatosensory responsiveness. Twenty-four hours postoperatively the animals in which the parietal cortex of the left hemisphere had been ablated demonstrated a significant contralateral neglect of somatosensory stimuli while the group in which the right parietal cortex had been ablated only exhibited a non-significant tendency to a contralateral neglect. While the activity cage test did not reveal an overall difference in the activity level of the three groups the latency to initiate locomotion in the activity cage was found to be significantly decreased in both ablated groups. Eight days postoperatively both ablated groups appeared fully recovered. It is concluded that ablations of the parietal "association" cortex of the rat are associated with a syndrome of contralateral somatosensory neglect that can even be demonstrated if the animals are left unrestrained during testing.

  19. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    ERIC Educational Resources Information Center

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  20. The Role of the Right Posterior Parietal Cortex in Temporal Order Judgment

    ERIC Educational Resources Information Center

    Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min

    2009-01-01

    Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the…

  1. The precision of value-based choices depends causally on fronto-parietal phase coupling

    PubMed Central

    Polanía, Rafael; Moisa, Marius; Opitz, Alexander; Grueschow, Marcus; Ruff, Christian C.

    2015-01-01

    Which meal would you like today, chicken or pasta? For such value-based choices, organisms must flexibly integrate various types of sensory information about internal states and the environment to transform them into actions. Recent accounts suggest that these choice-relevant processes are mediated by information transfer between functionally specialized but spatially distributed brain regions in parietal and prefrontal cortex; however, it remains unclear whether such fronto-parietal communication is causally involved in guiding value-based choices. We find that transcranially inducing oscillatory desynchronization between the frontopolar and -parietal cortex leads to more inaccurate choices between food rewards while leaving closely matched perceptual decisions unaffected. Computational modelling shows that this exogenous manipulation leads to imprecise value assignments to the choice alternatives. Thus, our study demonstrates that accurate value-based decisions critically involve coherent rhythmic information transfer between fronto-parietal brain areas and establishes an experimental approach to non-invasively manipulate the precision of value-based choices in humans. PMID:26290482

  2. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    ERIC Educational Resources Information Center

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  3. Carbamoylcholine and gastrin induce inositol lipid turnover in canine gastric parietal cells

    SciTech Connect

    Chiba, T.; Fisher, S.K.; Park, J.; Seguin, E.B.; Agranoff, B.W.; Yamada, Tadataka )

    1988-07-01

    The potential role of inositol phospholipid turnover in mediating acid secretion was examined in a preparation enriched for isolated canine gastric parietal cells. The stimulatory effects of carbamoylcholine (carbachol) and gastrin on parietal cell uptake of ({sup 14}C)aminopyrine were linked to dose- and time-dependent selective reduction in cellular phosphatidylinositol content, although the specific fatty acid composition of the phosphoinositides was not altered. Analysis of ({sup 3}H)inositol phosphates accumulated in cells prelabeled with ({sup 3}H)inositol revealed an increase in labeled inositol trisphosphate by 5 min of incubation with either carbachol or gastrin. Furthermore, after preincubation of parietal cells in medium containing ({sup 32}P)orthophosphate, the two secretagogues elicited a time-dependent decrease in {sup 32}P labeling of phosphatidylinositol 4,5-bisphosphate and concomitant increase in labeling of phosphatidic acid. These data demonstrate that the acid secretagogue actions of carbachol and gastrin are correlated with turnover of cellular inositol phospholipids in a preparation consisting predominantly of parietal cells.

  4. Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance

    ERIC Educational Resources Information Center

    Koscik, Tim; O'Leary, Dan; Moser, David J.; Andreasen, Nancy C.; Nopoulos, Peg

    2009-01-01

    Structural magnetic resonance imaging (MRI) studies of the human brain have reported evidence for sexual dimorphism. In addition to sex differences in overall cerebral volume, differences in the proportion of gray matter (GM) to white matter (WM) volume have been observed, particularly in the parietal lobe. To our knowledge there have been no…

  5. Reduced pepsin A processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation.

    PubMed

    Zavros, Yana; Waghray, Meghna; Tessier, Arthur; Bai, Longchuan; Todisco, Andrea; L Gumucio, Deborah; Samuelson, Linda C; Dlugosz, Andrzej; Merchant, Juanita L

    2007-11-16

    Sonic hedgehog (Shh) is not only essential to the development of the gastrointestinal tract, but is also necessary to maintain the characteristic acid-secreting phenotype of the adult stomach. Gastrin is the only hormone capable of stimulating gastric acid and is thus required to maintain functional parietal cells. We have shown previously that gastrin-null mice display gastric atrophy and metaplasia prior to progression to distal, intestinal-type gastric cancer. Because reduced levels of Shh peptide correlate with gastric atrophy, we examined whether gastrin regulates Shh expression in parietal cells. We show here that gastrin stimulates Shh gene expression and acid-dependent processing of the 45-kDa Shh precursor to the 19-kDa secreted peptide in primary parietal cell cultures. This cleavage was blocked by the proton pump inhibitor omeprazole and mediated by the acid-activated protease pepsin A. Pepsin A was also the protease responsible for processing Shh in tissue extracts from human stomach. By contrast, extracts prepared from neoplastic gastric mucosa had reduced levels of pepsin A and did not process Shh. Therefore processing of Shh in the normal stomach is hormonally regulated, acid-dependent, and mediated by the aspartic protease pepsin A. Moreover parietal cell atrophy, a known pre-neoplastic lesion, correlates with loss of Shh processing.

  6. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe.

    PubMed

    Cappelletti, Marinella; Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-09-11

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity--or the number of items in a set--which is thought to rely on an "approximate number sense" (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components.

  7. Prehension Movements in a Patient (AC) with Posterior Parietal Cortex Damage and Posterior Callosal Section

    ERIC Educational Resources Information Center

    Frak, Victor; Paulignan, Yves; Jeannerod, Marc; Michel, Francois; Cohen, Henri

    2006-01-01

    Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in…

  8. Temporo-Parietal Junction Activity in Theory-of-Mind Tasks: Falseness, Beliefs, or Attention

    ERIC Educational Resources Information Center

    Aichhorn, Markus; Perner, Josef; Weiss, Benjamin; Kronbichler, Martin; Staffen, Wolfgang; Ladurner, Gunther

    2009-01-01

    By combining the false belief (FB) and photo (PH) vignettes to identify theory-of-mind areas with the false sign (FS) vignettes, we re-establish the functional asymmetry between the left and right temporo-parietal junction (TPJ). The right TPJ (TPJ-R) is specially sensitive to processing belief information, whereas the left TPJ (TPJ-L) is equally…

  9. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    ERIC Educational Resources Information Center

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  10. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention.

    PubMed

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  11. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex.

    PubMed

    Kuang, Shenbing; Morel, Pierre; Gail, Alexander

    2016-02-01

    Neurons in the posterior parietal cortex respond selectively for spatial parameters of planned goal-directed movements. Yet, it is still unclear which aspects of the movement the neurons encode: the spatial parameters of the upcoming physical movement (physical goal), or the upcoming visual limb movement (visual goal). To test this, we recorded neuronal activity from the parietal reach region while monkeys planned reaches under either normal or prism-reversed viewing conditions. We found predominant encoding of physical goals while fewer neurons were selective for visual goals during planning. In contrast, local field potentials recorded in the same brain region exhibited predominant visual goal encoding, similar to previous imaging data from humans. The visual goal encoding in individual neurons was neither related to immediate visual input nor to visual memory, but to the future visual movement. Our finding suggests that action planning in parietal cortex is not exclusively a precursor of impending physical movements, as reflected by the predominant physical goal encoding, but also contains spatial kinematic parameters of upcoming visual movement, as reflected by co-existing visual goal encoding in neuronal spiking. The co-existence of visual and physical goals adds a complementary perspective to the current understanding of parietal spatial computations in primates.

  12. Measurement of color for craniofacial structures using a 45/0-degree optical configuration

    PubMed Central

    Gozalo-Diaz, David J.; Lindsey, Delwin T.; Johnston, William M.; Wee, Alvin G.

    2007-01-01

    Statement of problem The color of vital craniofacial structures has not been measured accurately. Purpose The purpose of this study was to determine the color of vital craniofacial structures and evaluate the validity and test-retest reliability of a noncontacting 45/0-degree optical configuration. Material and methods A spectroradiometer and an external light source were configured in a noncontacting 45/0-degree (45-degree illumination and 0-degree observer) optical configuration to measure the color of subjects’ vital craniofacial structures (central and lateral incisor and canine, attached gingiva, lips, and facial skin). The 120 subjects were stratified into 5 age groups with 4 racial categories and balanced for gender. For evaluation of validity, linear regressions and 95% confidence intervals were calculated for ΔL*, Δa*, Δb* [color difference of (CIE) LAB values] between the measured and certified values of the 22 color patches of the DC Color Checker. For test-retest reliability, a random sample of 12 (10%) subjects was remeasured at a second visit. Paired t tests, correlations, and Bland-Altman analyses were performed between the first and second measurements of the 12 pairs of L*, a*, and b* values for the 6 craniofacial structures. Results For validity, the mean color difference and linear regression for Commission Internationale d’Eclair-age (CIE) LAB values between measured and certified color of the 22 opaque color patches were ΔE of 1.46 and 0.99 for all regressions, respectively. Only Δa* did not contain zero in its 95% confidence interval. For test-retest reliability, no paired t tests were significantly different from each other, and the Pearson correlation coefficient ranged from 0.9 (9 pairs) to 0.7 (3 pairs). Ten of the 18 Bland-Altman plots showed good reliability. Conclusion The spectral reflectance of craniofacial structures can be measured with acceptable validity and test-retest reliability using a noncontacting 45/0-degree

  13. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development

    PubMed Central

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C.; Park, Shery; Sanchez-Lara, Pedro A.; Chai, Yang

    2015-01-01

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell–derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2fl/fl;Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC–derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2fl/fl;Wnt1-Cre, and Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+ mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+ mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC–derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis. PMID:25722190

  14. Spatial orientation and the representation of space with parietal lobe lesions.

    PubMed Central

    Karnath, H O

    1997-01-01

    Damage to the human parietal cortex leads to disturbances of spatial perception and of motor behaviour. Within the parietal lobe, lesions of the superior and of the inferior lobule induce quite different, characteristic deficits. Patients with inferior (predominantly right) parietal lobe lesions fail to explore the contralesional part of space by eye or limb movements (spatial neglect). In contrast, superior parietal lobe lesions lead to specific impairments of goal-directed movements (optic ataxia). The observations reported in this paper support the view of dissociated functions represented in the inferior and the superior lobule of the human parietal cortex. They suggest that a spatial reference frame for exploratory behaviour is disturbed in patients with neglect. Data from these patients' visual search argue that their failure to explore the contralesional side is due to a disturbed input transformation leading to a deviation of egocentric space representation to the ipsilesional side. Data further show that this deviation follows a rotation around the earth-vertical body axis to the ipsilesional side rather than a translation towards that side. The results are in clear contrast to explanations that assume a lateral gradient ranging from a minimum of exploration in the extreme contralesional to a maximum in the extreme ipsilesional hemispace. Moreover, the failure to orient towards and to explore the contralesional part of space appears to be distinct from those deficits observed once an object of interest has been located and releases reaching. Although patients with neglect exhibit a severe bias of exploratory movements, their hand trajectories to targets in peripersonal space may follow a straight path. This result suggests that (i) exploratory and (ii) goal-directed behaviour in space do not share the same neural control mechanisms. Neural representation of space in the inferior parietal lobule seems to serve as a matrix for spatial exploration and for

  15. Hemispheric Differences within the Fronto-Parietal Network Dynamics Underlying Spatial Imagery

    PubMed Central

    Sack, Alexander T.; Schuhmann, Teresa

    2012-01-01

    Spatial imagery refers to the inspection and evaluation of spatial features (e.g., distance, relative position, configuration) and/or the spatial manipulation (e.g., rotation, shifting, reorienting) of mentally generated visual images. In the past few decades, psychophysical as well as functional brain imaging studies have indicated that any such processing of spatially coded information and/or manipulation based on mental images (i) is subject to similar behavioral demands and limitations as in the case of spatial processing based on real visual images, and (ii) consistently activates several nodes of widely distributed cortical networks in the brain. These nodes include areas within both, the dorsal fronto-parietal as well as ventral occipito-temporal visual processing pathway, representing the “what” versus “where” aspects of spatial imagery. We here describe evidence from functional brain imaging and brain interference studies indicating systematic hemispheric differences within the dorsal fronto-parietal networks during the execution of spatial imagery. Importantly, such hemispheric differences and functional lateralization principles are also found in the effective brain network connectivity within and across these networks, with a direction of information flow from anterior frontal/premotor regions to posterior parietal cortices. In an attempt to integrate these findings of hemispheric lateralization and fronto-to-parietal interactions, we argue that spatial imagery constitutes a multifaceted cognitive construct that can be segregated in several distinct mental sub processes, each associated with activity within specific lateralized fronto-parietal (sub) networks, forming the basis of the here proposed dynamic network model of spatial imagery. PMID:22754546

  16. Immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy.

    PubMed

    Caramori, Gaetano; Lasagna, Lisa; Casalini, Angelo G; Adcock, Ian M; Casolari, Paolo; Contoli, Marco; Tafuro, Federica; Padovani, Anna; Chung, Kian Fan; Barnes, Peter J; Papi, Alberto; Rindi, Guido; Bertorelli, Giuseppina

    2011-01-01

    The T lymphocyte-mediated immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy is unknown. The aim of this study was to investigate the immune response in the parietal pleura of tuberculous pleurisy compared with nonspecific pleuritis. We have measured the numbers of inflammatory cells particularly T-cell subsets (Th1/Th2/Th17/Treg cells) in biopsies of parietal pleura obtained from 14 subjects with proven tuberculous pleurisy compared with a control group of 12 subjects with nonspecific pleuritis. The number of CD3+, CD4+ and CCR4+ cells and the expression of RORC2 mRNA were significantly increased in the tuberculous pleurisy patients compared with the nonspecific pleuritis subjects. The number of toluidine blue+ cells, tryptase+ cells and GATA-3+ cells was significantly decreased in the parietal pleura of patients with tuberculous pleurisy compared with the control group of nonspecific pleuritis subjects. Logistic regression with receiver operator characteristic (ROC) analysis for the three single markers was performed and showed a better performance for GATA-3 with a sensitivity of 75%, a specificity of 100% and an AUC of 0.88. There was no significant difference between the two groups of subjects in the number of CD8, CD68, neutrophil elastase, interferon (IFN)-γ, STAT4, T-bet, CCR5, CXCR3, CRTH2, STAT6 and FOXP3 positive cells. Elevated CD3, CD4, CCR4 and Th17 cells and decreased mast cells and GATA-3+ cells in the parietal pleura distinguish patients with untreated tuberculous pleurisy from those with nonspecific pleuritis.

  17. Fronto-Parietal Connectivity Is a Non-Static Phenomenon with Characteristic Changes during Unconsciousness

    PubMed Central

    Kochs, Eberhard F.; Ilg, Rüdiger; Schneider, Gerhard

    2014-01-01

    Background It has been previously shown that loss of consciousness is associated with a breakdown of dominating fronto-parietal feedback connectivity as assessed by electroencephalogram (EEG) recordings. Structure and strength of network connectivity may change over time. Aim of the current study is to investigate cortico-cortical connectivity at different time intervals during consciousness and unconsciousness. For this purpose, EEG symbolic transfer entropy (STEn) was calculated to indicate cortico-cortical information transfer at different transfer times. Methods The study was performed in 15 male volunteers. 29-channel EEG was recorded during consciousness and propofol-induced unconsciousness. EEG data were analyzed by STEn, which quantifies intensity and directionality of the mutual information flow between two EEG channels. STEn was computed over fronto-parietal channel pair combinations (10 s length, 0.5–45 Hz total bandwidth) to analyze changes of intercortical directional connectivity. Feedback (fronto → parietal) and feedforward (parieto → frontal) connectivity was calculated for transfer times from 25 ms to 250 ms in 5 ms steps. Transfer times leading to maximum directed interaction were identified to detect changes of cortical information transfer (directional connectivity) induced by unconsciousness (p<0.05). Results The current analyses show that fronto-parietal connectivity is a non-static phenomenon. Maximum detected interaction occurs at decreased transfer times during propofol-induced unconsciousness (feedback interaction: 60 ms to 40 ms, p = 0.002; feedforward interaction: 65 ms to 45 ms, p = 0.001). Strength of maximum feedback interaction decreases during unconsciousness (p = 0.026), while no effect of propofol was observed on feedforward interaction. During both consciousness and unconsciousness, intensity of fronto-parietal interaction fluctuates with increasing transfer times. Conclusion Non-stationarity of directional

  18. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools

    PubMed Central

    Vingerhoets, Guy

    2014-01-01

    Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement. PMID:24634664

  19. Neural correlates of relational reasoning and the symbolic distance effect: involvement of parietal cortex.

    PubMed

    Hinton, E C; Dymond, S; von Hecker, U; Evans, C J

    2010-06-16

    A novel, five-term relational reasoning paradigm was employed during functional magnetic resonance imaging to investigate neural correlates of the symbolic distance effect (SDE). Prior to scanning, participants learned a series of more-than (E>D>C>B>A) or less-than (AA) and nonadjacent one-step (AA, D>B and E>C) and two-step (AA and E>B) combinatorial entailed tasks. In terms of brain activation, the SDE was identified in the inferior frontal cortex, dorsolateral prefrontal cortex, and bilateral parietal cortex with a graded activation pattern from adjacent to one-step and two-step relations. We suggest that this captures the behavioural SDE of increased accuracy and decreased reaction time from adjacent to two-step relations. One-step relations involving endpoints A or E resulted in greater parietal activation compared to one-step relations without endpoints. Novel contrasts found enhanced activation in right parietal and prefrontal cortices during mutually entailed tasks only for participants who had learned all less-than relations. Increased parietal activation was found for one-step tasks that were inconsistent with prior training. Overall, the findings demonstrate a crucial role for parietal cortex during relational reasoning with a spatially ordered array.

  20. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task.

    PubMed

    Coull, J T; Frackowiak, R S; Frith, C D

    1998-12-01

    The right prefrontal and parietal cortices have been implicated in attentional processing in both neuropsychological and functional neuroimaging literature. However, attention is a heterogeneous collection of processes, each of which may be underpinned by different neural networks. These attentional networks may interact, such that engaging one type of attentional process could influence the efficiency of another via overlapping neural substrates. We investigated the hypothesis that right frontal and parietal cortices provide the neuroanatomical location of the functional interaction between sustained attention and the process of selectively monitoring for target objects. Six healthy volunteers performed one of two tasks which required either selective or non-selective responding. The task lasted continuously for 18 min, during which time 3 Positron Emission Tomography (PET) scans were acquired for each task. This was repeated to obtain 12 PET measurements of regional cerebral blood flow (rCBF) for each subject. The right inferior frontal and parietal cortices were differentially activated by increasing time on task during the selective (S) vs non-selective (NS) task. Specifically, rCBF decreased with increasing time spent performing the NS task but not the S task. This result suggests that the normal deactivation in these areas as time on task increases is counteracted by the extra cognitive demands of selectively responding to target objects. Therefore, we have confirmed our hypothesis that right frontal and parietal cortices provide the neuroanatomical location for the modulation of object selection by sustained attention. We also identified the neuroanatomical correlates of each process separately, and confirmed earlier reports of prefrontal cortex and anterior cingulate activation associated with selective responding, and a fronto-parietal-thalamic network associated with sustained attention.