Multioverlap Simulations of the 3D Edwards-Anderson Ising Spin Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, B.A.; Berg, B.A.; Janke, W.
1998-05-01
We introduce a novel method for numerical spin glass investigations: Simulations of two replica at fixed temperature, weighted to achieve a broad distribution of the Parisi overlap parameter q (multioverlap). We demonstrate the feasibility of the approach by studying the 3D Edwards-Anderson Ising (J{sub ik}={plus_minus}1) spin glass in the broken phase ({beta}=1). This makes it possible to obtain reliable results about spin glass tunneling barriers. In addition, our results indicate a nontrivial scaling behavior of the canonical q distributions not only at the freezing point but also deep in the broken phase. {copyright} {ital 1998} {ital The American Physical Society}
On the TAP Free Energy in the Mixed p-Spin Models
NASA Astrophysics Data System (ADS)
Chen, Wei-Kuo; Panchenko, Dmitry
2018-05-01
Thouless et al. (Phys Mag 35(3):593-601, 1977), derived a representation for the free energy of the Sherrington-Kirkpatrick model, called the TAP free energy, written as the difference of the energy and entropy on the extended configuration space of local magnetizations with an Onsager correction term. In the setting of mixed p-spin models with Ising spins, we prove that the free energy can indeed be written as the supremum of the TAP free energy over the space of local magnetizations whose Edwards-Anderson order parameter (self-overlap) is to the right of the support of the Parisi measure. Furthermore, for generic mixed p-spin models, we prove that the free energy is equal to the TAP free energy evaluated on the local magnetization of any pure state.
Universal structures in some mean field spin glasses and an application
NASA Astrophysics Data System (ADS)
Bolthausen, Erwin; Kistler, Nicola
2008-12-01
We discuss a spin glass reminiscent of the random energy model (REM), which allows, in particular, to recast the Parisi minimization into a more classical Gibbs variational principle, thereby shedding some light into the physical meaning of the order parameter of the Parisi theory. As an application, we study the impact of an extensive cavity field on Derrida's REM: Despite its simplicity, this model displays some interesting features such as ultrametricity and chaos in temperature.
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Bouchaud, Jean-Philippe
2008-08-01
We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.
Kardar-Parisi-Zhang universality in the phase distributions of one-dimensional exciton-polaritons
NASA Astrophysics Data System (ADS)
Squizzato, Davide; Canet, Léonie; Minguzzi, Anna
2018-05-01
Exciton-polaritons under driven-dissipative conditions exhibit a condensation transition that belongs to a different universality class from that of equilibrium Bose-Einstein condensates. By numerically solving the generalized Gross-Pitaevskii equation with realistic experimental parameters, we show that one-dimensional exciton-polaritons display fine features of Kardar-Parisi-Zhang (KPZ) dynamics. Beyond the scaling exponents, we show that their phase distribution follows the Tracy-Widom form predicted for KPZ growing interfaces. We moreover evidence a crossover to the stationary Baik-Rains statistics. We finally show that these features are unaffected on a certain timescale by the presence of a smooth disorder often present in experimental setups.
The Parisi Formula has a Unique Minimizer
NASA Astrophysics Data System (ADS)
Auffinger, Antonio; Chen, Wei-Kuo
2015-05-01
In 1979, Parisi (Phys Rev Lett 43:1754-1756, 1979) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221-263, 2006) and later generalized to the mixed p-spin models by Panchenko (Ann Probab 42(3):946-958, 2014). In this paper, we prove that the minimizer in Parisi's formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.
Growing surfaces with anomalous diffusion: Results for the fractal Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2003-09-01
In this paper I study a model for a growing surface in the presence of anomalous diffusion, also known as the fractal Kardar-Parisi-Zhang equation (FKPZ). This equation includes a fractional Laplacian that accounts for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for a specific choice of parameters of the FKPZ equation, the equation can be solved exactly in one dimension, so that all the critical exponents, which describe the surface that grows under FKPZ, can be derived for that case. Afterwards, the self-consistent expansion (SCE) is used to predict the critical exponents for the FKPZ model for any choice of the parameters and any spatial dimension. It is then verified that the results obtained using SCE recover the exact result in one dimension. At the end a simple picture for the behavior of the fractal KPZ equation is suggested and the upper critical dimension of this model is discussed.
Finite Size Corrections to the Parisi Overlap Function in the GREM
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2018-01-01
We investigate the effects of finite size corrections on the overlap probabilities in the Generalized Random Energy Model in two situations where replica symmetry is broken in the thermodynamic limit. Our calculations do not use replicas, but shed some light on what the replica method should give for finite size corrections. In the gradual freezing situation, which is known to exhibit full replica symmetry breaking, we show that the finite size corrections lead to a modification of the simple relations between the sample averages of the overlaps Y_k between k configurations predicted by replica theory. This can be interpreted as fluctuations in the replica block size with a negative variance. The mechanism is similar to the one we found recently in the random energy model in Derrida and Mottishaw (J Stat Mech 2015(1): P01021, 2015). We also consider a simultaneous freezing situation, which is known to exhibit one step replica symmetry breaking. We show that finite size corrections lead to full replica symmetry breaking and give a more complete derivation of the results presented in Derrida and Mottishaw (Europhys Lett 115(4): 40005, 2016) for the directed polymer on a tree.
Stability of the Mézard-Parisi Solution for Random Manifolds
NASA Astrophysics Data System (ADS)
Carlucci, D. M.; de Dominicis, C.; Temesvari, T.
1996-08-01
The eigenvalues of the Hessian associated with random manifolds are constructed for the general case of R steps of replica symmetry breaking. For the Parisi limit Rrightarrow infty (continuum replica symmetry breaking) which is relevant for the manifold dimension D<2, they are shown to be non negative. Les valeurs propres de la hessienne, associée avec une variété aléatoire, sont construites dans le cas général de R étapes de brisure de la symétrie des répliques. Dans la limite de Parisi, Rrightarrow infty (brisure continue de la symétrie des répliques) qui est pertinente pour la dimension de la variété D<2, on montre qu'elles sont non négatives.
Spectral Gap Estimates in Mean Field Spin Glasses
NASA Astrophysics Data System (ADS)
Ben Arous, Gérard; Jagannath, Aukosh
2018-05-01
We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.
Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
Wesener, Thomas; Voigtländer, Karin; Decker, Peter; Oeyen, Jan Philip; Spelda, Jörg
2016-01-01
Abstract In order to evaluate the diversity of Central European Myriapoda species in the course of the German Barcode of Life project, 61 cytochrome c oxidase I sequences of the genus Cryptops Leach, 1815, a centipede genus of the order Scolopendromorpha, were successfully sequenced and analyzed. One sequence of Scolopendra cingulata Latreille, 1829 and one of Theatops erythrocephalus Koch, 1847 were utilized as outgroups. Instead of the expected three species (Cryptops parisi Brolemann, 1920; Cryptops anomalans Newport, 1844; Cryptops hortensis (Donovan, 1810)), analyzed samples included eight to ten species. Of the eight clearly distinguishable morphospecies of Cryptops, five (Cryptops parisi; Cryptops croaticus Verhoeff, 1931; Cryptops anomalans; Cryptops umbricus Verhoeff, 1931; Cryptops hortensis) could be tentatively determined to species level, while a further three remain undetermined (one each from Germany, Austria and Croatia, and Slovenia). Cryptops croaticus is recorded for the first time from Austria. A single specimen (previously suspected as being Cryptops anomalans), was redetermined as Cryptops umbricus Verhoeff, 1931, a first record for Germany. All analyzed Cryptops species are monophyletic and show large genetic distances from one another (p-distances of 13.7–22.2%). Clear barcoding gaps are present in lineages represented by >10 specimens, highlighting the usefulness of the barcoding method for evaluating species diversity in centipedes. German specimens formally assigned to Cryptops parisi are divided into three clades differing by 8.4–11.3% from one another; their intra-lineage genetic distance is much lower at 0–1.1%. The three clades are geographically separate, indicating that they might represent distinct species. Aside from Cryptops parisi, intraspecific distances of Cryptops spp. in Central Europe are low (<3.3%). PMID:27081331
Unification of the Poincaré group with BRST and Parisi-Sourlas supersymmetries
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P.
1986-12-01
The principles of quantum mechanics are used to derive the second-quantized field theory from the classical point particle. The fields of the field theory inevitably depend on two extra bosonic and two extra anticommuting coordinates. Previous treatments have used incorrect choices to fix the gauge for reprametrization invariance. The second-quantized BRST action is invariant under the supergroup IOSp(D, 2/2) which contains the Poincaré group as well as Parisi-Sourlas supersymmetries. One of the extra bosonic coordinates is the remnant for the point particle of a string length. Permanent address: King's College, Strand, London WC2R 2LS, UK.
Self-Trapping Self-Repelling Random Walks
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2017-10-01
Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.
Papastergiou, V; Tsochatzis, E A; Rodriquez-Peralvarez, M; Thalassinos, E; Pieri, G; Manousou, P; Germani, G; Rigamonti, C; Arvaniti, V; Karatapanis, S; Burroughs, A K
2013-01-01
Background In primary biliary cirrhosis (PBC), biochemical criteria at 1 year are considered surrogates of response to ursodeoxycholic acid (UDCA). However, due to the slow natural history of PBC, evaluation at 1 year may be suboptimal to assess the therapeutic response, particularly in early disease. Aim To determine whether evaluation of biochemical criteria at 1 year is a reliable surrogate of UDCA response in early PBC. Methods We analysed the prospectively collected data of 215 patients (untreated = 129; UDCA-treated = 86) with early PBC (normal baseline bilirubin/albumin) and a median follow-up of 8 years (range: 1–29.1). The 1-year attainment rates of the Barcelona, Paris-I, Paris-II and Toronto definitions, and their predictive relevance for a poor outcome (death, transplantation, complications of cirrhosis), were assessed either as a result of UDCA or no treatment. Independent associations with attaining each UDCA response definition were identified by multivariate analysis. Results Untreated patients displayed 1-year biochemical features compatible with ‘treatment response’ at rates (Barcelona: 36.4%, Paris-I: 66.7%, Toronto: 59.7%, Paris-II: 40.3%) similar to those obtained under UDCA. Depending on the definition, baseline ALP≤3xULN (OR: 4.80–35.90), AST≤2xULN (OR: 5.63–9.34) and early histological stage (OR: 3.67–3.87) were the stronger predictors for attaining the criteria. UDCA treatment was associated with attaining Barcelona (OR = 2.16) and Paris-II (OR = 2.84), but not Paris-I, and not Toronto definition when excluding late histological cases. Paris-I criteria were significantly predictive of long-term outcomes (HR = 2.83) in untreated patients. Conclusions In early PBC, biochemical criteria at 1 year reflect severity of the disease rather than the therapeutic response to UDCA. PMID:24117847
NASA Astrophysics Data System (ADS)
Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.
2017-10-01
In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.
NASA Astrophysics Data System (ADS)
Catanzaro, Michele
2012-02-01
Italian theoretical physicist Giorgio Parisi has been an outspoken critic of Silvio Berlusconi's lack of support for science. He talks about how physics may fare under the new administration led by the economist Mario Monti.
NASA Astrophysics Data System (ADS)
Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Klein, H.; Morrison, D. R. O.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Cooper-Sarkar, A. M.; Guy, J.; Venus, W.; Bullock, F. W.; Burke, S.
1994-12-01
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distributions in the proton and the proton structure functions are determined in the range 0.01
Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model
NASA Astrophysics Data System (ADS)
Guerra, Francesco
By using a simple interpolation argument, in previous work we have proven the existence of the thermodynamic limit, for mean field disordered models, including the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this argument in order to compare the limiting free energy with the expression given by the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main result is that the quenched average of the free energy is bounded from below by the value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the difference between the two expressions is given in the form of a sum rule, extending our previous work on the comparison between the true free energy and its replica symmetric Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite volume limit of the ground state energy per site.
Exact short-time height distribution for the flat Kardar-Parisi-Zhang interface
NASA Astrophysics Data System (ADS)
Smith, Naftali R.; Meerson, Baruch
2018-05-01
We determine the exact short-time distribution -lnPf(" close=")H ,t )">H ,t =Sf(H )/√{t } of the one-point height H =h (x =0 ,t ) of an evolving 1 +1 Kardar-Parisi-Zhang (KPZ) interface for flat initial condition. This is achieved by combining (i) the optimal fluctuation method, (ii) a time-reversal symmetry of the KPZ equation in 1 +1 dimension, and (iii) the recently determined exact short-time height distribution -lnPst(H ) of the latter, one encounters two branches: an analytic and a nonanalytic. The analytic branch is nonphysical beyond a critical value of H where a second-order dynamical phase transition occurs. Here we show that, remarkably, it is the analytic branch of Sst(H ) which determines the large-deviation function Sf(H ) of the flat interface via a simple mapping Sf(H )=2-3 /2Sst
NASA Astrophysics Data System (ADS)
Ito, Yasufumi; Takeuchi, Kazumasa A.
2018-04-01
We study height fluctuations of interfaces in the (1 +1 ) -dimensional Kardar-Parisi-Zhang (KPZ) class, growing at different speeds in the left half and the right half of space. Carrying out simulations of the discrete polynuclear growth model with two different growth rates, combined with the standard setting for the droplet, flat, and stationary geometries, we find that the fluctuation properties at and near the boundary are described by the KPZ half-space problem developed in the theoretical literature. In particular, in the droplet case, the distribution at the boundary is given by the largest-eigenvalue distribution of random matrices in the Gaussian symplectic ensemble, often called the GSE Tracy-Widom distribution. We also characterize crossover from the full-space statistics to the half-space one, which arises when the difference between the two growth speeds is small.
Fisher waves and front roughening in a two-species invasion model with preemptive competition.
O'Malley, L; Kozma, B; Korniss, G; Rácz, Z; Caraco, T
2006-10-01
We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits an effective power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power law's exponent slightly differs from the individual-based model's result. We also study roughening of the front, using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is of O(t(-2/3)).
NASA Astrophysics Data System (ADS)
Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.
2018-02-01
We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saakyan, D.B.
The variant of the Kirkpatrick-Sherrington model generalized by Derrida for the case of arbitrary spin is considered. When the number of simultaneously interacting neighbors tends to infinity, a solution to the model is obtained not only by reduction to the random-energy model but also by means of the replica method with the Parisi ansatz.
Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.
Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi
2002-02-01
The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.
Emergence of jams in the generalized totally asymmetric simple exclusion process
NASA Astrophysics Data System (ADS)
Derbyshev, A. E.; Povolotsky, A. M.; Priezzhev, V. B.
2015-02-01
The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014, 10.1088/1742-5468/2012/05/P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.
Parametrization study of the land multiparameter VTI elastic waveform inversion
NASA Astrophysics Data System (ADS)
He, W.; Plessix, R.-É.; Singh, S.
2018-06-01
Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.
Fixed points, stability, and intermittency in a shell model for advection of passive scalars
Kockelkoren; Jensen
2000-08-01
We investigate the fixed points of a shell model for the turbulent advection of passive scalars introduced in Jensen, Paladin, and Vulpiani [Phys. Rev. A 45, 7214 (1992)]. The passive scalar field is driven by the velocity field of the popular Gledzer-Ohkitani-Yamada (GOY) shell model. The scaling behavior of the static solutions is found to differ significantly from Obukhov-Corrsin scaling straight theta(n) approximately k(-1/3)(n), which is only recovered in the limit where the diffusivity vanishes, D-->0. From the eigenvalue spectrum we show that any perturbation in the scalar will always damp out, i.e., the eigenvalues of the scalar are negative and are decoupled from the eigenvalues of the velocity. We estimate Lyapunov exponents and the intermittency parameters using a definition proposed by Benzi, Paladin, Parisi, and Vulpiani [J. Phys. A 18, 2157 (1985)]. The full model is found to be as chaotic as the GOY model, measured by the maximal Lyapunov exponent, but is more intermittent.
Real Spin Glasses Relax Slowly in the Shade of Hierarchical Trees
NASA Astrophysics Data System (ADS)
Vincent, E.; Hammann, J.; Ocio, M.
2009-06-01
The Parisi solution of the mean-field spin glass has been widely accepted and celebrated. Its marginal stability in 3d and its complexity however raised the question of its relevance to real spin glasses. This paper gives a short overview of the important experimental results which could be understood within the mean-field solution. The existence of a true phase transition and the particular behaviour of the susceptibility below the freezing temperature, predicted by the theory, are clearly confirmed by the experimental results. The behaviour of the complex order parameter and of the Fluctuation Dissipation ratio are in good agreement with results of spontaneous noise measurements. The very particular ultrametric symmetry, the key feature of the theory, provided us with a simple description of the rejuvenation and memory effects observed in experiment. Finally, going a step beyond mean-field, the paper shortly discusses new analyses in terms of correlated domains characterized by their length scales, as well as new experiments on superspin glasses which compare well with recent theoretical simulations.
Annual Meeting of International Neural Network Society
1990-07-31
presentations, tutorials, commercial and publishing exhibits, government agency presentations, and social events. - Join us in Boston September 6-10, 1988! iii...Merrill, John and Port, Robert India;ia University Towards A Connectionist Model of Italian Morphology Arbitrio, Aiessandro Istituto Psicologia CNR & AI Lab...Connectionist Network Nolfi Stefano Fondazione Sigma Tau Parisi, Domenico Instituto di Psicologia C.N.R., Roma Decision Rules for Perception of Species
Universality of (2+1)-dimensional restricted solid-on-solid models
NASA Astrophysics Data System (ADS)
Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle
2016-08-01
Extensive dynamical simulations of restricted solid-on-solid models in D =2 +1 dimensions have been done using parallel multisurface algorithms implemented on graphics cards. Numerical evidence is presented that these models exhibit Kardar-Parisi-Zhang surface growth scaling, irrespective of the step heights N . We show that by increasing N the corrections to scaling increase, thus smaller step-sized models describe better the asymptotic, long-wave-scaling behavior.
Mueller, Ulrich; Grobman, K H.
2003-04-01
Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.
Evolution equation in the field theory of strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marui, M.; Sugamoto, A.; Oda, I.
This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.
Evolution equations for connected and disconnected sea parton distributions
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
2017-08-01
It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.
Recent developments on the Kardar-Parisi-Zhang surface-growth equation.
Wio, Horacio S; Escudero, Carlos; Revelli, Jorge A; Deza, Roberto R; de la Lama, Marta S
2011-01-28
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.
Kamenev, Alex; Meerson, Baruch; Sasorov, Pavel V
2016-09-01
We study the probability distribution P(H,t,L) of the surface height h(x=0,t)=H in the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimension when starting from a parabolic interface, h(x,t=0)=x^{2}/L. The limits of L→∞ and L→0 have been recently solved exactly for any t>0. Here we address the early-time behavior of P(H,t,L) for general L. We employ the weak-noise theory-a variant of WKB approximation-which yields the optimal history of the interface, conditioned on reaching the given height H at the origin at time t. We find that at small HP(H,t,L) is Gaussian, but its tails are non-Gaussian and highly asymmetric. In the leading order and in a proper moving frame, the tails behave as -lnP=f_{+}|H|^{5/2}/t^{1/2} and f_{-}|H|^{3/2}/t^{1/2}. The factor f_{+}(L,t) monotonically increases as a function of L, interpolating between time-independent values at L=0 and L=∞ that were previously known. The factor f_{-} is independent of L and t, signaling universality of this tail for a whole class of deterministic initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.
2009-02-15
Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less
Fotina, I; Lütgendorf-Caucig, C; Stock, M; Pötter, R; Georg, D
2012-02-01
Inter-observer studies represent a valid method for the evaluation of target definition uncertainties and contouring guidelines. However, data from the literature do not yet give clear guidelines for reporting contouring variability. Thus, the purpose of this work was to compare and discuss various methods to determine variability on the basis of clinical cases and a literature review. In this study, 7 prostate and 8 lung cases were contoured on CT images by 8 experienced observers. Analysis of variability included descriptive statistics, calculation of overlap measures, and statistical measures of agreement. Cross tables with ratios and correlations were established for overlap parameters. It was shown that the minimal set of parameters to be reported should include at least one of three volume overlap measures (i.e., generalized conformity index, Jaccard coefficient, or conformation number). High correlation between these parameters and scatter of the results was observed. A combination of descriptive statistics, overlap measure, and statistical measure of agreement or reliability analysis is required to fully report the interrater variability in delineation.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.
VizieR Online Data Catalog: Spectra of 75 Swift/BAT optical counterparts (Parisi, 2014)
NASA Astrophysics Data System (ADS)
Parisi, P.; Masetti, N.; Rojas, A. F.; Jimenez-Bailon, E.; Chavushyan, V.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Minniti, D.; Morelli, L.; Ubertini, P.
2013-11-01
The following telescopes were used for the optical spectroscopic study presented here: * the 1.5m at the Cerro Tololo Interamerican Observatory (CTIO), Chile * the 1.52m "Cassini" telescope of the Astronomical Observatory of Bologna, in Loiano, Italy * the 1.82m "Copernicus" telescope of the Astronomical Observatory of Asiago, Italy * the 2.1m telescope of the Observatorio Astronomico Nacional in San Pedro Martir, Mexico (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Igor V.
Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons,more » which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is 'self-tuned'. The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, Jeff; Cornish, Neil J.; Reddinger, J. Lucas
This work presents the first application of the method of genetic algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands of galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs representmore » such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.« less
State orthogonality, boson bunching parameter and bosonic enhancement factor
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2016-04-01
It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.
Directed polymers versus directed percolation
NASA Astrophysics Data System (ADS)
Halpin-Healy, Timothy
1998-10-01
Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.
Bootstrapping on Undirected Binary Networks Via Statistical Mechanics
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-09-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.
Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.
2012-01-01
The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.
Naden, Levi N; Shirts, Michael R
2016-04-12
We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free energy.
Dynamical transitions of a driven Ising interface
NASA Astrophysics Data System (ADS)
Sahai, Manish K.; Sengupta, Surajit
2008-03-01
We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.
The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions
NASA Astrophysics Data System (ADS)
Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas
2017-09-01
We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).
NASA Astrophysics Data System (ADS)
Poorvasha, S.; Lakshmi, B.
2018-05-01
In this paper, RF performance analysis of InAs-based double gate (DG) tunnel field effect transistors (TFETs) is investigated in both qualitative and quantitative fashion. This investigation is carried out by varying the geometrical and doping parameters of TFETs to extract various RF parameters, unity gain cut-off frequency (f t), maximum oscillation frequency (f max), intrinsic gain and admittance (Y) parameters. An asymmetric gate oxide is introduced in the gate-drain overlap and compared with that of DG TFETs. Higher ON-current (I ON) of about 0.2 mA and less leakage current (I OFF) of 29 fA is achieved for DG TFET with gate-drain overlap. Due to increase in transconductance (g m), higher f t and intrinsic gain is attained for DG TFET with gate-drain overlap. Higher f max of 985 GHz is obtained for drain doping of 5 × 1017 cm‑3 because of the reduced gate-drain capacitance (C gd) with DG TFET with gate-drain overlap. In terms of Y-parameters, gate oxide thickness variation offers better performance due to the reduced values of C gd. A second order numerical polynomial model is generated for all the RF responses as a function of geometrical and doping parameters. The simulation results are compared with this numerical model where the predicted values match with the simulated values. Project supported by the Department of Science and Technology, Government of India under SERB Scheme (No. SERB/F/2660).
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
A multispin algorithm for the Kob-Andersen stochastic dynamics on regular lattices
NASA Astrophysics Data System (ADS)
Boccagna, Roberto
2017-07-01
The aim of the paper is to propose an algorithm based on the Multispin Coding technique for the Kob-Andersen glassy dynamics. We first give motivations to speed up the numerical simulation in the context of spin glass models [M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)]; after defining the Markovian dynamics as in [W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)] as well as the related interesting observables, we extend it to the more general framework of random regular graphs, listing at the same time some known analytical results [C. Toninelli, G. Biroli, D.S. Fisher, J. Stat. Phys. 120, 167 (2005)]. The purpose of this work is a dual one; firstly, we describe how bitwise operators can be used to build up the algorithm by carefully exploiting the way data are stored on a computer. Since it was first introduced [M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D 20, 1915 (1979); C. Rebbi, R.H. Swendsen, Phys. Rev. D 21, 4094 (1980)], this technique has been widely used to perform Monte Carlo simulations for Ising and Potts spin systems; however, it can be successfully adapted to more complex systems in which microscopic parameters may assume boolean values. Secondly, we introduce a random graph in which a characteristic parameter allows to tune the possible transition point. A consistent part is devoted to listing the numerical results obtained by running numerical simulations.
On the radiative properties of soot aggregates part 1: Necking and overlapping
NASA Astrophysics Data System (ADS)
Yon, J.; Bescond, A.; Liu, F.
2015-09-01
There is a strong interest in accurately modelling the radiative properties of soot aggregates (also known as black carbon particles) emitted from combustion systems and fires to gain improved understanding of the role of black carbon to global warming. This study conducted a systematic investigation of the effects of overlapping and necking between neighbouring primary particles on the radiative properties of soot aggregates using the discrete dipole approximation. The degrees of overlapping and necking are quantified by the overlapping and necking parameters. Realistic soot aggregates were generated numerically by constructing overlapping and necking to fractal aggregates formed by point-touch primary particles simulated using a diffusion-limited cluster aggregation algorithm. Radiative properties (differential scattering, absorption, total scattering, specific extinction, asymmetry factor and single scattering albedo) were calculated using the experimentally measured soot refractive index over the spectral range of 266-1064 nm for 9 combinations of the overlapping and necking parameters. Overlapping and necking affect significantly the absorption and scattering properties of soot aggregates, especially in the near UV spectrum due to the enhanced multiple scattering effects within an aggregate. By using correctly modified aggregate properties (fractal dimension, prefactor, primary particle radius, and the number of primary particle) and by accounting for the effects of multiple scattering, the simple Rayleigh-Debye-Gans theory for fractal aggregates can reproduce reasonably accurate radiative properties of realistic soot aggregates.
Maximum of an Airy process plus Brownian motion and memory in Kardar-Parisi-Zhang growth
NASA Astrophysics Data System (ADS)
Le Doussal, Pierre
2017-12-01
We obtain several exact results for universal distributions involving the maximum of the Airy2 process minus a parabola and plus a Brownian motion, with applications to the one-dimensional Kardar-Parisi-Zhang (KPZ) stochastic growth universality class. This allows one to obtain (i) the universal limit, for large time separation, of the two-time height correlation for droplet initial conditions, e.g., C∞=limt2/t1→+∞h(t1) h (t2)¯c/h(t1)2¯c, with C∞≈0.623 , as well as conditional moments, which quantify ergodicity breaking in the time evolution; (ii) in the same limit, the distribution of the midpoint position x (t1) of a directed polymer of length t2; and (iii) the height distribution in stationary KPZ with a step. These results are derived from the replica Bethe ansatz for the KPZ continuum equation, with a "decoupling assumption" in the large time limit. They agree and confirm, whenever they can be compared, with (i) our recent tail results for two-time KPZ with the work by de Nardis and Le Doussal [J. Stat. Mech. (2017) 053212, 10.1088/1742-5468/aa6bce], checked in experiments with the work by Takeuchi and co-workers [De Nardis et al., Phys. Rev. Lett. 118, 125701 (2017), 10.1103/PhysRevLett.118.125701] and (ii) a recent result of Maes and Thiery [J. Stat. Phys. 168, 937 (2017), 10.1007/s10955-017-1839-2] on midpoint position.
Concurrent Software Engineering Project
ERIC Educational Resources Information Center
Stankovic, Nenad; Tillo, Tammam
2009-01-01
Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…
NASA Astrophysics Data System (ADS)
Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.
2018-01-01
It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.
Large deviation approach to the generalized random energy model
NASA Astrophysics Data System (ADS)
Dorlas, T. C.; Dukes, W. M. B.
2002-05-01
The generalized random energy model is a generalization of the random energy model introduced by Derrida to mimic the ultrametric structure of the Parisi solution of the Sherrington-Kirkpatrick model of a spin glass. It was solved exactly in two special cases by Derrida and Gardner. A complete solution for the thermodynamics in the general case was given by Capocaccia et al. Here we use large deviation theory to analyse the model in a very straightforward way. We also show that the variational expression for the free energy can be evaluated easily using the Cauchy-Schwarz inequality.
On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Bouchaud, J.-P.
2007-12-01
An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.
Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.
2014-01-01
In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds
NASA Astrophysics Data System (ADS)
Gajek, Z.; Hubert, S.; Krupa, J. C.
1988-12-01
Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.
Growth dynamics of cancer cell colonies and their comparison with noncancerous cells
NASA Astrophysics Data System (ADS)
Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.
2012-01-01
The two-dimensional (2D) growth dynamics of HeLa (cervix cancer) cell colonies was studied following both their growth front and the pattern morphology evolutions utilizing large population colonies exhibiting linearly and radially spreading fronts. In both cases, the colony profile fractal dimension was df=1.20±0.05 and the growth fronts displaced at the constant velocity 0.90±0.05 μm min-1. Colonies showed changes in both cell morphology and average size. As time increased, the formation of large cells at the colony front was observed. Accordingly, the heterogeneity of the colony increased and local driving forces that set in began to influence the dynamics of the colony front. The dynamic scaling analysis of rough colony fronts resulted in a roughness exponent α = 0.50±0.05, a growth exponent β = 0.32±0.04, and a dynamic exponent z=1.5±0.2. The validity of this set of scaling exponents extended from a lower cutoff lc≈60 μm upward, and the exponents agreed with those predicted by the standard Kardar-Parisi-Zhang continuous equation. HeLa data were compared with those previously reported for Vero cell colonies. The value of df and the Kardar-Parisi-Zhang-type 2D front growth dynamics were similar for colonies of both cell lines. This indicates that the cell colony growth dynamics is independent of the genetic background and the tumorigenic nature of the cells. However, one can distinguish some differences between both cell lines during the growth of colonies that may result from specific cooperative effects and the nature of each biosystem.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
Overlapping Modularity at the Critical Point of k-Clique Percolation
NASA Astrophysics Data System (ADS)
Tóth, Bálint; Vicsek, Tamás; Palla, Gergely
2013-05-01
One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.
NASA Astrophysics Data System (ADS)
Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda
2017-06-01
The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.
Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Paik, Nam Jong; Ryu, Ju Seok; Kim, In Young
2017-04-01
Conventional kinematic analysis of videofluoroscopic (VF) swallowing image, most popular for dysphagia diagnosis, requires time-consuming and repetitive manual extraction of diagnostic information from multiple images representing one swallowing period, which results in a heavy work load for clinicians and excessive hospital visits for patients to receive counseling and prescriptions. In this study, a software platform was developed that can assist in the VF diagnosis of dysphagia by automatically extracting a two-dimensional moving trajectory of the hyoid bone as well as 11 temporal and kinematic parameters. Fifty VF swallowing videos containing both non-mandible-overlapped and mandible-overlapped cases from eight patients with dysphagia of various etiologies and 19 videos from ten healthy controls were utilized for performance verification. Percent errors of hyoid bone tracking were 1.7 ± 2.1% for non-overlapped images and 4.2 ± 4.8% for overlapped images. Correlation coefficients between manually extracted and automatically extracted moving trajectories of the hyoid bone were 0.986 ± 0.017 (X-axis) and 0.992 ± 0.006 (Y-axis) for non-overlapped images, and 0.988 ± 0.009 (X-axis) and 0.991 ± 0.006 (Y-axis) for overlapped images. Based on the experimental results, we believe that the proposed platform has the potential to improve the satisfaction of both clinicians and patients with dysphagia.
NASA Astrophysics Data System (ADS)
Anderson, Christian Carl
This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.
ERIC Educational Resources Information Center
Bond, William Glenn
2012-01-01
In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…
Deconvolution method for accurate determination of overlapping peak areas in chromatograms.
Nelson, T J
1991-12-20
A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by conventional methods.
Image Discrimination Models With Stochastic Channel Selection
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.
A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure
Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao
2015-01-01
Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148
Chromatogram simulation by area reproduction.
Boe, Bjarne
2007-01-12
A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.
NASA Astrophysics Data System (ADS)
Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.
2011-02-01
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.
Laub, P; Budy, Phaedra
2015-01-01
A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non-native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single-species conservation plans.
Universal scaling function in discrete time asymmetric exclusion processes
NASA Astrophysics Data System (ADS)
Chia, Nicholas; Bundschuh, Ralf
2005-03-01
In the universality class of the one dimensional Kardar-Parisi-Zhang surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since Derrida and Lebowitz' original publication this universality has been verified for a variety of continuous time systems in the KPZ universality class. We study the Derrida-Lebowitz scaling function for multi-particle versions of the discrete time Asymmetric Exclusion Process. We find that in this discrete time system the Derrida-Lebowitz scaling function not only properly characterizes the large system size limit, but even accurately describes surprisingly small systems. These results have immediate applications in searching biological sequence databases.
Depinning of an anisotropic interface in random media: The tilt effect
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Jeong, H.; Kahng, B.; Kim, D.
2000-08-01
We study the tilt dependence of the pinning-depinning transition for an interface described by the anisotropic quenched Kardar-Parisi-Zhang equation in 2+1 dimensions, where the two signs of the nonlinear terms are different from each other. When the substrate is tilted by m along the positive sign direction, the critical force Fc(m) depends on m as Fc(m)-Fc(0)~-\\|m\\|1.9(1). The interface velocity v near the critical force follows the scaling form v~\\|f\\|θΨ+/-(m2/\\|f\\|θ+φ) with θ=0.9(1) and φ=0.2(1), where f≡F-Fc(0) and F is the driving force.
Contribution to the study of the physico-chemical structure of Clais
Hebert, Remy; Britt, S. E.
1954-01-01
The Cormeilles-en-Parisis hill shows one of the best geologic sections of the Paris region. The 80 meter high working face of the quarry exposes the complete section of the "Ludian" [the youngest beds of the Eocene] with its alternations of the marl and gypsum. Above is the sequence of supra-gypseous marls of the [lower oligocene] Sannosian stage, overlain by a very complex series of alternation brackish water and lacustrine layers, from blue marls to Brie limestone, up through the white Pantin marls, brown marls containing the pelecypod genus Cyrena and green marls. These strata overlain by the [Middle Oligocene] Stampian beds represented by the Fontainebleau sands and Ostrea-bearing marls.
Δmix parameter in the overlap on domain-wall mixed action
NASA Astrophysics Data System (ADS)
Lujan, M.; Alexandru, A.; Chen, Y.; Draper, T.; Freeman, W.; Gong, M.; Lee, F. X.; Li, A.; Liu, K. F.; Mathur, N.
2012-07-01
A direct calculation of the mixed action parameter Δmix with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1 flavor domain-wall gauge configurations: 243×64 (aml=0.005, a=0.114fm) and 323×64 (aml=0.004, 0.006, 0.008, a=0.085fm). For pion masses close to 300 MeV we find Δmix=0.030(6)GeV4 at a=0.114fm and Δmix=0.033(12)GeV4 at a=0.085fm. The results are quite independent of the lattice spacing and they are significantly smaller than the results for valence domain-wall fermions on asqtad sea or those of valence overlap fermions on clover sea. Combining the results extracted from these two ensembles, we get Δmix=0.030(6)(5)GeV4, where the first error is statistical and the second is the systematic error associated with the fitting method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockett, P.B.
1989-01-01
The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockett, P.B.
1989-01-01
The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less
Illusion induced overlapped optics.
Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin
2014-01-13
The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.
S parameter and pseudo Nambu-Goldstone boson mass from lattice QCD.
Shintani, E; Aoki, S; Fukaya, H; Hashimoto, S; Kaneko, T; Matsufuru, H; Onogi, T; Yamada, N
2008-12-12
We present a lattice calculation of L10, one of the low-energy constants in chiral perturbation theory, and the charged-neutral pion squared-mass splitting, using dynamical overlap fermion. The exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the S parameter and the pseudo Nambu-Goldstone boson mass, respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.
The effect of relatedness and pack size on territory overlap in African wild dogs.
Jackson, Craig R; Groom, Rosemary J; Jordan, Neil R; McNutt, J Weldon
2017-01-01
Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog ( Lycaon pictus ) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.
Plachi, Franciele; Balzan, Fernanda M; Sanseverino, Renata A; Palombini, Dora V; Marques, Renata D; Clausell, Nadine O; Knorst, Marli M; Neder, J Alberto; Berton, Danilo C
2018-02-21
Aim To investigate if cardiac/pulmonary functional tests and variables obtained from clinical practice (body mass index, dyspnea, functional class, clinical judgment of disability to perform an exercise test and previous hospitalization rate) are related to mortality in patients with overlap chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). Although the coexistence of COPD and CHF has been growingly reported, description of survival predictors considering the presence of both conditions is still scarce. Using a cohort design, outpatients with the previous diagnosis of COPD and/or CHF that performed both spirometry and echocardiography in the same year were followed-up during a mean of 20.9±8.5 months. Findings Of the 550 patients initially evaluated, 301 had both spirometry and echocardiography: 160 (53%) with COPD on isolation; 100 (33%) with CHF on isolation; and 41 (14%) with overlap. All groups presented similar mortality: COPD 17/160 (11%); CHF 12/100 (12%); and overlap 7/41 (17%) (P=0.73). In the overlap group (n=41), inability to exercise and hospitalization rate were the unique parameters associated with higher mortality (seven events) in univariate analyses. In conclusion, inability to exercise and hospitalization rate emerged as the unique parameters associated with mortality in our sample.
Age determination of 15 old to intermediate-age small Magellanic cloud star clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parisi, M. C.; Clariá, J. J.; Piatti, A. E.
2014-04-01
We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. Inmore » particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.« less
Stitching interferometry of a full cylinder without using overlap areas
NASA Astrophysics Data System (ADS)
Peng, Junzheng; Chen, Dingfu; Yu, Yingjie
2017-08-01
Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.
Suppressing correlations in massively parallel simulations of lattice models
NASA Astrophysics Data System (ADS)
Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle
2017-11-01
For lattice Monte Carlo simulations parallelization is crucial to make studies of large systems and long simulation time feasible, while sequential simulations remain the gold-standard for correlation-free dynamics. Here, various domain decomposition schemes are compared, concluding with one which delivers virtually correlation-free simulations on GPUs. Extensive simulations of the octahedron model for 2 + 1 dimensional Kardar-Parisi-Zhang surface growth, which is very sensitive to correlation in the site-selection dynamics, were performed to show self-consistency of the parallel runs and agreement with the sequential algorithm. We present a GPU implementation providing a speedup of about 30 × over a parallel CPU implementation on a single socket and at least 180 × with respect to the sequential reference.
Coupled Kardar-Parisi-Zhang Equations in One Dimension
NASA Astrophysics Data System (ADS)
Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert
2013-11-01
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2013-04-01
In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.
Radial restricted solid-on-solid and etching interface-growth models
NASA Astrophysics Data System (ADS)
Alves, Sidiney G.
2018-03-01
An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.
Radial restricted solid-on-solid and etching interface-growth models.
Alves, Sidiney G
2018-03-01
An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy_{2} process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.
Single-particle strength from nucleon transfer in oxygen isotopes: Sensitivity to model parameters
NASA Astrophysics Data System (ADS)
Flavigny, F.; Keeley, N.; Gillibert, A.; Obertelli, A.
2018-03-01
In the analysis of transfer reaction data to extract nuclear structure information the choice of input parameters to the reaction model such as distorting potentials and overlap functions has a significant impact. In this paper we consider a set of data for the (d ,t ) and (d ,3He ) reactions on 14,16,18O as a well-delimited subject for a study of the sensitivity of such analyses to different choices of distorting potentials and overlap functions with particular reference to a previous investigation of the variation of valence nucleon correlations as a function of the difference in nucleon separation energy Δ S =| Sp-Sn| [Phys. Rev. Lett. 110, 122503 (2013), 10.1103/PhysRevLett.110.122503].
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Liu, Hui; Liu, Wei; Lin, Ying; Liu, Teng; Ma, Zhaowu; Li, Mo; Zhang, Hong-Mei; Kenneth Wang, Qing; Guo, An-Yuan
2015-05-27
Scoring the correlation between two genes by their shared properties is a common and basic work in biological study. A prospective way to score this correlation is to quantify the overlap between the two sets of homogeneous properties of the two genes. However the proper model has not been decided, here we focused on studying the quantification of overlap and proposed a more effective model after theoretically compared 7 existing models. We defined three characteristic parameters (d, R, r) of an overlap, which highlight essential differences among the 7 models and grouped them into two classes. Then the pros and cons of the two groups of model were fully examined by their solution space in the (d, R, r) coordinate system. Finally we proposed a new model called OScal (Overlap Score calculator), which was modified on Poisson distribution (one of 7 models) to avoid its disadvantages. Tested in assessing gene relation using different data, OScal performs better than existing models. In addition, OScal is a basic mathematic model, with very low computation cost and few restrictive conditions, so it can be used in a wide-range of research areas to measure the overlap or similarity of two entities.
Cylinder stitching interferometry: with and without overlap regions
NASA Astrophysics Data System (ADS)
Peng, Junzheng; Chen, Dingfu; Yu, Yingjie
2017-06-01
Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.
NASA Astrophysics Data System (ADS)
Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar
2017-02-01
Magnesium, as a biomaterial has the potential to replace conventional implant materials owing to its numerous advantages. However, high corrosion rate is a major obstacle that has to be addressed for its implementation as implants. This study aims to evaluate the feasibility and effects of High Repetition Laser Shock Peening (HRLSP) on biocompatibility and corrosion resistance of Mg samples and as well as to analyze the effect of operational parameters such as peening with overlap on corrosion rate. From the results obtained using hydrogen evolution and mass loss methods, it was found that corrosion rates of both 0% overlap and 66% overlap peened samples reduced by more than 50% compared to that of unpeened sample and sample peened with 66% overlap exhibited least corrosion. The biocompatibility of peened Mg samples was also enhanced as there was neither rapid pH variation nor large hydrogen bubble formation around samples.
Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji
2015-12-01
Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.
Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability
ERIC Educational Resources Information Center
von Oertzen, Timo; Boker, Steven M.
2010-01-01
This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…
Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model
Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel
2015-01-01
Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637
Tochino, Yoshihiro; Asai, Kazuhisa; Shuto, Taichi; Hirata, Kazuto
2017-03-01
Japan is an aging society, and the number of elderly patients with asthma and chronic obstructive pulmonary disease (COPD) is consequently increasing, with an estimated incidence of approximately 5 million. In 2014, asthma-COPD overlap syndrome (ACOS) was defined by a joint project of Global Initiative for Asthma (GINA) committee and the Global Initiative for Chronic Obstructive Lung Disease (GOLD) committee. The main aims of this consensus-based document are to assist clinicians, especially those in primary care or nonpulmonary specialties. In this article, we discussed parameters to differentiate asthma and COPD in elderly patients and showed prevalence, clinical features and treatment of ACOS on the basis of the guidelines of GINA and GOLD. Furthermore, we showed also referral for specialized investigations.
MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2015-04-16
Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies andmore » interstitial atoms as a function of overlap are presented.« less
Precise orbit determination of BeiDou constellation based on BETS and MGEX network.
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-04-15
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.
Combined node and link partitions method for finding overlapping communities in complex networks
Jin, Di; Gabrys, Bogdan; Dang, Jianwu
2015-01-01
Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829
Transverse energy and forward jet production in the low x regime at HERA
NASA Astrophysics Data System (ADS)
Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Nieberball, F.; Niebuhr, C.; Niedzballa, Ch; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zur Nedden, M.; H1 Collaboration
1995-02-01
The production of transverse energy in deep inelastic scattering is measured as a function of the kinematic variables x and Q2 using the H1 detector at the ep collider HERA. The results are compared to the different predictions based upon two alternative QCD evolution equations, namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations. In a pseudorapidity interval which is central in the hadronic centre of mass system between the current and the proton remnant fragmentation region the produced transverse energy increases with decreasing x for constant Q2. Such a behaviour can be explained with a QCD calculation based upon the BFKL ansatz. The rate of forward jets, proposed as a signature for BFKL dynamics, has been measured.
Zero-temperature directed polymer in random potential in 4+1 dimensions.
Kim, Jin Min
2016-12-01
Zero-temperature directed polymer in random potential in 4+1 dimensions is described. The fluctuation ΔE(t) of the lowest energy of the polymer varies as t^{β} with β=0.159±0.007 for polymer length t and ΔE follows ΔE(L)∼L^{α} at saturation with α=0.275±0.009, where L is the system size. The dynamic exponent z≈1.73 is obtained from z=α/β. The estimated values of the exponents satisfy the scaling relation α+z=2 very well. We also monitor the end to end distance of the polymer and obtain z independently. Our results show that the upper critical dimension of the Kardar-Parisi-Zhang equation is higher than d=4+1 dimensions.
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary
2017-05-01
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.
STITCHER 2.0: primer design for overlapping PCR applications
O’Halloran, Damien M.; Uriagereka-Herburger, Isabel; Bode, Katrin
2017-01-01
Overlapping polymerase chain reaction (PCR) is a common technique used by researchers in very diverse fields that enables the user to ‘stitch’ individual pieces of DNA together. Previously, we have reported a web based tool called STITCHER that provides a platform for researchers to automate the design of primers for overlapping PCR applications. Here we present STITCHER 2.0, which represents a substantial update to STITCHER. STITCHER 2.0 is a newly designed web tool that automates the design of primers for overlapping PCR. Unlike STITCHER, STITCHER 2.0 considers diverse algorithmic parameters, and returns multiple result files that include a facility for the user to draw their own primers as well as comprehensive visual guides to the user’s input, output, and designed primers. These result files provide greater control and insight during experimental design and troubleshooting. STITCHER 2.0 is freely available to all users without signup or login requirements and can be accessed at the following webpage: www.ohalloranlab.net/STITCHER2.html. PMID:28358011
STITCHER 2.0: primer design for overlapping PCR applications.
O'Halloran, Damien M; Uriagereka-Herburger, Isabel; Bode, Katrin
2017-03-30
Overlapping polymerase chain reaction (PCR) is a common technique used by researchers in very diverse fields that enables the user to 'stitch' individual pieces of DNA together. Previously, we have reported a web based tool called STITCHER that provides a platform for researchers to automate the design of primers for overlapping PCR applications. Here we present STITCHER 2.0, which represents a substantial update to STITCHER. STITCHER 2.0 is a newly designed web tool that automates the design of primers for overlapping PCR. Unlike STITCHER, STITCHER 2.0 considers diverse algorithmic parameters, and returns multiple result files that include a facility for the user to draw their own primers as well as comprehensive visual guides to the user's input, output, and designed primers. These result files provide greater control and insight during experimental design and troubleshooting. STITCHER 2.0 is freely available to all users without signup or login requirements and can be accessed at the following webpage: www.ohalloranlab.net/STITCHER2.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundancesmore » for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.« less
Diffusion amid random overlapping obstacles: Similarities, invariants, approximations
Novak, Igor L.; Gao, Fei; Kraikivski, Pavel; Slepchenko, Boris M.
2011-01-01
Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in a void between random overlapping obstacles: essential invariance of effective diffusion coefficients (Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly entire range of excluded volume fractions (ϕ), except for a small vicinity of a percolation threshold. It is shown that while neither of the properties is exact, deviations from them are remarkably small. This allows for quick estimation of void percolation thresholds and approximate reconstruction of Deff (ϕ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of overlapping obstacles of different shapes with comparable sizes. PMID:21513372
A new method of differential structural analysis of gamma-family basic parameters
NASA Technical Reports Server (NTRS)
Melkumian, L. G.; Ter-Antonian, S. V.; Smorodin, Y. A.
1985-01-01
The maximum likelihood method is used for the first time to restore parameters of electron photon cascades registered on X-ray films. The method permits one to carry out a structural analysis of the gamma quanta family darkening spots independent of the gamma quanta overlapping degree, and to obtain maximum admissible accuracies in estimating the energies of the gamma quanta composing a family. The parameter estimation accuracy weakly depends on the value of the parameters themselves and exceeds by an order of the values obtained by integral methods.
Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel
2018-02-01
We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert <\\vert H_c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.
Separation of high-resolution samples of overlapping latent fingerprints using relaxation labeling
NASA Astrophysics Data System (ADS)
Qian, Kun; Schott, Maik; Schöne, Werner; Hildebrandt, Mario
2012-06-01
The analysis of latent fingerprint patterns generally requires clearly recognizable friction ridge patterns. Currently, overlapping latent fingerprints pose a major problem for traditional crime scene investigation. This is due to the fact that these fingerprints usually have very similar optical properties. Consequently, the distinction of two or more overlapping fingerprints from each other is not trivially possible. While it is possible to employ chemical imaging to separate overlapping fingerprints, the corresponding methods require sophisticated fingerprint acquisition methods and are not compatible with conventional forensic fingerprint data. A separation technique that is purely based on the local orientation of the ridge patterns of overlapping fingerprints is proposed by Chen et al. and quantitatively evaluated using off-the-shelf fingerprint matching software with mostly artificially composed overlapping fingerprint samples, which is motivated by the scarce availability of authentic test samples. The work described in this paper adapts the approach presented by Chen et al. for its application on authentic high resolution fingerprint samples acquired by a contactless measurement device based on a Chromatic White Light (CWL) sensor. An evaluation of the work is also given, with the analysis of all adapted parameters. Additionally, the separability requirement proposed by Chen et al. is also evaluated for practical feasibility. Our results show promising tendencies for the application of this approach on high-resolution data, yet the separability requirement still poses a further challenge.
A neural network for the prediction of performance parameters of transformer cores
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Booth, T.; Ilo, A.; Pfützner, H.
1996-07-01
The paper shows that Artificial Neural Networks (ANNs) may offer new possibilities for the prediction of transformer core performance parameters, i.e. no-load power losses and excitation. Basically this technique enables simulations with respect to different construction parameters most notably the characteristics of corner designs, i.e. the overlap length, the air gap length, and the number of steps. However, without additional physical knowledge incorporated into the ANN extrapolation beyond the training data limits restricts the predictive performance.
Modeling of chromosome intermingling by partially overlapping uniform random polygons.
Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J
2011-03-01
During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.
Precise orbit determination of BeiDou constellation based on BETS and MGEX network
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-01-01
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Zhou, X. C.; He, J.; Zhang, Y.
2014-09-01
A series of theoretical analyses and experimental investigations were performed to examine a pulsed fiber-laser tangential profiling and radial sharpening technique for bronze-bonded diamond grinding wheels. The mechanisms for the pulsed laser tangential profiling and radial sharpening of grinding wheels were theoretically analyzed, and the four key processing parameters that determine the quality, accuracy, and efficiency of pulsed laser dressing, namely, the laser power density, laser spot overlap ratio, laser scanning track line overlap ratio, and number of laser scanning cycles, were proposed. Further, by utilizing cylindrical bronze wheels (without diamond grains) and bronze-bonded diamond grinding wheels as the experimental subjects, the effects of these four processing parameters on the removal efficiency and the surface smoothness of the bond material after pulsed laser ablation, as well as the effects on the contour accuracy of the grinding wheels, the protrusion height of the diamond grains, the sharpness of the grain cutting edges, and the graphitization degree of the diamond grains after pulsed laser dressing, were explored. The optimal values of the four key processing parameters were identified.
Origin of the computational hardness for learning with binary synapses.
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotikov, A. V., E-mail: kotikov@theor.jinr.ru; Shaikhatdenov, B. G.
2015-06-15
An expression for the structure function F{sub 2} in the form of Bessel functions at small values of the Bjorken variable x is used. This expression was derived for a flat initial condition in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations. The argument of the strong coupling constant was chosen in such a way as to annihilate the singular part of the anomalous dimensions in the next-to-leading-order of perturbation theory. This choice, together with the frozen and analytic versions of the strong coupling constant, is used to analyze combined data of the H1 and ZEUS Collaborations obtained recently for the structure functionmore » F{sub 2}.« less
Comparative study of the neutrino-nucleon cross section at ultrahigh energies
NASA Astrophysics Data System (ADS)
Gonçalves, V. P.; Hepp, P.
2011-01-01
The high-energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high-energy neutrino telescopes. Currently, there are several approaches that predict different behaviors for its magnitude for ultrahigh energies. In this paper, we present a comparison between the predictions based on linear Dokshitzer-Gribov-Lipatov-Altarelli-Parisi dynamics, nonlinear QCD, and the imposition of a Froissart-like behavior at high energies. In particular, we update the predictions based on the color glass condensate, presenting for the first time the results for σνN using the solution of the running coupling Balitsky-Kovchegov equation. Our results demonstrate that the current theoretical uncertainty for the neutrino-nucleon cross section reaches a factor of three for neutrino energies around 1011GeV and increases to a factor of five for 1013GeV.
Macroscopic response to microscopic intrinsic noise in three-dimensional Fisher fronts.
Nesic, S; Cuerno, R; Moro, E
2014-10-31
We study the dynamics of three-dimensional Fisher fronts in the presence of density fluctuations. To this end we simulate the Fisher equation subject to stochastic internal noise, and study how the front moves and roughens as a function of the number of particles in the system, N. Our results suggest that the macroscopic behavior of the system is driven by the microscopic dynamics at its leading edge where number fluctuations are dominated by rare events. Contrary to naive expectations, the strength of front fluctuations decays extremely slowly as 1/logN, inducing large-scale fluctuations which we find belong to the one-dimensional Kardar-Parisi-Zhang universality class of kinetically rough interfaces. Hence, we find that there is no weak-noise regime for Fisher fronts, even for realistic numbers of particles in macroscopic systems.
Microbial communities in carbonate rocks-from soil via groundwater to rocks.
Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika
2017-09-01
Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-12-30
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-01-01
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846
Cross-correlating 2D and 3D galaxy surveys
Passaglia, Samuel; Manzotti, Alessandro; Dodelson, Scott
2017-06-08
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors ofmore » $${\\sim}1.2$$ to $${\\sim}1.8$$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of $${\\sim}2$$ to $${\\sim}12$$ over internal photo-$z$ reconstructions.« less
Cross-correlating 2D and 3D galaxy surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passaglia, Samuel; Manzotti, Alessandro; Dodelson, Scott
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors ofmore » $${\\sim}1.2$$ to $${\\sim}1.8$$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of $${\\sim}2$$ to $${\\sim}12$$ over internal photo-$z$ reconstructions.« less
Local–global overlap in diversity informs mechanisms of bacterial biogeography
Livermore, Joshua A; Jones, Stuart E
2015-01-01
Spatial variation in environmental conditions and barriers to organism movement are thought to be important factors for generating endemic species, thus enhancing global diversity. Recent microbial ecology research suggested that the entire diversity of bacteria in the global oceans could be recovered at a single site, thus inferring a lack of bacterial endemism. We argue this is not the case in the global ocean, but might be in other bacterial ecosystems with higher dispersal rates and lower global diversity, like the human gut. We quantified the degree to which local and global bacterial diversity overlap in a diverse set of ecosystems. Upon comparison of observed local–global diversity overlap with predictions from a neutral biogeography model, human-associated microbiomes (gut, skin, mouth) behaved much closer to neutral expectations whereas soil, lake and marine communities deviated strongly from the neutral expectations. This is likely a result of differences in dispersal rate among ‘patches', global diversity of these systems, and local densities of bacterial cells. It appears that overlap of local and global bacterial diversity is surprisingly large (but likely not one-hundred percent), and most importantly this overlap appears to be predictable based upon traditional biogeographic parameters like community size, global diversity, inter-patch environmental heterogeneity and patch connectivity. PMID:25848869
Exploring the Co-development of Reading Fluency and Reading Comprehension: A Twin Study
Little, Callie W.; Hart, Sara A.; Quinn, Jamie M.; Tucker-Drob, Elliot M.; Taylor, Jeanette; Schatschneider, Chris
2016-01-01
The present study explores the co-development of two related but separate reading skills, reading fluency and reading comprehension, across grades 1–4. A bivariate biometric dual change score model was applied to longitudinal data collected from 1784 twin pairs between the ages of 6 and 10 years. Grade 1 skills were influenced by highly overlapping genetic and environmental factors. Growth in both skills was influenced by highly overlapping shared environmental factors. Cross-lagged parameters indicated bidirectional effects, with stronger effects from fluency to comprehension change than from comprehension to fluency change. PMID:27859016
The species-area relationship, self-similarity, and the true meaning of the z-value.
Tjørve, Even; Tjørve, Kathleen M Calf
2008-12-01
The power model, S= cA(z) (where S is number of species, A is area, and c and z are fitted constants), is the model most commonly fitted to species-area data assessing species diversity. We use the self-similarity properties of this model to reveal patterns implicated by the z parameter. We present the basic arithmetic leading both to the fraction of new species added when two areas are combined and to species overlap between two areas of the same size, given a continuous sampling scheme. The fraction of new species resulting from expansion of an area can be expressed as alpha(z)-1, where alpha is the expansion factor. Consequently, z-values can be converted to a scale-invariant species overlap between two equally sized areas, since the proportion of species in common between the two areas is 2-2(z). Calculating overlap when adding areas of the same size reveals the intrinsic effect of distance assumed by the bisectional scheme. We use overlap area relationships from empirical data sets to illustrate how answers to the single large or several small reserves (SLOSS) question vary between data sets and with scale. We conclude that species overlap and the effect of distance between sample areas or isolates should be addressed when discussing species area relationships, and lack of fit to the power model can be caused by its assumption of a scale-invariant overlap relationship.
Solving radiative transfer with line overlaps using Gauss-Seidel algorithms
NASA Astrophysics Data System (ADS)
Daniel, F.; Cernicharo, J.
2008-09-01
Context: The improvement in observational facilities requires refining the modelling of the geometrical structures of astrophysical objects. Nevertheless, for complex problems such as line overlap in molecules showing hyperfine structure, a detailed analysis still requires a large amount of computing time and thus, misinterpretation cannot be dismissed due to an undersampling of the whole space of parameters. Aims: We extend the discussion of the implementation of the Gauss-Seidel algorithm in spherical geometry and include the case of hyperfine line overlap. Methods: We first review the basics of the short characteristics method that is used to solve the radiative transfer equations. Details are given on the determination of the Lambda operator in spherical geometry. The Gauss-Seidel algorithm is then described and, by analogy to the plan-parallel case, we see how to introduce it in spherical geometry. Doing so requires some approximations in order to keep the algorithm competitive. Finally, line overlap effects are included. Results: The convergence speed of the algorithm is compared to the usual Jacobi iterative schemes. The gain in the number of iterations is typically factors of 2 and 4 for the two implementations made of the Gauss-Seidel algorithm. This is obtained despite the introduction of approximations in the algorithm. A comparison of results obtained with and without line overlaps for N2H^+, HCN, and HNC shows that the J=3-2 line intensities are significantly underestimated in models where line overlap is neglected.
Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraf, Laxmikant V.; Britt, David W.
2011-09-14
We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.
NASA Technical Reports Server (NTRS)
Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark;
2017-01-01
Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 %/yr uncertainty (0.00008 W/sq m/nm/yr), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations offer additional challenges due to the complexity of the observations, but Earth observations may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.
NASA Astrophysics Data System (ADS)
Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.
2017-12-01
Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations offer additional challenges due to the complexity of the observations, but Earth observations may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.
Analysis of carbon dioxide bands near 2.2 micrometers
NASA Technical Reports Server (NTRS)
Abubaker, M. S.; Shaw, J. H.
1984-01-01
Carbon dioxide is one of the more important atmospheric infrared-absorbing gases due to its relatively high, and increasing, concentration. The spectral parameters of its bands are required for understanding radiative heat transfer in the atmosphere. The line intensities, positions, line half-widths, rotational constants, and band centers of three overlapping bands of CO2 near 2.2 microns are presented. Non-linear least squares (NLLS) regression procedures were employed to determine these parameters.
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Self-consistent expansion for the molecular beam epitaxy equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-->-r',t-t')=2D0\\|r-->- r'\\|2ρ-dδ(t-t'). I find a lower critical dimension dc(ρ)=4+2ρ, above which the linear MBE solution appears. Below the lower critical dimension a ρ-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Solution of QCD⊗QED coupled DGLAP equations at NLO
NASA Astrophysics Data System (ADS)
Zarrin, S.; Boroun, G. R.
2017-09-01
In this work, we present an analytical solution for QCD⊗QED coupled Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations at the leading order (LO) accuracy in QED and next-to-leading order (NLO) accuracy in perturbative QCD using double Laplace transform. This technique is applied to obtain the singlet, gluon and photon distribution functions and also the proton structure function. We also obtain contribution of photon in proton at LO and NLO at high energy and successfully compare the proton structure function with HERA data [1] and APFEL results [2]. Some comparisons also have been done for the singlet and gluon distribution functions with the MSTW results [3]. In addition, the contribution of photon distribution function inside the proton has been compared with results of MRST [4] and with the contribution of sea quark distribution functions which obtained by MSTW [3] and CTEQ6M [5].
Self-consistent expansion for the molecular beam epitaxy equation.
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
NASA Astrophysics Data System (ADS)
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Hard-sphere crystallization gets rarer with increasing dimension
NASA Astrophysics Data System (ADS)
van Meel, J. A.; Charbonneau, B.; Fortini, A.; Charbonneau, P.
2009-12-01
We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J. A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and to compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys. (to be published)].
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-25
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
NASA Astrophysics Data System (ADS)
Durang, Xavier; Henkel, Malte
2017-12-01
Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.
NASA Astrophysics Data System (ADS)
Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Younes, Rached ben
2018-05-01
The broadening, shifting and mixing coefficients of the doublet spectral lines in the ν2 and ν4 bands of PH3 perturbed by H2 have been determined at room temperature. Indeed, the collisional spectroscopic parameters: intensities, line widths, line shifts and line mixing parameters, are all grouped together in the collisional relaxation matrix. To analyse the collisional process and physical effects on spectra of phosphine (PH3), we have used the measurements carried out using a tunable diode-laser spectrometer in the ν2 and ν4 bands of PH3 perturbed by hydrogen (H2) at room temperature. The recorded spectra are fitted by the Voigt profile and the speed-dependent uncorrelated hard collision model of Rautian and Sobelman. These profiles are developed in the studies of isolated lines and are modified to account for the line mixing effects in the overlapping lines. The line widths, line shifts and line mixing parameters are given for six A1 and A2 doublet lines with quantum numbers K = 3n, (n = 1, 2, …) and overlapped by collisional broadening at pressures of less than 50 mbar.
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
Chen, Ting; Zheng, Lei; Yuan, Jie; An, Zhongfu; Chen, Runfeng; Tao, Ye; Li, Huanhuan; Xie, Xiaoji; Huang, Wei
2015-01-01
Developing organic optoelectronic materials with desired photophysical properties has always been at the forefront of organic electronics. The variation of singlet-triplet splitting (ΔEST) can provide useful means in modulating organic excitons for diversified photophysical phenomena, but controlling ΔEST in a desired manner within a large tuning scope remains a daunting challenge. Here, we demonstrate a convenient and quantitative approach to relate ΔEST to the frontier orbital overlap and separation distance via a set of newly developed parameters using natural transition orbital analysis to consider whole pictures of electron transitions for both the lowest singlet (S1) and triplet (T1) excited states. These critical parameters revealed that both separated S1 and T1 states leads to ultralow ΔEST; separated S1 and overlapped T1 states results in small ΔEST; and both overlapped S1 and T1 states induces large ΔEST. Importantly, we realized a widely-tuned ΔEST in a range from ultralow (0.0003 eV) to extra-large (1.47 eV) via a subtle symmetric control of triazine molecules, based on time-dependent density functional theory calculations combined with experimental explorations. These findings provide keen insights into ΔEST control for feasible excited state tuning, offering valuable guidelines for the construction of molecules with desired optoelectronic properties. PMID:26161684
Measurement of plasma sheath overlap above a trench
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Steinberger, Thomas E.
2017-06-01
The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.
NASA Astrophysics Data System (ADS)
Peshnina, I.; Sinitsina, O.
2017-11-01
The study relevance is determined by the increasing interest in reconstruction of city historical centers and located in the area of industrial buildings the functional profile of which needs to be changed. The problem of obtaining extra usable spaces in the historical centers of cities is solved by raising the number of storeys in the buildings which can be achieved by the construction of additional built-in inter-floor overlaps. The article is dedicated to the analysis of the recent years’ experience in reconstruction design involving this method in our country and abroad, in the Netherlands, in particular. The article presents the results of the analysis of the experience in reconstruction of the objects by constructing additional inter-floor overlaps and aims to define the optimum construction solution for built-in inter-floor overlapping and to develop non-existing solutions for wide application of this method in the reconstruction of a building with non-unified and unmodulated parameters. It was determined as expedient to apply a monolith reinforced concrete slab with the use of steel profiled flooring as a formwork and reinforcement and steel beams designed as “Built-in Beams” for the construction of built-in inter-floor overlaps in reconstruction. The article will be useful for specialists doing research in the sphere of reconstruction of the buildings and for the practical activity of design engineers.
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghobadi, Kimia; Ghaffari, Hamid R.; Aleman, Dionne M.
2013-09-15
Purpose: The purpose of this work is to advance the two-step approach for Gamma Knife{sup ®} Perfexion™ (PFX) optimization to account for dose homogeneity and overlap between the planning target volume (PTV) and organs-at-risk (OARs).Methods: In the first step, a geometry-based algorithm is used to quickly select isocentre locations while explicitly accounting for PTV-OARs overlaps. In this approach, the PTV is divided into subvolumes based on the PTV-OARs overlaps and the distance of voxels to the overlaps. Only a few isocentres are selected in the overlap volume, and a higher number of isocentres are carefully selected among voxels that aremore » immediately close to the overlap volume. In the second step, a convex optimization is solved to find the optimal combination of collimator sizes and their radiation duration for each isocentre location.Results: This two-step approach is tested on seven clinical cases (comprising 11 targets) for which the authors assess coverage, OARs dose, and homogeneity index and relate these parameters to the overlap fraction for each case. In terms of coverage, the mean V{sub 99} for the gross target volume (GTV) was 99.8% while the V{sub 95} for the PTV averaged at 94.6%, thus satisfying the clinical objectives of 99% for GTV and 95% for PTV, respectively. The mean relative dose to the brainstem was 87.7% of the prescription dose (with maximum 108%), while on average, 11.3% of the PTV overlapped with the brainstem. The mean beam-on time per fraction per dose was 8.6 min with calibration dose rate of 3.5 Gy/min, and the computational time averaged at 205 min. Compared with previous work involving single-fraction radiosurgery, the resulting plans were more homogeneous with average homogeneity index of 1.18 compared to 1.47.Conclusions: PFX treatment plans with homogeneous dose distribution can be achieved by inverse planning using geometric isocentre selection and mathematical modeling and optimization techniques. The quality of the obtained treatment plans are clinically satisfactory while the homogeneity index is improved compared to conventional PFX plans.« less
Heterojunction fully depleted SOI-TFET with oxide/source overlap
NASA Astrophysics Data System (ADS)
Chander, Sweta; Bhowmick, B.; Baishya, S.
2015-10-01
In this work, a hetero-junction fully depleted (FD) Silicon-on-Insulator (SOI) Tunnel Field Effect Transistor (TFET) nanostructure with oxide overlap on the Germanium-source region is proposed. Investigations using Synopsys Technology Computer Aided Design (TCAD) simulation tools reveal that the simple oxide overlap on the Germanium-source region increases the tunneling area as well as the tunneling current without degrading the band-to-band tunneling (BTBT) and improves the device performance. More importantly, the improvement is independent of gate overlap. Simulation study shows improvement in ON current, subthreshold swing (SS), OFF current, ION/IOFF ration, threshold voltage and transconductance. The proposed device with hafnium oxide (HfO2)/Aluminium Nitride (AlN) stack dielectric material offers an average subthreshold swing of 22 mV/decade and high ION/IOFF ratio (∼1010) at VDS = 0.4 V. Compared to conventional TFET, the Miller capacitance of the device shows the enhanced performance. The impact of the drain voltage variation on different parameters such as threshold voltage, subthreshold swing, transconductance, and ION/IOFF ration are also found to be satisfactory. From fabrication point of view also it is easy to utilize the existing CMOS process flows to fabricate the proposed device.
Enhanced angular overlap model for nonmetallic f -electron systems
NASA Astrophysics Data System (ADS)
Gajek, Z.
2005-07-01
An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.
Role of dimensionality in Axelrod's model for the dissemination of culture
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San
2003-09-01
We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.
Switching LPV Control for High Performance Tactical Aircraft
NASA Technical Reports Server (NTRS)
Lu, Bei; Wu, Fen; Kim, SungWan
2004-01-01
This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.
NASA Astrophysics Data System (ADS)
Altieri, Ada
2018-01-01
In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301], 10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
Altieri, Ada
2018-01-01
In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301]10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
Efficient computational methods to study new and innovative signal detection techniques in SETI
NASA Technical Reports Server (NTRS)
Deans, Stanley R.
1991-01-01
The purpose of the research reported here is to provide a rapid computational method for computing various statistical parameters associated with overlapped Hann spectra. These results are important for the Targeted Search part of the Search for ExtraTerrestrial Intelligence (SETI) Microwave Observing Project.
NASA Astrophysics Data System (ADS)
Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen
2011-01-01
We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.
Determination of mango fruit from binary image using randomized Hough transform
NASA Astrophysics Data System (ADS)
Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba
2015-12-01
A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.
Neilans, Erikson G; Dent, Micheal L
2015-02-01
Auditory scene analysis has been suggested as a universal process that exists across all animals. Relative to humans, however, little work has been devoted to how animals perceptually isolate different sound sources. Frequency separation of sounds is arguably the most common parameter studied in auditory streaming, but it is not the only factor contributing to how the auditory scene is perceived. Researchers have found that in humans, even at large frequency separations, synchronous tones are heard as a single auditory stream, whereas asynchronous tones with the same frequency separations are perceived as 2 distinct sounds. These findings demonstrate how both the timing and frequency separation of sounds are important for auditory scene analysis. It is unclear how animals, such as budgerigars (Melopsittacus undulatus), perceive synchronous and asynchronous sounds. In this study, budgerigars and humans (Homo sapiens) were tested on their perception of synchronous, asynchronous, and partially overlapping pure tones using the same psychophysical procedures. Species differences were found between budgerigars and humans in how partially overlapping sounds were perceived, with budgerigars more likely to segregate overlapping sounds and humans more apt to fuse the 2 sounds together. The results also illustrated that temporal cues are particularly important for stream segregation of overlapping sounds. Lastly, budgerigars were found to segregate partially overlapping sounds in a manner predicted by computational models of streaming, whereas humans were not. PsycINFO Database Record (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Dasgupta, Pingal; Chatterjee, Rupa; Srivastava, Dinesh K.
2017-06-01
We calculate pT spectra and elliptic flow for tip-tip and body-body configurations of full-overlap uranium-uranium (U+U ) collisions by using a hydrodynamic model with smooth initial density distribution and compare the results with those obtained from Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Production of thermal photons is seen to be significantly larger for tip-tip collisions compared with body-body collisions of uranium nuclei in the region pT>1 GeV. The difference in the results for the two configurations of U+U collisions depends on the initial energy deposition which is yet to be constrained precisely from hadronic measurements. The thermal photon spectrum from body-body collisions is found to be close to the spectrum from most-central Au+Au collisions at RHIC. The elliptic-flow parameter calculated for body-body collisions is found to be large and comparable to the v2(pT) for mid-central collisions of Au nuclei. On the other hand, as expected, v2(pT) is close to zero for tip-tip collisions. The qualitative nature of the photon spectra and elliptic flow for the two different orientations of uranium nuclei is found to be independent of the initial parameters of the model calculation. We show that the photon results from fully overlapping U+U collisions are complementary to the results from Au+Au collisions at RHIC.
Switching State-Feedback LPV Control with Uncertain Scheduling Parameters
NASA Technical Reports Server (NTRS)
He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.
2017-01-01
This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yan -Chuan; Bernstein, Gary
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Microprocessor-Based Neural-Pulse-Wave Analyzer
NASA Technical Reports Server (NTRS)
Kojima, G. K.; Bracchi, F.
1983-01-01
Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2
NASA Astrophysics Data System (ADS)
Samari, Fayezeh; Yousefinejad, Saeed
2017-11-01
Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.
NASA Astrophysics Data System (ADS)
Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.
2018-05-01
In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.
György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I
2011-01-27
Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.
Using Approximate Bayesian Computation to infer sex ratios from acoustic data.
Lehnen, Lisa; Schorcht, Wigbert; Karst, Inken; Biedermann, Martin; Kerth, Gerald; Puechmaille, Sebastien J
2018-01-01
Population sex ratios are of high ecological relevance, but are challenging to determine in species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option if vocalizations differ between sexes, but is precluded by overlapping distributions of the values of male and female vocalizations in many species. A method allowing the inference of sex ratios despite such an overlap will therefore greatly increase the information extractable from acoustic data. To meet this demand, we developed a novel approach using Approximate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data. Additionally, parameters characterizing the male and female distribution of acoustic values (mean and standard deviation) are inferred. This information is then used to probabilistically assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods to simulated data demonstrates that sex ratio and acoustic parameter characteristics of males and females are reliably inferred by the ABC approach. Applying both the ABC and the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing. Our methods aim to facilitate evidence-based conservation, and to benefit scientists investigating ecological or conservation questions related to sex- or group specific behaviour across a wide range of organisms emitting acoustic signals. The developed methodology is non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individuals. We provide an R-script for the easy application of the method and discuss potential future extensions and fields of applications. The script can be easily adapted to account for numerous biological systems by adjusting the type and number of groups to be distinguished (e.g. age, social rank, cryptic species) and the acoustic parameters investigated.
Derivation of the spin-glass order parameter from stochastic thermodynamics
NASA Astrophysics Data System (ADS)
Crisanti, A.; Picco, M.; Ritort, F.
2018-05-01
A fluctuation relation is derived to extract the order parameter function q (x ) in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap q between configurations. For a fixed value of q , entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the q (x ) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.
Steven's orbital reduction factor in ionic clusters
NASA Astrophysics Data System (ADS)
Gajek, Z.; Mulak, J.
1985-11-01
General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.
Scaling behavior of ground-state energy cluster expansion for linear polyenes
NASA Astrophysics Data System (ADS)
Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.
Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.
High-precision simulation of the height distribution for the KPZ equation
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Le Doussal, Pierre; Majumdar, Satya N.; Rosso, Alberto; Schehr, Gregory
2018-03-01
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the distribution is obtained over a large range of values, down to a probability density as small as 10-1000 in the tails. Both short and long times are investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations. At short times the agreement with the analytical expression is spectacular. We observe that the far left and right tails, with exponents 5/2 and 3/2, respectively, are preserved also in the region of long times. We present some evidence for the predicted non-trivial crossover in the left tail from the 5/2 tail exponent to the cubic tail of the Tracy-Widom distribution, although the details of the full scaling form remain beyond reach.
Reference results for time-like evolution up to
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Nocera, Emanuele R.
2015-03-01
We present high-precision numerical results for time-like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution in the factorisation scheme, for the first time up to next-to-next-to-leading order accuracy in quantum chromodynamics. First, we scrutinise the analytical expressions of the splitting functions available in the literature, in both x and N space, and check their mutual consistency. Second, we implement time-like evolution in two publicly available, entirely independent and conceptually different numerical codes, in x and N space respectively: the already existing APFEL code, which has been updated with time-like evolution, and the new MELA code, which has been specifically developed to perform the study in this work. Third, by means of a model for fragmentation functions, we provide results for the evolution in different factorisation schemes, for different ratios between renormalisation and factorisation scales and at different final scales. Our results are collected in the format of benchmark tables, which could be used as a reference for global determinations of fragmentation functions in the future.
Parallel discrete-event simulation schemes with heterogeneous processing elements.
Kim, Yup; Kwon, Ikhyun; Chae, Huiseung; Yook, Soon-Hyung
2014-07-01
To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.
Extremal optimization for Sherrington-Kirkpatrick spin glasses
NASA Astrophysics Data System (ADS)
Boettcher, S.
2005-08-01
Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3 for the finite-size correction exponent, and of ρ=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boroun, G. R., E-mail: boroun@razi.ac.ir; Rezaie, B.
We present a set of formulas using the solution of the QCD Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation to extract of the exponents of the gluon distribution, {lambda}{sub g}, and structure function, {lambda}{sub S}, from the Regge-like behavior at low x. The exponents are found to be independent of x and to increase linearly with lnQ{sup 2} and are compared with the most data from the H1 Collaboration. We also calculated the structure function F{sub 2}(x,Q{sup 2}) and the gluon distribution G(x,Q{sup 2}) at low x assuming the Regge-like behavior of the gluon distribution function at this limit and compared them withmore » an NLO-QCD fit to theH1 data, two-Pomeron fit, multipole Pomeron exchange fit, and MRST (A.D. Martin, R.G. Roberts, W.J. Stirling, and R.S. Thorne), DL (A. Donnachie and P.V. Landshoff), and NLO GRV (M. Gluek, E. Reya, and A. Vogt) fit results.« less
Seligmann, Hervé
2013-05-07
GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Comparison of the Noise Characteristics of a Conventional Slat and Krueger Flap
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Hutcheson, Florence V.; Thomas, Russell H.; Housman, Jeffery A.
2016-01-01
An aeroacoustic test of two types of leading-edge high-lift devices has been conducted in the NASA Langley Quiet Flow Facility. The test compares a conventional slat with a notional equivalent-mission Krueger flap. The test matrix includes points that allow for direct comparison of the conventional and Krueger devices for equivalent-mission configurations, where the two high-lift devices satisfy the same lift requirements for a free air flight path at the same cruise airfoil angle of attack. Measurements are made for multiple Mach numbers and directivity angles. Results indicate that the Krueger flap shows similar agreement to the expected power law scaling of a conventional flap, both in terms of Strouhal number and fixed frequency (as a surrogate for Helmholtz number). Directivity patterns vary depending on the specific slat and Krueger orientations. Varying the slat gap while holding overlap constant has the same influence on both the conventional slat and Krueger flap acoustic signature. Closing the gap shows dramatic reduction in levels for both devices. Varying the Krueger overlap has a different effect on the data when compared to varying the slat overlap, but analysis is limited by acoustic sources that regularly present themselves in model-scale wind tunnel testing but are not present for full-scale vehicles. The Krueger cavity is found to have some influence on level and directivity, though not as much as the other considered parameter variations. Overall, while the spectra of the two devices are different in detail, their scaling behavior for varying parameters is extremely similar.
Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow
NASA Astrophysics Data System (ADS)
Henshaw, William D.; Schwendeman, Donald W.
2006-08-01
We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.
The Möbius domain wall fermion algorithm
NASA Astrophysics Data System (ADS)
Brower, Richard C.; Neff, Harmut; Orginos, Kostas
2017-11-01
We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (mres) and the Ward-Takahashi identities. The Möbius class interpolates between Shamir's domain wall operator and Boriçi's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (Ls) but yields exactly the same overlap action in the limit Ls → ∞. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(Ls) , we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls. We argue that the residual mass for a tuned Möbius algorithm with α = O(1 /Lsγ) for γ < 1 will eventually fall asymptotically as mres = O(1 /Ls1+γ) in the case of a 5D Hamiltonian with out a spectral gap.
Analysis of the stress-strain state in single overlap joints using piezo-ceramic actuators
NASA Astrophysics Data System (ADS)
Pǎltânea, Veronica; Pǎltânea, Gheorghe; Popovici, Dorina; Jiga, Gabriel; Papanicolaou, George
2014-05-01
In this paper is presented a 2D approach to finite element modeling and an analytical calculus of a single lap bonded joint. As adherent material were selected a sheet of wood, aluminum and titanium. For adhesive part were selected Bison Super Wood D3 in case of the wood single lap joint and an epoxy resin type DGEBA-TETA for gluing together aluminum and titanium parts. In the article is described a combined method, which consists in the placement of the piezoelectric actuator inside of the adhesive part, in order to determine the tensile stress in the overlap joint. A comparison between the analytical and numerical results has been achieved through a multiphysics modeling - electrical and mechanical coupled problem. The technique used to calculate the mechanical parameters (First Principal Stress, displacements) was the three-point bending test, where different forces were applied in the mid-span of the structure, in order to maintain a constant displacement rate. The length of the overlap joint was modified from 20 to 50 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Maximov, A. V.; Short, R. W.
The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wavemore » model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of the beams that share the same angle with the common-wave vector.« less
Comparison of the Effects of Debonds and Voids in Adhesive Joints
NASA Technical Reports Server (NTRS)
Rossettos, J. N.; Lin, P.; Nayeb-Hashemi, Hamid
1997-01-01
An analytical model is developed to compare the effects of voids an debonds on the interfacial shear stresses between the adherends and the adhesive in simple lap joints. Since the adhesive material above the debond may undergo some extension (either due to applied load or thermal expansion or both), a modified shear lag model, where the adhesive can take an extensional as well as shear deformation, is used in the analysis. The adherends take on only axial loads and act as membranes. Two coupled nondimensional differential equations are derived, and in general, five parameters govern the stress distribution in the overlap region. As expected, the major differences between the debond and the void occur for the stresses near the edge of the defect itself. Whether the defect is a debond or a void, is hardly discernible by the stresses at the overlap region. If the defect occurs precisely at or very close to either end of the overlap, however, differences of the order of 20 percent in the peak stresses can be obtained.
Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Kumar, Ravi; Sreenivas, K.
2013-02-01
Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.
Frigate Defense Effectiveness in Asymmetrical Green Water Engagements
2009-09-01
the model not employ- ing a helicopter, a high overlap in the sets of factors determining loss is observed. Both factor weighting and the predicted...61 4.1 Model Parameter Estimates Overview. . . . . . . . . . . . . . . . . . . . . . 69 4.2 Distribution of loss ...74 4.7 The range at which a contact is deemed hostile has low impact on predicted loss
Automated Processing of Two-Dimensional Correlation Spectra
Sengstschmid; Sterk; Freeman
1998-04-01
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.
Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.
2012-01-01
Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.
A simple spatiotemporal rabies model for skunk and bat interaction in northeast Texas.
Borchering, Rebecca K; Liu, Hao; Steinhaus, Mara C; Gardner, Carl L; Kuang, Yang
2012-12-07
We formulate a simple partial differential equation model in an effort to qualitatively reproduce the spread dynamics and spatial pattern of rabies in northeast Texas with overlapping reservoir species (skunks and bats). Most existing models ignore reservoir species or model them with patchy models by ordinary differential equations. In our model, we incorporate interspecies rabies infection in addition to rabid population random movement. We apply this model to the confirmed case data from northeast Texas with most parameter values obtained or computed from the literature. Results of simulations using both our skunk-only model and our skunk and bat model demonstrate that the model with overlapping reservoir species more accurately reproduces the progression of rabies spread in northeast Texas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keller, Daniel; Babai, Norbert; Kochubey, Olexiy; Han, Yunyun; Markram, Henry; Schürmann, Felix; Schneggenburger, Ralf
2015-01-01
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses. PMID:25951120
USDA-ARS?s Scientific Manuscript database
Representation of precipitation is one of the most difficult aspects of modeling post-fire runoff and erosion and also one of the most sensitive input parameters to rainfall-runoff models. The impact of post-fire convective rainstorms, especially in semi-arid watersheds, depends on the overlap betwe...
Gaussian content as a laser beam quality parameter.
Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal
2011-08-01
We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.
Winding trajectories of noncircular composite shells
NASA Astrophysics Data System (ADS)
Nikityuk, V. A.; Fedorov, V. V.
1995-07-01
An approach has been proposed for determination of the trajectory parameters of a layer formed by winding of continuous ribbons on a complicated surface. An algorithm has been developed for determining the geodesic trajectories of the reinforcement fiber arrangement, reinforcement angles, and geodesic deviation angles. Conditions have been formulated for positional stability of the ribbons on the surface and avoidance of gaps and overlapping between the ribbons along with restrictions to the surface form. Results are given for a calculation of the geodesic turn parameters on a fuselage surface, which is not a surface of revolution, of a light airplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Charge and current orders in the spin-fermion model with overlapping hot spots
NASA Astrophysics Data System (ADS)
Volkov, Pavel A.; Efetov, Konstantin B.
2018-04-01
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...
2017-10-17
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei
2011-12-01
Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h
NASA Astrophysics Data System (ADS)
Yang, Weifang; Xu, Han; Li, Yuanyuan; Wang, Wei
2017-08-01
Polymerization of aniline was prepared by the pulse potentiostatic method in H3PO4, HClO4 and H2SO4 acidic solutions. The morphologies and thermoelectric performances were analyzed by scanning electron microscopy, Seebeck coefficient ( S) and resistivity ( R) measurements. The results show that flake polyaniline (PANI) films can be obtained in H3PO4 and HClO4 acidic solutions, and porous PANI films with nanofiber-overlapped structures can be prepared in H2SO4 solution under the same pulse parameters. PANI films prepared in the three solutions are all p-type thermoelectric materials. PANI films polymerized in H2SO4 solution possess the highest S (30.2 μV K-1) and lowest R (1.6 × 10-3 Ω m) compared with those prepared in H3PO4 and HClO4 solutions, indicating that nanofiber-overlapped structures formed in H2SO4 solution contribute better thermoelectric performance. In addition, the effects of pulse parameters (anodic potential φ a, anodic pulse duration t a and cathodic pulse duration t c) on the surface morphologies and thermoelectric performances of PANI films were systematically investigated.
NASA Astrophysics Data System (ADS)
Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah
2018-03-01
This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.
Two-Nucleon Systems in a Finite Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul
2014-11-01
I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extentsmore » L satisfying fm <~ L <~ 14 fm.« less
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Frequency and risk factors of functional gastro-intestinal disorders in a rural Indian population.
Ghoshal, Uday C; Singh, Rajan
2017-02-01
As best estimates on functional gastrointestinal disorders (FGIDs) prevalence are expected from community studies, which are scanty from Asia, we evaluated the prevalence and risk factors of FGIDs in a rural Indian community. House-to-house survey was undertaken by trained interviewers using translated-validated Rome III and hospital anxiety and depression questionnaires. Among 3426 subjects ≥ 18 years old from 3 villages in Uttar Pradesh, 84% participated, of whom 80% were finally analyzed. Of these 2774 subjects (age 38.4 ± 16.5 years, 1573 [56.7%] male), 2654 [95.7%] were vegetarian and 120 [4.3%] non-vegetarian. Socioeconomic classes were upper (16.7%), upper middle (15.1%), lower middle (22%), upper lower (22.2%), and lower (24%) using Prasad's Classification; 603 (21.7%) had FGIDs (413 [14.9%] dyspepsia, 75 [2.7%] irritable bowel syndrome (IBS) and 115 [4.1%] dyspepsia-IBS overlap), by Rome III criteria. In subjects with dyspepsia, 49/528 (9%) had epigastric pain, 141 (27%) postprandial distress syndromes (EPS, PDS) and 338 (64%) EPS-PDS overlap. IBS was more often diarrhea than constipation-predominant subtype. On univariate analysis, chewing tobacco, aerated drink, tea/coffee, disturbed sleep, vegetarianism, and anxiety parameters and presence of dyspepsia predicting occurrence of IBS were associated with FGIDs. On multivariate analysis, chewing tobacco, aerated soft drink, tea/coffee, vegetarianism, anxiety parameters, and presence of dyspepsia predicting IBS were significant. Functional gastrointestinal disorders, particularly dyspepsia-IBS overlap, are common in rural Indian population; the risk factors included chewing tobacco, aerated soft drink, tea/coffee, vegetarian diet, disturbed sleep, anxiety, and dyspepsia predicting occurrence of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Effects of traffic noise on the calling behavior of two Neotropical hylid frogs
Cechin, Sonia; Antunes, Rógger; Borges-Martins, Márcio
2017-01-01
Anthropogenic disturbance has been pointed to as one of the major causes of the world´s biodiversity crisis. Among them, noise pollution is a potential underestimated threat, projected to increase in the next decades accompanying urban expansion. Rising levels of noise pollution may result in negative impacts on species highly dependent on acoustic communication. Amphibians have long served as model organisms for investigating animal acoustic communication because their reproduction depends on transmitting and receiving acoustic signals. A few studies have investigated the effects of anthropogenic noise on anurans, but there is still limited knowledge on how it affects them. In this study, we test the effect of two intensities of traffic noise on calling males of two Neotropical treefrogs species. We expect to record more changes in call parameters, to avoid masking effect, at higher intensity noise treatments, and in the species with higher call/noise frequency overlap. We performed a set of field playback experiments exposing male frogs to road noise at two different intensities (65dB and 75dB). Focal species are Boana bischoffi (high call/noise frequency overlap) and B. leptolineata (low call/noise frequency overlap). Both species changed acoustic parameters during or after the exposure to traffic noise. Advertisement call rate of B. bischoffi decreased during road noise, and dominant frequency decreased over time. Call length of B. leptolineata increased or decreased, depending on the order of noise intensity. We also observed spatial displacement in both species, which moved away from the noise source. Our results provide evidence that traffic noise affects anuran calling behavior, and noise intensity is an important factor affecting how species respond. PMID:28854253
Reionization of Hydrogen and Helium by Early Stars and Quasars
NASA Astrophysics Data System (ADS)
Wyithe, J. Stuart B.; Loeb, Abraham
2003-04-01
We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.
Effects of traffic noise on the calling behavior of two Neotropical hylid frogs.
Caorsi, Valentina Zaffaroni; Both, Camila; Cechin, Sonia; Antunes, Rógger; Borges-Martins, Márcio
2017-01-01
Anthropogenic disturbance has been pointed to as one of the major causes of the world´s biodiversity crisis. Among them, noise pollution is a potential underestimated threat, projected to increase in the next decades accompanying urban expansion. Rising levels of noise pollution may result in negative impacts on species highly dependent on acoustic communication. Amphibians have long served as model organisms for investigating animal acoustic communication because their reproduction depends on transmitting and receiving acoustic signals. A few studies have investigated the effects of anthropogenic noise on anurans, but there is still limited knowledge on how it affects them. In this study, we test the effect of two intensities of traffic noise on calling males of two Neotropical treefrogs species. We expect to record more changes in call parameters, to avoid masking effect, at higher intensity noise treatments, and in the species with higher call/noise frequency overlap. We performed a set of field playback experiments exposing male frogs to road noise at two different intensities (65dB and 75dB). Focal species are Boana bischoffi (high call/noise frequency overlap) and B. leptolineata (low call/noise frequency overlap). Both species changed acoustic parameters during or after the exposure to traffic noise. Advertisement call rate of B. bischoffi decreased during road noise, and dominant frequency decreased over time. Call length of B. leptolineata increased or decreased, depending on the order of noise intensity. We also observed spatial displacement in both species, which moved away from the noise source. Our results provide evidence that traffic noise affects anuran calling behavior, and noise intensity is an important factor affecting how species respond.
The plant virus microscope image registration method based on mismatches removing.
Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing
2016-01-01
The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Allowing for Horizontally Heterogeneous Clouds and Generalized Overlap in an Atmospheric GCM
NASA Technical Reports Server (NTRS)
Lee, D.; Oreopoulos, L.; Suarez, M.
2011-01-01
While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Blake, Chris; Johnson, Andrew; Amon, Alexandra; Asgari, Marika; Choi, Ami; Erben, Thomas; Glazebrook, Karl; Harnois-Déraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Mead, Alexander; Miller, Lance; Parkinson, David; Poole, Gregory B.; Schneider, Peter; Viola, Massimo; Wolf, Christian
2018-03-01
We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg2 of imaging data by the Kilo Degree Survey (KiDS-450) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of N-body simulations. We methodically analyse different combinations of the observables, finding that the galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude, while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction. The fully combined constraint on S_8 ≡ σ _8 √{Ω _m/0.3}=0.742± 0.035, which is an improvement by 20 per cent compared to KiDS alone, corresponds to a 2.6σ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favoured in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the S8 constraint in the extended cosmology compared to KiDS alone.
The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Passoni, D.; Federici, B.; Ferrando, I.; Gagliolo, S.; Sguerso, D.
2018-05-01
The Unmanned Aerial System (UAS) is widely used in the photogrammetric surveys both of structures and of small areas. Geomatics focuses the attention on the metric quality of the final products of the survey, creating several 3D modelling applications from UAS images. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an a priori estimation of the expected precisions. The planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. But UAS flight has features completely different from the traditional one. Hence, the use of UAS for photogrammetric applications today requires a growth in knowledge in planning. The basic idea of this research is to provide a drone photogrammetric flight planning tools considering the required metric precisions, given a priori the classical parameters of a photogrammetric planning: flight altitude, overlaps and geometric parameters of the camera. The created "office suite" allows a realistic planning of a photogrammetric survey, starting from an approximate knowledge of the Digital Surface Model (DSM), and the effective attitude parameters, changing along the route. The planning products are the overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the obtained results and the solution proposed for the a priori estimates of the precisions in the particular case of UAS surveys are here reported.
Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang
2016-08-01
Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.
STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2014-10-01
Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
The Mobius domain wall fermion algorithm
Brower, Richard C.; Neff, Harmut; Orginos, Kostas
2017-07-22
We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less
The Mobius domain wall fermion algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brower, Richard C.; Neff, Harmut; Orginos, Kostas
We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less
Shao, Jing-Yuan; Qu, Hai-Bin; Gong, Xing-Chu
2018-05-01
In this work, two algorithms (overlapping method and the probability-based method) for design space calculation were compared by using the data collected from extraction process of Codonopsis Radix as an example. In the probability-based method, experimental error was simulated to calculate the probability of reaching the standard. The effects of several parameters on the calculated design space were studied, including simulation number, step length, and the acceptable probability threshold. For the extraction process of Codonopsis Radix, 10 000 times of simulation and 0.02 for the calculation step length can lead to a satisfactory design space. In general, the overlapping method is easy to understand, and can be realized by several kinds of commercial software without coding programs, but the reliability of the process evaluation indexes when operating in the design space is not indicated. Probability-based method is complex in calculation, but can provide the reliability to ensure that the process indexes can reach the standard within the acceptable probability threshold. In addition, there is no probability mutation in the edge of design space by probability-based method. Therefore, probability-based method is recommended for design space calculation. Copyright© by the Chinese Pharmaceutical Association.
A model for evolution of overlapping community networks
NASA Astrophysics Data System (ADS)
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
Integrated interpretation of overlapping AEM datasets achieved through standardisation
NASA Astrophysics Data System (ADS)
Sørensen, Camilla C.; Munday, Tim; Heinson, Graham
2015-12-01
Numerous airborne electromagnetic surveys have been acquired in Australia using a variety of systems. It is not uncommon to find two or more surveys covering the same ground, but acquired using different systems and at different times. Being able to combine overlapping datasets and get a spatially coherent resistivity-depth image of the ground can assist geological interpretation, particularly when more subtle geophysical responses are important. Combining resistivity-depth models obtained from the inversion of airborne electromagnetic (AEM) data can be challenging, given differences in system configuration, geometry, flying height and preservation or monitoring of system acquisition parameters such as waveform. In this study, we define and apply an approach to overlapping AEM surveys, acquired by fixed wing and helicopter time domain electromagnetic (EM) systems flown in the vicinity of the Goulds Dam uranium deposit in the Frome Embayment, South Australia, with the aim of mapping the basement geometry and the extent of the Billeroo palaeovalley. Ground EM soundings were used to standardise the AEM data, although results indicated that only data from the REPTEM system needed to be corrected to bring the two surveys into agreement and to achieve coherent spatial resistivity-depth intervals.
Competitive STDP Learning of Overlapping Spatial Patterns.
Krunglevicius, Dalius
2015-08-01
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.
Spherical aberration correction with an in-lens N-fold symmetric line currents model.
Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji
2018-04-01
In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.
Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding
NASA Astrophysics Data System (ADS)
Mrna, Libor; Hornik, Petr
Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.
Baleen whales and their prey in a coastal environment
Piatt, John F.; Methven, David A.; Burger, Alan E.; McLagan, Ruth L.; Mercer, Vicki; Creelman, Elizabeth
1989-01-01
Patterns of abundance of humpback (Megaptera novaeangliae), fin (Balaenoptera physalus), and minke (Balaenoptera acutorostrata) whales are described in relation to the abundance of their primary prey, capelin (Mallotus villosus), during 1982–1985 at Witless Bay, Newfoundland. The abundance ratio of the three whale species was 10:1:3.5, respectively. Abundance of all whale species was strongly correlated with abundance of capelin through each season and between years. Capelin abundance accounted for 63% of the variation in whale numbers in 1983 and 1984, while environmental parameters (e.g., water temperatures) accounted for little variance. The amount of capelin consumed by whales was small (< 2%) compared with the amount available. All three species overlapped temporally at Witless Bay, but spatial overlap was reduced as fins occurred primarily offshore, minkes primarily inshore, and humpbacks in bay habitats of intermediate depth.
Evanescent-wave bonding between optical waveguides.
Povinelli, Michelle L; Loncar, Marko; Ibanescu, Mihai; Smythe, Elizabeth J; Johnson, Steven G; Capasso, Federico; Joannopoulos, John D
2005-11-15
Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.
a Fast Approach for Stitching of Aerial Images
NASA Astrophysics Data System (ADS)
Moussa, A.; El-Sheimy, N.
2016-06-01
The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation parameters of the images are employed successively in a growing fashion to create the stitched image and the coverage image. The proposed approach is implemented and tested using the images acquired through a UAV flight mission and the achieved results are presented and discussed.
Uncertainty analysis of least-cost modeling for designing wildlife linkages.
Beier, Paul; Majka, Daniel R; Newell, Shawn L
2009-12-01
Least-cost models for focal species are widely used to design wildlife corridors. To evaluate the least-cost modeling approach used to develop 15 linkage designs in southern California, USA, we assessed robustness of the largest and least constrained linkage. Species experts parameterized models for eight species with weights for four habitat factors (land cover, topographic position, elevation, road density) and resistance values for each class within a factor (e.g., each class of land cover). Each model produced a proposed corridor for that species. We examined the extent to which uncertainty in factor weights and class resistance values affected two key conservation-relevant outputs, namely, the location and modeled resistance to movement of each proposed corridor. To do so, we compared the proposed corridor to 13 alternative corridors created with parameter sets that spanned the plausible ranges of biological uncertainty in these parameters. Models for five species were highly robust (mean overlap 88%, little or no increase in resistance). Although the proposed corridors for the other three focal species overlapped as little as 0% (mean 58%) of the alternative corridors, resistance in the proposed corridors for these three species was rarely higher than resistance in the alternative corridors (mean difference was 0.025 on a scale of 1 10; worst difference was 0.39). As long as the model had the correct rank order of resistance values and factor weights, our results suggest that the predicted corridor is robust to uncertainty. The three carnivore focal species, alone or in combination, were not effective umbrellas for the other focal species. The carnivore corridors failed to overlap the predicted corridors of most other focal species and provided relatively high resistance for the other focal species (mean increase of 2.7 resistance units). Least-cost modelers should conduct uncertainty analysis so that decision-makers can appreciate the potential impact of model uncertainty on conservation decisions. Our approach to uncertainty analysis (which can be called a worst-case scenario approach) is appropriate for complex models in which distribution of the input parameters cannot be specified.
Poroviscoelastic cartilage properties in the mouse from indentation.
Chiravarambath, Sidharth; Simha, Narendra K; Namani, Ravi; Lewis, Jack L
2009-01-01
A method for fitting parameters in a poroviscoelastic (PVE) model of articular cartilage in the mouse is presented. Indentation is performed using two different sized indenters and then these data are fitted using a PVE finite element program and parameter extraction algorithm. Data from a smaller indenter, a 15 mum diameter flat-ended 60 deg cone, is first used to fit the viscoelastic (VE) parameters, on the basis that for this tip size the gel diffusion time (approximate time constant of the poroelastic (PE) response) is of the order of 0.1 s, so that the PE response is negligible. These parameters are then used to fit the data from a second 170 mum diameter flat-ended 60 deg cone for the PE parameters, using the VE parameters extracted from the data from the 15 mum tip. Data from tests on five different mouse tibial plateaus are presented and fitted. Parameter variation studies for the larger indenter show that for this case the VE and PE time responses overlap in time, necessitating the use of both models.
Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation
Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.
2004-01-01
Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and methanogenic conditions. Using this transport model, we had limited success in simulating overlap of redox products using reasonable ranges of parameters within a strictly sequential electron acceptor utilization framework. Simulation results indicate that overlap of redox products cannot be accurately simulated using the constructed model, suggesting either that Fe(III) reduction and methanogenesis are occurring simultaneously in the source area, or that heterogeneities in Fe(III) concentration and/or mineral type cause the observed overlap. Additional field, experimental, and modeling studies will be needed to address these questions. ?? 2004 Elsevier B.V. All rights reserved.
Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes
NASA Astrophysics Data System (ADS)
Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd
2018-05-01
In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.
Pattern statistics on Markov chains and sensitivity to parameter estimation
Nuel, Grégory
2006-01-01
Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916
Pattern statistics on Markov chains and sensitivity to parameter estimation.
Nuel, Grégory
2006-10-17
In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
Does chaos assist localization or delocalization?
Tan, Jintao; Lu, Gengbiao; Luo, Yunrong; Hai, Wenhua
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
The behavior of bonded doubler splices for composite sandwich panels
NASA Technical Reports Server (NTRS)
Zeller, T. A.; Weisahaar, T. A.
1980-01-01
The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.
Interfacial properties in a discrete model for tumor growth
NASA Astrophysics Data System (ADS)
Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.
2013-03-01
We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β=0.32(2) that governs the early time regime, (ii) the roughness exponent α=0.49(2) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z=α/β≃1.49(2), which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ∝t1/z, where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
Scaling behavior in corrosion and growth of a passive film.
Aarão Reis, F D A; Stafiej, Janusz
2007-07-01
We study a simple model for metal corrosion controlled by the reaction rate of the metal with an anionic species and the diffusion of that species in the growing passive film between the solution and the metal. A crossover from the reaction-controlled to the diffusion-controlled growth regime with different roughening properties is observed. Scaling arguments provide estimates of the crossover time and film thickness as functions of the reaction and diffusion rates and the concentration of anionic species in the film-solution interface, including a nontrivial square-root dependence on that concentration. At short times, the metal-film interface exhibits Kardar-Parisi-Zhang (KPZ) scaling, which crosses over to a diffusion-limited erosion (Laplacian growth) regime at long times. The roughness of the metal-film interface at long times is obtained as a function of the rates of reaction and diffusion and of the KPZ growth exponent. The predictions have been confirmed by simulations of a lattice version of the model in two dimensions. Relations with other erosion and corrosion models and possible applications are discussed.
Fibonacci family of dynamical universality classes.
Popkov, Vladislav; Schadschneider, Andreas; Schmidt, Johannes; Schütz, Gunter M
2015-10-13
Universality is a well-established central concept of equilibrium physics. However, in systems far away from equilibrium, a deeper understanding of its underlying principles is still lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with dynamical exponent [Formula: see text], another prominent example is the superdiffusive Kardar-Parisi-Zhang (KPZ) class with [Formula: see text]. It appears, e.g., in low-dimensional dynamical phenomena far from thermal equilibrium that exhibit some conservation law. Here we show that both classes are only part of an infinite discrete family of nonequilibrium universality classes. Remarkably, their dynamical exponents [Formula: see text] are given by ratios of neighboring Fibonacci numbers, starting with either [Formula: see text] (if a KPZ mode exist) or [Formula: see text] (if a diffusive mode is present). If neither a diffusive nor a KPZ mode is present, all dynamical modes have the Golden Mean [Formula: see text] as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions that are completely fixed by the macroscopic current density relation and compressibility matrix of the system and hence accessible to experimental measurement.
Energy Current Cumulants in One-Dimensional Systems in Equilibrium
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Saito, Keiji; Roy, Anjan
2018-06-01
A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.
NASA Astrophysics Data System (ADS)
Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.
2017-08-01
This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.
Radiation dose-response curves: cell repair mechanisms vs. ion track overlapping
NASA Astrophysics Data System (ADS)
Kowalska, Agata; Czerski, Konrad; Nasonova, Elena; Kutsalo, Polina; Krasavin, Eugen
2017-12-01
Chromosome aberrations in human lymphocytes exposed to different doses of particle radiation: 150 MeV and spread out Bragg peak proton beams, 22 MeV/u boron beam and 199 V/u carbon beam were studied. For comparison, an experiment with 60Co γ-rays was also performed. We investigated distributions of aberration frequency and the shape of dose-response curves for the total aberration yield as well as for exchange and non-exchange aberrations, separately. Applying the linear-quadratic model, we could derive a relation between the fitted parameters and the ion track radius which could explain experimentally observed curvature of the dose-response curves. The results compared with physical expectations clearly show that the biological effects of cell repair are much more important than the ion track overlapping. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Transmission sputtering under diatomic molecule bombardment. Model calculations
NASA Astrophysics Data System (ADS)
Bitensky, I. S.
1996-04-01
Transmission sputtering means that emission of secondary particles is studied from the downstream side of a bombarded foil. Nonlinear effects in sputtering manifest themselves as a deviation of sputtering yield under molecular ion bombardment from the sum of the yields induced by the constituents at the same velocity. In the reflection geometry the overlap of the spike regions reaches maximum, while in transmission the degree of overlap depends on the projectile and on the foil thickness. It has been shown that the transmission sputtering yield can be described by a function of a scaling parameter determined by beam-foil characteristics and a mechanism of nonlinear sputtering. Calculations of the transmission yield have been made in the thermal spike and shock wave models. The results of calculations are compared with experimental data on phenylalanine molecular ion desorption from organic targets induced by Au + and Au 2+ impact. Suggestions for further experimental study are made.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.
Automatic segmentation of the puborectalis muscle in 3D transperineal ultrasound.
van den Noort, Frieda; Grob, Anique T M; Slump, Cornelis H; van der Vaart, Carl H; van Stralen, Marijn
2017-10-11
The introduction of 3D analysis of the puborectalis muscle, for diagnostic purposes, into daily practice is hindered by the need for appropriate training of the observers. Automatic 3D segmentation of the puborectalis muscle in 3D transperineal ultrasound may aid to its adaption in clinical practice. A manual 3D segmentation protocol was developed to segment the puborectalis muscle. The data of 20 women, in their first trimester of pregnancy, was used to validate the reproducibility of this protocol. For automatic segmentation, active appearance models of the puborectalis muscle were developed. Those models were trained using manual segmentation data of 50 women. The performance of both manual and automatic segmentation was analyzed by measuring the overlap and distance between the segmentations. Also, the interclass correlation coefficients and their 95% confidence intervals were determined for mean echogenicity and volume of the puborectalis muscle. The ICC values of mean echogenicity (0.968-0.991) and volume (0.626-0.910) are good to very good for both automatic and manual segmentation. The results of overlap and distance for manual segmentation are as expected, showing only few pixels (2-3) mismatch on average and a reasonable overlap. Based on overlap and distance 5 mismatches in automatic segmentation were detected, resulting in an automatic segmentation a success rate of 90%. In conclusion, this study presents a reliable manual and automatic 3D segmentation of the puborectalis muscle. This will facilitate future investigation of the puborectalis muscle. It also allows for reliable measurements of clinically potentially valuable parameters like mean echogenicity. This article is protected by copyright. All rights reserved.
Learning with incomplete information in the committee machine.
Bergmann, Urs M; Kühn, Reimer; Stamatescu, Ion-Olimpiu
2009-12-01
We study the problem of learning with incomplete information in a student-teacher setup for the committee machine. The learning algorithm combines unsupervised Hebbian learning of a series of associations with a delayed reinforcement step, in which the set of previously learnt associations is partly and indiscriminately unlearnt, to an extent that depends on the success rate of the student on these previously learnt associations. The relevant learning parameter lambda represents the strength of Hebbian learning. A coarse-grained analysis of the system yields a set of differential equations for overlaps of student and teacher weight vectors, whose solutions provide a complete description of the learning behavior. It reveals complicated dynamics showing that perfect generalization can be obtained if the learning parameter exceeds a threshold lambda ( c ), and if the initial value of the overlap between student and teacher weights is non-zero. In case of convergence, the generalization error exhibits a power law decay as a function of the number of examples used in training, with an exponent that depends on the parameter lambda. An investigation of the system flow in a subspace with broken permutation symmetry between hidden units reveals a bifurcation point lambda* above which perfect generalization does not depend on initial conditions. Finally, we demonstrate that cases of a complexity mismatch between student and teacher are optimally resolved in the sense that an over-complex student can emulate a less complex teacher rule, while an under-complex student reaches a state which realizes the minimal generalization error compatible with the complexity mismatch.
Stark broadening of several Bi IV spectral lines of astrophysical interest
NASA Astrophysics Data System (ADS)
Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.
2017-09-01
The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.
Bayes-Turchin Analysis of Overlapping L-Edges EXAFS Data of Iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossner, H. H.; Schmitz, D.; Imperia, P.
2007-02-02
Spin polarized and spin averaged extended x-ray absorption fine structure ((M)EXAFS) data were measured at temperatures of 180 K and 296 K in the soft x-ray energy regime of the overlapping L-edges of an iron film grown on V(110). The absorption coefficients were analyzed with the Bayes-Turchin procedure. The analysis yields the correction function to the atomic-like background-absorption coefficient calculated by FEFF8 and reveals components of atomic EXAFS oscillations. The EXAFS Debye-Waller (DW) parameters were determined. Their split into a thermal and a structural contribution was not possible without theoretical input since the two temperatures in this experiment were notmore » sufficiently far apart from each other and the k range of the data was too small. The a priori values of the thermal contribution to the DW parameters were therefore derived from a force-field model with two spring constants. They were adjusted to DW parameters calculated from Born-von Karman force constants which had been obtained from inelastic neutron scattering. Those two spring constants also nicely reproduce the unprojected vibrational density of states deduced from phonon dispersion curves. The MEXAFS oscillations can be described by the rigid-band model and the L2- and L3-EXAFS components. A negative exchange-related energy is obtained by fitting the MEXAFS signal in the extended energy region. This is in contrast to the predictions of the Hedin-Lundquist functional and the Dirac-Hara functional used in the FEFF8 code.« less
Hellerhoff, K
2010-11-01
In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-01-01
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045
Boundary overlap for medical image segmentation evaluation
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Varduhi; Voiculescu, Irina
2017-03-01
All medical image segmentation algorithms need to be validated and compared, and yet no evaluation framework is widely accepted within the imaging community. Collections of segmentation results often need to be compared and ranked by their effectiveness. Evaluation measures which are popular in the literature are based on region overlap or boundary distance. None of these are consistent in the way they rank segmentation results: they tend to be sensitive to one or another type of segmentation error (size, location, shape) but no single measure covers all error types. We introduce a new family of measures, with hybrid characteristics. These measures quantify similarity/difference of segmented regions by considering their overlap around the region boundaries. This family is more sensitive than other measures in the literature to combinations of segmentation error types. We compare measure performance on collections of segmentation results sourced from carefully compiled 2D synthetic data, and also on 3D medical image volumes. We show that our new measure: (1) penalises errors successfully, especially those around region boundaries; (2) gives a low similarity score when existing measures disagree, thus avoiding overly inflated scores; and (3) scores segmentation results over a wider range of values. We consider a representative measure from this family and the effect of its only free parameter on error sensitivity, typical value range, and running time.
Some Properties and Uses of Torsional Overlap Integrals
NASA Astrophysics Data System (ADS)
Mekhtiev, Mirza A.; Hougen, Jon T.
1998-01-01
The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-12-22
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).
Field homogeneity improvement of maglev NdFeB magnetic rails from joints.
Li, Y J; Dai, Q; Deng, C Y; Sun, R X; Zheng, J; Chen, Z; Sun, Y; Wang, H; Yuan, Z D; Fang, C; Deng, Z G
2016-01-01
An ideal magnetic rail should provide a homogeneous magnetic field along the longitudinal direction to guarantee the reliable friction-free operation of high temperature superconducting (HTS) maglev vehicles. But in reality, magnetic field inhomogeneity may occur due to lots of reasons; the joint gap is the most direct one. Joint gaps inevitably exist between adjacent segments and influence the longitudinal magnetic field homogeneity above the rail since any magnetic rails are consisting of many permanent magnet segments. To improve the running performance of maglev systems, two new rail joints are proposed based on the normal rail joint, which are named as mitered rail joint and overlapped rail joint. It is found that the overlapped rail joint has a better effect to provide a competitive homogeneous magnetic field. And the further structure optimization has been done to ensure maglev vehicle operation as stable as possible when passing through those joint gaps. The results show that the overlapped rail joint with optimal parameters can significantly reduce the magnetic field inhomogeneity comparing with the other two rail joints. In addition, an appropriate gap was suggested when balancing the thermal expansion of magnets and homogenous magnetic field, which is considered valuable references for the future design of the magnetic rails.
Determinants of public cooperation in multiplex networks
NASA Astrophysics Data System (ADS)
Battiston, Federico; Perc, Matjaž; Latora, Vito
2017-07-01
Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...
2017-05-18
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
NASA Astrophysics Data System (ADS)
Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.
2017-06-01
TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.
Double salt décollements: Effect of pinch-out overlapping in experimental thrust wedges
NASA Astrophysics Data System (ADS)
Santolaria, P.; Vendeville, B.; Graveleau, F.; Casas, A.; Soto, R.
2013-12-01
The presence of one or more evaporitic horizons acting as detachment levels in fold-and-thrust belts is common. Numerous works have dealt with the analysis of the role played by basal detachments on the deformation style of fold-and-thrust belts, but less attention has been paid to the interaction between two décollements and strain transfer between them. In this study, 10 sand-silicone analogue experiments with two detachment levels and different stratigraphic pinch-out configurations were carried out: the basal décollement was located hinterlandwards, and the upper one was located forelandwards, with or without geographic underlap or overlap. These geometrical arrangements simulate evaporites deposited in foreland basins progressively involved in shortening. To analyze their influence on the geometry and kinematics of thrust wedges, we tested successively the following parameters: i) the amount of vertical overlapping between the two décollement pinch-outs, ii) the total amount of shortening, and iii) the geometry of the intermediate décollement (pinch-out line parallel or oblique with respect to the pinch-out line of the basal décollement). All experiments were quantitatively monitored by carrying DEM (Digital Elevation Models) and PIV (Particle Image Velocimetry) measurements. All models had a similar style: (i) an inner domain, characterized by a thicker sand cover, with three forward verging thrusts rooted in the basal décollement, (ii) an outer domain with thinner sand cover, whose deformation pattern was characterized by 2 to 6 structures detaching on the upper décollement and (iii) a 'step zone' located between the inner and outer domains having varying geometry and kinematics. In longer-lived models, structures were reworked and salt migration deformed the early emplaced folds and thrusts. Our experimental results point out that the amount of vertical overlapping between the two décollement pinch outs is a first order parameter that conditions not only the geometry and deformation of the 'step zone', but also the geometry and kinematics of the entire thrust wedge. Comparison with the foreland fold-and-thrust belt from the Southeastern Pyrenees, where deformation is transferred from the Triassic evaporites to Eocene-Oligocene evaporitic horizons deposited in front of the advancing Pyrenean thrust sheets, supports the experimental results and validates their interpretation.
Robust Object Tracking with a Hierarchical Ensemble Framework
2016-10-09
layer; 4 -update the top layer; 5-re-extract the sub-patches and update their weights in the middle layer; 6-update the parameters of weak classifiers...approaches [ 4 ], [5], which represent the target with a limited number of non-overlapping or regular local regions. So they may not cope well with the large...significant- ly reduce the feature dimensions so that our approach can handle colorful images without suffering from exponential memory explosion; 4
AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series
NASA Astrophysics Data System (ADS)
Gajek, Z.; Mulak, J.
1990-07-01
Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
NASA Astrophysics Data System (ADS)
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m
Vargas-Madríz, Haidel; Bautista-Martínez, Néstor; Vera-Graziano, Jorge; Sánchez-García, Prometeo; García-Gutiérrez, Cipriano; Sánchez-Soto, Saúl; García-Avila, Clemente de Jesús
2014-01-01
It is known that some nutrients can have both negative and positive effects on some populations of insects. To test this, the Logrank test and the Interval Overlap Test were evaluated for two crop cycles (February-May and May-August) of the 7705 tomato hybrid, and the effect on the psyllid, Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae), was examined under greenhouse conditions. Tomato plants were in polythene bags and irrigated with the following solutions: T1-Steiner solution, T2-Steiner solution with nitrogen reduced to 25%, T3-Steiner solution with potassium reduced to 25%, and T4-Steiner solution with calcium reduced to 25%. In the Logrank test, a significant difference was found when comparing the survival parameters of B. cockerelli generated from the treatment cohorts: T1-T2; T1-T3; T1-T4; T2-T3; and T3-T4, while no significant differences were found in the T2-T4 comparison in the February-May cycle. In the May-August cycle, significant differences were found when comparing the survival parameters generated from the treatment cohorts: T1-T2; T1-T3; and T1-T4, while no significant differences were found in the T2-T3; T2-T4; and T3-T4 comparisons of survival parameters of B. cockerelli fed with the 7705 tomato hybrid. Also, the Interval Overlap Test was done on the treatment cohorts (T1, T2, T3, and T4) in the February-May and May-August cycles. T1 and T2 compare similarly in both cycles when feeding on the treatments up to 36 d. Similarly, in T1 and T3, the behavior of the insect is similar when feeding on the treatments up to 40 and 73 d, respectively. Comparisons T2-T3 and T2-T4 are similar when feeding on both treatments up to 42, 38 and 37, 63 d, respectively. Finally, the T3-T4 comparison was similar when feeding in both treatments up to 20 and 46 d, respectively. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Osswald, Peter; Würthner, Frank
2007-11-21
The activation parameters for the interconversion of atropisomers (P- and M-enantiomer) of core-twisted perylene bisimides have been determined by dynamic NMR spectroscopy (DNMR) and time- and temperature-dependent CD spectroscopy. By comparing the activation parameters of a series of perylene bisimides containing halogen or aryloxy substituents in the bay area (1,6,7,12-positions), a clear structure-property relationship has been found that demonstrates that the kinetic and thermodynamic parameters for the inversion of enantiomers are dependent on the apparent overlap parameter Sigmar* of the bay substituents. This study reveals a high stability (DeltaG(368 K) = 118 kJ/mol) for the atropo-enantiomers of tetrabromo-substituted perylene bisimide in solution. Accordingly, the enantiomers of this derivative could be resolved by HPLC on a chiral column. These enantiomers do not racemize in solution at room temperature and, thus, represent the first examples of enantiomerically pure core-twisted perylene bisimides.
NASA Astrophysics Data System (ADS)
Fukuda, J.; Johnson, K. M.
2017-12-01
Postseismic deformation following the 2011 Mw9.0 Tohoku-oki earthquake has been captured by both on-land GNSS and seafloor GPS/Acoustic networks. Previous studies have shown that the observed postseismic displacements can be reproduced as the sum of contributions from viscoelastic relaxation of coseismic stress changes in the upper mantle and afterslip on the plate interface surrounding the coseismic rupture. In most previous studies, viscoelastic relaxation and afterslip were modeled separately and afterslip was estimated kinematically. In this study, we develop a mechanical model of postseismic deformation in which afterslip and viscoelastic relaxation are driven by coseismic stress perturbations and are mechanically coupled. We assume that afterslip is governed by a rate-strengthening friction law that is characterized with a friction parameter (a-b)*sigma, where a-b represents the rate dependence of steady-state friction and sigma is the effective normal stress. Viscoelastic relaxation of the upper mantle is modeled with a biviscous Burgers rheology that is characterized with the steady-state and transient viscosities. We calculate the evolution of afterslip and viscoelastic relaxation using stress changes computed from an assumed coseismic slip model as the initial condition. We examine the effects of the friction parameters, mantle viscosities, elastic thickness of the slab and upper plate, and coseismic slip distribution on the model prediction and explore the range of the parameters that can fit the observed postseismic displacements. We find that the vertical postseismic displacements are particularly sensitive to these parameters. Our modeling results indicate that the on-land postseismic deformation is dominated by afterslip, whereas the seafloor postseismic deformation is dominated by viscoelastic relaxation. We also examine if afterslip overlaps regions that ruptured seismically during M6.3-7.2 earthquakes between 2003 and 2010. We find that significant overlap between afterslip and the historical M6.3-7.2 coseismic rupture areas are required to fit the horizontal postseismic displacements.
Differential FDG-PET Uptake Patterns in Uninfected and Infected Central Prosthetic Vascular Grafts.
Berger, P; Vaartjes, I; Scholtens, A; Moll, F L; De Borst, G J; De Keizer, B; Bots, M L; Blankensteijn, J D
2015-09-01
(18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scanning has been suggested as a means to detect vascular graft infections. However, little is known about the typical FDG uptake patterns associated with synthetic vascular graft implantation. The aim of the present study was to compare uninfected and infected central vascular grafts in terms of various parameters used to interpret PET images. From 2007 through 2013, patients in whom a FDG-PET scan was performed for any indication after open or endovascular central arterial prosthetic reconstruction were identified. Graft infection was defined as the presence of clinical or biochemical signs of graft infection with positive cultures or based on a combination of clinical, biochemical, and imaging parameters (other than PET scan data). All other grafts were deemed uninfected. PET images were analyzed using maximum systemic uptake value (SUVmax), tissue to background ratio (TBR), visual grading scale (VGS), and focality of FDG uptake (focal or homogenous). Twenty-seven uninfected and 32 infected grafts were identified. Median SUVmax was 3.3 (interquartile range [IQR] 2.0-4.2) for the uninfected grafts and 5.7 for the infected grafts (IQR 2.2-7.8). Mean TBR was 2.0 (IQR 1.4-2.5) and 3.2 (IQR 1.5-3.5), respectively. On VGS, 44% of the uninfected and 72% of the infected grafts were judged as a high probability for infection. Homogenous FDG uptake was noted in 74% of the uninfected and 31% of the infected grafts. Uptake patterns of uninfected and infected grafts showed a large overlap for all parameters. The patterns of FDG uptake for uninfected vascular grafts largely overlap with those of infected vascular grafts. This questions the value of these individual FDG-PET-CT parameters in identifying infected grafts. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena
2014-03-01
A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b
NASA Astrophysics Data System (ADS)
Hosseini, S. M. A.; Baran, I.; Akkerman, R.
2018-05-01
The laser-assisted tape winding (LATW) is an automated process for manufacturing fiber-reinforced thermoplastic tubular products, such as pipes and pressure vessels. Multi-physical phenomena such as heat transfer, mechanical bonding, phase changes and solid mechanics take place during the process. These phenomena need to be understood and described well for an improved product reliability. Temperature is one of the important parameters in this process to control and optimize the product quality which can be employed in an intelligent model-based inline control system. The incoming tape can overlap with the already wounded layer during the process based on the lay-up configuration. In this situation, the incoming tape can step-on or step-off to an already deposited layer/laminate. During the overlapping, the part temperature changes due to the variation of the geometry caused by previously deposited layer, i.e. a bump geometry. In order to qualify the temperature behavior at the bump regions, an experimental set up is designed on a flat laminate. Artificial bumps/steps are formed on the laminate with various thicknesses and fiber orientations. As the laser head experiences the step-on and step-off, the IR (Infra-Red) camera and the embedded thermocouples measure the temperature on the surface and inside the laminate, respectively. During the step-on, a small drop in temperature is observed while in step-off a higher peak in temperature is observed. It can be concluded that the change in the temperature during overlapping is due to the change in laser incident angle made by the bump geometry. The effect of the step thickness on the temperature peak is quantified and found to be significant.
Prediction of CpG-island function: CpG clustering vs. sliding-window methods
2010-01-01
Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903
NASA Astrophysics Data System (ADS)
Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.
2016-12-01
We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence. PMID:21818311
Behavioral Context of Call Production by Eastern North Pacific Blue Whales
2007-01-25
pairs occurring in a repeated song sequence; B calls from a different blue whale are also evident; spectrogram parameters: fast Fourier transform (FFT...Acoustic data were viewed in spectrogram form ( fast Fourier transform [FFT] length 1 s, 80% overlap, Hanning window) to de- termine the presence of calls...dura- tion to song A and B units (Table 2), but the intermit - tent timing clearly distinguishes them from song. Whales producing singular calls were
Berríos, Soledad; López Fenner, Julio; Maignan, Aude
2018-06-19
We show that an inhomogeneous Bernoulli site percolation process running upon a fullerene's dual [Formula: see text] can be used for representing bivalents attached to the nuclear envelope in mouse Mus M. Domesticus 2n = 40 meiotic spermatocytes during pachytene. It is shown that the induced clustering generated by overlapping percolation domains correctly reproduces the probability distribution observed in the experiments (data) after fine tuning the parameters.
Behavioral Ecology of Narwhals in a Changing Arctic
2014-09-30
not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE...parameters that quantitatively describe the overlap of this predator and its prey? What is the potential predation impact on the offshore Greenland halibut...stock? 4. Predation : What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual sea
NASA Astrophysics Data System (ADS)
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.
2018-06-01
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C H W
2018-06-13
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material's ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb 2 Te 3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components
NASA Astrophysics Data System (ADS)
Zhao, Yudi; Wei, Ruyi; Liu, Xuebin
2017-10-01
Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.
Numerical Analysis of the Effects of Normalized Plasma Pressure on RMP ELM Suppression in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlov, D. M.; Moyer, R.A.; Evans, T. E.
2010-01-01
The effect of normalized plasma pressure as characterized by normalized pressure parameter (beta(N)) on the suppression of edge localized modes (ELMs) using resonant magnetic perturbations (RMPs) is studied in low-collisionality (nu* <= 0.2) H-mode plasmas with low-triangularity ( = 0.25) and ITER similar shapes ( = 0.51). Experimental results have suggested that ELM suppression by RMPs requires a minimum threshold in plasma pressure as characterized by beta(N). The variations in the vacuum field topology with beta(N) due to safety factor profile and island overlap changes caused by variation of the Shafranov shift and pedestal bootstrap current are examined numerically withmore » the field line integration code TRIP3D. The results show very small differences in the vacuum field structure in terms of the Chirikov (magnetic island overlap) parameter, Poincare sections and field line loss fractions. These differences do not appear to explain the observed threshold in beta(N) for ELM suppression. Linear peeling-ballooning stability analysis with the ELITE code suggests that the ELMs which persist during the RMPs when beta(N) is below the observed threshold are not type I ELMs, because the pedestal conditions are deep within the stable regime for peeling-ballooning modes. These ELMs have similarities to type III ELMs or low density ELMs.« less
A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.
Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian
2017-05-01
This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.
Contextualization: Memory Formation and Retrieval in a Nested Environment
NASA Astrophysics Data System (ADS)
Piefke, Martina; Markowitsch, Hans J.
Episodic memory functions are highly context-dependent. This is true for both experimental and autobiographical episodic memory. We here review neuropsychological and neuroimaging evidence for effects of differential encoding and retrieval contexts on episodic memory performance as well as the underlying neurofunctional mechanisms. In studies of laboratory episodic memory, the influence of context parameters can be assessed by experimental manipulations. Such experiments suggest that contextual variables mainly affect prefrontal functions supporting executive processes involved in episodic learning and retrieval. Context parameters affecting episodic autobiographical memory are far more complex and cannot easily be controlled. Data support the view that not only prefrontal, but also further medial temporal and posterior parietal regions mediating the re-experience and emotional evaluation of personal memories are highly influenced by changing contextual variables of memory encoding and retrieval. Based on our review of available data, we thus suggest that experimental and autobiographical episodic memories are influenced by both overlapping and differential context parameters.
Criteria for radiologic diagnosis of hypochondroplasia in neonates.
Saito, Tomoko; Nagasaki, Keisuke; Nishimura, Gen; Wada, Masaki; Nyuzuki, Hiromi; Takagi, Masaki; Hasegawa, Tomonobu; Amano, Naoko; Murotsuki, Jun; Sawai, Hideaki; Yamada, Takahiro; Sato, Shuhei; Saitoh, Akihiko
2016-04-01
A radiologic diagnosis of hypochondroplasia is hampered by the absence of age-dependent radiologic criteria, particularly in the neonatal period. To establish radiologic criteria and scoring system for identifying neonates with fibroblast growth factor receptor 3 (FGFR3)-associated hypochondroplasia. This retrospective study included 7 hypochondroplastic neonates and 30 controls. All subjects underwent radiologic examination within 28 days after birth. We evaluated parameters reflecting the presence of (1) short ilia, (2) squared ilia, (3) short greater sciatic notch, (4) horizontal acetabula, (5) short femora, (6) broad femora, (7) metaphyseal flaring, (8) lumbosacral interpedicular distance narrowing and (9) ovoid radiolucency of the proximal femora. Only parameters 1, 3, 4, 5 and 6 were statistically different between the two groups. Parameters 3, 5 and 6 did not overlap between the groups, while parameters 1 and 4 did. Based on these results, we propose a scoring system for hypochondroplasia. Two major criteria (parameters 3 and 6) were assigned scores of 2, whereas 4 minor criteria (parameters 1, 4, 5 and 9) were assigned scores of 1. All neonates with hypochondroplasia in our material scored ≥6. Our set of diagnostic radiologic criteria might be useful for early identification of hypochondroplastic neonates.
Detection thresholds for gaps, overlaps, and no-gap-no-overlaps.
Heldner, Mattias
2011-07-01
Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems. © 2011 Acoustical Society of America
Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.
Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K
2016-07-01
A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.
Electrostatic ion cyclotron velocity shear instability
NASA Technical Reports Server (NTRS)
Lemons, D. S.; Winske, D.; Gary, S. P.
1992-01-01
A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).
Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.
Reis, F D A Aarão
2015-06-01
We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer surface for a>0. A scaling approach for small a predicts crossover times as a(-2/3) and local height fluctuations as a(-1/3) at the crossover, independent of substrate dimension. These relations are different from all previously studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces scaling exponents. The same approach predicts the porosity and average pore height scaling as a(1/3) and a(-1/3), respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful for modeling samples with desired porosity and long pores.
NASA Astrophysics Data System (ADS)
Chia, Nicholas; Bundschuh, Ralf
2005-11-01
In the universality class of the one-dimensional Kardar-Parisi-Zhang (KPZ) surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since and Derrida and Lebowitz’s original publication [Phys. Rev. Lett. 80, 209 (1998)] this universality has been verified for a variety of continuous-time, periodic-boundary systems in the KPZ universality class. Here, we present a numerical method for directly examining the entire particle flux of the asymmetric exclusion process (ASEP), thus providing an alternative to more difficult cumulant ratios studies. Using this method, we find that the Derrida-Lebowitz scaling function (DLSF) properly characterizes the large-system-size limit (N→∞) of a single-particle discrete time system, even in the case of very small system sizes (N⩽22) . This fact allows us to not only verify that the DLSF properly characterizes multiple-particle discrete-time asymmetric exclusion processes, but also provides a way to numerically solve for quantities of interest, such as the particle hopping flux. This method can thus serve to further increase the ease and accessibility of studies involving even more challenging dynamics, such as the open-boundary ASEP.
Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvaskis, Vladas
2004-12-06
Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less
NASA Astrophysics Data System (ADS)
Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar
2018-05-01
In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .
Constructing and assessing brain templates from Chinese pediatric MRI data using SPM
NASA Astrophysics Data System (ADS)
Yin, Qingjie; Ye, Qing; Yao, Li; Chen, Kewei; Jin, Zhen; Liu, Gang; Wu, Xingchun; Wang, Tingting
2005-04-01
Spatial normalization is a very important step in the processing of magnetic resonance imaging (MRI) data. So the quality of brain templates is crucial for the accuracy of MRI analysis. In this paper, using the classical protocol and the optimized protocol plus nonlinear deformation, we constructed the T1 whole brain templates and apriori brain tissue data from 69 Chinese pediatric MRI data (age 7-16 years). Then we proposed a new assessment method to evaluate our templates. 10 pediatric subjects were chosen to do the assessment as the following steps. First, the cerebellum region, the region of interest (ROI), was located on both the pediatric volume and the template volume by an experienced neuroanatomist. Second, the pediatric whole brain was mapped to the template with affine and nonlinear deformation. Third, the parameter, derived from the second step, was used to only normalize the ROI of the child to the ROI of the template. Last, the overlapping ratio, which described the overlapping rate between the ROI of the template and the normalized ROI of the child, was calculated. The mean of overlapping ratio normalized to the classical template was 0.9687, and the mean normalized to the optimized template was 0.9713. The results show that the two Chinese pediatric brain templates are comparable and their accuracy is adequate to our studies.
Pavarini, E; Andreani, L C
2002-09-01
The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.
Grover's unstructured search by using a transverse field
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Rieffel, Eleanor; Wang, Zhihui
2017-04-01
We design a circuit-based quantum algorithm to search for a needle in a haystack, giving the same quadratic speedup achieved by Grover's original algorithm. In our circuit-based algorithm, the problem Hamiltonian (oracle) and a transverse field (instead of Grover's diffusion operator) are applied to the system alternatively. We construct a periodic time sequence such that the resultant unitary drives a closed transition between two states, which have high degrees of overlap with the initial state (even superposition of all states) and the target state, respectively. Let N =2n be the size of the search space. The transition rate in our algorithm is of order Θ(1 /√{ N}) , and the overlaps are of order Θ(1) , yielding a nearly optimal query complexity of T =√{ N}(π / 2√{ 2}) . Our algorithm is inspired by a class of algorithms proposed by Farhi et al., namely the Quantum Approximate Optimization Algorithm (QAOA); our method offers a route to optimizing the parameters in QAOA by restricting them to be periodic in time.
NASA Astrophysics Data System (ADS)
Nikolić, G. S.; Žerajić, S.; Cakić, M.
2011-10-01
Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.
Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis
NASA Astrophysics Data System (ADS)
Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.
2016-09-01
Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.
Phyllodes tumours of the breast: a consensus review
Tan, Benjamin Y; Acs, Geza; Apple, Sophia K; Badve, Sunil; Bleiweiss, Ira J; Brogi, Edi; Calvo, José P; Dabbs, David J; Ellis, Ian O; Eusebi, Vincenzo; Farshid, Gelareh; Fox, Stephen B; Ichihara, Shu; Lakhani, Sunil R; Rakha, Emad A; Reis-Filho, Jorge S; Richardson, Andrea L; Sahin, Aysegul; Schmitt, Fernando C; Schnitt, Stuart J; Siziopikou, Kalliopi P; Soares, Fernando A; Tse, Gary M; Vincent-Salomon, Anne; Tan, Puay Hoon
2016-01-01
Phyllodes tumours constitute an uncommon but complex group of mammary fibroepithelial lesions. Accurate and reproducible grading of these tumours has long been challenging, owing to the need to assess multiple stratified histological parameters, which may be weighted differently by individual pathologists. Distinction of benign phyllodes tumours from cellular fibroadenomas is fraught with difficulty, due to overlapping microscopic features. Similarly, separation of the malignant phyllodes tumour from spindle cell metaplastic carcinoma and primary breast sarcoma can be problematic. Phyllodes tumours are treated by surgical excision. However, there is no consensus on the definition of an appropriate surgical margin to ensure completeness of excision and reduction of recurrence risk. Interpretive subjectivity, overlapping histological diagnostic criteria, suboptimal correlation between histological classification and clinical behaviour and the lack of robust molecular predictors of outcome make further investigation of the pathogenesis of these fascinating tumours a matter of active research. This review consolidates the current understanding of their pathobiology and clinical behaviour, and includes proposals for a rational approach to the classification and management of phyllodes tumours. PMID:26768026
Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints
NASA Astrophysics Data System (ADS)
Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.
2017-04-01
The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.
NASA Astrophysics Data System (ADS)
Abbas, Z.; Shabbir, M. S.; Ali, N.
2018-06-01
In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
Männikkö, R; Overend, G; Perrey, C; Gavaghan, CL; Valentin, J-P; Morten, J; Armstrong, M; Pollard, CE
2010-01-01
Background and purpose: Potencies of compounds blocking KV11.1 [human ether-ago-go-related gene (hERG)] are commonly assessed using cell lines expressing the Caucasian wild-type (WT) variant. Here we tested whether such potencies would be different for hERG single nucleotide polymorphisms (SNPs). Experimental approach: SNPs (R176W, R181Q, Del187-189, P347S, K897T, A915V, P917L, R1047L, A1116V) and a binding-site mutant (Y652A) were expressed in Tet-On CHO-K1 cells. Potencies [mean IC50; lower/upper 95% confidence limit (CL)] of 48 hERG blockers was estimated by automated electrophysiology [IonWorks™ HT (IW)]. In phase one, rapid potency comparison of each WT-SNP combination was made for each compound. In phase two, any compound-SNP combinations from phase one where the WT upper/lower CL did not overlap with those of the SNPs were re-examined. Electrophysiological WT and SNP parameters were determined using conventional electrophysiology. Key results: IW detected the expected sixfold potency decrease for propafenone in Y652A. In phase one, the WT lower/upper CL did not overlap with those of the SNPs for 77 compound-SNP combinations. In phase two, 62/77 cases no longer yielded IC50 values with non-overlapping CLs. For seven of the remaining 15 cases, there were non-overlapping CLs but in the opposite direction. For the eight compound-SNP combinations with non-overlapping CLs in the same direction as for phase 1, potencies were never more than twofold apart. The only statistically significant electrophysiological difference was the voltage dependence of activation of R1047L. Conclusion and implications: Potencies of hERG channel blockers defined using the Caucasian WT sequence, in this in vitro assay, were representative of potencies for common SNPs. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:19673885
Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil
The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant-noise simulation. In conclusion, EAS patients may derive more benefit from greater acoustic and electric overlap than given in current software fitting recommendations, which are based solely on audiometric threshold. These data have larger scientific implications, as previous studies may not have assessed outcomes with optimized EAS parameters, thereby underestimating the benefit afforded by hearing preservation.
Finite Element Analysis of the Implantation Process of Overlapping Stents
Xu, Jiang; Yang, Jie; Sohrabi, Salman; Zhou, Yihua; Liu, Yaling
2017-01-01
Overlapping stents are widely used in vascular stent surgeries. However, the rate of stent fractures (SF) and in-stent restenosis (ISR) after using overlapping stents is higher than that of single stent implantations. Published studies investigating the nature of overlapping stents rely primarily on medical images, which can only reveal the effect of the surgery without providing insights into how stent overlap influences the implantation process. In this paper, a finite element analysis of the overlapping stent implantation process was performed to study the interaction between overlapping stents. Four different cases, based on three typical stent overlap modes and two classical balloons, were investigated. The results showed that overlapping contact patterns among struts were edge-to-edge, edge-to-surface, and noncontact. These were mainly induced by the nonuniform deformation of the stent in the radial direction and stent tubular structures. Meanwhile, the results also revealed that the contact pressure was concentrated in the edge of overlapping struts. During the stent overlap process, the contact pattern was primarily edge-to-edge contact at the beginning and edge-to-surface contact as the contact pressure increased. The interactions between overlapping stents suggest that the failure of overlapping stents frequently occurs along stent edges, which agrees with the previous experimental research regarding the safety of overlapping stents. This paper also provides a fundamental understanding of the mechanical properties of overlapping stents. PMID:28690712
Influence of slice overlap on positron emission tomography image quality
NASA Astrophysics Data System (ADS)
McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline
2016-02-01
PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has on image noise.
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2016-12-01
We describe the production of size selected manganese nanoclusters using a dc magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length) we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the atomic vapor, and argon also plays the crucial role in the formation of condensation nuclei via three-body collisions. However, neither the argon flow nor the discharge power have a strong effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, which is governed by the helium supply and the aggregation path length. The size of mass selected nanoclusters was verified by atomic force microscopy of deposited particles.
Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation
NASA Astrophysics Data System (ADS)
Khojasteh, Malak; Kresin, Vitaly V.
2017-11-01
We describe the production of size-selected manganese nanoclusters using a magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length), we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way, it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the metal vapor, and argon also plays a crucial role in the formation of condensation nuclei via three-body collisions. However, the argon flow and the discharge power have a relatively weak effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, governed by the helium supply (which raises the pressure and density of the gas column inside the source, resulting in more efficient transport of nanoparticles to the exit) and by the aggregation path length.
Waples, R S
2016-10-01
The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to mean reproductive success in one season by individuals of the same age (φ) and lifetime variance in reproductive success of individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and φ. A simple function of d and α based on the assumption of constant vital rates is shown to be a robust predictor (R(2)=0.78) of Ne/N in an empirical data set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.
Monitoring of the Conformational Space of Dipeptides by Generative Topographic Mapping.
Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre
2018-01-01
This work describes a procedure to build generative topographic maps (GTM) as 2D representation of the conformational space (CS) of dipeptides. GTMs with excellent propensities to support highly predictive landscapes of various conformational properties were reported for three dipeptides (AA, KE and KR). CS monitoring via GTMproceeds through the projection of conformer ensembles on the map, producing cumulated responsibility (CR) vectors characteristic of the CS areas covered by the ensemble. Overlap of the CS areas visited by two distinct simulations can be expressed by the Tanimoto coefficient Tc of the associated CRs. This idea was used to monitor the reproducibility of the stochastic evolutionary conformer generation process implemented in S4MPLE. It could be shown that conformers produced by <500 S4MPLE runs reproducibly cover the relevant CS zone at given setup of the driving force field. The propensity of a simulation to visit the native CS zone can thus be quantitatively estimated, as the Tc score with respect to the "native" CR, as defined by the ensemble of dipeptide geometries extracted from PDB proteins. It could be shown that low-energy CS regions were indeed found to fall within the native zone. The Tc overlap score behaved as a smooth function of force field parameters. This opens the perspective of a novel force field parameter tuning procedure, bound to simultaneously optimize the behavior of the in Silico simulations for every possible dipeptide. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proactive inhibitory control: A general biasing account☆
Elchlepp, Heike; Lavric, Aureliu; Chambers, Christopher D.; Verbruggen, Frederick
2016-01-01
Flexible behavior requires a control system that can inhibit actions in response to changes in the environment. Recent studies suggest that people proactively adjust response parameters in anticipation of a stop signal. In three experiments, we tested the hypothesis that proactive inhibitory control involves adjusting both attentional and response settings, and we explored the relationship with other forms of proactive and anticipatory control. Subjects responded to the color of a stimulus. On some trials, an extra signal occurred. The response to this signal depended on the task context subjects were in: in the ‘ignore’ context, they ignored it; in the ‘stop’ context, they had to withhold their response; and in the ‘double-response’ context, they had to execute a secondary response. An analysis of event-related brain potentials for no-signal trials in the stop context revealed that proactive inhibitory control works by biasing the settings of lower-level systems that are involved in stimulus detection, action selection, and action execution. Furthermore, subjects made similar adjustments in the double-response and stop-signal contexts, indicating an overlap between various forms of proactive action control. The results of Experiment 1 also suggest an overlap between proactive inhibitory control and preparatory control in task-switching studies: both require reconfiguration of task-set parameters to bias or alter subordinate processes. We conclude that much of the top-down control in response inhibition tasks takes place before the inhibition signal is presented. PMID:26859519
Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au+Au Collisions at sNN=200GeV
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2010-04-01
This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v2 in Au+Au collisions at sNN=200GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.
The design of wideband metamaterial absorber at E band based on defect
NASA Astrophysics Data System (ADS)
Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.
2018-01-01
A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.
Bauder, Javan M.; Breininger, David R.; Bolt, M. Rebecca; Legare, Michael L.; Jenkins, Christopher L.; Rothermel, Betsie B.; McGarigal, Kevin
2016-01-01
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346
Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossner, H. H.; Schmitz, D.; Imperia, P.
2006-10-01
Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which results in two-dimensional diffusion with cross terms. A diffusion scheme is proposed and validated to resolve this dynamics in (Pφ,E) phase-space.
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration
NASA Astrophysics Data System (ADS)
Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.
2017-06-01
Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).
Simulation of Thematic Mapper performance as a function of sensor scanning parameters
NASA Technical Reports Server (NTRS)
Johnson, R. H.; Shah, N. J.; Schmidt, N. F.
1975-01-01
The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana.
Traversetti, Lorenzo; Scalici, Massimiliano; Ginepri, Valeria; Manfrin, Alessandro; Ceschin, Simona
2014-05-01
The main aim of this study was to improve the knowledge about the concordance among macrophytes and macroinvertebrates to provide complementary information and facilitate the procedures for quality assessment of river ecosystems. Macrophytes and macroinvertebrates were collected in 11 sampling sites along a central Apennine calcareous river in October 2008 and June 2009. The concordance between the two biomonitoring groups was tested according to several environmental parameters. The comparison of data matrix similarities by Mantel test showed differences in the assemblage of macrophytes and macroinvertebrates along the river since correlation values were 0.04, p > 0.05 in October 2008 and 0.39, p > 0.05 in June 2009. The study revealed lack of concordance between the two groups, emphasizing that the information provided by macrophytes and macroinvertebrates does not overlap in terms of response to environmental parameters. Indeed, the two different biological groups resulted useful descriptors of different parameters. Together, they could represent a complementary tool to reflect the river environmental quality.
The PoGO+ view on Crab off-pulse hard X-ray polarization
NASA Astrophysics Data System (ADS)
Chauvin, M.; Florén, H.-G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; Tajima, H.; Takahashi, H.; Uchida, N.; Pearce, M.
2018-06-01
The linear polarization fraction (PF) and angle of the hard X-ray emission from the Crab provide unique insight into high-energy radiation mechanisms, complementing the usual imaging, timing, and spectroscopic approaches. Results have recently been presented by two missions operating in partially overlapping energy bands, PoGO+ (18-160 keV) and AstroSat CZTI (100-380 keV). We previously reported PoGO+ results on the polarization parameters integrated across the light curve and for the entire nebula-dominated off-pulse region. We now introduce finer phase binning, in light of the AstroSat CZTI claim that the PF varies across the off-pulse region. Since both missions are operating in a regime where errors on the reconstructed polarization parameters are non-Gaussian, we adopt a Bayesian approach to compare results from each mission. We find no statistically significant variation in off-pulse polarization parameters, neither when considering the mission data separately nor when they are combined. This supports expectations from standard high-energy emission models.
Leveraging disjoint communities for detecting overlapping community structure
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy
2015-05-01
Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.
QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul
2013-11-10
The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into correspondingmore » intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from {sup 13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ∼2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ∼ 2.« less
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-24
Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
NASA Astrophysics Data System (ADS)
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-01
Optical absorption measurements of Nd3+ ions in single crystals of [Nd(hfa)4(H2O)](N(C2H5)4) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 21/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd3+ (4f3) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C1 symmetry at the Nd3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation Bkq, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm-1. Our approach also allows prediction of the energy levels of Nd3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah
The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power tomore » measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.« less
Decoding 2D-PAGE complex maps: relevance to proteomics.
Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio
2006-03-20
This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.
2011-10-15
Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less
Constraining axion dark matter with Big Bang Nucleosynthesis
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...
2014-08-04
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Enhancement and inhibition of light tunneling mediated by resonant mode conversion.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-02-15
We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.
Constraining axion dark matter with Big Bang Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Phonological and Orthographic Overlap Effects in Fast and Masked Priming
Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith
2014-01-01
We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Anupam; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076; Higham, Jonathan
A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, themore » nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.« less
Ultrasonic testing of plates containing edge cracks
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.
1985-01-01
The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
Hydrogen bonding in ionic liquids.
Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P
2015-03-07
Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.
Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L
2015-03-07
The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar. Copyright © 2014 Elsevier Ltd. All rights reserved.
Göttler, Jens; Lukas, Mathias; Kluge, Anne; Kaczmarz, Stephan; Gempt, Jens; Ringel, Florian; Mustafa, Mona; Meyer, Bernhard; Zimmer, Claus; Schwaiger, Markus; Förster, Stefan; Preibisch, Christine; Pyka, Thomas
2017-03-01
18 F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sham, E; Sattarivand, M; Mulroy, L
Purpose: To evaluate planning performance of an automated treatment planning software (BrainLAB; Elements) for stereotactic radiosurgery (SRS) of multiple brain metastases. Methods: Brainlab’s Multiple Metastases Elements (MME) uses single isocentric technique to treat up to 10 cranial planning target volumes (PTVs). The planning algorithm of the MME accounts for multiple PTVs overlapping with one another on the beam eyes view (BEV) and automatically selects a subset of all overlapping PTVs on each arc for sparing normal tissues in the brain. The algorithm also optimizes collimator angles, margins between multi-leaf collimators (MLCs) and PTVs, as well as monitor units (MUs) usingmore » minimization of conformity index (CI) for all targets. Planning performance was evaluated by comparing the MME-calculated treatment plan parameters with the same parameters calculated with the Volumetric Modulated Arc Therapy (VMAT) optimization on Varian’s Eclipse platform. Results: Figures 1 to 3 compare several treatment plan outcomes calculated between the MME and VMAT for 5 clinical multi-targets SRS patient plans. Prescribed target dose was volume-dependent and defined based on the RTOG recommendation. For a total number of 18 PTV’s, mean values for the CI, PITV, and GI were comparable between the MME and VMAT within one standard deviation (σ). However, MME-calculated MDPD was larger than the same VMAT-calculated parameter. While both techniques delivered similar maximum point doses to the critical cranial structures and total MU’s for the 5 patient plans, the MME required less treatment planning time by an order of magnitude compared to VMAT. Conclusion: The MME and VMAT produce similar plan qualities in terms of MUs, target dose conformation, and OAR dose sparing. While the selective use of PTVs for arc-optimization with the MME reduces significantly the total planning time in comparison to VMAT, the target dose homogeneity was also compromised due to its simplified inverse planning algorithm used.« less
Xiao, X; Bai, B; Xu, N; Wu, K
2015-04-01
Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
Laser milling of martensitic stainless steels using spiral trajectories
NASA Astrophysics Data System (ADS)
Romoli, L.; Tantussi, F.; Fuso, F.
2017-04-01
A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.
Generation of virtual monochromatic CBCT from dual kV/MV beam projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao; Liu, Bo; Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu
Purpose: To develop a novel on-board imaging technique which allows generation of virtual monochromatic (VM) cone-beam CT (CBCT) with a selected energy from combined kilovoltage (kV)/megavoltage (MV) beam projections. Methods: With the current orthogonal kV/MV imaging hardware equipped in modern linear accelerators, both MV projections (from gantry angle of 0°–100°) and kV projections (90°–200°) were acquired as gantry rotated a total of 110°. A selected range of overlap projections between 90° to 100° were then decomposed into two material projections using experimentally determined parameters from orthogonally stacked aluminum and acrylic step-wedges. Given attenuation coefficients of aluminum and acrylic at amore » predetermined energy, one set of VM projections could be synthesized from two corresponding sets of decomposed projections. Two linear functions were generated using projection information at overlap angles to convert kV and MV projections at nonoverlap angles to approximate VM projections for CBCT reconstruction. The contrast-to-noise ratios (CNRs) were calculated for different inserts in VM CBCTs of a CatPhan phantom with various selected energies and compared with those in kV and MV CBCTs. The effect of overlap projection number on CNR was evaluated. Additionally, the effect of beam orientation was studied by scanning the CatPhan sandwiched with two 5 cm solid-water phantoms on both lateral sides and an electronic density phantom with two metal bolt inserts. Results: Proper selection of VM energy [30 and 40 keV for low-density polyethylene (LDPE), polymethylpentene, 2 MeV for Delrin] provided comparable or even better CNR results as compared with kV or MV CBCT. An increased number of overlap kV and MV projection demonstrated only marginal improvements of CNR for different inserts (with the exception of LDPE) and therefore one projection overlap was found to be sufficient for the CatPhan study. It was also evident that the optimal CBCT image quality was achieved when MV beams penetrated through the heavy attenuation direction of the object. Conclusions: A novel technique was developed to generate VM CBCTs from kV/MV projections. This technique has the potential to improve CNR at selected VM energies and to suppress artifacts at appropriate beam orientations.« less
Extending RTM Imaging With a Focus on Head Waves
NASA Astrophysics Data System (ADS)
Holicki, Max; Drijkoningen, Guy
2016-04-01
Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.
Generation of virtual monochromatic CBCT from dual kV/MV beam projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao; Liu, Bo; Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu
2013-12-15
Purpose: To develop a novel on-board imaging technique which allows generation of virtual monochromatic (VM) cone-beam CT (CBCT) with a selected energy from combined kilovoltage (kV)/megavoltage (MV) beam projections. Methods: With the current orthogonal kV/MV imaging hardware equipped in modern linear accelerators, both MV projections (from gantry angle of 0°–100°) and kV projections (90°–200°) were acquired as gantry rotated a total of 110°. A selected range of overlap projections between 90° to 100° were then decomposed into two material projections using experimentally determined parameters from orthogonally stacked aluminum and acrylic step-wedges. Given attenuation coefficients of aluminum and acrylic at amore » predetermined energy, one set of VM projections could be synthesized from two corresponding sets of decomposed projections. Two linear functions were generated using projection information at overlap angles to convert kV and MV projections at nonoverlap angles to approximate VM projections for CBCT reconstruction. The contrast-to-noise ratios (CNRs) were calculated for different inserts in VM CBCTs of a CatPhan phantom with various selected energies and compared with those in kV and MV CBCTs. The effect of overlap projection number on CNR was evaluated. Additionally, the effect of beam orientation was studied by scanning the CatPhan sandwiched with two 5 cm solid-water phantoms on both lateral sides and an electronic density phantom with two metal bolt inserts. Results: Proper selection of VM energy [30 and 40 keV for low-density polyethylene (LDPE), polymethylpentene, 2 MeV for Delrin] provided comparable or even better CNR results as compared with kV or MV CBCT. An increased number of overlap kV and MV projection demonstrated only marginal improvements of CNR for different inserts (with the exception of LDPE) and therefore one projection overlap was found to be sufficient for the CatPhan study. It was also evident that the optimal CBCT image quality was achieved when MV beams penetrated through the heavy attenuation direction of the object. Conclusions: A novel technique was developed to generate VM CBCTs from kV/MV projections. This technique has the potential to improve CNR at selected VM energies and to suppress artifacts at appropriate beam orientations.« less
Fractality of eroded coastlines of correlated landscapes.
Morais, P A; Oliveira, E A; Araújo, N A M; Herrmann, H J; Andrade, J S
2011-07-01
Using numerical simulations of a simple sea-coast mechanical erosion model, we investigate the effect of spatial long-range correlations in the lithology of coastal landscapes on the fractal behavior of the corresponding coastlines. In the model, the resistance of a coast section to erosion depends on the local lithology configuration as well as on the number of neighboring sea sides. For weak sea forces, the sea is trapped by the coastline and the eroding process stops after some time. For strong sea forces erosion is perpetual. The transition between these two regimes takes place at a critical sea force, characterized by a fractal coastline front. For uncorrelated landscapes, we obtain, at the critical value, a fractal dimension D=1.33, which is consistent with the dimension of the accessible external perimeter of the spanning cluster in two-dimensional percolation. For sea forces above the critical value, our results indicate that the coastline is self-affine and belongs to the Kardar-Parisi-Zhang universality class. In the case of landscapes generated with power-law spatial long-range correlations, the coastline fractal dimension changes continuously with the Hurst exponent H, decreasing from D=1.34 to 1.04, for H=0 and 1, respectively. This nonuniversal behavior is compatible with the multitude of fractal dimensions found for real coastlines.
Topology driven modeling: the IS metaphor.
Merelli, Emanuela; Pettini, Marco; Rasetti, Mario
In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi's model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function [Formula: see text] with a particular functor of topological field theory-the generating function of the Betti numbers of the state manifold of the system-which contains the same global information of the system configurations and of the data set representing them. The comparison between the Betti numbers of the model and the real Betti numbers obtained from the topological analysis of phenomenological data, is expected to discover hidden n-ary relations among idiotypes and anti-idiotypes. The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space. How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational. Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.
Gluon structure function of a color dipole in the light-cone limit of lattice QCD
NASA Astrophysics Data System (ADS)
Grünewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.
2009-10-01
We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of xB. The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the “experimental value” in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q2=1.5GeV2. Within the systematic uncertainty we find rather good agreement. We also discuss the low xB behavior of the gluon structure function in our model calculation.
Scaling law analysis of paraffin thin films on different surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotto, M. E. R.; Camargo, S. S. Jr.
2010-01-15
The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less
Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks
NASA Astrophysics Data System (ADS)
Sukkabot, Worasak
2018-05-01
The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis
Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U.; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M.; Paul, Friedemann; Haynes, John-Dylan
2016-01-01
Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin–labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone. PMID:27821732
Modified empirical Solar Radiation Pressure model for IRNSS constellation
NASA Astrophysics Data System (ADS)
Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.
2017-11-01
Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.
A Particle and Energy Balance Model of the Orificed Hollow Cathode
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.
2002-01-01
A particle and energy balance model of orificed hollow cathodes was developed to assist in cathode design. The model presented here is an ensemble of original work by the author and previous work by others. The processes in the orifice region are considered to be one of the primary drivers in determining cathode performance, since the current density was greatest in this volume (up to 1.6 x 10(exp 8) A/m2). The orifice model contains comparatively few free parameters, and its results are used to bound the free parameters for the insert model. Next, the insert region model is presented. The sensitivity of the results to the free parameters is assessed, and variation of the free parameters in the orifice dominates the calculated power consumption and plasma properties. The model predictions are compared to data from a low-current orificed hollow cathode. The predicted power consumption exceeds the experimental results. Estimates of the plasma properties in the insert region overlap Langmuir probe data, and the predicted orifice plasma suggests the presence of one or more double layers. Finally, the model is used to examine the operation of higher current cathodes.
NASA Astrophysics Data System (ADS)
Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.
2017-03-01
The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.
Differentiating Dark Triad Traits Within and Across Interpersonal Circumplex Surfaces.
Dowgwillo, Emily A; Pincus, Aaron L
2017-01-01
Recent discussions surrounding the Dark Triad (narcissism, psychopathy, and Machiavellianism) have centered on areas of distinctiveness and overlap. Given that interpersonal dysfunction is a core feature of Dark Triad traits, the current study uses self-report data from 562 undergraduate students to examine the interpersonal characteristics associated with narcissism, psychopathy, and Machiavellianism on four interpersonal circumplex (IPC) surfaces. The distinctiveness of these characteristics was examined using a novel bootstrapping methodology for computing confidence intervals around circumplex structural summary method parameters. Results suggest that Dark Triad traits exhibit distinct structural summary method parameters with narcissism characterized by high dominance, psychopathy characterized by a blend of high dominance and low affiliation, and Machiavellianism characterized by low affiliation on the problems, values, and efficacies IPC surfaces. Additionally, there was some heterogeneity in findings for different measures of psychopathy. Gender differences in structural summary parameters were examined, finding similar parameter values despite mean-level differences in Dark Triad traits. Finally, interpersonal information was integrated across different IPC surfaces to create profiles associated with each Dark Triad trait and to provide a more in-depth portrait of associated interpersonal dynamics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason
2015-05-01
There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.
IAOseq: inferring abundance of overlapping genes using RNA-seq data.
Sun, Hong; Yang, Shuang; Tun, Liangliang; Li, Yixue
2015-01-01
Overlapping transcription constitutes a common mechanism for regulating gene expression. A major limitation of the overlapping transcription assays is the lack of high throughput expression data. We developed a new tool (IAOseq) that is based on reads distributions along the transcribed regions to identify the expression levels of overlapping genes from standard RNA-seq data. Compared with five commonly used quantification methods, IAOseq showed better performance in the estimation accuracy of overlapping transcription levels. For the same strand overlapping transcription, currently existing high-throughput methods are rarely available to distinguish which strand was present in the original mRNA template. The IAOseq results showed that the commonly used methods gave an average of 1.6 fold overestimation of the expression levels of same strand overlapping genes. This work provides a useful tool for mining overlapping transcription levels from standard RNA-seq libraries. IAOseq could be used to help us understand the complex regulatory mechanism mediated by overlapping transcripts. IAOseq is freely available at http://lifecenter.sgst.cn/main/en/IAO_seq.jsp.
Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less
Tsai, Chia-Ling; Lister, James P.; Bjornsson, Christopher J; Smith, Karen; Shain, William; Barnes, Carol A.; Roysam, Badrinath
2013-01-01
The need to map regions of brain tissue that are much wider than the field of view of the microscope arises frequently. One common approach is to collect a series of overlapping partial views, and align them to synthesize a montage covering the entire region of interest. We present a method that advances this approach in multiple ways. Our method (1) produces a globally consistent joint registration of an unorganized collection of 3-D multi-channel images with or without stage micrometer data; (2) produces accurate registrations withstanding changes in scale, rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete automation, and does not require any parameter settings; (4) handles low and variable overlaps (5 – 15%) between adjacent images, minimizing the number of images required to cover a tissue region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering incorrect results; (6) can handle a broad range of biological images by exploiting generic alignment cues from multiple fluorescence channels without requiring segmentation; and (7) is computationally efficient enough to run on desktop computers regardless of the number of images. The algorithm was tested with several tissue samples of at least 50 image tiles, involving over 5,000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly recognized all failures, and successfully joint-registered all images for all tissue samples studied. This algorithm is disseminated freely to the community as included with the FARSIGHT toolkit for microscopy (www.farsight-toolkit.org). PMID:21361958
Feature-based pairwise retinal image registration by radial distortion correction
NASA Astrophysics Data System (ADS)
Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.
2007-03-01
Fundus camera imaging is widely used to document disorders such as diabetic retinopathy and macular degeneration. Multiple retinal images can be combined together through a procedure known as mosaicing to form an image with a larger field of view. Mosaicing typically requires multiple pairwise registrations of partially overlapped images. We describe a new method for pairwise retinal image registration. The proposed method is unique in that the radial distortion due to image acquisition is corrected prior to the geometric transformation. Vessel lines are detected using the Hessian operator and are used as input features to the registration. Since the overlapping region is typically small in a retinal image pair, only a few correspondences are available, thus limiting the applicable model to an afine transform at best. To recover the distortion due to curved-surface of retina and lens optics, a combined approach of an afine model with a radial distortion correction is proposed. The parameters of the image acquisition and radial distortion models are estimated during an optimization step that uses Powell's method driven by the vessel line distance. Experimental results using 20 pairs of green channel images acquired from three subjects with a fundus camera confirmed that the afine model with distortion correction could register retinal image pairs to within 1.88+/-0.35 pixels accuracy (mean +/- standard deviation) assessed by vessel line error, which is 17% better than the afine-only approach. Because the proposed method needs only two correspondences, it can be applied to obtain good registration accuracy even in the case of small overlap between retinal image pairs.
A method for fast automated microscope image stitching.
Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong
2013-05-01
Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.
Separation of overlapping dental arch objects using digital records of illuminated plaster casts.
Yadollahi, Mohammadreza; Procházka, Aleš; Kašparová, Magdaléna; Vyšata, Oldřich; Mařík, Vladimír
2015-07-11
Plaster casts of individual patients are important for orthodontic specialists during the treatment process and their analysis is still a standard diagnostical tool. But the growing capabilities of information technology enable their replacement by digital models obtained by complex scanning systems. This paper presents the possibility of using a digital camera as a simple instrument to obtain the set of digital images for analysis and evaluation of the treatment using appropriate mathematical tools of image processing. The methods studied in this paper include the segmentation of overlapping dental bodies and the use of different illumination sources to increase the reliability of the separation process. The circular Hough transform, region growing with multiple seed points, and the convex hull detection method are applied to the segmentation of orthodontic plaster cast images to identify dental arch objects and their sizes. The proposed algorithm presents the methodology of improving the accuracy of segmentation of dental arch components using combined illumination sources. Dental arch parameters and distances between the canines and premolars for different segmentation methods were used as a measure to compare the results obtained. A new method of segmentation of overlapping dental arch components using digital records of illuminated plaster casts provides information with the precision required for orthodontic treatment. The distance between corresponding teeth was evaluated with a mean error of 1.38% and the Dice similarity coefficient of the evaluated dental bodies boundaries reached 0.9436 with a false positive rate [Formula: see text] and false negative rate [Formula: see text].
Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals.
Pereira-Castro, Isabel; Quental, Rita; da Costa, Luís T; Amorim, António; Azevedo, Luisa
2012-02-01
Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3'end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
Hsu, Chi-Pin; Lin, Shang-Chih; Shih, Kao-Shang; Huang, Chang-Hung; Lee, Chian-Her
2014-12-01
After total knee replacement, the model-based Roentgen stereophotogrammetric analysis (RSA) technique has been used to monitor the status of prosthetic wear, misalignment, and even failure. However, the overlap of the prosthetic outlines inevitably increases errors in the estimation of prosthetic poses due to the limited amount of available outlines. In the literature, quite a few studies have investigated the problems induced by the overlapped outlines, and manual adjustment is still the mainstream. This study proposes two methods to automate the image processing of overlapped outlines prior to the pose registration of prosthetic models. The outline-separated method defines the intersected points and segments the overlapped outlines. The feature-recognized method uses the point and line features of the remaining outlines to initiate registration. Overlap percentage is defined as the ratio of overlapped to non-overlapped outlines. The simulated images with five overlapping percentages are used to evaluate the robustness and accuracy of the proposed methods. Compared with non-overlapped images, overlapped images reduce the number of outlines available for model-based RSA calculation. The maximum and root mean square errors for a prosthetic outline are 0.35 and 0.04 mm, respectively. The mean translation and rotation errors are 0.11 mm and 0.18°, respectively. The errors of the model-based RSA results are increased when the overlap percentage is beyond about 9%. In conclusion, both outline-separated and feature-recognized methods can be seamlessly integrated to automate the calculation of rough registration. This can significantly increase the clinical practicability of the model-based RSA technique.
Guseinov, Israfil
2004-02-01
In this study, using complete orthonormal sets of Psi(alpha)-ETOs (where alpha=1, 0, -1, -2, ...) introduced by the author, a large number of series expansion formulae for the multicenter electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals of the Yukawa-like screened Coulomb potentials (SCPs) is presented through the new central and noncentral potentials and the overlap integrals with the same screening constants. The final results obtained are valid for arbitrary locations of STOs and their parameters.
Landau-type expansion for the energy landscape of the designed heteropolymer
NASA Astrophysics Data System (ADS)
Grosberg, Alexander; Pande, Vijay; Tanaka, Toyoichi
1997-03-01
The concept of evolutional optimization of heteropolymer sequences is used to construct the phenomenological theory describing folding/unfoolding kinetics of the polymers with designed sequences. The relevant energy landscape is described in terms of Landau expansion over the powers of the overlap parameter of the current and the native conformations. It is shown that only linear term is sequence (mutation) dependent, the rest being determined by the underlying conformational geometry. The theory os free of the assumptions of the uncorrelated energy landscape type. We demonstrate the power of the theory by comparing data to the simulations and experiments.
A biological perspective on differences and similarities between burnout and depression.
Orosz, Ariane; Federspiel, Andrea; Haisch, Sarie; Seeher, Christian; Dierks, Thomas; Cattapan, Katja
2017-02-01
To compare and contrast burnout and depression is not only a conceptual issue, but may deliver important directions for treatment approaches and stabilize the awareness of disease which is essential for affected individuals. Because of the symptomatic overlap, it is a subject of multidimensional research and discussion to find specific signatures to differentiate between the two phenomena or to present evidence that they are different aspects of the same disorder. Both pathologies are regarded as stress-related disorders. Therefore, in this review burnout and depression are discussed on the basis of biological parameters, mainly heart rate variability (HRV) and brain-derived neurotrophic factor (BDNF), which are crucial to the stress response system. It emerges that instead of finding one specific discriminating marker, future research should rather concentrate on elaborating indices for burnout and depression which integrate combinations of parameters found in genetics, neurobiology, physiology and environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decomposition Techniques for Icesat/glas Full-Waveform Data
NASA Astrophysics Data System (ADS)
Liu, Z.; Gao, X.; Li, G.; Chen, J.
2018-04-01
The geoscience laser altimeter system (GLAS) on the board Ice, Cloud, and land Elevation Satellite (ICESat), is the first long-duration space borne full-waveform LiDAR for measuring the topography of the ice shelf and temporal variation, cloud and atmospheric characteristics. In order to extract the characteristic parameters of the waveform, the key step is to process the full waveform data. In this paper, the modified waveform decomposition method is proposed to extract the echo components from full-waveform. First, the initial parameter estimation is implemented through data preprocessing and waveform detection. Next, the waveform fitting is demonstrated using the Levenberg-Marquard (LM) optimization method. The results show that the modified waveform decomposition method can effectively extract the overlapped echo components and missing echo components compared with the results from GLA14 product. The echo components can also be extracted from the complex waveforms.
2D discontinuous piecewise linear map: Emergence of fashion cycles.
Gardini, L; Sushko, I; Matsuyama, K
2018-05-01
We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.
Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF).
Andersson, Patrik U; Lönn, Benny; Holmlid, Leif
2011-01-01
A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10(12) W cm(-2) is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.
Universal feature in optical control of a p -wave Feshbach resonance
NASA Astrophysics Data System (ADS)
Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing
2018-01-01
We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.
A source-specific model for lossless compression of global Earth data
NASA Astrophysics Data System (ADS)
Kess, Barbara Lynne
A Source Specific Model for Global Earth Data (SSM-GED) is a lossless compression method for large images that captures global redundancy in the data and achieves a significant improvement over CALIC and DCXT-BT/CARP, two leading lossless compression schemes. The Global Land 1-Km Advanced Very High Resolution Radiometer (AVHRR) data, which contains 662 Megabytes (MB) per band, is an example of a large data set that requires decompression of regions of the data. For this reason, SSM-GED compresses the AVHRR data as a collection of subwindows. This approach defines the statistical parameters for the model prior to compression. Unlike universal models that assume no a priori knowledge of the data, SSM-GED captures global redundancy that exists among all of the subwindows of data. The overlap in parameters among subwindows of data enables SSM-GED to improve the compression rate by increasing the number of parameters and maintaining a small model cost for each subwindow of data. This lossless compression method is applicable to other large volumes of image data such as video.
Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC
NASA Astrophysics Data System (ADS)
Greig, Bradley; Mesinger, Andrei
2018-05-01
We extend our MCMC sampler of 3D EoR simulations, 21CMMC, to perform parameter estimation directly on light-cones of the cosmic 21cm signal. This brings theoretical analysis one step closer to matching the expected 21-cm signal from next generation interferometers like HERA and the SKA. Using the light-cone version of 21CMMC, we quantify biases in the recovered astrophysical parameters obtained from the 21cm power spectrum when using the co-eval approximation to fit a mock 3D light-cone observation. While ignoring the light-cone effect does not bias the parameters under most assumptions, it can still underestimate their uncertainties. However, significant biases (~few - 10 σ) are possible if all of the following conditions are met: (i) foreground removal is very efficient, allowing large physical scales (k ~ 0.1 Mpc-1) to be used in the analysis; (ii) theoretical modelling is accurate to ~10 per cent in the power spectrum amplitude; and (iii) the 21cm signal evolves rapidly (i.e. the epochs of reionisation and heating overlap significantly
FAST: Fitting and Assessment of Synthetic Templates
NASA Astrophysics Data System (ADS)
Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis
2018-03-01
FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.
3D space positioning and image feature extraction for workpiece
NASA Astrophysics Data System (ADS)
Ye, Bing; Hu, Yi
2008-03-01
An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.
q-deformed Einstein's model to describe specific heat of solid
NASA Astrophysics Data System (ADS)
Guha, Atanu; Das, Prasanta Kumar
2018-04-01
Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.
An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2018-03-01
By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.
Palmer, Lance E; Dejori, Mathaeus; Bolanos, Randall; Fasulo, Daniel
2010-01-15
With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies. Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.
NASA Astrophysics Data System (ADS)
Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.; Abouelatta, Mohamed
2015-10-01
In this paper, we have investigated the effect of gate overlapping-on-drain on the ambipolar behavior and high frequency performance of tunnel CNTFET (T-CNTFET). It is found that gate overlapping-on-drain suppresses the ambipolar behavior and improves OFF-state current. The simulation results show that there is an optimum choice for the overlapped length. On the other hand, this overlap deteriorates the high frequency performance. The high frequency figure of merit is analyzed in terms of the unit-gain cutoff frequency (fT). Further, we propose two different approaches to improve the high frequency performance of the overlapped T-CNTFET. The first one is based on inserting a high-dielectric constant material below the overlapped part of the gate and the second is based on depositing a different work function gate metal for the overlapped region. The two solutions show very good improvement in the high frequency performance with maintaining the suppression of the ambipolar characteristics.
Intercomparison of different operational oceanographic forecast products in the CMEMS IBI area
NASA Astrophysics Data System (ADS)
Lorente, Pablo; Sotillo, Marcos G.; Dabrowski, Tomasz; Amo-Baladrón, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Cossarini, Gianpiero; Salon, Stefano; Tonani, Marina; Alvarez-Fanjul, Enrique
2017-04-01
The development of skill assessment software packages and dedicated web applications is a relatively novel theme in operational oceanography. Within the CMEMS IBI-MFC, the quality of IBI (Iberia-Biscay-Ireland) forecast products is assessed by means of NARVAL (North Atlantic Regional VALidation) web-based tool. The validation of IBI against independent in situ and remote-sensing measurements is routinely conducted to evaluate model's veracity and prognostic capabilities. Noticeable efforts are in progress to define meaningful skill scores and statistical metrics to quantitatively assess the quality and reliability of the IBI model solution. Likewise, the IBI-MFC compares the IBI forecast products with other model solutions by setting up specific intercomparison exercises on overlapping areas at diverse timescales. In this context, NARVAL web tool already includes a specific module to evaluate strengths and weaknesses of IBI versus other CMEMS operational ocean forecasting systems (OOFSs). In particular, the IBI physical ocean solution is compared against the CMEMS MED and NWS OOFSs. These CMEMS regional services delivered for the Mediterranean and the North West Shelves include data assimilation schemes in their respective operational chains and generate analogous ocean forecast products to the IBI ones. A number of physical parameters (i.e. sea surface temperature, salinity and current velocities) are evaluated through NARVAL on a daily basis in the overlapping areas existing between these three regional systems. NARVAL is currently being updated in order to extend this intercomparison of ocean model parameters to the biogeochemical solutions provided by the aforementioned OOFSs. More specifically, the simulated chlorophyll concentration is evaluated over several subregions of particular concern by using as benchmark the CMEMS satellite-derived observational products. In addition to this IBI comparison against other regional CMEMS products on overlapping areas, a specific intercomparison between the CMEMS GLOBAL solution and the IBI (regional application dynamically embedded in the former) is conducted in order to check its consistency and ability to outperform the parent model solution. Particular emphasis is placed on the comparison of time-series at specified locations (class-2 metrics). The standardized validation methodology presented here is particularly useful and could encompass the intercomparison of the regional application (IBI) and other nested higher resolution models at coastal/shelf scales to quantify the added value of downscaling in local downstream approaches.
Zambonelli, Paolo; Davoli, Roberta; Bigi, Mila; Braglia, Silvia; De Paolis, Luigi Francesco; Buttazzoni, Luca; Gallo, Maurizio; Russo, Vincenzo
2013-10-08
The pH is an important parameter influencing technological quality of pig meat, a trait affected by environmental and genetic factors. Several quantitative trait loci associated to meat pH are described on PigQTL database but only two genes influencing this parameter have been so far detected: Ryanodine receptor 1 and Protein kinase, AMP-activated, gamma 3 non-catalytic subunit. To search for genes influencing meat pH we analyzed genomic regions with quantitative effect on this trait in order to detect SNPs to use for an association study. The expressed sequences mapping on porcine chromosomes 1, 2, 3 in regions associated to pork pH were searched in silico to find SNPs. 356 out of 617 detected SNPs were used to genotype Italian Large White pigs and to perform an association analysis with meat pH values recorded in semimembranosus muscle at about 1 hour (pH1) and 24 hours (pHu) post mortem.The results of the analysis showed that 5 markers mapping on chromosomes 1 or 3 were associated with pH1 and 10 markers mapping on chromosomes 1 or 2 were associated with pHu. After False Discovery Rate correction only one SNP mapping on chromosome 2 was confirmed to be associated to pHu. This polymorphism was located in the 3'UTR of two partly overlapping genes, Deoxyhypusine synthase (DHPS) and WD repeat domain 83 (WDR83). The overlapping of the 3'UTRs allows the co-regulation of mRNAs stability by a cis-natural antisense transcript method of regulation. DHPS catalyzes the first step in hypusine formation, a unique amino acid formed by the posttranslational modification of the protein eukaryotic translation initiation factor 5A in a specific lysine residue. WDR83 has an important role in the modulation of a cascade of genes involved in cellular hypoxia defense by intensifying the glycolytic pathway and, theoretically, the meat pH value. The involvement of the SNP detected in the DHPS/WDR83 genes on meat pH phenotypic variability and their functional role are suggestive of molecular and biological processes related to glycolysis increase during post-mortem phase. This finding, after validation, can be applied to identify new biomarkers to be used to improve pig meat quality.
Chondrites, S asteroids, and space weathering: Thumping noises from the coffin?
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Clark, B. E.
1993-01-01
Most of the spectral characteristics of ordinary chondrites and S-asteroids in the visible and infrared can be reduced to three numerical values. These values represent the depth of the absorption band resulting from octahedrally coordinated Fe(sup 2+), the reflectance at 0.56 microns and the slope of the continuum (as measured according to convention). By plotting these three characteristics, it is possible to immediately compare the spectral characteristics of large numbers of ordinary chondrites and S-asteroids. Commonality of spectral characteristics between these populations can thus be evaluated on the basis of overlap in position on three two-coordinate systems: albedo vs. band depth, band depth vs. slope, and slope vs. albedo. In order to establish identity, members of the two populations must overlap on all three of these independent parameter spaces. In this coordinate system, spectra of 23 ordinary chondrites (representing all metamorphic grades), and 39 S-asteroids were compared. It was found that there was no overlap between the two populations in terms of the slope vs. band depth parameters, nor were most chondrites identical to the S-asteroids with respect to the other criteria. However, the controversial question remains: Where are the parent bodies of the chondrites? Perhaps an even more critical question is: Where are our samples of the S-asteroids? Considering the geography of the asteroid belt and the theory that early solar-system electromagnetic induction heating differentiated protoasteroids in the inner portion of the main belt, it was suggested that although S-asteroids and ordinary chondrites have very similar mineralogy, the S-asteroids are mixtures of metallic nickel iron and silicates which resulted from magmatism induced by electromagnetic heating whereas chondrites were only slightly metamorphosed nebular condensates. In this scenario chondrites would have been derived from a population of bodies with thermal lag times so short that they were not subjected to melting during the phase of the electromagnetic induction heating event but only to various degrees of pervasive metamorphism. Furthermore, these objects would then have been too small to be observed and systematically included in the library of asteroidal spectra. It was also suggested that the parametric distribution of S-asteroid spectra could be reproduced by mixing various proportions of NiFe meteorite and achondritic materials. This has also been demonstrated in the laboratory.
Understanding COPD-overlap syndromes.
Poh, Tuang Yeow; Mac Aogáin, Micheál; Chan, Adrian Kwok Wai; Yii, Anthony Chau Ang; Yong, Valerie Fei Lee; Tiew, Pei Yee; Koh, Mariko Siyue; Chotirmall, Sanjay Haresh
2017-04-01
Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.
An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field
Xiang, Jin Yu; Ponder, Jay W.
2014-01-01
An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Molecular dynamics (MD) simulations were performed on aqueous copper (II) ion at various temperatures, as well as plastocyanin (1AG6) and azurin (1DYZ). Results demonstrated that the AMOEBA-AOM significantly improves the accuracy of classical MM in a number of test cases when compared to ab initio calculations. The Jahn-Teller distortion for hexa-aqua copper (II) complex was handled automatically without specifically designating axial and in-plane ligands. Analyses of MD trajectories resulted in a 6-coordination first solvation shell for aqueous copper (II) ion and a 1.8ns average residence time of water molecules. The ensemble average geometries of 1AG6 and 1DYZ copper binding sites were in general agreement with X-ray and previous computational studies. PMID:25045338
Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.
Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R
2016-05-01
Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Huguet, Carme; Maynou, Francesc; Abelló, Pere
2005-04-01
The small-scale distribution characteristics of three species of the anomuran genus Munida, namely Munida rutllanti, Munida intermedia and Munida tenuimana, have been studied on the lower shelf and upper-middle continental slope near the coasts of Tarragona and the Ebro delta region in the western Mediterranean. The differential bathymetric distribution showed that a fair degree of overlap exists between M. rutllanti and M. intermedia, with the former being mainly found at shallower depths. The size population structure of the three species showed that polymodality, as indicative of a longer life-span and of a higher degree of population structuring was more evident in the deeper-living species, whereas unimodality, as an indication of a recruitment dependent population, was more evident in the shallowest-occurring species. Geostatistics have been applied to determine the degree of spatial variability occurring in M. intermedia abundance, the better-sampled species. The Mantel test has been used to assess the significance of the overlap between the three species distributions as well as the relation between certain population parameters. A discussion on the population characteristics of M. rutllanti is made in relation with its expansion along the western Mediterranean in the last decades.
Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching
NASA Astrophysics Data System (ADS)
Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu
2017-09-01
This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.
Solving Partial Differential Equations on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less
NASA Astrophysics Data System (ADS)
Jing, Ran; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Deng, Lei
2017-12-01
Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated.
Khaiboullina, Svetlana F; DeMeirleir, Kenny L; Rawat, Shanti; Berk, Grady S; Gaynor-Berk, Rory S; Mijatovic, Tatjana; Blatt, Natalia; Rizvanov, Albert A; Young, Sheila G; Lombardi, Vincent C
2015-03-01
Gulf War illness (GWI) is a chronic disease of unknown etiology characterized by persistent symptoms such as cognitive impairment, unexplained fatigue, pervasive pain, headaches, and gastrointestinal abnormalities. Current reports suggest that as many as 200,000 veterans who served in the 1990-1991 Persian Gulf War were afflicted. Several potential triggers of GWI have been proposed including chemical exposure, toxins, vaccines, and unknown infectious agents. However, a definitive cause of GWI has not been identified and a specific biological marker that can consistently delineate the disease has not been defined. Myalgic encephalomyelitis (ME) is a disease with similar and overlapping symptomology, and subjects diagnosed with GWI typically fit the diagnostic criteria for ME. For these reasons, GWI is often considered a subgroup of ME. To explore this possibility and identify immune parameters that may help to understand GWI pathophysiology, we measured 77 serum cytokines in subjects with GWI and compared these data to that of subjects with ME as well as healthy controls. Our analysis identified a group of cytokines that identified ME and GWI cases with sensitivities of 92.5% and 64.9%, respectively. The five most significant cytokines in decreasing order of importance were IL-7, IL-4, TNF-α, IL-13, and IL-17F. When delineating GWI and ME cases from healthy controls, the observed specificity was only 33.3%, suggesting that with respect to cytokine expression, GWI cases resemble control subjects to a greater extent than ME cases across a number of parameters. These results imply that serum cytokines are representative of ME pathology to a greater extent than GWI and further suggest that the two diseases have distinct immune profiles despite their overlapping symptomology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi
Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less
Leung, T; Wong, G; Ko, F; Lam, C; Fok, T
2005-01-01
Background: Recent studies have repeatedly shown weak correlations among lung function parameters, atopy, exhaled nitric oxide level (FeNO), and airway inflammatory markers, suggesting that they are non-overlapping characteristics of asthma in adults. A study was undertaken to determine, using factor analysis, whether the above features represent separate dimensions of childhood asthma. Methods: Clinically stable asthmatic patients aged 7–18 years underwent spirometric testing, methacholine bronchial challenge, blood sampling for atopy markers and chemokine levels (macrophage derived chemokine (MDC), thymus and activation regulated chemokine (TARC), and eotaxin), FeNO, and chemokines (MDC and eotaxin) and leukotriene B4 measurements in exhaled breath condensate (EBC). Results: The mean (SD) forced expiratory volume in 1 second (FEV1) and FeNO of 92 patients were 92.1 (15.9)% predicted and 87.3 (65.7) ppb, respectively. 59% of patients received inhaled corticosteroids. Factor analysis selected four different factors, explaining 55.5% of total variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.587. Plasma total and specific IgE levels, peripheral blood eosinophil percentage, and FeNO loaded on factor 1; plasma TARC and MDC concentrations on factor 2; MDC, eotaxin and leukotriene B4 concentrations in EBC on factor 3; and plasma eotaxin concentration together with clinical indices including body mass index and disease severity score loaded on factor 4. Post hoc factor analyses revealed similar results when outliers were excluded. Conclusions: The results suggest that atopy related indices and airway inflammation are separate dimensions in the assessment of childhood asthma, and inflammatory markers in peripheral blood and EBC are non-overlapping factors of asthma. PMID:16055623
NASA Astrophysics Data System (ADS)
Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef
2013-01-01
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.
Capsaicin Cough Sensitivity and the Association with Clinical Parameters in Bronchiectasis
Lin, Zhi-ya; Tang, Yan; Li, Hui-min; Lin, Zhi-min; Zheng, Jin-ping; Chen, Rong-chang; Zhong, Nan-shan
2014-01-01
Background Cough hypersensitivity has been common among respiratory diseases. Objective To determine associations of capsaicin cough sensitivity and clinical parameters in adults with clinically stable bronchiectasis. Methods We recruited 135 consecutive adult bronchiectasis patients and 22 healthy subjects. History inquiry, sputum culture, spirometry, chest high-resolution computed tomography (HRCT), Leicester Cough Questionnaire scoring, Bronchiectasis Severity Index (BSI) assessment and capsaicin inhalation challenge were performed. Cough sensitivity was measured as the capsaicin concentration eliciting at least 2 (C2) and 5 coughs (C5). Results Despite significant overlap between healthy subjects and bronchiectasis patients, both C2 and C5 were significantly lower in the latter group (all P<0.01). Lower levels of C5 were associated with a longer duration of bronchiectasis symptoms, worse HRCT score, higher 24-hour sputum volume, BSI and sputum purulence score, and sputum culture positive for P. aeruginosa. Determinants associated with increased capsaicin cough sensitivity, defined as C5 being 62.5 µmol/L or less, encompassed female gender (OR: 3.25, 95%CI: 1.35–7.83, P<0.01), HRCT total score between 7–12 (OR: 2.57, 95%CI: 1.07–6.173, P = 0.04), BSI between 5–8 (OR: 4.05, 95%CI: 1.48–11.06, P<0.01) and 9 or greater (OR: 4.38, 95%CI: 1.48–12.93, P<0.01). Conclusion Capsaicin cough sensitivity is heightened in a subgroup of bronchiectasis patients and associated with the disease severity. Gender and disease severity, but not sputum purulence, are independent determinants of heightened capsaicin cough sensitivity. Current testing for cough sensitivity diagnosis may be limited because of overlap with healthy subjects but might provide an objective index for assessment of cough in future clinical trials. PMID:25409316
Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.
Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel
2017-04-01
Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.
Polymer Uncrossing and Knotting in Protein Folding, and Their Role in Minimal Folding Pathways
Mohazab, Ali R.; Plotkin, Steven S.
2013-01-01
We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold , , , and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation “alignment”. The consensus minimal pathway is constructed and shown schematically for representative cases of an , , and knotted protein. An overlap parameter is defined between pathways; we find that proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding. PMID:23365638
Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli
Jacobus, Ana Paula; Gross, Jeferson
2015-01-01
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories. PMID:25774528
Intra-specific competition (crowding) of giant sequoias (Sequoiadendron giganteum)
Stohlgren, Thomas J.
1993-01-01
Information on the size and location of 1916 giant sequoias (Sequoiadendron giganteum (Lindl.) Buchholz) in Muir Grove, Sequoia National Park, in the southern Sierra Nevada of California was used to assess intra-specific crowding. Study objectives were to: (1) determine which parameters associated with intra-specific competition (i.e. size and distance to nearest neighbor, crowding/root system area overlap, or number of neighbors) might be important in spatial pattern development, growth, and survivorship of established giant sequoias; (2) quantify the level of intra-specific crowding of different sized live sequoias based on a model of estimated overlapping root system areas (i.e. an index of relative crowding); (3) compare the level of intra-specific crowding of similarly sized live and dead giant sequoias (less than 30 cm diameter at breast height (dbh) at the time of inventory (1969). Mean distances to the nearest live giant sequoia neighbor were not significantly different (at α = 0.05) for live and dead sequoias in similar size classes. A zone of influence competition model (i.e. index of crowding) based on horizontal overlap of estimated root system areas was developed for 1753 live sequoias. The model, based only on the spatial arrangement of live sequoias, was then tested on dead sequoias of less than 30 cm dbh (n = 163 trees; also recorded in 1969). The dead sequoias had a significantly higher crowding index than 561 live trees of similar diameter. Results showed that dead sequoias of less than 16.6 cm dbh had a significantly greater mean number of live neighbors and mean crowding index than live sequoias of similar size. Intra-specific crowding may be an important mechanism in determining the spatial distribution of sequoias in old-growth forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, R.; Sudarshan, K.; Sodaye, S.
2009-06-15
Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less
Investigating the Bright End of LSST Photometry
NASA Astrophysics Data System (ADS)
Ojala, Elle; Pepper, Joshua; LSST Collaboration
2018-01-01
The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.
NASA Astrophysics Data System (ADS)
Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.
2012-10-01
The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A; Gombos, Eva
2014-08-01
To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. © 2013 Wiley Periodicals, Inc.
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva
2013-01-01
Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175
Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J
2015-06-30
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.
Multi-shell model of ion-induced nucleic acid condensation
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.
2016-04-01
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding shells."
Haramija, Marko; Peter-Katalinić, Jasna
2017-10-30
Affinity mass spectrometry (AMS) is an emerging tool in the field of the study of protein•carbohydrate complexes. However, experimental obstacles and data analysis are preventing faster integration of AMS methods into the glycoscience field. Here we show how analysis of direct electrospray ionization mass spectrometry (ESI-MS) AMS data can be simplified for screening purposes, even for complex AMS spectra. A direct ESI-MS assay was tested in this study and binding data for the galectin-3C•lactose complex were analyzed using a comprehensive and simplified data analysis approach. In the comprehensive data analysis approach, noise, all protein charge states, alkali ion adducts and signal overlap were taken into account. In a simplified approach, only the intensities of the fully protonated free protein and the protein•carbohydrate complex for the main protein charge state were taken into account. In our study, for high intensity signals, noise was negligible, sodiated protein and sodiated complex signals cancelled each other out when calculating the K d value, and signal overlap influenced the Kd value only to a minor extent. Influence of these parameters on low intensity signals was much higher. However, low intensity protein charge states should be avoided in quantitative AMS analyses due to poor ion statistics. The results indicate that noise, alkali ion adducts, signal overlap, as well as low intensity protein charge states, can be neglected for preliminary experiments, as well as in screening assays. One comprehensive data analysis performed as a control should be sufficient to validate this hypothesis for other binding systems as well. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
NASA Astrophysics Data System (ADS)
Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi
2016-06-01
In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.
Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.
Butakka, C M M; Ragonha, F H; Takeda, A M
2014-05-01
The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
NASA Astrophysics Data System (ADS)
Moritzer, E.; Leister, C.
2014-05-01
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritzer, E., E-mail: elmar.moritzer@ktp.upb.de; Leister, C., E-mail: elmar.moritzer@ktp.upb.de
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help ofmore » statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia
2005-11-01
Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less
Self, D Mitchell; Ilyas, Adeel; Stetler, William R
2018-04-27
Overlapping surgery, a long-standing practice within academic neurosurgery centers nationwide, has recently come under scrutiny from the government and media as potentially harmful to patients. Therefore, the objective of this systematic review and meta-analysis is to determine the safety of overlapping neurosurgical procedures. The authors performed a systematic review and meta-analysis in accordance with PRISMA guidelines. A review of PubMed and Medline databases was undertaken with the search phrase "overlapping surgery AND neurosurgery AND outcomes." Data regarding patient demographics, type of neurosurgical procedure, and outcomes and complications were extracted from each study. The principle summary measure was odds ratio (OR) of the association of overlapping versus non-overlapping surgery with outcomes. The literature search yielded a total of 36 studies, of which 5 studies met inclusion criteria and were included in this study. These studies included a total of 25,764 patients undergoing neurosurgical procedures. Overlapping surgery was associated with an increased likelihood of being discharged home (OR = 1.32; 95% CI 1.20 to 1.44; P < 0.001) and a reduced 30-day unexpected return to the operating room (OR = 0.79; 95% CI 0.72 to 0.87; P < 0.001). Overlapping surgery did not significantly affect OR of length of surgery, 30-day mortality, or 30-day readmission. Overlapping neurosurgical procedures were not associated with worse patient outcomes. Additional, prospective studies are needed to further assess the safety overlapping procedures. Copyright © 2018. Published by Elsevier Inc.
Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates
NASA Astrophysics Data System (ADS)
Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos
2018-03-01
Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.
Comparison of Patient Outcomes and Cost of Overlapping Versus Nonoverlapping Spine Surgery.
Zygourakis, Corinna C; Sizdahkhani, Saman; Keefe, Malla; Lee, Janelle; Chou, Dean; Mummaneni, Praveen V; Ames, Christopher P
2017-04-01
Overlapping surgery recently has gained significant media attention, but there are limited data on its safety and efficacy. To date, there has been no analysis of overlapping surgery in the field of spine. Our goal was to compare overlapping versus nonoverlapping spine surgery patient outcomes and cost. A retrospective review was undertaken of 2319 spine surgeries (n = 848 overlapping; 1471 nonoverlapping) performed by 3 neurosurgery attendings from 2012 to 2015 at the University of California San Francisco. Collected variables included patient age, sex, insurance, American Society of Anesthesiology score, severity of illness, risk of mortality, procedure type, surgeon, day of surgery, source of transfer, admission type, overlapping versus nonoverlapping surgery (≥1 minute of overlapping procedure time), Medicare-Severity Diagnosis-Related Group, osteotomy, and presence of another attending/fellow/resident. Univariate, then multivariate mixed-effect models were used to evaluate the effect of the collected variables on the following outcomes: procedure time, estimated blood loss, length of stay, discharge status, 30-day mortality, 30-day unplanned readmission, unplanned return to OR, and total hospital cost. Urgent spine cases were more likely to be done in an overlapping fashion (all P < 0.01). After we adjusted for patient demographics, clinical indicators, and procedure characteristics, overlapping surgeries had longer procedure times (estimate = 26.17; P < 0.001) and lower rates of discharge to home (odds ratio 0.65; P < 0.001), but equivalent rates of 30-day mortality, readmission, return to the operating room, estimated blood loss, length of stay, and total hospital cost (all P = ns). Overlapping spine surgery may be performed safely at our institution, although continued monitoring of patient outcomes is necessary. Overlapping surgery does not lead to greater hospital costs. Copyright © 2017 Elsevier Inc. All rights reserved.
Gellad, Walid F.; Zhao, Xinhua; Thorpe, Carolyn T.; Thorpe, Joshua M.; Sileanu, Florentina E.; Cashy, John P.; Mor, Maria; Hale, Jennifer A.; Radomski, Thomas; Hausmann, Leslie R. M.; Fine, Michael J.; Good, Chester B.
2016-01-01
Background Buprenorphine is a key tool in the management of opioid use disorder, but there are growing concerns about abuse, diversion and safety. These concerns are amplified for the Department of Veterans Affairs (VA), whose patients may receive care concurrently from multiple prescribers within and outside VA. To illustrate the extent of this challenge, we examined overlapping prescriptions for buprenorphine, opioids, and benzodiazepines among Veterans dually enrolled in VA and Medicare Part D. Methods We constructed a cohort of all Veterans dually enrolled in VA and Part D who filled an opioid prescription in 2012. We identified patients who received tablet or film buprenorphine products from either source. We calculated the proportion of buprenorphine recipients with any overlapping prescription (based on days supply) for a non-buprenorphine opioid or benzodiazepine, focusing on Veterans who received overlapping prescriptions from a different system than their buprenorphine prescription (Part D buprenorphine recipients receiving overlapping opioids or benzodiazepines from VA and vice versa). Results We identified 1,790 dually enrolled Veterans with buprenorphine prescriptions, including 760 (43%) from VA and 1,091 (61%) from Part D (61 Veterans with buprenorphine from both systems were included in each group). Among VA buprenorphine recipients, 199 (26%) received an overlapping opioid prescription and 11 (1%) received an overlapping benzodiazepine prescription from Part D. Among Part D buprenorphine recipients, 208 (19%) received an overlapping opioid prescription and 178 (16%) received an overlapping benzodiazepine prescription from VA. Among VA and Part D buprenorphine recipients with cross-system opioid overlap, 25% (49/199) and 35% (72/208), respectively, had >90 days of overlap. Conclusions Many buprenorphine recipients receive overlapping prescriptions for opioids and benzodiazepines from a different health care system than the one in which their buprenorphine was filled. These findings highlight a previously undocumented safety risk for Veterans dually enrolled in VA and Medicare. PMID:27925868
Gellad, Walid F; Zhao, Xinhua; Thorpe, Carolyn T; Thorpe, Joshua M; Sileanu, Florentina E; Cashy, John P; Mor, Maria; Hale, Jennifer A; Radomski, Thomas; Hausmann, Leslie R M; Fine, Michael J; Good, Chester B
2017-01-01
Buprenorphine is a key tool in the management of opioid use disorder, but there are growing concerns about abuse, diversion, and safety. These concerns are amplified for the Department of Veterans Affairs (VA), whose patients may receive care concurrently from multiple prescribers within and outside VA. To illustrate the extent of this challenge, we examined overlapping prescriptions for buprenorphine, opioids, and benzodiazepines among veterans dually enrolled in VA and Medicare Part D. We constructed a cohort of all veterans dually enrolled in VA and Part D who filled an opioid prescription in 2012. We identified patients who received tablet or film buprenorphine products from either source. We calculated the proportion of buprenorphine recipients with any overlapping prescription (based on days supply) for a nonbuprenorphine opioid or benzodiazepine, focusing on veterans who received overlapping prescriptions from a different system than their buprenorphine prescription (Part D buprenorphine recipients receiving overlapping opioids or benzodiazepines from VA and vice versa). There were 1790 dually enrolled veterans with buprenorphine prescriptions, including 760 (43%) from VA and 1091 (61%) from Part D (61 veterans with buprenorphine from both systems were included in each group). Among VA buprenorphine recipients, 199 (26%) received an overlapping opioid prescription and 11 (1%) received an overlapping benzodiazepine prescription from Part D. Among Part D buprenorphine recipients, 208 (19%) received an overlapping opioid prescription and 178 (16%) received an overlapping benzodiazepine prescription from VA. Among VA and Part D buprenorphine recipients with cross-system opioid overlap, 25% (49/199) and 35% (72/208), respectively, had >90 days of overlap. Many buprenorphine recipients receive overlapping prescriptions for opioids and benzodiazepines from a different health care system than the one in which their buprenorphine was filled. These findings highlight a previously undocumented safety risk for veterans dually enrolled in VA and Medicare.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brauchler, R.; Doetsch, J.; Dietrich, P.
2012-01-10
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. Themore » experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.« less
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
Importance of determining the climatic domains of sheep breeds.
Petit, D; Boujenane, I
2018-07-01
The main purpose of the study was to compare the capacity of the major sheep breeds in Morocco to cope with climate changes through the ranges of several climate parameters in which they can be found. We first delimitated the climatic 'domains' of each breed by constructing a database including altitude and climatic parameters (minima mean of the coldest month, maxima mean of the hottest month, annual rainfall, pluviothermic coefficient of Emberger Q 2, annual minima mean and annual maxima mean) on a 30-year period using the representative stations of each breed distribution. The overlap between each breed combination was quantified through a canonical analysis that extracted the most discriminant parameters. The variance analysis of each climatic parameter evidenced two breeds remarkable by their tolerance. The first one is the Timahdite, mainly settled in areas over 1100 m, which can tolerate the greatest variations in annual rainfall and pluviothermic coefficient. In spite of this feature, this breed is endangered owing to the decreasing quality of pastures. The second one is the D'man which apparently can support high variations in extreme temperatures. In fact, this breed is not well adapted to pastures and requires a special microclimate offered by oases. The information reported in this study will be the basis for the establishment of characterization and selection strategies for Moroccan sheep.
Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso
2016-11-01
This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red-green-blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%-50% and 70%-40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE).
Azzeroni, R; Maggio, A; Fiorino, C; Mangili, P; Cozzarini, C; De Cobelli, F; Di Muzio, N G; Calandrino, R
2013-11-01
The aim of this investigation was to explore the potential of biological optimization in the case of simultaneous integrated boost on intra-prostatic dominant lesions (DIL) and evaluating the impact of TCP parameters uncertainty. Different combination of TCP parameters (TD50 and γ50 in the Poisson-like model), were considered for DILs and the prostate outside DILs (CTV) for 7 intermediate/high-risk prostate patients. The aim was to maximize TCP while constraining NTCPs below 5% for all organs at risk. TCP values were highly depending on the parameters used and ranged between 38.4% and 99.9%; the optimized median physical doses were in the range 94-116 Gy and 69-77 Gy for DIL and CTV respectively. TCP values were correlated with the overlap PTV-rectum and the minimum distance between rectum and DIL. In conclusion, biological optimization for selective dose escalation is feasible and suggests prescribed dose around 90-120 Gy to the DILs. The obtained result is critically depending on the assumptions concerning the higher radioresistence in the DILs. In case of very resistant clonogens into the DIL, it may be difficult to maximize TCP to acceptable levels without violating NTCP constraints. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants
NASA Astrophysics Data System (ADS)
Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia
2018-05-01
We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.
Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso
2016-01-01
This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red–green–blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%–50% and 70%–40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE). PMID:27809293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Natwa, M; Hall, NC
Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less
An extension to artifact-free projection overlaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jianyu, E-mail: jianyulin@hotmail.com
2015-05-15
Purpose: In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extensionmore » is to design a baffle window multipinhole system with artifact-free projection overlaps. Methods: First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. Results: Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the extended type-II artifact-free overlaps numerically validated the developed theory. Conclusions: First, the extension itself is of theoretical importance because it broadens the selection range for optimizing multiplexing multipinhole designs. Second, the extension has an immediate application: using a baffle window to design a special spiral orbit multipinhole imaging system with projection overlaps in the orbit axial direction. Such an artifact-free baffle window design makes it possible for us to image any axial portion of interest of a long object with projection overlaps to increase sensitivity.« less
NASA Astrophysics Data System (ADS)
Zhang, L.; Tang, G.; Xun, Z.; Han, K.; Chen, H.; Hu, B.
2008-05-01
The long-wavelength properties of the (d + 1)-dimensional Kuramoto-Sivashinsky (KS) equation with both conservative and nonconservative noises are investigated by use of the dynamic renormalization-group (DRG) theory. The dynamic exponent z and roughness exponent α are calculated for substrate dimensions d = 1 and d = 2, respectively. In the case of d = 1, we arrive at the critical exponents z = 1.5 and α = 0.5 , which are consistent with the results obtained by Ueno et al. in the discussion of the same noisy KS equation in 1+1 dimensions [Phys. Rev. E 71, 046138 (2005)] and are believed to be identical with the dynamic scaling of the Kardar-Parisi-Zhang (KPZ) in 1+1 dimensions. In the case of d = 2, we find a fixed point with the dynamic exponents z = 2.866 and α = -0.866 , which show that, as in the 1 + 1 dimensions situation, the existence of the conservative noise in 2 + 1 or higher dimensional KS equation can also lead to new fixed points with different dynamic scaling exponents. In addition, since a higher order approximation is adopted, our calculations in this paper have improved the results obtained previously by Cuerno and Lauritsen [Phys. Rev. E 52, 4853 (1995)] in the DRG analysis of the noisy KS equation, where the conservative noise is not taken into account.
Persisting roughness when deposition stops.
Schwartz, Moshe; Edwards, S F
2004-12-01
Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.
Hentschinski, M; Kusina, A; Kutak, K; Serino, M
2018-01-01
We calculate the transverse momentum dependent gluon-to-gluon splitting function within [Formula: see text]-factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of [Formula: see text] factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization.
Classical mutual information in mean-field spin glass models
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
9 CFR 121.4 - Overlap select agents and toxins.
Code of Federal Regulations, 2012 CFR
2012-01-01
... select agent or toxin to APHIS or CDC. (i) The seizure of any of the following overlap select agents and.... This report must be followed by submission of APHIS/CDC Form 4 within 7 calendar days after seizure of the overlap select agent or toxin. (ii) For all other overlap select agents or toxins, APHIS/CDC Form...
50 CFR 229.32 - Atlantic large whale take reduction plan regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... South Channel Restricted Trap/Pot Area where it overlaps with Lobster Management Area (LMA) 2 and the... Trap/Pot Area overlaps with Lobster Management Area (LMA) 2 and the Outer Cape LMA (as defined in the... Offshore Management Area 3 (including the area known as the Area 2/3 Overlap and Area 3/5 Overlap as...
Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.
2010-03-02
Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.
Self-calibration of a noisy multiple-sensor system with genetic algorithms
NASA Astrophysics Data System (ADS)
Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua
1996-01-01
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.
Time Correlations in Mode Hopping of Coupled Oscillators
NASA Astrophysics Data System (ADS)
Heltberg, Mathias L.; Krishna, Sandeep; Jensen, Mogens H.
2017-05-01
We study the dynamics in a system of coupled oscillators when Arnold Tongues overlap. By varying the initial conditions, the deterministic system can be attracted to different limit cycles. Adding noise, the mode hopping between different states become a dominating part of the dynamics. We simplify the system through a Poincare section, and derive a 1D model to describe the dynamics. We explain that for some parameter values of the external oscillator, the time distribution of occupancy in a state is exponential and thus memoryless. In the general case, on the other hand, it is a sum of exponential distributions characteristic of a system with time correlations.
Dynamical evolution of spectator systems produced in ultrarelativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Mazurek, K.; Szczurek, A.; Schmitt, C.; Nadtochy, P. N.
2018-02-01
In peripheral heavy-ion collisions at ultrarelativistic energies, usually only parts of the colliding nuclei effectively interact with each other. In the overlapping zone, a fireball or quark-gluon plasma is produced. The excitation energy of the heavy remnant can range from a few tens to several hundreds of MeV, depending on the impact parameter. The decay of these excited spectators is investigated in this work for the first time within a dynamical approach based on the multidimensional stochastic Langevin equation. The potential of this exploratory work to understand the connection between electromagnetic fields generated by the heavy spectators and measured pion distributions is discussed.
A Combinatorial Geometry Computer Description of the M578 Light Recovery Vehicle
1984-05-01
cannot overlap. 10 TABLE 1. GEOMETRIC SOLIDS USED IN COM-GEOM DESCRIPTIONS Symbol Solid Name RPP Rectangular Parallelepiped BOX Box RAW Right Angle...20R «OX 209 PCC 210 RCC 211 TRC 212 RHX "»13 RCC 214 RCC 2T5 TRC 216 BOX ?17 PrC ?"»R R^C SOLID PARAMETERS REMARKS 74.0303 3694.444...821720 «OX 221 RCC 22’ PC* 223 TPC 224 30V 225 "CC 2?6 PCC 227 TRC 22* BOX 220 RCC 230 »CC 231 TRC ?3’ TPC 233 TRC 234 RCC SOLID
Simple metric for a magnetized, spinning, deformed mass
NASA Astrophysics Data System (ADS)
Manko, V. S.; Ruiz, E.
2018-05-01
We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.
Automatic measurement of images on astrometric plates
NASA Astrophysics Data System (ADS)
Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.
1994-04-01
We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).
Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys
Zhang, S.; Nordlund, K.; Djurabekova, F.; ...
2017-04-12
We develop a new method using binary collision approximation simulating the Rutherford backscattering spectrometry in channeling conditions (RBS/C) from molecular dynamics atom coordinates of irradiated cells. The approach allows comparing experimental and simulated RBS/C signals as a function of depth without fitting parameters. The simulated RBS/C spectra of irradiated Ni and concentrated solid solution alloys (CSAs, NiFe and NiCoCr) show a good agreement with the experimental results. The good agreement indicates the damage evolution under damage overlap conditions in Ni and CSAs at room temperature is dominated by defect recombination and migration induced by irradiation rather than activated thermally.
Thermodynamic derivatives of infrared absorptance
NASA Technical Reports Server (NTRS)
Broersma, S.; Walls, W. L.
1974-01-01
Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I
2001-08-13
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.
Varas, Lautaro R; Pontes, F C; Santos, A C F; Coutinho, L H; de Souza, G G B
2015-09-15
The ion-ion-coincidence mass spectroscopy technique brings useful information about the fragmentation dynamics of doubly and multiply charged ionic species. We advocate the use of a matrix-parameter methodology in order to represent and interpret the entire ion-ion spectra associated with the ionic dissociation of doubly charged molecules. This method makes it possible, among other things, to infer fragmentation processes and to extract information about overlapped ion-ion coincidences. This important piece of information is difficult to obtain from other previously described methodologies. A Wiley-McLaren time-of-flight mass spectrometer was used to discriminate the positively charged fragment ions resulting from the sample ionization by a pulsed 800 eV electron beam. We exemplify the application of this methodology by analyzing the fragmentation and ionic dissociation of the dimethyl disulfide (DMDS) molecule as induced by fast electrons. The doubly charged dissociation was analyzed using the Multivariate Normal Distribution. The ion-ion spectrum of the DMDS molecule was obtained at an incident electron energy of 800 eV and was matrix represented using the Multivariate Distribution theory. The proposed methodology allows us to distinguish information among [CH n SH n ] + /[CH 3 ] + (n = 1-3) fragment ions in the ion-ion coincidence spectra using ion-ion coincidence data. Using the momenta balance methodology for the inferred parameters, a secondary decay mechanism is proposed for the [CHS] + ion formation. As an additional check on the methodology, previously published data on the SiF 4 molecule was re-analyzed with the present methodology and the results were shown to be statistically equivalent. The use of a Multivariate Normal Distribution allows for the representation of the whole ion-ion mass spectrum of doubly or multiply ionized molecules as a combination of parameters and the extraction of information among overlapped data. We have successfully applied this methodology to the analysis of the fragmentation of the DMDS molecule. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.
2013-01-01
Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112
Yoon, Young Jun; Eun, Hye Rim; Seo, Jae Hwa; Kang, Hee-Sung; Lee, Seong Min; Lee, Jeongmin; Cho, Seongjae; Tae, Heung-Sik; Lee, Jung-Hee; Kang, In Man
2015-10-01
We have investigated and proposed a highly scaled tunneling field-effect transistor (TFET) based on Ge/GaAs heterojunction with a drain overlap to suppress drain-induced barrier thinning (DIBT) and improve low-power (LP) performance. The highly scaled TFET with a drain overlap achieves lower leakage tunneling current because of the decrease in tunneling events between the source and drain, whereas a typical short-channel TFET suffers from a great deal of tunneling leakage current due to the DIBT at the off-state. However, the drain overlap inevitably increases the gate-to-drain capacitance (Cgd) because of the increase in the overlap capacitance (Cov) and inversion capacitance (Cinv). Thus, in this work, a dual-metal gate structure is additionally applied along with the drain overlap. The current performance and the total gate capacitance (Cgg) of the device with a dual-metal gate can be possibly controlled by adjusting the metal gate workfunction (φgate) and φoverlap-gate in the overlapping regions. As a result, the intrinsic delay time (τ) is greatly reduced by obtaining lower Cgg divided by the on-state current (Ion), i.e., Cgg/Ion. We have successfully demonstrated excellent LP and high-speed performance of a highly scaled TFET by adopting both drain overlap and dual-metal gate with DIBT minimization.
Overlapping clusters for distributed computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrokni, Vahab; Andersen, Reid; Gleich, David F.
2010-11-01
Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less
Window and Overlap Processing Effects on Power Estimates from Spectra
NASA Astrophysics Data System (ADS)
Trethewey, M. W.
2000-03-01
Fast Fourier transform (FFT) spectral processing is based on the assumption of stationary ergodic data. In engineering practice, the assumption is often violated and non-stationary data processed. Data windows are commonly used to reduce leakage by decreasing the signal amplitudes near the boundaries of the discrete samples. With certain combinations of non-stationary signals and windows, the temporal weighting may attenuate important signal characteristics to adversely affect any subsequent processing. In other words, the window artificially reduces a significant section of the time signal. Consequently, spectra and overall power estimated from the affected samples are unreliable. FFT processing can be particularly problematic when the signal consists of randomly occurring transients superimposed on a more continuous signal. Overlap processing is commonly used in this situation to improve the estimates. However, the results again depend on the temporal character of the signal in relation to the window weighting. A worst-case scenario, a short-duration half sine pulse, is used to illustrate the relationship between overlap percentage and resulting power estimates. The power estimates are shown to depend on the temporal behaviour of the square of overlapped window segments. An analysis shows that power estimates may be obtained to within 0.27 dB for the following windows and overlap combinations: rectangular (0% overlap), Hanning (62.5% overlap), Hamming (60.35% overlap) and flat-top (82.25% overlap).
Efficient methods for overlapping group lasso.
Yuan, Lei; Liu, Jun; Ye, Jieping
2013-09-01
The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso formulation based on the l(q) norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.
An ant colony based algorithm for overlapping community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di
2015-06-01
Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
2016-05-03
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.
2003-01-01
The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Prevention of overlapping prescriptions of psychotropic drugs by community pharmacists.
Shimane, Takuya; Matsumoto, Toshihiko; Wada, Kiyoshi
2012-10-01
The nonmedical use or abuse of prescription drugs, including psychotropic medicines, is a growing health problem in Japan. Patient access to psychotropic drugs, specifically from the oversupply of medications due to overlapping prescriptions, may increase the risk of drug abuse and dependence. However, very little is known about such overlapping prescriptions. Today, the dispensing of prescriptions is generally moving from inside to outside of hospitals, with psychotropic drugs mainly dispensed at community pharmacies. In this study, we used health insurance claims (i.e., receipts) for dispensing as the main source of information in an investigation of overlapping prescriptions of psychotropic drugs. A total of 119 patients were found to have received overlapping prescriptions, as identified by community pharmacists who were members of the Saitama Pharmaceutical Association, using patient medication records, followed by medication counseling and prescription notes for the patient. According to our findings, the most frequently overlapping medication was etizolam. Etizolam can be prescribed for more than 30 days since it is not regulated under Japanese law as a "psychotropic drug." Generally, when a drug can be prescribed for a greater number of days, it increases the likelihood of an overlapping prescription during the same period. As a result, the long-term prescription of etizolam increases the risk of overlapping prescriptions. We also found that the patients who received overlapping prescriptions of etizolam were mostly elderly and the most common pattern was prescription from both internal medicine and orthopedics physicians. Etizolam has wide range of indications that are covered by health insurance. Our results suggest that patients who received overlapping prescriptions of etizolam may receive prescriptions from different prescribers for different purposes. Therefore, it may be appropriate to regulate etizolam as a "psychotropic drug" under Japanese law, thus setting a limit on the period for which it can be prescribed in order to help prevent long-term and overlapping prescriptions.
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Futagami, Seiji; Yamawaki, Hiroshi; Shimpuku, Mayumi; Izumi, Nikki; Wakabayashi, Taiga; Kodaka, Yasuhiro; Nagoya, Hiroyuki; Shindo, Tomotaka; Kawagoe, Tetsuro; Sakamoto, Choitsu
2013-01-01
The association between clinical symptoms and sleep disorders in functional dyspepsia (FD)-overlap syndrome has not been studied in detail. The subjects were 139 patients with FD, 14 with irritable bowel syndrome (IBS), 12 with nonerosive reflux disease (NERD), and 41 healthy volunteers. Gastric motility was evaluated with the (13)C-acetate breath test. We used Rome III criteria to evaluate upper abdominal symptoms, and Self-Rating Questionnaire for Depression (SRQ-D) scores to determine depression status. Sleep disorders were evaluated with Pittsburgh Sleep Quality Index (PSQI) scores. There were no significant differences in age, body-mass index, alcohol intake, and smoking rate between patients with FD alone and those with FD-overlap syndrome. The postprandial abdominal fullness score in patients with FD-NERD-IBS was significantly greater than that in patients with FD-NERD overlap syndrome (p<0.001) or FD alone (p<0.001). The score for the feeling of hunger in patients with FD-NERD-IBS was significantly greater than that in patients with FD alone (p=0.0025), FD-NERD overlap syndrome (p=0.0088), or FD-IBS overlap syndrome (p=0.0057). The heartburn score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone (p=0.0035) or FD-IBS overlap syndrome (p=0.0026). The Tmax in patients with FD-overlap syndrome or FD alone was significantly higher than that in healthy volunteers. The Pittsburgh Sleep Quality Index score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone. Symptom scores, such as those for postprandial abdominal fullness, heartburn, and the feeling of hunger, in patients with FD-overlap syndromes are significantly greater than those in patients with FD alone. Further studies are necessary to clarify whether various symptoms are related to sleep disorders in patients with FD-NERD-IBS overlap syndrome.
Zygourakis, Corinna C; Keefe, Malla; Lee, Janelle; Barba, Julio; McDermott, Michael W; Mummaneni, Praveen V; Lawton, Michael T
2017-02-01
Overlapping surgery is a common practice to improve surgical efficiency, but there are limited data on its safety. To analyze the patient outcomes of overlapping vs nonoverlapping surgeries performed by multiple neurosurgeons. Retrospective review of 7358 neurosurgical procedures, 2012 to 2015, at an urban academic hospital. Collected variables: patient age, gender, insurance, American Society of Anesthesiologists score, severity of illness, mortality risk, admission type, transfer source, procedure type, surgery date, number of cosurgeons, presence of neurosurgery resident/fellow/another attending, and overlapping vs nonoverlapping surgery. Outcomes: procedure time, length of stay, estimated blood loss, discharge location, 30-day mortality, 30-day readmission, return to operating room, acute respiratory failure, and severe sepsis. Statistics: univariate, then multivariate mixed-effect models. Overlapping surgery patients (n = 3725) were younger and had lower American Society of Anesthesiologists scores, severity of illness, and mortality risk (P < .0001) than nonoverlapping surgery patients (n = 3633). Overlapping surgeries had longer procedure times (214 vs 172 min; P < .0001), but shorter length of stay (7.3 vs 7.9 d; P = .010) and lower estimated blood loss (312 vs 363 mL’s; P = .003). Overlapping surgery patients were more likely to be discharged home (73.6% vs 66.2%; P < .0001), and had lower mortality rates (1.3% vs 2.5%; P = .0005) and acute respiratory failure (1.8% vs 2.6%; P = .021). In multivariate models, there was no significant difference between overlapping and nonoverlapping surgeries for any patient outcomes, except for procedure duration, which was longer in overlapping surgery (estimate = 23.03; P < .001). When planned appropriately, overlapping surgery can be performed safely within the infrastructure at our academic institution. Copyright © 2017 by the Congress of Neurological Surgeons
Restoration and reconstruction from overlapping images
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing
1997-01-01
This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.
Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke
2018-02-01
To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn
2014-07-01
The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, somore » does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.« less
Crystallisation kinetics study in stabilisation treatment of sol-gel derived 45S5 bioglass
NASA Astrophysics Data System (ADS)
Prakrathi, S.; Matin, Mallikarjun; Kiran, P.; Manne, Bhaskar; Ramesh, M. R.
2018-04-01
Solgel gel derived bioglasses require stabilisation heat treatment to decompose nitrates and to improve mechanical stability. While decomposing nitrate phases especially in solgel derived 45S5 bioglass, it is difficult to avoid crystallisation of silicate crystalline phases (Na2CaSi2O6, Na2Ca2Si3O9) due to overlapping of nitrates decomposition and silicates crystallisation temperatures. Control of such crystallinity amount in bioglasses is at most important during stabilisation as it affects the dissolution rates of bioglassesin body fluids. Controlling and quantifying of this crystallinity helps in engineering bioglasses for specific period in application. In this work, synthesis of 45S5 bioglass through solgel method is presented. Here, temperature and time dependent crystallisation kinetics were estimated using a quality parameter derived from X-ray diffraction (XRD) patterns of bioglass during stabilisation treatment. Quality parameter derived from XRD patterns is termed as IPB which is the ratio of integral area of peaks to the integral area of background. It is proposed that IPB can be used as quality parameter to assess crystallinity and to study crystallisation kinetics in bioglasses.
Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao
2018-03-01
The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.
NASA Astrophysics Data System (ADS)
Schnohr, Claudia S.; Araujo, Leandro L.; Ridgway, Mark C.
2014-09-01
Analysing only the first nearest neighbour (NN) scattering signal is a commonly used and often successful way to treat extended X-ray absorption fine structure data. However, using temperature-dependent measurements of InP as an example, we demonstrate how this approach can lead to erroneous first NN structural parameters in systems with a weak first but strong second NN scatterer. In such cases, particularly low temperature data may suffer from an overlap of first and second NN scattering signals caused by the Fourier transformation (FT) even if the dominant peaks appear to be well separated. The first NN structural parameters then vary as a function of the FT settings if only the first NN scattering contribution is considered in the analysis. Although this variation is small, it can also lead to significant differences in other calculated properties such as the Einstein temperature. We demonstrate that these variations can be avoided either by choosing an appropriate FT window or by including the scattering contributions of higher shells in the analysis. The latter is achieved by a path fitting approach and yields structural parameters independent of the FT settings used.
Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.
Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos
2010-07-01
To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.
Vergilino-Perez, Dorine; Fayel, Alexandra; Lemoine, Christelle; Senot, Patrice; Vergne, Judith; Doré-Mazars, Karine
2012-06-05
Hemispheric specialization in saccadic control is still under debate. Here we examine the latency, gain, and peak velocity of reactive and voluntary leftward and rightward saccades to assess the respective roles of eye and hand dominance. Participants with contrasting hand and eye dominance were asked to make saccades toward a target displayed at 5°, 10°, or 15° left or right of the central fixation point. In separate sessions, reactive and voluntary saccades were elicited by Gap-200, Gap-0, Overlap-600, and Antisaccade procedures. Left-right asymmetries were not found in saccade latencies but appeared in saccade gain and peak velocity. Regardless of the dominant hand, saccades directed to the ipsilateral side relative to the dominant eye had larger amplitudes and faster peak velocities. Left-right asymmetries can be explained by naso-temporal differences for some subjects and by eye dominance for others. Further investigations are needed to examine saccadic parameters more systematically in relation to eye dominance. Indeed, any method that allows one to determine ocular dominance from objective measures based on saccade parameters should greatly benefit clinical applications, such as monovision surgery.
Biomedical progress rates as new parameters for models of economic growth in developed countries.
Zhavoronkov, Alex; Litovchenko, Maria
2013-11-08
While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm.
Biomedical Progress Rates as New Parameters for Models of Economic Growth in Developed Countries
Zhavoronkov, Alex; Litovchenko, Maria
2013-01-01
While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm. PMID:24217179
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
NASA Astrophysics Data System (ADS)
Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo
2016-05-01
The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.
Computing Information Value from RDF Graph Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Heileman, Gregory
2010-11-08
Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We computemore » information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.« less
Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites
NASA Astrophysics Data System (ADS)
Farzanian, Shafee; Shahsavari, Rouzbeh
2018-03-01
Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.
ERIC Educational Resources Information Center
Fowler, R. Clarke
2017-01-01
This study explores the relationship between grade-level overlap between elementary education (ELED) and early childhood education (ECED) licenses and ECED teacher output. Analysis of Title 2 data indicates that ECED/ELED overlap is extensive, as evidenced by the number of states with grade-level overlaps of 5 (n = 2), 4 (n = 24), 3 (n = 10), and…
Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis
Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny
2014-01-01
Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface
NASA Astrophysics Data System (ADS)
Fogwell, T. W.
2013-12-01
When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the contributions by subsequent dischargers. If the first discharger continued to discharge when the second discharger began discharging, then the position of the overlapping part of the resulting plumes can be determined. If the first discharger has quit discharging by the time the second discharger begins, then the analysis of the possibly overlapping parts of the plume becomes more direct. Without a retardation coefficient for one of the discharged chemicals, the resulting plumes for that chemical in this case should not overlap. By working back from the leading part of the plume, the amount of contaminant discharged by each of the responsible parties can be determined. By comparing the amounts, resulting proportions of the resulting contaminant plume can be attributed to each of the responsible parties. The calculation of the relative amounts is more accurate than the calculation of the absolute amounts because the same assumptions and parameters are used for all of the calculations, whereas the absolute values might be subject to greater error because of these same assumptions and parameters. An example is given of an actual site from the western part of the US and the resulting allocation of relative responsibilities of the various discharging parties for the allocation of costs.
Overlap Spectrum Fiber Bragg Grating Sensor Based on Light Power Demodulation
Zhang, Hao; Jiang, Junzhen; Liu, Shuang; Chen, Huaixi; Zheng, Xiaoqian; Qiu, Yishen
2018-01-01
Demodulation is a bottleneck for applications involving fiber Bragg gratings (FBGs). An overlap spectrum FBG sensor based on a light power demodulation method is presented in this paper. The demodulation method uses two chirp FBGs (cFBGs) of which the reflection spectra partially overlap each other. The light power variation of the overlap spectrum can be linked to changes in the measurand, and the sensor function can be realized via this relationship. A temperature experiment showed that the relationship between the overlap power spectrum of the FBG sensor and temperature had good linearity and agreed with the theoretical analysis. PMID:29772793
Monolithic coupling of a SU8 waveguide to a silicon photodiode
NASA Astrophysics Data System (ADS)
Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A.
2003-12-01
We present quantitative results of light coupling from SU8 waveguides into silicon p-n photodiodes in monolithically integrated structures. Multimode, 12 μm thick, and 20 μm wide SU8 waveguides were fabricated to overlap 40×180 μm2 photodiodes, with three different waveguide-photodiode overlap lengths. The attenuation due to leaky-mode coupling in the overlap area was then calculated from photocurrent measurements. The overlap attenuation ranged from a minimum of 2.2 dB per mm overlap length to a maximum of about 3 dB/mm, comparing favorably with reported nonpolymeric waveguide-Si photodiode attenuations.
Automatic prevention of label overlap
DOT National Transportation Integrated Search
1976-03-01
The project comprised a number of simulation exercises : designed to evaluate methods of either preventing or : resolving the problems likely to be caused by label overlap on : Labelled Plan Displays (LPD). The automatic prevention of : label overlap...
Reingle, Jennifer M.; Maldonado-Molina, Mildred M.
2013-01-01
The purpose of this article is to evaluate the victim–offender overlap among a nationally representative sample of Native American adolescents and young adults. Data for this study were obtained from 338 Native American youth who participated in the National Longitudinal Study of Adolescent Health (Add Health) Waves I-IV. Group-based trajectory modeling was used to estimate trajectories of violence and victimization separately. Bivariate tests were used to assess the overlap between victimization and violent trajectory groups. Multinomial regression procedures were used to assess the predictors of victimization, offending, and the overlap category of both victimization and offending. Three trajectory groups were found for violence (nonviolent, escalators, and desistors) and victimization (nonvictim, decreasing victimization, and increasing victimization). We found substantial evidence of an overlap between victimization and offending among Native Americans, as 27.5% of the sample reported both victimization and offending. Those in the overlap group had greater number of risk factors present at baseline. These results suggest that the victim–offender overlap is present in Native American adolescents. Explanations and implications are discussed. PMID:24078778
Porrero, Jose L; Cano-Valderrama, Oscar; Castillo, María J; Marcos, Alberto; Tejerina, Gabriel; Cendrero, Manuel; Porrero, Belén; Alonso, María T; Torres, Antonio J
2018-02-02
importance of mesh overlap on recurrence after open umbilical hernia repair has been poorly studied. a retrospective cohort study was performed with patients who underwent open umbilical hernia repair with bilayer prosthesis between 2004 and 2015. 1538 patients were included. Fifty patients (3.3%) had a mesh overlap lower than 1 cm. After a mean follow-up of 4.1 years 53 patients (3.5%) developed a recurrence. Recurrence was associated with a mesh overlap smaller than 1 cm (10.2% vs. 3.3%, p = 0.010, OR = 3.3). In the logistic regression model an overlap smaller than 1 cm was not statistically associated with recurrence (OR = 2.5, p = 0.123). Female gender, postoperative complications and prosthesis size were associated with hernia recurrence. mesh overlap seems to be an important factor for hernia recurrence. A mesh overlap of at least 1 cm should be used until more studies are performed about this issue. Copyright © 2018 Elsevier Inc. All rights reserved.
Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu
2015-02-12
The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes
NASA Astrophysics Data System (ADS)
Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.
2017-11-01
Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.
Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario
NASA Astrophysics Data System (ADS)
Hosseinkhan, N.; Nozari, K.
2018-02-01
We investigate an extension of mimetic gravity in which mimetic matter is nonminimally coupled to the Ricci scalar. We derive the background field equations and show that, as the minimal case, the nonminimal mimetic matter can behave as dark matter or dark energy. By adopting some well-known potentials, we study the dynamics of the scale factor and the equation of state parameter in detail. As the effective mimetic dark energy, this model explains the late time cosmic acceleration and its equation of state parameter crosses the phantom divide. We extend our analysis to the dynamical system approach and the phase space trajectories of the model. We obtain an attractor line which corresponds to the late time cosmic acceleration. By comparing this nonminimal mimetic matter scenario with observational data for the LCDM, we show that the confidence levels of this model overlap with those of Planck 2015 TT, TE, EE + Low P + Lensing + BAO data in the LCDM model.
Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.
2007-01-01
The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.
SAR Image Simulation of Ship Targets Based on Multi-Path Scattering
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.
2018-04-01
Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.
Data decomposition of Monte Carlo particle transport simulations via tally servers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less
Absorption spectra analysis of hydrated uranium(III) complex chlorides
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Gajek, Z.; Drożdżyński, J.
2000-11-01
Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.
Implications of Network Topology on Stability
Kinkhabwala, Ali
2015-01-01
In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219
Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718
NASA Astrophysics Data System (ADS)
Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael
Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.
Crystal surface analysis using matrix textural features classified by a probabilistic neural network
NASA Astrophysics Data System (ADS)
Sawyer, Curry R.; Quach, Viet; Nason, Donald; van den Berg, Lodewijk
1991-12-01
A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlapping sub-images and features are extracted from each sub-image based on statistical measures of the gray tone distribution, according to the method of Haralick. Twenty parameters are derived from each sub-image and presented to a probabilistic neural network (PNN) for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities.
Linear Phase Sharp Transition BPF to Detect Noninvasive Maternal and Fetal Heart Rate.
Marchon, Niyan; Naik, Gourish; Pai, K R
2018-01-01
Fetal heart rate (FHR) detection can be monitored using either direct fetal scalp electrode recording (invasive) or by indirect noninvasive technique. Weeks before delivery, the invasive method poses a risk factor to the fetus, while the latter provides accurate fetal ECG (FECG) information which can help diagnose fetal's well-being. Our technique employs variable order linear phase sharp transition (LPST) FIR band-pass filter which shows improved stopband attenuation at higher filter orders. The fetal frequency fiduciary edges form the band edges of the filter characterized by varying amounts of overlap of maternal ECG (MECG) spectrum. The one with the minimum maternal spectrum overlap was found to be optimum with no power line interference and maximum fetal heart beats being detected. The improved filtering is reflected in the enhancement of the performance of the fetal QRS detector (FQRS). The improvement has also occurred in fetal heart rate obtained using our algorithm which is in close agreement with the true reference (i.e., invasive fetal scalp ECG). The performance parameters of the FQRS detector such as sensitivity (Se), positive predictive value (PPV), and accuracy (F 1 ) were found to improve even for lower filter order. The same technique was extended to evaluate maternal QRS detector (MQRS) and found to yield satisfactory maternal heart rate (MHR) results.
NASA Astrophysics Data System (ADS)
Smithka, I. N.; Perfit, M. R.
2013-12-01
Mid-ocean ridges (MORs) are the sites of oceanic lithosphere creation and construction. Ridge discontinuities are a global phenomenom but are not as well understood as ridge axes. Geochemical analyses provide insights into upper mantle processes since elements fractionate with melting and freezing as well as reside in material to retain source signature. Lavas collected from ridge discontinuities consist of greater chemical diversity and represent variations in source, melting parameters, and local crustal processes. The small overlapping spreading center (OSC) near the third parallel north on the East Pacific Rise has been superficially analyzed previously, but here we present new isotope analyses and expand our understanding of MOR processes and processes near OSCs. Initial analyses of lavas collected in 2000 on AHA-NEMO2 revealed normal MOR basalt trends in rare earth element enrichments as well as in major element concentrations. Crystal fractionation varies along the tips of both axes, with MgO and TiO2 concentrations increasing towards the OSC basin. Newly analyzed Sr, Nd, and Pb isotope ratios will further constrain the nature of geochemical diversity along axis. As the northern tip seems to be propagating and the southern tip dying, lavas collected from each may reflect two different underlying mantle melting and magma storage processes.
Hints of hybridizing Majorana fermions in a nanowire coupled to superconducting leads
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; van Harlingen, D. J.; Mohseni, P. K.; Jung, K.; Li, X.
2013-03-01
It has been proposed that a nanowire with strong spin-orbit coupling that is contacted with a conventional superconductor and subjected to a large magnetic field can be driven through a topological phase transition. In this regime, the two ends of the nanowire together host a pair of quasi-particles known as Majorana fermions (MFs). A key feature of MFs is that they are pinned to zero energy when the topological nanowire is long enough such that the wave functions of the two MFs do not overlap significantly, resulting in a zero bias anomaly (ZBA). It has been recently predicted that changes in external parameters can vary the wave function overlap and cause the MFs to hybridize in an oscillatory fashion. This would lead to a non-monotonic splitting or broadening of the ZBA and help distinguish MF transport signatures from a Kondo effect. Here, we present transport studies of an InAs nanowire contacted with niobium nitride leads in high magnetic fields. We observe a number of robust ZBAs that can persist for a wide range of back gate bias and magnetic field strength. Under certain conditions, we find that the height and width of the ZBA can oscillate with back gate bias or magnetic field. This work was supported by Microsoft Project Q.
Rao, Sujaya; Ostroverkhova, Oksana
2015-07-01
Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds.
NASA Astrophysics Data System (ADS)
Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui
2015-08-01
How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.
Wear, Keith A
2010-10-01
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Hervás, César; Silva, Manuel; Serrano, Juan Manuel; Orejuela, Eva
2004-01-01
The suitability of an approach for extracting heuristic rules from trained artificial neural networks (ANNs) pruned by a regularization method and with architectures designed by evolutionary computation for quantifying highly overlapping chromatographic peaks is demonstrated. The ANN input data are estimated by the Levenberg-Marquardt method in the form of a four-parameter Weibull curve associated with the profile of the chromatographic band. To test this approach, two N-methylcarbamate pesticides, carbofuran and propoxur, were quantified using a classic peroxyoxalate chemiluminescence reaction as a detection system for chromatographic analysis. Straightforward network topologies (one and two outputs models) allow the analytes to be quantified in concentration ratios ranging from 1:7 to 5:1 with an average standard error of prediction for the generalization test of 2.7 and 2.3% for carbofuran and propoxur, respectively. The reduced dimensions of the selected ANN architectures, especially those obtained after using heuristic rules, allowed simple quantification equations to be developed that transform the input variables into output variables. These equations can be easily interpreted from a chemical point of view to attain quantitative analytical information regarding the effect of both analytes on the characteristics of chromatographic bands, namely profile, dispersion, peak height, and residence time. Copyright 2004 American Chemical Society
Characterization of Depression in Children with Autism Spectrum Disorders
Magnuson, Katherine M.; Constantino, John N.
2011-01-01
Depressive syndromes represent a disabling comorbidity for many children with autism spectrum disorders (ASD), however the ascertainment of depression can be complicated by phenotypic overlap between the two conditions, by ways in which autistic symptomatology can mask cardinal features of depression, and by atypical manifestations of depression in children with ASD. These issues have contributed to wide variation in the estimation of prevalence rates of depression in individuals with ASD, and invoke the need for new approaches to the specific detection of depression and other neuropsychiatric comorbidities that aggregate in children affected by ASD. We review the scientific literature relevant to the occurrence of depression in ASD, and consider important parameters of risk, including psychosocial factors such as insight into affectation status, as well as biological factors such as the aggregation of depressive syndromes in certain families affected by autism, which has suggested possible overlap in genetic influences underlying the two conditions. Variability in the manifestations of depression across environmental contexts provides important clues to intervention, and underscores the potential importance of involving multiple informants in ascertaining depression in children and adolescents with ASD. A practical strategy for evaluating the presence of depression in youth with ASD is synthesized from the available data and discussed. PMID:21502871
Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound
NASA Astrophysics Data System (ADS)
Mohamed, C. Ben; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A. Ben
2014-10-01
The [(C2H5)NH3]2CdCl4 hybrid material was prepared and its calorimetric study and electric properties were investigated at low temperature. The X-ray powder diffractogram has shown that the compound is crystallized in the orthorhombic system with Abma space group, and the refined unit cell parameters are a=7.546 Å, b=7.443 Å, and c=21.831 Å. The calorimetric study has revealed two endothermic peaks at 216 K and 357 K, which are confirmed by the variation of fp and σdc as a function of temperature. The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I (low temperature (OLT)), non-overlapping small polaron tunneling model (NSPT) in phase II (room temperature (ORT)) and the overlapping large polaron tunneling model in phase III (high temperature (OHT)). The density of localized states NF(E) at the Fermi level and the binding energy Wm were calculated. The variation of the dielectric loss log(εʺ) with log(ω) was found to follow the empirical law, ε″=B ωm(T).
On modal cross-coupling in the asymptotic modal limit
NASA Astrophysics Data System (ADS)
Culver, Dean; Dowell, Earl
2018-03-01
The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.