Sample records for parkland agroforestry systems

  1. Management of Agroforestry Practices in Assosa District, Benishangul Gumuze Region, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kifle, E. T.; Asfaw, Z.; Abdelkadir, A.

    2017-12-01

    Trees on farms have evolved from the selective retention of useful trees on agricultural lands following the severe forest destruction and degradation for agriculture and other uses. As a consequence, trees on farms form the main vegetation types in much of rural Ethiopia in general and Assosa district in particular. In order to increase the products and services of these important agroforestry species there is a need to identify and document the species type and their management practices. To this end, this study is intended to:1) identify agroforestry types, species richness, use-diversity and management of the woody and non-woody plant species 2) record on-farm tree management practices and 3) assess the perception and attitude of farmers towards tree management. A combination of assessment methods including species inventory, key informant discussions and questionnaire surveys were employed in the study. The key findings of the study have shown that a) there were four major agroforestry practices namely homrgardens, parklands, alley cropping and farm boundary plantings with homegardens and parklands appearing to be the dominant practices, b) a total of 57 woody and non-woody species were found to form the main vegetation species with about 21 species commonly shared by both homegardens and parklands c)the difference in mean number of stems in homegardens and parklands was significantly different (p<0.05), d) retained trees in the study area are multifunctional with more than six use types and were managed by more than five management practices including slant-cut of mango (Mangifera indica) trees. According to household respondents and key informants land tenure insecurity, prevalence of pests/diseases, scarcity of water and poor survival of seedlings were the major problems. Therefore, land certification, water resource development, integrated pest management(IPM), training of farmers and further research on the cultural management practices are key

  2. Knowledge systems in agroforestry

    Treesearch

    Wieland Kunzel

    1993-01-01

    Pacific Islands agroforestry has evolved into sustainable, diverse and productive a land use systems in many areas. We marvel at these systems, and the scientific world is trying to catch up with the traditional knowledge. At the same time, Pacific Islands farmers are abandoning their agroforestry systems in great numbers. It is mainly intensified agriculture for cash...

  3. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    NASA Astrophysics Data System (ADS)

    Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.

    2014-04-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.

  4. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    PubMed Central

    Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U

    2014-01-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Key Points Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow PMID:25641996

  5. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso.

    PubMed

    Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U

    2014-04-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow.

  6. Forecasting the Performance of Agroforestry Systems

    NASA Astrophysics Data System (ADS)

    Luedeling, E.; Shepherd, K.

    2014-12-01

    Agroforestry has received considerable attention from scientists and development practitioners in recent years. It is recognized as a cornerstone of many traditional agricultural systems, as well as a new option for sustainable land management in currently treeless agricultural landscapes. Agroforestry systems are diverse, but most manifestations supply substantial ecosystem services, including marketable tree products, soil fertility, water cycle regulation, wildlife habitat and carbon sequestration. While these benefits have been well documented for many existing systems, projecting the outcomes of introducing new agroforestry systems, or forecasting system performance under changing environmental or climatic conditions, remains a substantial challenge. Due to the various interactions between system components, the multiple benefits produced by trees and crops, and the host of environmental, socioeconomic and cultural factors that shape agroforestry systems, mechanistic models of such systems quickly become very complex. They then require a lot of data for site-specific calibration, which presents a challenge for their use in new environmental and climatic domains, especially in data-scarce environments. For supporting decisions on the scaling up of agroforestry technologies, new projection methods are needed that can capture system complexity to an adequate degree, while taking full account of the fact that data on many system variables will virtually always be highly uncertain. This paper explores what projection methods are needed for supplying decision-makers with useful information on the performance of agroforestry in new places or new climates. Existing methods are discussed in light of these methodological needs. Finally, a participatory approach to performance projection is proposed that captures system dynamics in a holistic manner and makes probabilistic projections about expected system performance. This approach avoids the temptation to take

  7. Birds as predators in tropical agroforestry systems.

    PubMed

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  8. Determinants of bacterial communities in Canadian agroforestry systems.

    PubMed

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. [Research progress on carbon sink function of agroforestry system under climate change].

    PubMed

    Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan

    2014-10-01

    As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.

  10. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis.

    PubMed

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-11-28

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35-100 m(2)) and large (≥100 m(2)) trees compared to small (<35 m(2)) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas.

  11. Tree Crown Mapping in Managed Woodlands (Parklands) of Semi-Arid West Africa Using WorldView-2 Imagery and Geographic Object Based Image Analysis

    PubMed Central

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-01-01

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35–100 m2) and large (≥100 m2) trees compared to small (<35 m2) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815

  12. Parkland College 2001-2003 Operational Plan.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL.

    This Parkland College (Illinois) Operational Plan supports the document titled Parkland College 1999-2004: A Strategic Plan for Excellence. Strategic goals and strategies are followed by specific operational action plans that support the completion of the given corresponding strategy. The four goals include: (1) to develop the highest educational…

  13. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  14. Economics of Agroforestry

    Treesearch

    D. Evan Mercer; Frederick W. Cubbage; Gregory E. Frey

    2014-01-01

    This chapter provides principles, literature and a case study about the economics of agroforestry. We examine necessary conditions for achieving efficiency in agroforestry system design and economic analysis tools for assessing efficiency and adoptability of agroforestry. The tools presented here (capital budgeting, linear progranuning, production frontier analysis...

  15. The POIS (Parkland On-Line Information System) Implementation of the IBM Health Care Support/Patient Care System

    PubMed Central

    Mishelevich, David J.; Hudson, Betty G.; Van Slyke, Donald; Mize, Elaine I.; Robinson, Anna L.; Brieden, Helen C.; Atkinson, Jack; Robertson, James

    1980-01-01

    The installation of major components of a comprehensive Hospital Information System (HIS) called POIS, the Parkland On-line Information System, including identified success factors is described for the Dallas County Hospital District (DCHD) known also as the Parkland Memorial Hospital. Installation of the on-line IBM Health Care Support (HCS) Registration and Admissions Packages occurred in 1976 and implementation of the HCS Patient Care System (PCS) began in 1977 which includes on-line support of health care areas such as nursing stations and ancillary areas. The Duke Hospital Information System (DHIS) is marketed as the IBM HCS/Patient Care System (PCS). DCHD was the validation site. POIS has order entry, result reporting and work management components. While most of the patient care components are currently installed for the inpatient service, the Laboratories are being installed for the outpatient and Emergency areas as well. The Clinic Appointment System developed at the University of Michigan is also installed. The HCS family of programs use DL/1 and CICS and were installed in the OS versions, currently running under MVS on an IBM 370/168 Model 3 with 8 megabytes of main memory. ImagesFigure 1-AFigure 1-B

  16. An assessment of agroforestry systems in the southern USA

    Treesearch

    F. C. Zinkhan; D. Evan Mercer

    1997-01-01

    An assessment of the southern USA, based on a survey of land-use professionalsand a review of theliterature, revealed that it is a diverse region with substantial potential for agroforestry to address a combination of problems and opportunities. The survey indicated that silvopastoml systems are the most common form of agroforestry in the region. Increased economic...

  17. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    NASA Astrophysics Data System (ADS)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  18. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  19. Parklands Partnership: Education through Reforestation.

    ERIC Educational Resources Information Center

    Scalia, Josephine A.

    1992-01-01

    Describes New York City's Parklands Partnership Program, in which elementary and secondary students visit natural woodlands areas in their neighborhood, learn about forest ecology, and engage in restoration and reforestation activities that foster a connection between themselves and their local environment. (SV)

  20. Enhanced biodiversity and pollination in UK agroforestry systems.

    PubMed

    Varah, Alexa; Jones, Hannah; Smith, Jo; Potts, Simon G

    2013-07-01

    Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits. © 2013 Society of Chemical Industry.

  1. Economics and agroforestry

    Treesearch

    John W. Brown

    1993-01-01

    The concept of sustainability is an underlying theme in much of the literature dealing with the economics of agroforestry. Four major areas of concern for economic investigation into sustainable agroforestry systems — profitability, dynamics, externalities, and markets — are addressed using examples from the available literature. Finally, the social constraints that...

  2. Agroforestry: mapping the way with GIS

    Treesearch

    Gary Bentrup; Tim Leininger

    2002-01-01

    Agroforestry combines agriculture and forestry technologies to create diverse, profitable, and sustainable land-use systems (Rietveld, 1995). Agroforestry practices include alley cropping, forest farming, riparian forest buffers, silvopasture, and windbreaks-each of which meets environmental, social, and economic needs (Gold et al., 2000). Environmentally, agroforestry...

  3. Soil cover by natural trees in agroforestry systems

    NASA Astrophysics Data System (ADS)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.

    2009-04-01

    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was

  4. A common framework for greenhouse gas assessment protocols in temperate agroforestry systems: Connecting via GRACEnet

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...

  5. Agroforestry

    USDA-ARS?s Scientific Manuscript database

    The impacts of agroforestry systems (AFS) on soil management in temperate, subtropical, and tropical biomes support the beneficial, holistic role of tree components in agricultural land-use systems. Compared to annual monocultures, AFS can enhance several soil physical properties improving soil resi...

  6. Status of microbial diversity in agroforestry systems in Tamil Nadu, India.

    PubMed

    Radhakrishnan, Srinivasan; Varadharajan, Mohan

    2016-06-01

    Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Agroforestry Adoption By Smallholders

    Treesearch

    D. Evan Mercer; Subhrendu K. Pattanayak

    2003-01-01

    Agroforestry is a joint forest production system whereby land, labor, and capital inputs are combined to produce trees and agricultural crops (and/or livestock) on the same unit of land. Although existing for centuries (maybe millennia) as an array of traditional land use practices in the tropics, agroforestry emerged in the late 1970s as a modern, improved tropical...

  8. Neighbourhood safety and area deprivation modify the associations between parkland and psychological distress in Sydney, Australia

    PubMed Central

    2013-01-01

    Background The aim of this study was to investigate how perceived neighbourhood safety and area deprivation influenced the relationship between parklands and mental health. Methods Information about psychological distress, perceptions of safety, demographic and socio-economic background at the individual level was extracted from New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. Generalized Estimating Equations logistic regression analyses were performed to account for correlation between participants within postcodes, and with controls for socio-demographic characteristics and socio-economic status at the area level. Results In areas where the residents reported perceiving their neighbourhood to be “safe” and controlling for area levels of socio-economic deprivation, there were no statistically significant associations between the proportion of parkland and high or very high psychological distress. In the most disadvantaged neighbourhoods which were perceived as unsafe by residents, those with greater proportions of parkland, over 20%, there was greater psychological distress, this association was statistically significant (20-40% parkland: OR=2.27, 95% CI=1.45-3.55; >40% parkland: OR=2.53, 95% CI=1.53-4.19). Conclusion Our study indicates that perceptions of neighbourhood safety and area deprivation were statistically significant effect modifiers of the association between parkland and psychological distress. PMID:23635303

  9. Neighbourhood safety and area deprivation modify the associations between parkland and psychological distress in Sydney, Australia.

    PubMed

    Chong, Shanley; Lobb, Elizabeth; Khan, Rabia; Abu-Rayya, Hisham; Byun, Roy; Jalaludin, Bin

    2013-05-01

    The aim of this study was to investigate how perceived neighbourhood safety and area deprivation influenced the relationship between parklands and mental health. Information about psychological distress, perceptions of safety, demographic and socio-economic background at the individual level was extracted from New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. Generalized Estimating Equations logistic regression analyses were performed to account for correlation between participants within postcodes, and with controls for socio-demographic characteristics and socio-economic status at the area level. In areas where the residents reported perceiving their neighbourhood to be "safe" and controlling for area levels of socio-economic deprivation, there were no statistically significant associations between the proportion of parkland and high or very high psychological distress. In the most disadvantaged neighbourhoods which were perceived as unsafe by residents, those with greater proportions of parkland, over 20%, there was greater psychological distress, this association was statistically significant (20-40% parkland: OR=2.27, 95% CI=1.45-3.55; >40% parkland: OR=2.53, 95% CI=1.53-4.19). Our study indicates that perceptions of neighbourhood safety and area deprivation were statistically significant effect modifiers of the association between parkland and psychological distress.

  10. Weed competition with soybean in no-tillage agroforestry and sole-crop systems in subtropical Brazil

    USDA-ARS?s Scientific Manuscript database

    Weed competition on soybean [Glycine max (L.) Merr.] growth and yield was expected to be different when managed in an agroforestry system as compared with solecropping without trees. Therefore agronomic practices to control weeds might need to be modified in agroforestry systems. We analyzed weed co...

  11. Agroforestry systems for bioenergy in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Agricultural landscapes are an important component of a biofuel strategy to develop energy independence. Agroforestry systems offer an opportunity to produce both food and biofuel feedstocks from the same land area. Such a strategy could improve numerous ecosystem services more so than either of t...

  12. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    PubMed

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  13. Cacau Cabruca Agroforestry System of Production in Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    The Cacao Cabruca Agroforestry system of production was developed by farmers in Southern Bahia probably in the beginning of the 19th century. To establish such system, farmers in the Atlantic rain forest region selectively maintained around 75 adult individual native trees per hectare, removed the o...

  14. An indigenous Pacific Island agroforestry system: Pohnpei Island

    Treesearch

    Bill Raynor; James Fownes

    1993-01-01

    The indigenous agroforestry system on Pohnpei was studied using circular plots laid out in transect across 57 randomly-selected farms. Data were collected on species and cultivar presence, size, density, frequency, as well as soil type, slope, aspect, and other related information. Through farmer interviews, farm family demographic data was also recorded. Seasonality...

  15. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants

    PubMed Central

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-01

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ18O, and δ13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ18O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ13C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071

  16. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    PubMed

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-19

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  17. Spatial pattern and ecological process in the coffee agroforestry system.

    PubMed

    Perfecto, Ivette; Vandermeer, John

    2008-04-01

    The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.

  18. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  19. Integrating walnut and other hardwoods into agroforestry practices

    Treesearch

    Shibu. Jose

    2013-01-01

    Agroforestry systems have been proposed as alternative, environmentally benign systems for agricultural production in temperate North America. Walnut and other hardwoods have been successfully integrated in most agroforestry practices include alley cropping, silvopastural, windbreaks, and riparian buffers. Because of walnuts relatively thin crowns and nut production,...

  20. Analyzing ex-ante agroforestry adoption decisions with attribute based choice experiments

    Treesearch

    Evan Mercer; Ann Snook

    2004-01-01

    Although many cases of successful agroforestry extension efforts exist (for examples, see Chapter 2), all too often attempts to promote agroforestry have resulted in low adoption rates, with farmers reluctant to adopt new or improved agroforestry systems or abandoning agroforestry shortly after establishment. As a result, the recent increase in research on the adoption...

  1. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna

    NASA Astrophysics Data System (ADS)

    Bayala, Jules; Heng, Lee Kheng; van Noordwijk, Meine; Ouedraogo, Sibiri Jean

    2008-11-01

    Hydraulic redistribution (HR) in karité ( Vitellaria paradoxa) and néré ( Parkia biglobosa) tree species was studied by monitoring the soil water potential ( ψs) using thermocouple psychrometers at four compass directions, various distances from trees and at different soil depths (max depth 80 cm) during the dry seasons of 2004 and 2005. A modified WaNuLCAS model was then used to infer the amount of water redistribued based on ψs values. Tree transpiration rate was also estimated from sap velocity using thermal dissipative probes (TDP) and sapwood area, and the contribution of hydraulically redistributed water in tree transpiration was determined. The results revealed on average that 46% of the psychrometer readings under karité and 33% under néré showed the occurrence of HR for the two years. Soil under néré displayed significantly lower fluctuations of ψs (0.16 MPa) compared to soil under karité (0.21 MPa). The results of this study indicated that the existence of HR leads to a higher ψs in the plant rhizosphere and hence is important for soil water dynamics and plant nutrition by making more accessible the soluble elements. The simulation showed that the amount of water redistributed would be approximately 73.0 L and 247.1 L per tree per day in 2005 for karité and néré, and would represent respectively 60% and 53% of the amount transpired a day. Even though the model has certainly overestimated the volume of water hydraulically redistributed by the two species, this water may play a key role in maintaining fine root viability and ensuring the well adaptation of these species to the dry areas. Therefore, knowledge of the extent of such transfers and of the seasonal patterns is required and is of paramount importance in parkland systems both for trees and associated crops.

  2. Agroforestry systems and environmental quality: introduction.

    PubMed

    Nair, P K Ramachandran

    2011-01-01

    Investments in agroforestry research during the past three decades-albeit modest-have yielded significant gains in understanding the role of trees on farmlands, and the ecological and economic advantages of integrated farming systems. While early research focused mostly on farm or local levels, broader-level ecosystem services of agroforestry systems (AFS) have raised high expectations in recent years. The nine papers included in this special collection deal with three of such environmental benefits of AFS: water-quality enhancement, carbon sequestration, and soil improvement. These benefits are based on the perceived ability of (i) vegetative buffer strips (VBS) to reduce surface transport of agrochemical pollutants, (ii) large volumes of aboveground and belowground biomass of trees to store high amounts of C deeper in the soil profile, and (iii) trees to enhance soil productivity through biological nitrogen fixation, efficient nutrient cycling, and deep capture of nutrients. The papers included have, in general, substantiated these premises and provided new insights. For example, the riparian VBS are reported to increase the reservoir life, in addition to reducing transport of agrochemicals; the variations in C storage in different soil-fraction sizes suggest that microaggregate (250-53 μm) dynamics in the soil could be a good indicator of its C-storage potential; and the use of vector analysis technique is recommended in AFS to avoid consequences of inaccurate and overuse of fertilizers. The papers also identified significant knowledge gaps in these areas. A common theme across all three environmental quality issues covered is that more and varied research datasets across a broad spectrum of conditions need to be generated and integrated with powerful statistical tools to ensure wide applicability of the results. Furthermore, appropriate management practices that are acceptable to the targeted land users and agroforestry practitioners need to be designed to

  3. Socioeconomic research in agroforestry: progress, prospects, priorities

    Treesearch

    D. Evan Mercer; R.P. Miller

    1998-01-01

    Fourteen years after the birth of the journal Agroforestry Systems, biophysical studies continue to dominate agroforestry research while other important areas have not received the attention they deserve. This paper reviews the progress in one of these under-researched areas, socioeconomics. A quantitative and qualitative analysis of published socioeconomic research...

  4. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  5. Agroforestry systems and valuation methodologies

    Treesearch

    Janaki R.R. Alavalapati; D. Evan Mercer; Jensen R. Montambault

    2004-01-01

    Agroforestry, the deliberate integration of trees with agricultural crops andor livestock either simultaneously or sequentially on the same unit of land, has been an established practice for centuries. Throughout the tropics and, to some extent, temperate zones, farmers have a long tradition of retaining trees on their fields and pastures, as well as growing crops or...

  6. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  7. A renewed perspective on agroforestry concepts and classification.

    PubMed

    Torquebiau, E F

    2000-11-01

    Agroforestry, the association of trees with farming practices, is progressively becoming a recognized land-use discipline. However, it is still perceived by some scientists, technicians and farmers as a sort of environmental fashion which does not deserve credit. The peculiar history of agroforestry and the complex relationships between agriculture and forestry explain some misunderstandings about the concepts and classification of agroforestry and reveal that, contrarily to common perception, agroforestry is closer to agriculture than to forestry. Based on field experience from several countries, a structural classification of agroforestry into six simple categories is proposed: crops under tree cover, agroforests, agroforestry in a linear arrangement, animal agroforestry, sequential agroforestry and minor agroforestry techniques. It is argued that this pragmatic classification encompasses all major agroforestry associations and allows simultaneous agroforestry to be clearly differentiated from sequential agroforestry, two categories showing contrasting ecological tree-crop interactions. It can also contribute to a betterment of the image of agroforestry and lead to a simplification of its definition.

  8. Smokestacks, Parkland, and community composition: examining environmental burdens and benefits in Hall County, Georgia, USA

    Treesearch

    Cassandra Johnson Gaither

    2014-01-01

    This case study addresses environmental equity, in terms of African American, Latino, White, and poor communities’ proximity to both industrial facilities and parkland in Hall County, Georgia, USA. The project’s two primary goals are to (a) expand environmental justice analyses to account for both environmental burdens (industrial sites) and benefits (parkland acreage...

  9. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.

    PubMed

    Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar

    2015-07-15

    It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional

  10. A Functional Trait Approach for Evaluation of Agroforestry Species Adaptation Potentiel to Changing Climate

    NASA Astrophysics Data System (ADS)

    Munson, A. D.; Marone, D.; Olivier, A.

    2017-12-01

    Traditional agroforestry systems have been used for generations in the Sahel region of Africa to assure local food security. However, an understanding of the functional ecology of these systems is lacking, which would contribute to assessing both the provision of current ecological services, and the potential for adaptation to global change. We have studied five native tree and shrub species across a transect of different soil types in the semi-arid zone of the Niayes region of Senegal, to document changes in above and belowground traits in response to soil and land use change. Root traits in particular influence access to limiting resources such as water and nutrients. We studied fine root depth distribution and specific root length (SRL) with soil depth of Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Faidherbia albida, Neocarya macrophylla, on three different soil textures for three systems (fallow, parkland and rangeland), in order to understand potential exploitation of soil resources and potential contribution of roots to soil carbon stocks at different depths. The maximum root biomass of four of the species (Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Neocarya macrophylla) occurred in the 40-60 cm layer, where the two evergreen species (A. raddiana, N. macrophylla) developed the most biomass. Root biomass decreased for all species except F. albida, after 60 cm depth. The Mimosaceae species (A. raddiana, F. albida) developed the most root biomass within the 100 cm sampling depth. The maximum fine root biomass was found in fallow lands and clay soils. For all species, the highest SRL was observed during the hot dry season, in sandy or sandy loam soil. The SRL was lowest in the rainy season on clay soil. Evergreens had higher SRL than deciduous species, regardless of soil texture and growing season conditions. Parkland and rangelands exhibited higher SRL than fallow land, most likely due to higher soil fertility. Differences

  11. Documentation of indigenous Pacific agroforestry systems: a review of methodologies

    Treesearch

    Bill Raynor

    1993-01-01

    Recent interest in indigenous agroforestry has led to a need for documentation of these systems. However, previous work is very limited, and few methodologies are well-known or widely accepted. This paper outlines various methodologies (including sampling methods, data to be collected, and considerations in analysis) for documenting structure and productivity of...

  12. Longleaf pine agroforestry

    Treesearch

    Kristina Connor; Rebecca Barlow; Luben Dimov; Mark Smith

    2012-01-01

    While ecosystem restoration of longleaf pine (Pinus palustris Mill.) forests represents a worthy ideal, it is not always a practical alternative for landowners. Agroforestry systems, which can be developed in existing agricultural land, natural forest stands, plantations, or pasturelands, offer the opportunity to provide multiple benefits: high value...

  13. Intercropping with Kura Clover Improves Soil Quality in a Pecan Agroforestry System

    USDA-ARS?s Scientific Manuscript database

    Intercropping the alleys of agroforestry systems provides income until the tree crop begins to yield. However, cultivation of annual crops or intensive herbicidal control of vegetation in the alleys decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial...

  14. Changing human-ecological relationships and drivers using the Quesungual agroforestry system in western Honduras

    USDA-ARS?s Scientific Manuscript database

    The development of sustainable agricultural production systems in the tropics is challenging in part because the local and external conditions that affect sustainability are constantly in flux. The Quesungual Agroforestry System (QSMAS) was developed in response to these changing conditions. The his...

  15. Effects of climate change and land use on duck abundance in Canadian prairie-parklands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethke, R.W.; Nudds, T.D.

    Recent declines in breeding ducks in the Canadian prairie-parklands may be due to loss of habitat to agriculture. However, prairie-parkland also has experienced wetland loss to drought as well as to agriculture. For sucessful habitat restoration, it is important to separate the effects of anthropogenic changes to the landscape from those caused by changes in climate. The researchers used data from annual air-ground surveys and from precipitation records to develop relationships between indices of abundance of each of 10 species of ducks and indices of wetland conditions during 1955-1974. Average annual deficits within Canadian prairie-parkland over the period 1975-1989 weremore » estimated at 1.2 x 10{sup 6} birds for both Mallard (Anas platyrhynchos) and Northern Pintail (A. acuta), 480 000 for Blue-winged Teal (A. discors), 190 000 for American Wigeon (A. americana), 175 000 for Northern Shoveler (A. clypeata), 50 000 for Gadwall (A. strepera), 10 000 for Green-winged Teal (A. crecca), 40 000 for Canvasback (Aythya valisineria), 25 000 for Lesser Scaup (A. affinis), and 5000 for Redhead (A. americana). The effect of agricultural expansion in the east on prime waterfowl habitat since 1951 appears to have been negligible. There, as much as 90% had been already lost prior to 1951. In the west, however, where prime waterfowl habitat was still relatively abundant in 1951, agricultural development has encroached substantially. The relationship between the lost area of the best breeding habitats and the size of population deficits for Mallards and Northern Pintails in the entire Canadian prairie-parkland region was significant for both species (P < 0.0027 and P < 0.0001, respectively). Consequently, habitat restoration programs located where the highest quality waterfowl habitat and the lowest quality agricultural lands overlap most should have the greatest potential to affect recovery of breeding duck populations in the Canadian prairie-parklands. 39 refs., 8 figs

  16. Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...

  17. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  18. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.

    PubMed

    Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme

    2017-12-01

    Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.

  19. Agroforestry versus farm mosaic systems - Comparing land-use efficiency, economic returns and risks under climate change effects.

    PubMed

    Paul, Carola; Weber, Michael; Knoke, Thomas

    2017-06-01

    Increasing land-use conflicts call for the development of land-use systems that reconcile agricultural production with the provisioning of multiple ecosystem services, including climate change mitigation. Agroforestry has been suggested as a global solution to increase land-use efficiency, while reducing environmental impacts and economic risks for farmers. Past research has often focused on comparing tree-crop combinations with agricultural monocultures, but agroforestry has seldom been systematically compared to other forms of land-use diversification, including a farm mosaic. This form of diversification mixes separate parcels of different land uses within the farm. The objective of this study was to develop a modelling approach to compare the performance of the agroforestry and farm mosaic diversification strategies, accounting for tree-crop interaction effects and economic and climate uncertainty. For this purpose, Modern Portfolio Theory and risk simulation were coupled with the process-based biophysical simulation model WaNuLCAS 4.0. For an example application, we used data from a field trial in Panama. The results show that the simulated agroforestry systems (Taungya, alley cropping and border planting) could outperform a farm mosaic approach in terms of cumulative production and return. Considering market and climate uncertainty, agroforestry showed an up to 21% higher economic return at the same risk level (i.e. standard deviation of economic returns). Farm compositions with large shares of land allocated to maize cultivation were also more severely affected by an increasing drought frequency in terms of both risks and returns. Our study demonstrates that agroforestry can be an economically efficient diversification strategy, but only if the design allows for economies of scope, beneficial interactions between trees and crops and higher income diversification compared to a farm mosaic. The modelling approach can make an important contribution to support

  20. Landowner interest in multifunctional agroforestry riparian buffers.

    Treesearch

    Katie Trozzo; John Munsell; James Chamberlain

    2014-01-01

    Adoption of temperate agroforestry practices generally remains limited despite considerable advances in basic science. This study builds on temperate agroforestry adoption research by empirically testing a statistical model of interest in native fruit and nut tree riparian buffers using technology and agroforestry adoption theory. Data...

  1. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  2. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  3. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    PubMed

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  4. Parkland College Transfer Program Graduate Follow-Up Survey, 2001-2002.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL. Office of Institutional Research and Evaluation.

    This study presents findings from the 2001-2002 Transfer Program Follow-Up Survey of Parkland College (Illinois) graduates. A total of 423 students from baccalaureate/transfer programs were contacted approximately 6 weeks after graduation. Of those, 253 returned surveys, for a response rate of 59.8%. More than 58% of respondents were female, 81%…

  5. Socio-economic comparison between traditional and improved cultivation methods in agroforestry systems, East Usambara Mountains, Tanzania.

    PubMed

    Reyes, Teija; Quiroz, Roberto; Msikula, Shija

    2005-11-01

    The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people's livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance.

  6. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    NASA Astrophysics Data System (ADS)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for

  7. Traditional agroforestry practices in Atlantic Nicaragua promote biodiversity and natural resource diversity

    NASA Astrophysics Data System (ADS)

    Sistla, S.; Roddy, A. B.; Williams, N. E.; Kramer, D.; Stevens, K.; Allison, S. D.

    2016-12-01

    The conversion of forest to pasture and other agricultural uses has increased interest in the role that small-scale agroforestry systems can play in linking sustainable agriculture to biodiversity conservation, particularly in rapidly developing areas of the tropics. Complementing the provisioning of natural resources (i.e. food, medicine, lumber), agroforestry systems tend to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. We studied the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforest, and secondary forest: three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource

  8. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  9. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua.

    PubMed

    Sistla, Seeta A; Roddy, Adam B; Williams, Nicholas E; Kramer, Daniel B; Stevens, Kara; Allison, Steven D

    2016-01-01

    Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced

  10. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua

    PubMed Central

    Sistla, Seeta A.; Roddy, Adam B.; Williams, Nicholas E.; Kramer, Daniel B.; Stevens, Kara; Allison, Steven D.

    2016-01-01

    Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region’s first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced

  11. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review.

    PubMed

    Abbas, Farhat; Hammad, Hafiz Mohkum; Fahad, Shah; Cerdà, Artemi; Rizwan, Muhammad; Farhad, Wajid; Ehsan, Sana; Bakhat, Hafiz Faiq

    2017-04-01

    Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO 2 ) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO 2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.

  12. Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions

    Treesearch

    Michele M. Schoeneberger; Gary Bentrup; Toral Patel-Weynand

    2017-01-01

    Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. This assessment provides a science-based synthesis on the use of agroforestry for mitigation and adaptation services...

  13. Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America

    USDA-ARS?s Scientific Manuscript database

    Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...

  14. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.

    PubMed

    Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T

    2010-12-01

    In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. © 2010 Entomological Society of America

  15. Adoption of Agroforestry Innovations in the Tropics: A Review

    Treesearch

    D. Evan Mercer

    2004-01-01

    The period since the early 1990s has witnessed an explosion of research on the adoption of agroforestry innovations in the tropics. Much of this work was motivated by a perceived gap between advances in agroforestry science and the success of agroforestry-based development programs and projects. Achieving the full promise of agroforestry requires a fundamental...

  16. Projecting the long-term biogeochemical impacts of a diverse agroforestry system in the Midwest

    NASA Astrophysics Data System (ADS)

    Wolz, K. J.; DeLucia, E. H.; Paul, R. F.

    2014-12-01

    Annual, monoculture cropping systems have become the standard agricultural model in the Midwestern US. Unintended consequences of these systems include surface and groundwater pollution, greenhouse gas emissions, loss of biodiversity, and soil erosion. Diverse agroforestry (DA) systems dominated by fruit and nut trees/shrubs have been proposed as an agricultural model for the Midwestern US that can restore ecosystem services while simultaneously providing economically viable and industrially relevant staple food crops. A DA system including six species of fruit and nut crops was established on long-time conventional agricultural land at the University of Illinois at Urbana-Champaign in 2012, with the conventional corn-soybean rotation (CSR) as a control. Initial field measurements of the nitrogen and water cycles during the first two years of transition have indicated a significant decrease in N losses and modification of the seasonal evapotranspiration (ET) pattern. While these early results suggest that the land use transition from CSR to DA can have positive biogeochemical consequences, models must be utilized to make long-term biogeochemical projections in agroforestry systems. Initial field measurements of plant phenology, net N2O flux, nitrate leaching, soil respiration, and soil moisture were used to parameterize the DA system within the DayCENT biogeochemical model as the "savanna" ecosystem type. The model was validated with an independent subset of field measurements and then run to project biogeochemical cycling in the DA system for 25 years past establishment. Model results show that N losses via N2O emission or nitrate leaching reach a minimum within the first 5 years and then maintain this tight cycle into the future. While early ET field measurements revealed similar magnitudes between the DA and CSR systems, modeled ET continued to increase for the DA system throughout the projected time since the trees would continue to grow larger. These modeling

  17. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  18. Agroforestry: a refuge for tropical biodiversity?

    PubMed

    Bhagwat, Shonil A; Willis, Katherine J; Birks, H John B; Whittaker, Robert J

    2008-05-01

    As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.

  19. 2008 Farm Bill Agroforestry

    Treesearch

    Doug Wallace; Rich Straight

    2010-01-01

    Are you looking for a way to increase your revenue stream? Do you have other agricultural lands—crops, hay, or pastures—in addition to your woodlot? If so, you know how to manage both crops and trees. Why not put that hard-earned knowledge to work? Think agroforestry. That’s right—agroforestry. What better solution to your conservation issues and needs than...

  20. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  1. Indigenous agroforestry in American Samoa

    Treesearch

    Malala (Mike) Misa; Agnes M. Vargo

    1993-01-01

    Agroforestry exists in American Samoa as a system where indigenous trees and natural vegetation used for food, fuelwood, crafts and medicine are incorporated with traditional staple crops and livestock on a set piece of land, usually a mountainous slope. Most agroforests are taro-based (Colocasia esculenta). While nutritional, cultural, social,...

  2. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system - combining experimental and modeling approaches

    NASA Astrophysics Data System (ADS)

    Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire

    2018-01-01

    Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep

  3. Agroforestry programs and issues in the northern Marianas Islands

    Treesearch

    Anthony Paul Tudela

    1993-01-01

    Agroforestry is an important land-use in the Commonwealth of the Northern Marianas (CNMI) and provides many benefits. Various agencies are involved in forestry and agroforestry, and their programs are summarized in this paper. Major issues involving agroforestry in the CNMI are also discussed.

  4. Visualizing agroforestry alternatives or pixel this!

    Treesearch

    Gary Bentrup

    2005-01-01

    Natural resource professionals often hear the words, What will it look like? " from landowners who have difficulty in understanding a proposed agroforestry or conservation plan. Planting plans and engineering drawings, while necessary, often mean little to the general public. When practices require a long-term commitment like agroforestry, landowners want to know...

  5. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon

    PubMed Central

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053

  6. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon.

    PubMed

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.

  7. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    PubMed

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  8. Computer-based tools for decision support in agroforestry: Current state and future needs

    Treesearch

    E.A. Ellis; G. Bentrup; Michelle M. Schoeneberger

    2004-01-01

    Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts...

  9. Taking stock of agroforestry adoption studies

    Treesearch

    Subhrendu K. Pattanayak; D. Evan Mercer; Erin Sills; Jui-Chen Yang

    2003-01-01

    In light of the large number of empirical studies of agroforestry adoption published during the last decade, we believe it is time to take stock and identify general determinants of agroforestry adoption. In reviewing 120 articles on adoption of agricultural and forestry technology by small holders, we find five categories of factors that explain technology adoption...

  10. A snapshot of agroforestry in Terminalia carolinensis wetlands in Kosrae, Federated States of Micronesia

    Treesearch

    Nobuko K. Conroy; Ali Fares; Katherine C. Ewel; Tomoaki Miura; Halina M. Zaleski

    2011-01-01

    Traditional food and its supporting agricultural and agroforestry systems still play a large part in people’s daily lives in Federated Sates of Micronesia (FSM). To date, however, there are few publications on details of these systems in the country. On Kosrae Island, the easternmost island of FSM, one type of agroforestry has been practiced for centuries in coastal...

  11. A review of traditional agroforestry in Micronesia

    Treesearch

    Harley I. Manner

    1993-01-01

    For the many Micronesian islands, agroforestry was a sustainable land use system, and an integral component of the traditional subsistence system which provided the people with many of the necessities of life. Given the increasing pressures on limited land resources, the social and environmental problems associated with modern agriculture, particularly its use of...

  12. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management.

    PubMed

    Gramlich, A; Tandy, S; Andres, C; Chincheros Paniagua, J; Armengot, L; Schneider, M; Schulin, R

    2017-02-15

    Cadmium (Cd) uptake by cocoa has recently attracted attention, after the European Union (EU) decided to establish values for tolerable Cd concentrations in cocoa products. Bean Cd concentrations from some cocoa provenances, especially from Latin America, were found to exceed these values. Cadmium uptake by cocoa is expected not only to depend on a variety of soil factors, but also on plant and management factors. In this study, we investigated the influence of different production systems on Cd uptake by cocoa in a long-term field trial in the Alto Beni Region of Bolivia, where cocoa trees are grown in monocultures and in agroforestry systems, both under organic and conventional management. Leaf, fruits and roots of two cultivars were sampled from each production system along with soil samples collected around these trees. Leaf, pod husk and bean samples were analysed for Cd, iron (Fe) and zinc (Zn), the roots for mycorrhizal abundance and the soil samples for 'total' and 'available' Cd, Fe and Zn as well as DGT-available Cd and Zn, pH, organic matter, texture, 'available' phosphorus (P) and potassium (K). Only a small part of the variance in bean and pod husk Cd was explained by management, soil and plant factors. Furthermore, the production systems and cultivars alone had no significant influence on leaf Cd. However, we found lower Cd leaf contents in agroforestry systems than in monocultures when analysed in combination with DGT-available soil Cd, cocoa cultivar and soil organic matter. Overall, this model explained 60% of the variance of the leaf Cd concentrations. We explain lower leaf Cd concentrations in agroforestry systems by competition for Cd uptake with other plants. The cultivar effect may be explained by cultivar specific uptake capacities or by a growth effect translating into different uptake rates, as the cultivars were of different size. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Impacts of public policies and farmer preferences on agroforestry practices in Kerala, India.

    PubMed

    Guillerme, S; Kumar, B M; Menon, A; Hinnewinkel, C; Maire, E; Santhoshkumar, A V

    2011-08-01

    Agroforestry systems are fundamental features of the rural landscape of the Indian state of Kerala. Yet these mixed species systems are increasingly being replaced by monocultures. This paper explores how public policies on land tenure, agriculture, forestry and tree growing on private lands have interacted with farmer preferences in shaping land use dynamics and agroforestry practices. It argues that not only is there no specific policy for agroforestry in Kerala, but also that the existing sectoral policies of land tenure, agriculture, and forestry contributed to promoting plantation crops, even among marginal farmers. Forest policies, which impose restrictions on timber extraction from farmers' fields under the garb of protecting natural forests, have often acted as a disincentive to maintaining tree-based mixed production systems on farmlands. The paper argues that public policies interact with farmers' preferences in determining land use practices.

  14. Assessment of the Adoption of Agroforestry Technologies by Limited-Resource Farmers in North Carolina

    ERIC Educational Resources Information Center

    Faulkner, Paula E.; Owooh, Bismark; Idassi, Joshua

    2014-01-01

    Agroforestry is a natural resource management system that integrates trees, forages, and livestock. The study reported here was conducted to determine farmers' knowledge about and willingness to adopt agroforestry technologies in North Carolina. The study reported participants were primarily older, male farmers, suggesting the need to attract more…

  15. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    PubMed

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    NASA Astrophysics Data System (ADS)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  17. Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

    Treesearch

    Qi Chen; Dengsheng Lu; Michael Keller; Maiza dos-Santos; Edson Bolfe; Yunyun Feng; Changwei Wang

    2015-01-01

    Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems...

  18. Agroforestry management in vineyards: effects on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel

    2017-04-01

    Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.

  19. General considerations in testing and evaluating crop varieties for agroforestry systems

    Treesearch

    Lolita N. Ragus

    1993-01-01

    Introduction of new crops in agroforestry is often suggested as a way to improve productivity. This paper provides general guidelines in selecting companion plant combinations and general considerations in evaluating, testing, naming, maintaining genetic purity and distributing crop varieties to farmers.

  20. Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized?

    PubMed

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha(-1) to agroforests with 82-211 Mg C ha(-1) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.

  1. Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?

    PubMed Central

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F.; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S. Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H.; Sporn, Simone G.; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S.; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels. PMID:23077569

  2. Village agroforestry systems and tree-use practices: A case study in Sri Lanka. Multipurpose tree species network research series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickramasinghe, A.

    1992-01-01

    Village agroforestry systems in Sri Lanka have evolved through farmers' efforts to meet their survival needs. The paper examines farmers' land-use systems and their perceptions of the role of trees in the villages of Bambarabedda and Madugalla in central Sri Lanka. The benefits of village agroforestry are diverse food, fuelwood, fodder, timber, and mulch, but food products are of outstanding importance. The ability of Artocarpus heterophyllus (the jackfruit tree) and Cocos nucifera (coconut) to ensure food security during the dry season and provide traditional foods throughout the year, as well as to grow in limited space, make them popular cropsmore » in the two study villages. The study recommends that further research precede the formulation of agricultural interventions and that efforts to promote improved tree varieties recognize farmers' practices and expressed needs.« less

  3. Coptis teeta-based agroforestry system and its conservation potential: a case study from northwest Yunnan.

    PubMed

    Huang, Ji; Long, Chunlin

    2007-06-01

    Coptis teeta (Ranunculaceae), is a nontimber forest product (NTFP) that only grows in northwest Yunnan and northeast India. Its tenuous rhizome, known as "Yunnan goldthread" in the traditional Chinese medicine system, has been used as an antibacterial and as an antiinflammatory medicine for a long time. The increasing demand has resulted in commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation, and wild populations are at risk of extinction. Fortunately, there exists at least 2000 hectares of a C. teeta-based agroforestry system initiated by the Lisu people in Nujiang, northwest Yunnan. This cultivation supplies us with a valuable study case for the balance between conservation and sustainable use. This case study investigated the traditional management system and history of C. teeta in Nujiang through ethnobotanical methods and field investigation. We also contrasted initial costs, economic returns, and labor demands for C. teeta cultivation with other major land uses in the region. Compared with swidden agriculture, the major land-use type in the region, C. teeta cultivation offers high economic returns and low labor and initial costs; moreover, C. teeta cultivation does not interfere with subsistence agricultural duties. This agroforestry system reflected that the cultivation of NTFPs is a conservation strategy for maintaining forest diversity, while providing a stable economic return to local forest communities, and indicates how local people manage biodiversity effectively.

  4. Engaging in School-Led Multisectoral Collaboration: Implications to Agroforestry Promotion in the Philippine Uplands

    ERIC Educational Resources Information Center

    Landicho, Leila D.; Cabahug, Rowena D.; De Luna, Catherine C.

    2009-01-01

    The Agroforestry Support Program for Empowering Communities Towards Self-Reliance (ASPECTS) was conceived to develop a model of two-stage approach in agroforestry promotion by capacitating the upland communities to establish community-managed agroforestry extension services, while strengthening the agroforestry education programs of the three…

  5. Measuring the socio-economic impacts of agroforestry projects in the Philippines

    Treesearch

    Evan Mercer; Belita Vega; Hermie Francisco; Robin Maille

    1994-01-01

    Conventional wisdom suggests that agroforestry projects can provide both ecological and economic benefits. Most agroforestry project evaluations, however, have failed to adequately assess the soci0-economic impacts. For example, a review of 108 agroforestry project impact evaluations by Sara Scherr of IFPRJ reported that only 8% assessed economic costs or benefits, 5%...

  6. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.

    PubMed

    Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E

    2002-01-01

    A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.

  7. Modeling annual mallard production in the prairie-parkland region

    USGS Publications Warehouse

    Miller, M.W.

    2000-01-01

    Biologists have proposed several environmental factors that might influence production of mallards (Anas platyrhynchos) nesting in the prairie-parkland region of the United States and Canada. These factors include precipitation, cold spring temperatures, wetland abundance, and upland breeding habitat. I used long-term historical data sets of climate, wetland numbers, agricultural land use, and size of breeding mallard populations in multiple regression analyses to model annual indices of mallard production. Models were constructed at 2 scales: a continental scale that encompassed most of the mid-continental breeding range of mallards and a stratum-level scale that included 23 portions of that same breeding range. The production index at the continental scale was the estimated age ratio of mid-continental mallards in early fall; at the stratum scale my production index was the estimated number of broods of all duck species within an aerial survey stratum. Size of breeding mallard populations in May, and pond numbers in May and July, best modeled production at the continental scale. Variables that best modeled production at the stratum scale differed by region. Crop variables tended to appear more in models for western Canadian strata; pond variables predominated in models for United States strata; and spring temperature and pond variables dominated models for eastern Canadian strata. An index of cold spring temperatures appeared in 4 of 6 models for aspen parkland strata, and in only 1 of 11 models for strata dominated by prairie. Stratum-level models suggest that regional factors influencing mallard production are not evident at a larger scale. Testing these potential factors in a manipulative fashion would improve our understanding of mallard population dynamics, improving our ability to manage the mid-continental mallard population.

  8. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.

    PubMed

    Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  9. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  10. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification

    PubMed Central

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M.; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S. Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G.; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S.; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-01-01

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392

  11. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification.

    PubMed

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-03-20

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.

  12. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    NASA Astrophysics Data System (ADS)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  13. A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley

    Treesearch

    Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger

    2012-01-01

    Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...

  14. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.

    PubMed

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.

  15. Intercropping Competition between Apple Trees and Crops in Agroforestry Systems on the Loess Plateau of China

    PubMed Central

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems. PMID:23936246

  16. Agroforestry adoption in the Calakmul biosphere reserve, Campeche, Mexico

    Treesearch

    D. Evan Mercer; Jeremy Haggar; Ann Snook; Mauricio Sosa

    2005-01-01

    Since farmers engage in a complex, dynamic process of learning-by-doing, evaluating economic incentives, and assessing risks in deciding whether to adopt agroforestry systems, a multi-pronged research approach is required for a complete analysis of adoption potential and to develop effective technological and institutional interventions. A case study is presented for...

  17. Geomorphological impact on agroforestry systems in the interior highlands of Nicaragua, Central America

    NASA Astrophysics Data System (ADS)

    Mentler, Axel; Wriessnig, Karin; Ottner, Franz; Schomakers, Jasmin; Benavides González, Álvaro; Cisne Contreras, José Dolores; Querol Lipcovich, Daniel

    2013-04-01

    Cerro el Castillo is located in the NW of Nicaragua, Central America, close to the border of Honduras (Provincia Central de las Cordilleras) at 1000-1200m above sea level. In this region, small and medium-sized farms are agroforestry systems with mangos, avocados, coffee, papayas, bananas, strawberries, maize, pumpkins, beans and other vegetables. The production systems are strongly linked to facilities for raising small domestic animals and cows. Main regional agricultural production problems are steep slopes, soil erosion, varying precipitation and distribution, water management and the unstable family income. An investigation of topsoil properties with comparable management systems showed on small scales significant differences in key values of soil chemistry and mineralogy. The outline of the analytical parameters included determination of pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and dissolved nitrogen (DN) in soil solution, and plant available nutrients (P and K). The soil's mineralogical composition was determined by X-ray diffraction analysis. The area is a highly weathered karst landscape within a tropical limestone region displaying different amounts of volcanic pyroclastic parent material. The dominant Nitisoils and Andosols show degraded argic and andic horizons along the upper half of the mountainside. The pH values in the topsoil are moderate from pH 5.0 to 5.6. The upland topsoil is decalcified and the amount of plant available phosphorous is very low with significant low Ca concentration at the sorption complex. The mineralogical composition points to the high weathering intensity of this area (high content of kaolinite and a lower concentration of potassium and plagioclase feldspars and andesite). Along the upper half of the mountain, the soil profiles show wider C:N ratios and lower amounts of organic matter. Topsoil at lower altitude and with a lower

  18. Agro-ecosystem and socio-economic role of homegarden agroforestry in Jabithenan District, North-Western Ethiopia: implication for climate change adaptation.

    PubMed

    Linger, Ewuketu

    2014-01-01

    Homegarden agroforestry is believed to be more diverse and provide multiple services for household than other monocropping system and this is due to the combination of crops, trees and livestock. The aim of this study was to assess socio-economic and agro-ecological role of homegardens in Jabithenan district, North-western Ethiopia. Two sites purposively and two villages randomly from each site were selected. Totally 96 households; in which 48 from homegarden agroforestry user and 48 from non-tree based garden user were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of homegarden agroforestry over non-tree based garden were collected by using semi-structured and structured questionnaires to the households. Homegarden agroforestry significantly (P < 0.05) improved the farmers cash income than non-tree based garden. With insignificant garden size; homegarden agroforestry practice provides good socio-economical and agro-ecological service for farmers which have a higher implication for climate change adaptation than non-tree based garden.

  19. Population dynamics of earthworms in relation to soil physico-chemical parameters in agroforestry systems of Mizoram, India.

    PubMed

    Lalthanzara, H; Ramanujam, S N; Jha, L K

    2011-09-01

    Earthworm population dynamics was studied in two agroforestry systems in the tropical hilly terrain of Mizoram, north-east India, over a period of 24 months, from July 2002 to June 2004. Two sites of agroforestry situated at Sakawrtuichhun (SKT) and Pachhunga University College (PUC) campus, Aizawl, having pineapple as the main crop, were selected for detail studies on population dynamics. Five of the total twelve species of earthworm reported from the state were recorded in the study sites. The density of earthworm ranged from 6 to 243 ind.m(-2) and biomass from 3.2 - 677.64 g.m(-2) in SKT. Comparatively the density and biomass in PUC, which is at relatively higher altitude were lowerwith a range of 0 to 176 ind.m(-2) and biomass from 0 - 391.36 g.m(-2) respectively. Population dynamics of earthworm was significantly correlated with rainfall and physical characters of the soil. Earthworm biomass was significantly affected by rainfall and moisture content of the soil. The influence of chemical factors was relatively less.

  20. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.

    PubMed

    Fonte, Steven J; Six, Johan

    2010-06-01

    The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have

  1. Statistical considerations for agroforestry studies

    Treesearch

    James A. Baldwin

    1993-01-01

    Statistical topics that related to agroforestry studies are discussed. These included study objectives, populations of interest, sampling schemes, sample sizes, estimation vs. hypothesis testing, and P-values. In addition, a relatively new and very much improved histogram display is described.

  2. A common framework for GHG assessment protocols in temperate agroforestry systems: connecting via GRACEnet

    USDA-ARS?s Scientific Manuscript database

    There are technical and financial advantages for pursuing agroforestry-derived mitigation and adaptation services simultaneously, with a recognition that carbon (C) payments could assist in supporting the deployment of adaptation strategies (Motocha et al. (2012). However, we lack the repeated/repea...

  3. Management experiments for high-elevation agroforestry systems jointly producing matsutake mushrooms and high-quality timber in the Cascade Range of southern Oregon.

    Treesearch

    James F. Weigand

    1998-01-01

    Experimental prescriptions compare agroforestry systems designed to increase financial returns from high-elevation stands in the southern Oregon Cascade Range. The prescriptions emphasize alternative approaches for joint production of North American matsutake mushrooms (also known as North American pine mushrooms; Tricholoma magnivelare) and high-...

  4. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  5. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  6. Proceedings of the workshop on research methodologies and applications for Pacific Island agroforestry; July 16-20, 1990; Kolonia, Pohnpei, Federated States of Micronesia

    Treesearch

    Bill Raynor; Roger R. Bay

    1993-01-01

    Includes 19 papers presented at the workshop, covering such topics as sampling techniques and statistical considerations, indigenous agricultural and agroforestry systems, crop testing and evaluation, and agroforestry practices in the Pacific Islands, including Micronesia, Northern Marianas Islands, Palau, and American Samoa.

  7. Entomofauna Associated with Agroforestry Systems of Timber Species and Cacao in the Southern Region of the Maracaibo Lake Basin (Mérida, Venezuela).

    PubMed

    Mazón, Marina; Sánchez-Angarita, Daniel; Díaz, Francisco A; Gutiérrez, Néstor; Jaimez, Ramón

    2018-04-20

    Agroforestry systems are environment-friendly production systems which help to preserve biodiversity while providing people with a way of earning a living. Cacao is a historically important crop in Venezuela that traditionally has been produced in agroforestry systems. However, few studies have evaluated how different trees used in those systems affect the dynamics and abundance of insects. The present study evaluated the entomofauna assemblages associated with different combinations of four timber-yielding trees and four Criollo cacao cultivars established in a lowland tropical ecosystem in Venezuela. A randomized block design with two replicates was used, each block having 16 plots which included all 16 possible combinations of four native timber trees ( Cordia thaisiana , Cedrela odorata , Swietenia macrophylla , and Tabebuia rosea ) and four Criollo cacao cultivars (Porcelana, Guasare, Lobatera and Criollo Merideño). Insects were collected with yellow pan traps and sorted to order. Coleoptera and parasitoid Hymenoptera were determined to the family level. In total, 49,538 individuals of seven orders were collected, with Hymenoptera, Diptera, and Hemiptera being the most abundant, although only Lepidoptera and Coleoptera abundances were significantly influenced by the timber tree species. Twenty-three families of parasitoid Hymenoptera and 26 of Coleoptera were found. Significant differences in insects’ assemblages were found both in parasitoid Hymenoptera and Coleoptera families associated to every shade tree, with the families Eulophidae and Lycidae being indicators for Cordia , and Chalcididae for Swietenia . The entomofauna relationship with the cacao cultivar was barely significant, although Scydmaenidae and Scarabaeidae were indicators for Lobatera and Merideño, respectively. No significant effects were found for interaction with cacao cultivars and native trees. We concluded that the particular insect assemblages found in Cedrela

  8. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon

    USDA-ARS?s Scientific Manuscript database

    Traditional slash and burn agriculture practiced in the Peruvian Amazon region is leading to soil degradation and deforestation of native forest flora. The only way to stop such destructive processes is through the adoptation of sustainable alternatives such as growing crops in agroforestry systems....

  9. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry.

    PubMed

    Klein, Alexandra-Maria; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2006-03-01

    1. Human alteration of natural ecosystems to agroecosystems continues to accelerate in tropical countries. The resulting world-wide decline of rain forest causes a mosaic landscape, comprising simple and complex agroecosystems and patchily distributed rain forest fragments of different quality. Landscape context and agricultural management can be expected to affect both species diversity and ecosystem services by trophic interactions. 2. In Central Sulawesi, Indonesia, 24 agroforestry systems, differing in the distance to the nearest natural forest (0-1415 m), light intensity (37.5-899.6 W/m(-2)) and number of vascular plant species (7-40 species) were studied. Ten standardized trap nests for bees and wasps, made from reed and knotweed internodes, were exposed in each study site. Occupied nests were collected every month, over a period totalling 15 months. 3. A total of 13,617 brood cells were reared to produce adults of 14 trap-nesting species and 25 natural enemy species, which were mostly parasitoids. The total number of species was affected negatively by increasing distance from forest and increased with light intensity of agroforestry systems. The parasitoids in particular appeared to benefit from nearby forests. Over a 500-m distance, the number of parasitoid species decreased from eight to five, and parasitism rates from 12% to 4%. 4. The results show that diversity and parasitism, as a higher trophic interaction and ecosystem service, are enhanced by (i) improved connectivity of agroecosystems with natural habitats such as agroforestry adjacent to rain forest and (ii) management practices to increase light availability in agroforestry, which also enhances richness of flowering plants in the understorey.

  10. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China.

    PubMed

    Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou

    2015-11-01

    Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain

  11. Resolving Controlled Vocabulary in DITA Markup: A Case Example in Agroforestry

    ERIC Educational Resources Information Center

    Zschocke, Thomas

    2012-01-01

    Purpose: This paper aims to address the issue of matching controlled vocabulary on agroforestry from knowledge organization systems (KOS) and incorporating these terms in DITA markup. The paper has been selected for an extended version from MTSR'11. Design/methodology/approach: After a general description of the steps taken to harmonize controlled…

  12. Agro-Forestry system in West Africa: integrating a green solution to cope with soil depletion towards agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís

    2017-04-01

    , reducing soil erosion as well as insect pests and associated diseases, while improves the yield of the main crop. The integration of legume in agroforestry systems offers an alternative and resilient strategy to increase N availability without increasing mineral N additions. As such, we present a case study of a forest-based system under intensive agriculture regime and propose an alternative sustainable system - the agroforestry system - by intercropping legumes, thus ensuring the sustainability of a cash crop sector both in terms of food security and soil resources. Results obtained from this case-study will therefore be important to demonstrate the global importance of agroforestry systems as key strategy for land use planning, sustainability of the agricultural systems as well as the preserving the environment of smallholder farms in the sub-Saharan Africa.

  13. Waterbird conservation planning in the northern prairie and parkland region: Integration across borders and with other bird conservation initiatives

    Treesearch

    Neal D. Niemuth; Gerard W. Beyersbergen; Michael R. Norton

    2005-01-01

    The Northern Prairie and Parkland Region contain millions of wetland basins, which harbor large proportions of the populations of many North American waterbird species, several of which are of high conservation concern. However, knowledge of waterbirds in the region is limited, and there has been little direction for waterbird conservation planning or management. The...

  14. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon.

    PubMed

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Paquet, Serge; Mertens, Frédéric; Passos, Carlos J; Romana, Christine A

    2017-12-01

    In addition to causing physical degradation and nutrient depletion, erosion of cultivated soils in the Amazon affects aquatic ecosystems through the release of natural soil mercury (Hg) towards lakes and rivers. While traditional agriculture is generally cited as being among the main causes of soil erosion, agroforestry practices are increasingly appreciated for soil conservation. This study was carried out in family farms of the rural Tapajós region (Brazil) and aimed at evaluating soil erosion and associated Hg release for three land uses. Soils, runoff water and eroded sediments were collected at three sites representing a land cover gradient: a recently burnt short-cycle cropping system (SCC), a 2-year-old agroforestry system (AFS) and a mature forest (F). At each site, two PVC soil erosion plots (each composed of three 2 × 5 m isolated subplots) were implemented on steep and moderate slopes respectively. Sampling was done after each of the 20 rain events that occurred during a 1-month study period, in the peak of the 2011 rain season. Runoff volume and rate, as well as eroded soil particles with their Hg and cation concentrations were determined. Total Hg and cation losses were then calculated for each subplot. Erosion processes were dominated by land use type over rainfall or soil slope. Eroded soil particles, as well as the amount of Hg and cations (CaMgK) mobilized at the AFS site were similar to those at the F site, but significantly lower than those at the SCC site (p < 0.0001). Erosion reduction at the AFS site was mainly attributed to the ground cover plants characterizing the recently established system. Moreover, edaphic change throughout AFS and F soil profiles differed from the SCC site. At the latter site, losses of fine particles and Hg were enhanced towards soil surface, while they were less pronounced at the other sites. This study shows that agroforestry systems, even in their early stages of implementation, are characterized by low

  15. Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions - executive summary

    Treesearch

    Toral Patel-Weynand; Gary Bentrup; Michele M. Schoeneberger

    2017-01-01

    Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. The full assessment at https://doi.org/10.2737/WO-GTR-96...

  16. [Ants’ higher taxa as surrogates of species richness in a chronosequence of fallows, old-grown forests and agroforestry systems in the Eastern Amazon, Brazil].

    PubMed

    Muñoz Gutiérrez, Jhonatan Andrés; Roussea, Guillaume Xavier; Andrade-Silva, Joudellys; Delabie, Jacques Hubert Charles

    2017-03-01

    Deforestation in Amazon forests is one of the main causes for biodiversity loss worldwide. Ants are key into the ecosystem because act like engineers; hence, the loss of ants’ biodiversity may be a guide to measure the loss of essential functions into the ecosystems. The aim of this study was to evaluate soil ant’s richness and to estimate whether higher taxa levels (Subfamily and Genus) can be used as surrogates of species richness in different vegetation types (fallows, old-growth forests and agroforestry systems) in Eastern Amazon. The samples were taken in 65 areas in the Maranhão and Pará States in the period 2011-2014. The sampling scheme followed the procedure of Tropical Soil Biology and Fertility (TSBF). Initially, the vegetation types were characterized according to their age and estimated species richness. Linear and exponential functions were applied to evaluate if higher taxa can be used as surrogates and correlated with the Pearson coefficient. In total, 180 species distributed in 60 genera were identified. The results showed that ant species richness was higher in intermediate fallows (88) and old secondary forest (76), and was lower in agroforestry systems (38) and mature riparian forest (35). The genus level was the best surrogate to estimate the ant’s species richness across the different vegetation types, and explained 72-97 % (P < 0.001) of the total species variability. The results confirmed that the genus level is an excellent surrogate to estimate the ant’s species richness in the region and that both fallows and agroforestry systems may contribute in the conservation of Eastern Amazon ant community.

  17. [Effect of mixed edaphic bacterial inoculants in the early development of improved cocoa cultivars (Theobroma cacao L.) in a traditional agroforestry system of Oaxaca, Mexico].

    PubMed

    Hipólito-Romero, E; Carcaño-Montiel, M G; Ramos-Prado, J M; Vázquez-Cabañas, E A; López-Reyes, L; Ricaño-Rodríguez, J

    Cocoa plant (Theobroma cacao L.) is native from South America and it represents one of the most significant "bio-cultural" resources of Mesoamerica, since it is a region where it was domesticated and had a relevance as ritual drink and as currency in many pre-hispanic cultures until the arrival of the Spaniards who spread its use worldwide, and became it one of the most consumed commodity goods. Through this research, an alternative is proposed to address the problem of cultivars through the introduction of a wide variety of cocoa plants in traditional agroforestry systems, in synergy with the inoculation of nitrogen-fixing and insoluble phosphor solubilizing edaphic bacterial consortia. Four cultivars of improved grafted cocoa plants were introduced in a traditional agroforestry plot and three fertilization treatments were applied: application of biofertilizer, application of chemical fertilizer and control. Measurements of height, stem diameter, number of leaves and branches were recorded at 2 and 12 months after planting and rhizosphere microbial populations were characterized. Growth results showed good potential for all studied cultivars and it was observed that biofertilization foresees significant effects in some of the growth indicators of cocoa plant. Thereby, plant associations in an agroforestry system could be favorable to promote fruit development and resistance to pests and diseases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Floristic evolution in an agroforestry system cultivation in Southern Brazil.

    PubMed

    Silva, Luís C R; Machado, Sebastião A; Galvão, Franklin; Figueiredo, Afonso

    2016-06-07

    Bracatinga (Mimosa scabrella Bentham) is an important pioneer tree species in Ombrophylous Mixed Forest of Brazil and is widely used as an energy source. In traditional agroforestry systems, regeneration is induced by fire, then pure and dense stands known as bracatinga stands (bracatingais) are formed. In the first year, annual crops are intercalated with the seedlings. At that time the seedlings are thinned, then the stands remain at a fallow period and cut at seven years old. The species is very important mainly for small landowners. We studied the understory species that occur naturally during the succession over several years in order to manage them rationally in the future and maintain the natural vegetation over time. Three to 20 year-old Bracatinga stands were sampled between 1998 and 2011. All tree species with diameter at breast height (DBH) ≥ 5 cm were measured.The floristic evolution was assessed with respect to Sociability Index, the Shannon Diversity Index and the Pielou Evenness Index. Graphs of rank/abundance over different age groups were evaluated using the Kolmogorov-Smirnov test. We identified 153 species dispersed throughout the understory and tend to become aggregated over time.

  19. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    PubMed

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

  20. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China

    PubMed Central

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832

  1. Effect of selective logging on genetic diversity and gene flow in Cariniana legalis sampled from a cacao agroforestry system.

    PubMed

    Leal, J B; Santos, R P; Gaiotto, F A

    2014-01-28

    The fragments of the Atlantic Forest of southern Bahia have a long history of intense logging and selective cutting. Some tree species, such as jequitibá rosa (Cariniana legalis), have experienced a reduction in their populations with respect to both area and density. To evaluate the possible effects of selective logging on genetic diversity, gene flow, and spatial genetic structure, 51 C. legalis individuals were sampled, representing the total remaining population from the cacao agroforestry system. A total of 120 alleles were observed from the 11 microsatellite loci analyzed. The average observed heterozygosity (0.486) was less than the expected heterozygosity (0.721), indicating a loss of genetic diversity in this population. A high fixation index (FIS = 0.325) was found, which is possibly due to a reduction in population size, resulting in increased mating among relatives. The maximum (1055 m) and minimum (0.095 m) distances traveled by pollen or seeds were inferred based on paternity tests. We found 36.84% of unique parents among all sampled seedlings. The progenitors of the remaining seedlings (63.16%) were most likely out of the sampled area. Positive and significant spatial genetic structure was identified in this population among classes 10 to 30 m away with an average coancestry coefficient between pairs of individuals of 0.12. These results suggest that the agroforestry system of cacao cultivation is contributing to maintaining levels of diversity and gene flow in the studied population, thus minimizing the effects of selective logging.

  2. Assessing local knowledge use in agroforestry management with cognitive maps.

    PubMed

    Isaac, Marney E; Dawoe, Evans; Sieciechowicz, Krystyna

    2009-06-01

    Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 +/- 3 variables and 19 +/- 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.

  3. Assessing Local Knowledge Use in Agroforestry Management with Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Isaac, Marney E.; Dawoe, Evans; Sieciechowicz, Krystyna

    2009-06-01

    Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.

  4. Valuing soil conservation benefits of agroforestry: contour hedgerows in the Eastern Visayas, Philippines

    Treesearch

    Subhrendu Patanayak; D. Evan Mercer

    1998-01-01

    Trecs can he considered as investments made by economic agents to prevent depreciation of natural assets such as stocks of top soil and water. In agroforestq systems farmers use trees in this manner by deliberately combining them with agricultural crops on the same unit of land. Although advocates of agroforestry have asserted that soil conservation is one of its...

  5. Investigation on effect of Populus alba stands distance on density of pests and their natural enemies population under poplar/alfalfa agroforestry system.

    PubMed

    Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A

    2009-01-15

    This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.

  6. Integrated production of warm season grasses and agroforestry for biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, R.; Omielan, J.; Girouard, P.

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to havemore » distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.« less

  7. The potential of turmeric (Curcuma xanthorrhiza) in agroforestry system based on silk tree (Albizia chinensis)

    NASA Astrophysics Data System (ADS)

    Purnomo, D.; Budiastuti, M. S.; Sakya, A. T.; Cholid, M. I.

    2018-03-01

    Turmeric (Curcuma xanthorrhiza Roxb.) is a traditional medicinal plant. In Indonesia, it is generally cultivated in village home gardens. Famers conducted very simpple cultivation method of turmeric, without specific maintenance and below varies tree. The experiment was conducted by cultivating turmeric below silk trees as in agroforetry system. The experiment was arranged split plot design, the first factor was three level of irradiation (turmeric monoculture/full irradiation, turmeric below silktree with pruning canopy, and turmeric below silk tree no pruning). The second factor was fertilizer NPK 15-15-15 with three levels of doses (100, 150, and 200 kg ha-1). Cultivating turmeric in agroforestry system based on silk tree which were one year old and not yet needed pruning, application of NPK 15-15-15 fertilizer 100 kg ha-1 was enough. The rhizome yield of turmeric 3 months age reaches 139 g per plant (fresh weight). Litter fall from a silk tree one year old in one year is 30 kg per tree per year.

  8. [Light competition and productivity of agroforestry system in loess area of Weibei in Shaanxi].

    PubMed

    Peng, Xiao-bang; Cai, Jing; Jiang, Zai-min; Zhang, Yuan-ying; Zhang, Shuo-xin

    2008-11-01

    Agroforestry is the most effective way for the restoration of disturbed land on Loess Plateau and the development of poorly local economy. Taking the tree-based intercropping systems of walnut or plum with soybean or pepper in the loess area of Weibei as test objects, the photosynthesis, growth, and yield of soybean (Qindou 8) and pepper (Shanjiao 981) in the systems were studied. The results showed that the photosynthetic active radiation (PAR), net photosynthetic rate (Pn), growth, and yield of individual soybean or pepper plants were significantly decreased, with the effects increased with decreasing distance from tree rows. Leaf water potential was not significantly or poorly correlated with the Pn, growth, and yield of the two crops. However, there were significant positive correlations between the soil moisture content in 10-20 cm layer and the biomass and yield of soybean, and the above-ground biomass of pepper. PAR was highly correlated with the yield of both crops, which indicated that light competition was one of the key factors leading to the decrease of crop yield.

  9. Fuelwood, agro-forestry, and natural resource management: the development significance of land tenure and other resource management/utilization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brokensha, D.; Castro, A.P.; Kundu, M.

    1984-04-01

    Using a systems approach and focusing on the social context, the study examines natural resource management in relation to fuelwood production and agroforestry. An initial section describing the use and interlinkage of the concepts of ecozone and ecosystem is followed by a discussion of problem ecozones, human use of ecozones, agricultural ecosystems, resource competition, uses of trees and forest products, and tree planting. Rural resource management strategies at the household, community, local, and state levels are discussed in the context of political economy, land tenure and rights, tenancy and sharecropping, group or public landholding, and acquisition and transfer of land.

  10. A participative approach to develop sustainability indicators for dehesa agroforestry farms.

    PubMed

    Escribano, M; Díaz-Caro, C; Mesias, F J

    2018-05-29

    This paper provides a list of specific indicators that will allow the managers of dehesa farms to assess their sustainability in an easy and reliable way. To this end a Delphi analysis has been carried out with a group of experts in agroforestry systems and sustainability. A total of 30 experts from public institutions, farming, research bodies, environmental and rural development associations, agricultural organizations and companies took part in the study which intended to design a set of sustainability indicators adapted to dehesa agroforestry systems. The experts scored 83 original indicators related to the basic pillars of sustainability (environmental, social and economic) through a two-round procedure. Finally, 24 indicators were selected based on their importance and the consensus achieved. From an environmental point of view, and in line with its significance for dehesa ecosystems, it has been observed that "Stocking rate" is the indicator with greater relevance. Within the economic pillar, "Farm profitability" is the most important indicator, while regarding the technical indicators "Percentage of animal diet based on grazing" is the one that got the highest score. Finally, the "Degree of job satisfaction" and the "Generational renewal" were the most relevant labor indicators. It is considered that the Delphi approach used in this research settles some of the flaws of other sustainability models, such as the adaptation to the system to be studied and the involvement of stakeholders in the design. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Projecting the bird community response resulting from the adoption of shelterbelt agroforestry practices in Eastern Nebraska

    Treesearch

    R. A., II Pierce; D. T. Farrand; W. B. Kurtz

    2001-01-01

    Evolving agricultural policies have influenced management practices within agroecosystems, impacting available habitats for many species of wildlife. Enhancing wildlife habitat has become an explicit objective of existing agricultural policy. Thus, there is renewed focus on field borders and the use of shelterbelt agroforestry systems to achieve conservation goals in...

  12. Analysis and prediction of pest dynamics in an agroforestry context using Tiko'n, a generic tool to develop food web models

    NASA Astrophysics Data System (ADS)

    Rojas, Marcela; Malard, Julien; Adamowski, Jan; Carrera, Jaime Luis; Maas, Raúl

    2017-04-01

    While it is known that climate change will impact future plant-pest population dynamics, potentially affecting crop damage, agroforestry with its enhanced biodiversity is said to reduce the outbreaks of pest insects by providing natural enemies for the control of pest populations. This premise is known in the literature as the natural enemy hypothesis and has been widely studied qualitatively. However, disagreement still exists on whether biodiversity enhancement reduces pest outbreaks, showing the need of quantitatively understanding the mechanisms behind the interactions between pests and natural enemies, also known as trophic interactions. Crop pest models that study insect population dynamics in agroforestry contexts are very rare, and pest models that take trophic interactions into account are even rarer. This may be due to the difficulty of representing complex food webs in a quantifiable model. There is therefore a need for validated food web models that allow users to predict the response of these webs to changes in climate in agroforestry systems. In this study we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web models; the program uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. Tiko'n was run using coffee leaf miner (Leucoptera coffeella) and associated parasitoid data from a shaded coffee plantation, showing the mechanisms of insect population dynamics within a tri-trophic food web in an agroforestry system.

  13. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  14. Agroforestry planting design affects loblolly pine growth

    Treesearch

    D.M. Burner

    2013-01-01

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR, on a silt loam soil with a fragipan. Loblolly pine (Pinus taeda L.) trees were planted in 1994 in three designs: two rows (1.2 by 2.4 m) with a 7.3-m alley, four rows (1.2 by 2.4 m...

  15. Indexing Soil Conservation: Farmer Perceptions of Agroforestry Benefits

    Treesearch

    Subhrendu K. Pattanayak; D. Evan Mercer

    2002-01-01

    Soil erosion poses economic and environmental concerns in many tropical uplands. Agroforestry has been proposed as a sustainable land use that can mitigate soil erosion and promote the economic welfare of small farmers. To evaluate such claims, we must (a) develop a composite measure of effectiveness, such as a soil conservation index, and (b) define it in terms...

  16. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  17. Agroforestry: working trees for sequestering carbon on agricultural lands

    Treesearch

    M.M. Schoeneberger

    2008-01-01

    Agroforestry is an appealing option for sequestering carbon on agricultural lands because it can sequester significant amounts of carbon while leaving the bulk of the land in agricultural production. Simultaneously, it can help landowners and society address many other issues facing these lands, such as economic diversification, biodiversity, and water quality....

  18. Agroforestry-working trees for sequestering carbon on ag-lands

    Treesearch

    Michele M. Schoeneberger

    2005-01-01

    Agroforestry is an appealing option for sequestering carbon on agricultural lands because it can sequester significant amounts of carbon whle leaving the bulk of the land in agricultural production. Simultaneously, it can help landowners and society address many other issues, such as economic diversification, biodiversity, and water quality, facing these lands....

  19. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectivenessmore » indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.« less

  20. Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun.

    PubMed

    Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Van Asten, Piet; Rötter, Reimund P; Graefe, Sophie

    2018-01-01

    Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm -2  day -1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm -2  day -1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm -2  day -1 ) than under A. toxicaria (37 g cm -2  day -1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under

  1. Species variation in home garden agroforestry system in South Sulawesi, Indonesia and its contribution to farmers’ income

    NASA Astrophysics Data System (ADS)

    Paembonan, S. A.; Millang, S.; Dassir, M.; Ridwan, M.

    2018-05-01

    Home-garden is one of the types of agroforestry which is commonly practiced by rural communities in South Sulawesi, Indonesia. The study aimed to determine the diversity levels of the species constituting the home-gardens and their contribution to the farmers’ incomes. The variables used in the study were the widths variation of the land owned as the home-gardens and the socioeconomic backgrounds of the community. The study results indicated that in small land, the community cultivated annual crop plants interspersed with agricultural commodities, and the trees as the boundary, while in the wider land they integrated various species plants within the area. The diversity index of the home-gardens was categorized as moderate with a value of 1.25 to 2.18, while species uniformity index was ranging from moderate to high with values of 0.49 to 0.77. The total incomes from home gardens varied greatly from one community to another, and it was largely determined by the composition and density of the constituent species. The contribution of the home-gardens to the income of the farmers amounted to 43.27%–49.06%. The sustainable management of the home-garden agroforestry can give a significant contribution to the farmers’ incomes and the preservation of biodiversity and environment.

  2. Whose Knowledge, Whose Development? Use and Role of Local and External Knowledge in Agroforestry Projects in Bolivia

    NASA Astrophysics Data System (ADS)

    Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel

    2017-03-01

    Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge—a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.

  3. Whose Knowledge, Whose Development? Use and Role of Local and External Knowledge in Agroforestry Projects in Bolivia.

    PubMed

    Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel

    2017-03-01

    Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge-a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.

  4. [Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].

    PubMed

    Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2012-11-01

    By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.

  5. Modeling and validation of directional reflectance for heterogeneous agro-forestry scenarios

    NASA Astrophysics Data System (ADS)

    Yelu, Z.; Jing, L.; Qinhuo, L.; Huete, A. R.

    2015-12-01

    Landscape heterogeneity is a common natural phenomenon but is seldom considered in current radiative transfer models for predicting the surface reflectance. This paper developed an explicit analytical Radiative Transfer model for heterogeneous Agro-Forestry scenarios (RTAF) by dividing the scenario into non-boundary regions and boundary regions. The scattering contribution of the non-boundary regions that are treated as homogeneous canopies can be estimated from the SAILH model, whereas that of the boundary regions with lengths, widths, canopy heights, and orientations of the field patches, is calculated based on the bidirectional gap probability by considering the interactions and mutual shadowing effects among different patches. The hot spot factor is extended for heterogeneous scenarios, the Hapke model for soil anisotropy is incorporated, and the contributions of the direct and diffuse radiation are separately calculated. The multi-angular airborne observations and the Discrete Anisotropic Radiative Transfer (DART) model simulations were used for validating and evaluating the RTAF model over an agro-forestry scenario in Heihe River Basin, China. It indicates that the RTAF model can accurately simulate the hemispherical-directional reflectance factors (HDRFs) of the heterogeneous agro-forestry scenario, with an RMSE of 0.0016 and 0.0179 in the red and near-infrared (NIR) bands, respectively. The RTAF model was compared with two widely used models, the dominant cover type (DCT) model and the spectral linear mixture (SLM) model, which either neglected the interactions and mutual shadowing effects between the shelterbets and crops, or did not account for the contribution of the shelterbets. Results suggest that the boundary effect can significantly influence the angular distribution of the HDRFs, and consequently enlarged the HDRF variations between the backward and forward directions in the principle plane. The RTAF model reduced the maximum relative error from 25

  6. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    PubMed

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  7. The effects of rainfall partitioning and evapotranspiration on the temporal and spatial variation of soil water content in a Mediterranean agroforestry system

    NASA Astrophysics Data System (ADS)

    Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.

    2012-04-01

    Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.

  8. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  9. Impact of agroforestry plantings for bioenergy production on soil organic carbon

    USDA-ARS?s Scientific Manuscript database

    Tree windbreaks are an attractive multiple-benefit land use through their ability to mitigate climate change by modifying the local microclimate to improve crop growth and by sequestering carbon in the soil and tree biomass. Recently, such agroforestry practices are also being considered for their b...

  10. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  11. Agroforestry for landscape restoration and livelihood development in Central Asia.

    Treesearch

    U. Djanibekov; Klara Dzhakypbekova; James Chamberlain; Horst Weyerhaeuser; Robert Zomer; G. Villamor; J. Xu

    2016-01-01

    This paper discusses how the adoption of agroforestry for ecosystem and livelihood improvement in Central Asian countries can be enhanced. First, it describes how previous and current developments lead to changing environmental conditions, and how these changing conditions consequently affected the welfare of people. Environmental issues on a global level, such as...

  12. Comparative study on growth performance of two shade trees in tea agroforestry system.

    PubMed

    Kalita, Rinku Moni; Das, Ashesh Kumar; Nath, Arun Jyoti

    2014-07-01

    An attempt was made to study the stem growth of two native dominant shade tree species in terms of annual girth increment in three dominant girth size categories for two years in tea agroforestry system of Barak Valley, Assam. Fifty two sampling plots of 0.1 ha size were established and all trees exceeding 10 cm girth over bark at breast height (1.37 m) were uniquely identified, tagged, and annually measured for girth increment, using metal tape during December 2010-12. Albizia lebbeck and A. odoratissima were dominant shade tree species registering 82% of appearance of the individuals studied. The girth class was categorized into six different categories where 30-50 cm, 50-70 cm and 70-90 cm were dominating girth classes and selected for increment study. Mean annual girth increment ranged from 1.41 cm in Albizia odoratissima (50-70 cm girth class) to 2.97 cm in Albizia lebbeck (70-90 cm girth class) for the first year and 1.70 cm in Albizia odoratissima (50-70 cm girth class) to 3.09 cm in Albizia lebbeck (70-90 cm girth class) for the second year. Albizia lebbeck exhibited better growth in all prominent girth classes as compared to Albizia odoratissima during the observation period. The two shade tree species showed similar trend of growth in both the years of observation and significant difference in girth increment.

  13. Effect of shade on Arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact.

    PubMed

    Mouen Bedimo, J A; Njiayouom, I; Bieysse, D; Ndoumbè Nkeng, M; Cilas, C; Nottéghem, J L

    2008-12-01

    Coffee berry disease (CBD), caused by Colletotrichum kahawae, is a major constraint for Arabica coffee cultivation in Africa. The disease is specific to green berries and can lead to 60% harvest losses. In Cameroon, mixed cropping systems of coffee with other crops, such as fruit trees, are very widespread agricultural practices. Fruit trees are commonly planted at random on coffee farms, providing a heterogeneous shading pattern for coffee trees growing underneath. Based on a recent study of CBD, it is known that those plants can reduce disease incidence. To assess the specific effect of shade, in situ and in vitro disease development was compared between coffee trees shaded artificially by a net and trees located in full sunlight. In the field, assessments confirmed a reduction in CBD on trees grown under shade compared with those grown in full sunlight. Artificial inoculations in the laboratory showed that shade did not have any effect on the intrinsic susceptibility of coffee berries to CBD. Coffee shading mainly acts on environmental parameters in limiting disease incidence. In addition to reducing yield losses, agroforestry system may also be helpful in reducing chemical control of the disease and in diversifying coffee growers' incomes.

  14. Coffee agroforestry for sustainability of Upper Sekampung Watershed management

    NASA Astrophysics Data System (ADS)

    Fitriani; Arifin, Bustanul; Zakaria, Wan Abbas; Hanung Ismono, R.

    2018-03-01

    The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.

  15. Knowledge and valuation of Andean agroforestry species: the role of sex, age, and migration among members of a rural community in Bolivia.

    PubMed

    Brandt, Regine; Mathez-Stiefel, Sarah-Lan; Lachmuth, Susanne; Hensen, Isabell; Rist, Stephan

    2013-12-20

    Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. The culturally most important woody species were mainly trees and exotic species (e.g.Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees,loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Age and migration affect how people value woody species and what they know about their uses.For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in agroforestry. These native species should be ecologically

  16. Knowledge and valuation of Andean agroforestry species: the role of sex, age, and migration among members of a rural community in Bolivia

    PubMed Central

    2013-01-01

    Background Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Methods Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. Results and discussion The culturally most important woody species were mainly trees and exotic species (e.g. Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees, loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Conclusions Age and migration affect how people value woody species and what they know about their uses. For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in

  17. The timing and importance of arboriculture and agroforestry in a temperate East Polynesia Society, the Moriori, Rekohu (Chatham Island)

    NASA Astrophysics Data System (ADS)

    Maxwell, Justin J.; Howarth, Jamie D.; Vandergoes, Marcus J.; Jacobsen, Geraldine E.; Barber, Ian G.

    2016-10-01

    Identifying arboriculture and agroforestry in Polynesian Societies has usually relied heavily upon the ethnographic record in the absence of direct archaeological evidence. In this paper we outline a multi-proxy research design, including ethnography, palynology, anthracology, archaeology and a high precision chronology to evaluate arboriculture and agroforestry as components of Moriori subsistence practices before the arrival of Europeans in 1791. The colonisers of Rekohu brought with them a mainland New Zealand endemic tree, Corynocarpus laevigatus, and the technology to propagate the tree in a less than ideal climate and to process its drupe into a storable source of carbohydrate in what was a difficult environment for Polynesian cultivation practices. We also present a conceptual model of forest change due to Moriori fuel selection practices which suggests that Moriori were actively managing these forest spaces for food, fuel, medicine, construction material and as a habitation space, therefore making agroforestry an important component of Moriori subsistence.

  18. Barriers and Coping Mechanisms Relating to Agroforestry Adoption by Smallholder Farmers in Zimbabwe

    ERIC Educational Resources Information Center

    Chitakira, Munyaradzi; Torquebiau, Emmanuel

    2010-01-01

    Purpose: The purpose of the present study was to investigate agroforestry adoption by smallholder farmers in Gutu District, Zimbabwe. Design/Methodology/Approach: The methodology was based on field data collected through household questionnaires, key informant interviews and direct observations. Findings: Major findings reveal that traditional…

  19. Agroforestry landscapes and global change: landscape ecology tools for management and conservation

    Treesearch

    Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri

    2012-01-01

    Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...

  20. Field Note: Standard Web Application for Information Exchange on Agroforestry in India

    ERIC Educational Resources Information Center

    Ajit; Nighat Jabeen; Handa, A. K.; Uma

    2008-01-01

    Agroforestry (AF)/forestry is no longer an isolated field, with so many developmental activities having links with this sector, and thus the information required to be handled by the researchers all over the world has increased exponentially. This article discusses a website that was developed by the National Research Centre for Agroforestry…

  1. Potential adoption of agroforestry riparian buffers based on landowner and streamside characteristics

    Treesearch

    K.E. Trozzo; J.F. Munsell; J.L. Chamberlain; W.M. Aust

    2014-01-01

    Riparian forest buffers provide numerous environmental benefits, yet obstacles to landowner adoption are many. One barrier is the perception that riparian forest buffers are used for conservation at the expense of production. We present a study that focused on why landowners are more or less inclined to adopt native fruit and nut tree agroforestry riparian buffers that...

  2. A real options model to assess the role of flexibility in forestry and agroforestry adoption and disadoption in the Lower Mississippi Alluvial Valley

    Treesearch

    Gregory E. Frey; D. Evan Mercer; Frederick W. Cubbage; Robert C. Abt

    2013-01-01

    Efforts to restore the Lower Mississippi Alluvial Valley’s forests have not achieved desired levels of ecosystem services production.We examined how the variability of returns and the flexibility to change or postpone decisions (option value) affects the economic potential of forestry and agroforestry systems to keep private land in production while still providing...

  3. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    PubMed

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among

  4. Ranking the shade tolerance of forty-five candidate groundcovers for agroforestry plantings

    Treesearch

    J.W. Van Sambeek; N.E. Navarrete-Tindall; H.E. Garrett; C.-H. Lin; R.L. McGraw; D.C. Wallace

    2007-01-01

    Several large-scale screening trials evaluating native and introduced herbaceous ground covers have been conducted in the last half century. Most trials have used shade cloth to evaluate growth of potted plants under moderate shade (45 to 55 percent of full sunlight) similar to what might be found in many agroforestry practices and heavy shade (20 to 30 percent of full...

  5. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa.

    PubMed

    Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve

    2009-05-01

    This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.

  6. Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity.

    PubMed

    Vallejo, Mariana; Casas, Alejandro; Pérez-Negrón, Edgar; Moreno-Calles, Ana I; Hernández-Ordoñez, Omar; Tellez, Oswaldo; Dávila, Patricia

    2015-02-19

    Agroforestry systems (AFS) are valuable production systems that allow concealing benefits provision with conservation of biodiversity and ecosystem services. We analysed AFS of the zone of alluvial valleys of the Tehuacán-Cuicatlán Valley (TCV), Mexico, the most intensive agricultural systems within a region recognized for harbouring one of the most ancient agricultural experience of the New World. We hypothesized that the biodiversity conservation capacity of AFS would be directly related to traditional agricultural features and inversely related to management intensity. Agricultural practices, use frequency of machinery and chemical inputs, and proportion of forest and cultivated areas were described in 15 AFS plots in alluvial valleys of the Salado River in three villages of the region. With the information, we constructed a management intensity index and compared among plots and villages. We documented the reasons why people maintain wild plant species and traditional practices. Perennial plant species were sampled in vegetation of AFS (15 plots) and unmanaged forests (12 plots 500 m(2)) in order to compare richness, diversity and other ecological indicators in AFS and forest. In all studied sites, people combine traditional and intensive agricultural practices. Main agroforestry practices are ground terraces and borders surrounding AFS plots where people maintain vegetation. According to people, the reasons for maintaining shrubs and trees in AFS were in order of importance are: Beauty and shade provision (14% of people), fruit provision (7%), protection against strong wind, and favouring water and soil retention. We recorded 66 species of trees and shrubs in the AFS studied, 81% of them being native species that represent 38% of the perennial plant species recorded in forests sampled. Land tenure and institutions vary among sites but not influenced the actions for maintaining the vegetation cover in AFS. Plant diversity decreased with increasing

  7. Polyphenolic composition and antioxidant capacity of legume based swards are affected by light intensity in a Mediterranean agroforestry system.

    PubMed

    Re, Giovanni Antonio; Piluzza, Giovanna; Sanna, Federico; Molinu, Maria Giovanna; Sulas, Leonardo

    2018-06-01

    In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and development of the understory, but very little is known about its polyphenolic composition in relation to light intensity. We investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations due to full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia. The highest values of DPPH reached 7 mmol TEAC 100 g -1 DW, total phenolics 67.1 g GAE kg -1 DW and total flavonoids 7.5 g CE kg -1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29 and 42%, and the total phenolic content by 23 and 53% in 100% legume mixture and semi natural pasture. Twelve phenolic compounds were detected: chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were the most abundant. Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class

  9. C and N content in density fractions of whole soil and soil size fraction under cacao agroforestry systems and natural forest in Bahia, Brazil.

    PubMed

    Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size

  10. Assessment of agroforestry residue potentials for the bioeconomy in the European Union.

    PubMed

    Thorenz, Andrea; Wietschel, Lars; Stindt, Dennis; Tuma, Axel

    2018-03-01

    The biobased chemical industry is characterised by strong growth. Innovative products and materials such as biopolymers have been developed, and current European demand for biopolymers exceeds the domestic supply. Agroforestry residues can serve as main sources of the basic building blocks for chemicals and materials. This work assesses sustainably available agroforestry residues to feed a high added-value materials and product bioeconomy. To evaluate bioeconomic potential, a structured three-step approach is applied. Cultivation practices, sustainability issues, legislative restrictions, technical limitations and competitive applications are considered. All data regarding bioeconomic potential are processed on a regional level and mapped by ArcGIS. Our results identify wheat straw as the most promising source in the agricultural sector, followed by maize stover, barley straw and rape straw, which all contain a total concentration of lignocellulose of more than 80% of dry matter. In the forestry sector, residue bark from two coniferous species, spruce and pine, is the most promising source, with approximately 70% lignocellulose. Additionally, coniferous bark contains considerable amounts of tannin, which has attracted increasing interest for industrial utilisation. A sensitivity analysis concerning removal rates, residue-to-crop ratios, changes in farming technologies and competing applications is applied at the end of the study to consolidate our results.

  11. Tourism and recreation system planning in Alberta provincial parks

    Treesearch

    Paul F.J. Eagles; Angela M. Gilmore; Luis X. Huang; Denise A. Keltie; Kimberley Rae; Hong Sun; Amy K. Thede; Meagan L. Wilson; Jennifer A. Woronuk; Ge Yujin

    2007-01-01

    Traditionally, system planning in parks and protected areas concentrated on biogeographical concepts, while neglecting tourism and recreation. The existing system plan for parks and protected areas in Alberta, Canada, divides the province into six natural regions based on a geographic classifi cation system (Grassland, Parkland, Foothills, Rocky Mountains, Boreal...

  12. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    PubMed

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. © 2014 John Wiley & Sons Ltd.

  13. Incorporating agroforestry approaches into commodity value chains.

    PubMed

    Millard, Edward

    2011-08-01

    The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach.

  14. Incorporating Agroforestry Approaches into Commodity Value Chains

    NASA Astrophysics Data System (ADS)

    Millard, Edward

    2011-08-01

    The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach.

  15. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    PubMed

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.

  16. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    PubMed Central

    Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922

  17. Diversity of arbuscular mycorrhiza in the rhizosphere of Cajeput in agroforestry system with different fertilizer management of maize

    NASA Astrophysics Data System (ADS)

    Parwi; Pudjiasmanto, B.; Purnomo, D.; Cahyani, VR

    2017-11-01

    This study investigated the diversity of arbuscular mycorrhiza in rhizosphere of cajeput with different fertilizer management of maize. This research was conducted by observation on cajeput agroforestry system in Ponorogo that have different fertilizer management of maize: conventional management (CM), universal management (UM) and alternative management (AM1, AM2, and AM3). The result showed that the highest infection of arbuscular mycorrhiza was observed in the plot of AM3, while the lowest colonization was observed in the plot of CM. Infection of arbuscular mycorrhiza in roots cajeput from five fertilizer management, ranging from 32.64% - 63.33%. In all fertilizer management, there were eight species of arbuscular mycorrhiza which five species were Glomus genus, one species was Acaulospora genus and two species were Gigaspora genus. Glomus constrictum was the dominant species in all fertilizer management. Acaulospora favoeta was found only in the plot of AM3. Spore density varies between 150-594 / 100g of soil. The highest spore density was observed in the plot of AM3, while the lowest spore density was observed in the plot of AM1. The highest diversity index value of arbuscular mycorrhiza (Species richness and Shannon-Wiener) was observed in the plot of AM3.

  18. Agroforestry management and phytoseiid communities in vineyards in the South of France.

    PubMed

    Liguori, Marialivia; Tixier, Marie-Stéphane; Hernandes, Akashi Fabio; Douin, Martial; Kreiter, Serge

    2011-10-01

    This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.

  19. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands

    USGS Publications Warehouse

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela L.; Jarchow, Christopher J.; Roberts, Dar A.

    2017-01-01

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24 m resolution WorldView-3 and a 0.1 m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure.

  20. Use of herbicide to reduce stump-sprouting following thinning of an eastern black walnut agroforestry planting

    Treesearch

    W.D. " Dusty" Walter; H.E. " Gene" Garrett; Larry D. Godsey

    2004-01-01

    When establishing an agroforestry practice, the number of trees planted will often exceed the densities needed to achieve a final spacing or configuration. While tight spacings may facilitate certain growth parameters, such as height development, timely thinnings of plantings are required in order to maintain desirable growth rates. In managed plantations especially,...

  1. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  2. Cocoa based agroforestry: An economic perspective in resource scarcity conflict era

    NASA Astrophysics Data System (ADS)

    Jumiyati, S.; Arsyad, M.; Rajindra; Pulubuhu, D. A. T.; Hadid, A.

    2018-05-01

    Agricultural development towards food self-sufficiency based on increasing production alone has caused the occurrence of environmental disasters that are the impact of the exploitation of natural resources resulting in the scarcity of resources. This paper describes the optimization of land area, revenue, cost (production inputs), income and use of production input based on economic and ecological aspects. In order to sustainability farming by integrating environmental and economic consideration can be made through farmers’ decision making with the goal of optimizing revenue based on cost optimization through cocoa based agroforestry model in order to cope with a resource conflict resolution.

  3. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  4. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands.

    PubMed

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela; Jarchow, Christopher J; Roberts, Dar A

    2017-04-15

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24m resolution WorldView-3 and a 0.1m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carbon dynamics under a maize-Faidherbia albida agroforestry system in Zambia

    NASA Astrophysics Data System (ADS)

    Yengwe, Jones; Chipatela, Floyd; Amalia, Okky; Lungu, Obed; De Neve, Stefaan

    2017-04-01

    Continued crop residue removal for other competing uses such as livestock or household has exacerbated the decline of soil organic matter. Foliar litter from indigenous agroforestry trees such as Faidherbia albida (F. albida) can be a source of organic matter input in resource constrained farmers' fields to mitigate the declining fertility status of many Zambian soils. A controlled incubation study was conducted to evaluate the short term degradability of F. albida litter and maize plant residue. Further, we assessed the effect of F. albida litter and maize residue amendments on microbial biomass carbon (MBC) and enzyme activity. Soils were collected from outside and under the canopies of F. albida trees from six sites with 8, 9, 11, 15, and two sites with > 35-year old trees. Soils from under the canopies were amended with F. albida+maize residue (FMU), F. albida litter (FU), maize residue (MU) and controls were not amended (CTRU). The soils from outside the canopy were amended with maize residue (MO) and controls were not amended (CTRO). These were adjusted to 50% WFPS and incubated for twelve weeks at 27°C to assess C mineralization, microbial biomass carbon (MBC) and enzyme activity (Dehydrogenase, β-glucosidase and β-glucosaminidase activity). The material used as amendment in the incubation experiment had two pools of carbon: a labile and a recalcitrant pool. The mixed amendment FMU had a significantly (p<0.05) higher C mineralization compared to the other amendments for all incubated soils. The treatment MU had a higher net C mineralized than FU. However, C mineralization from FU treatment was generally higher in the first 20 days of the incubation period but declined thereafter for all the soils. The net C mineralized from MU did not significantly differ with MO in all except soil from 11-year old trees. Enzyme activity and MBC consistently increased due to amendments for all soils. Enzyme activity was significantly (p<0.05) positively correlated with

  6. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy: CAM engineering in trees

    DOE PAGES

    Borland, Anne M.; Wullschleger, Stan D.; Weston, David J.; ...

    2014-12-15

    We know that global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour–pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. Onemore » approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO 2 uptake and fixation to the night-time when leaf:air VPD is low. CAMmembers of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. Moreover, the introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.« less

  7. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy: CAM engineering in trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, Anne M.; Wullschleger, Stan D.; Weston, David J.

    We know that global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour–pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. Onemore » approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO 2 uptake and fixation to the night-time when leaf:air VPD is low. CAMmembers of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. Moreover, the introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.« less

  8. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems.

    PubMed

    Williams-Guillén, Kimberly; Perfecto, Ivette

    2011-01-26

    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.

  9. Transferring site information for black walnut from native woodlands in southeastern Kansas USA to identify sites for agroforestry practices

    Treesearch

    Wayne A. Geyer; Felix Ponder

    2013-01-01

    Black walnut (Juglans nigra) is an important tree species for temperate agroforestry in the United States for timber, nuts, wildlife, and abrasives. Predictions of forestland productivity are needed for proper species selection in tree planting. Potential productivity can be estimated for nonforested areas and agricultural croplands by relating site...

  10. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that

  11. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    PubMed

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  12. Cocoa agroforestry is less resilient to suboptimal and extreme climate than cocoa in full sun: Reply to Norgrove (2017).

    PubMed

    Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Asten, Piet Van; Rötter, Reimund P; Graefe, Sophie

    2018-05-01

    Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. © 2018 John Wiley & Sons Ltd.

  13. Farmers, the Practice of Farming and the Future of Agroforestry: An Application of Bourdieu's Concepts of Field and Habitus

    ERIC Educational Resources Information Center

    Raedeke, Andrew H.; Green, John J.; Hodge, Sandra S.; Valdivia, Corinne

    2003-01-01

    Agroforestry, the practice of raising crops and trees together in ways that are mutually beneficial, provides farmers with an alternative to more conventional farming practices. In this paper, we apply Bourdieu's concepts of "field" and "habitus" in an attempt to better understand the practice of farming and the role that…

  14. Phosphorous fractions in soils of rubber-based agroforestry systems: Influence of season, management and stand age.

    PubMed

    Liu, Chenggang; Jin, Yanqiang; Liu, Changan; Tang, Jianwei; Wang, Qingwei; Xu, Mingxi

    2018-03-01

    Rubber-based agroforestry system is a vital management practice and its productivity is often controlled by soil phosphorus (P) nutrient, but little information is available on P fractions dynamics in such system. The aim of this study was to examine the seasonal, management and stand age effects on P fractions, acid phosphatase activity, microbial biomass P, other physical-chemical properties and litter and roots in four systems: 10-year-old rubber mono- (YM) and intercropping (YI) with N-fixing species (NFS), 22-year-old mono- (MM) and intercropping (MI) in Xishuangbanna, Southwestern China. Most P fractions varied seasonally at different depths, with highest values in the fog-cool season (i.e. labile P at 5-60cm, non-labile P and total P at 30-60cm). By contrast, moderately labile P varied little over time, except in MI that had lower values in the rainy season. Compared with their monoculture counterparts, YI doubled resin-P i concentration but decreased NaHCO 3 -extractable P, HCl-P i and residual-P o at the 0-30cm depth, whereas MI had hardly any changes in P species at the 60-cm depth. Surprisingly, residual-P o was enriched down to the deepest soil (30-60cm) in both YI and MI in the fog-cool season. All P fractions, except NaOH 0.1 -P i , were greatly reduced with increasing stand age. In addition to plants uptake, these changes can be explained by seasonality in soil environments (e.g. moisture, temperature, pH and microbial activity) and decomposition of litter and roots. Moreover, YI decreased labile P o stock, but MI increased moderately labile P i at the 60-cm depth across seasons. The results imply that a large amount of residual-P o exists in acidic Oxisol from China and that they can be reasonably exploited to reduce the application of P fertilizers, highlighting the importance of P o pool. Taken together, intercropping mature rubber plantation with NFS appears to be an effective way to enhance productivity while maintaining adequate soil P

  15. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    PubMed

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  16. Response and potential of agroforestry crops under global change.

    PubMed

    Calfapietra, C; Gielen, B; Karnosky, D; Ceulemans, R; Scarascia Mugnozza, G

    2010-04-01

    The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. 2009 Elsevier Ltd. All rights reserved.

  17. A hybrid land-water-environment model for identification of ecological effect and risk under uncertain meteorological precipitation in an agroforestry ecosystem.

    PubMed

    Zeng, Xueting; Li, Tienan; Chen, Cong; Si, Zhenjiang; Huang, Guohe; Guo, Ping; Zhuang, Xiaowen

    2018-08-15

    In this study, a hybrid land-water-environment (LWE) model is developed for identifying ecological effect and risk under uncertain precipitation in an agroforestry ecosystem. A simulation-based fuzzy-stochastic programming with risk analysis (SFSR) method is used into LWE model to reflect the meteorological impacts; meanwhile, it also can quantify artificial fuzziness (e.g., risk attitude of policymaker) and natural vagueness (e.g., ecological function) in decision-making. The developed LWE model with SFSR method is applied to a practical agroforestry ecosystem in China. Results of optimized planting scale, irrigative water schedule, pollution mitigation scheme, and system benefit under changed rainfall, precise risk-adoption and vague ecological function are obtained; meanwhile their corresponding ecological effects and risks are analyzed. It found that current LWE plans could generate massive water deficits (e.g., 23.22×10 6 m 3 in crop irrigation and 26.32×10 6 m 3 in forest protection at highest) due to over-cultivation and excessive pollution discharges (e.g., the highest excessive TP and TN discharges would reach 460.64 and 15.30×10 3 ton) due to irrational fertilization, which would increase regional ecological risks. In addition, fifteen scenarios associated with withdrawing cultivation and recovering forest based on regional environment heterogeneity (such as soil types) have been discussed to adjust current agriculture-environment policies. It found that, the excessive pollution discharges (TN and TP) could be reduced 12.95% and 18.32% at highest through ecological expansions, which would generate higher system benefits than that without withdrawing farmland and recovering forest. All above can facilitate local policymakers to modulate a comprehensive LWE with more sustainable and robust manners, achieving regional harmony between socio-economy and eco-environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Effect of agroforestry model on inhibition of Oncomelania snails in plateau mountainous area of Yunnan Province].

    PubMed

    Zhang, Chun-Hua; Tang, Guo-Yong; Liu, Fang-Yan; Li, Kun

    2012-10-01

    To evaluate the effect of agroforestry models on the inhibition of Oncomelania snails in the plateau mountainous area of Yunnan Province. The experimental field was established at Sanying Village of Eryuan County, Yunnan Province, where the "Flourishing Forest and Controlling Snails Project" was implemented. Different drought crops (alfalfa, vegetables, broad bean, garlic, lettuce, celery, green onions, and wheat) were intercropped under walnut forest in experimental groups, and the crops were not intercropped under walnut forest in a control group. The growth of forest, the change of snails and short-term income of residents were investigated. Agroforestry models promoted the forestry growth and effectively inhibited the growth of snails. There was a little snail in one of the experimental group that forest was intercropped with alfalfa (the occurrence rate of frames with living snails was 3.33%, the average density of living snails was 0.004/0.1 m2, and the declining rates were both 50.00%). The snails were not found in other intercropped models. The income of residents in the experimental groups increased (900-6 800 Yuan per year) compared with that in the control group. The model of walnut forest intercropped with crops not only has the obvious effect on inhibition of snails, but also has good economic and ecological benefits in the plateau mountainous area of Yunnan Province.

  19. Bird and bat predation services in tropical forests and agroforestry landscapes.

    PubMed

    Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly

    2016-11-01

    Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.

  20. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    PubMed

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Land cover changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (high Agri Valley)

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.

    2015-06-01

    The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.

  2. Land cover changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (High Agri Valley)

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.

    2014-08-01

    The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.

  3. Bats and birds increase crop yield in tropical agroforestry landscapes.

    PubMed

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.

  4. TEK and biodiversity management in agroforestry systems of different socio-ecological contexts of the Tehuacán Valley.

    PubMed

    Vallejo-Ramos, Mariana; Moreno-Calles, Ana I; Casas, Alejandro

    2016-07-22

    Transformation of natural ecosystems into intensive agriculture is a main factor causing biodiversity loss worldwide. Agroforestry systems (AFS) may maintain biodiversity, ecosystem benefits and human wellbeing, they have therefore high potential for concealing production and conservation. However, promotion of intensive agriculture and disparagement of TEK endanger their permanence. A high diversity of AFS still exist in the world and their potentialities vary with the socio-ecological contexts. We analysed AFS in tropical, temperate, and arid environments, of the Tehuacan Valley, Mexico, to investigate how their capacity varies to conserve biodiversity and role of TEK influencing differences in those contexts. We hypothesized that biodiversity in AFS is related to that of forests types associated and the vigour of TEK and management. We conducted studies in a matrix of environments and human cultures in the Tehuacán Valley. In addition, we reviewed, systematized and compared information from other regions of Mexico and the world with comparable socio-ecological contexts in order to explore possible general patterns. Our study found from 26 % to nearly 90 % of wild plants species richness conserved in AFS, the decreasing proportion mainly associated to pressures for intensifying agricultural production and abandoning traditional techniques. Native species richness preserved in AFS is influenced by richness existing in the associated forests, but the main driver is how people preserve benefits of components and functions of ecosystems. Elements of modern agricultural production may coexist with traditional management patterns, but imposition of modern models may break possible balances. TEK influences decisions on what and how modern techniques may be advantageous for preserving biodiversity, ecosystem integrity in AFS and people's wellbeing. TEK, agroecology and other sciences may interact for maintaining and improving traditional AFS to increase biodiversity

  5. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  6. Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.

    2007-06-01

    Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less

  7. Molecular Characterization of Arbuscular Mycorrhizal Fungi in an Agroforestry System Reveals the Predominance of Funneliformis spp. Associated with Colocasia esculenta and Pterocarpus officinalis Adult Trees and Seedlings.

    PubMed

    Geoffroy, Alexandre; Sanguin, Hervé; Galiana, Antoine; Bâ, Amadou

    2017-01-01

    Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro ( Colocasia esculenta ) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta . However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta , notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network.

  8. Molecular Characterization of Arbuscular Mycorrhizal Fungi in an Agroforestry System Reveals the Predominance of Funneliformis spp. Associated with Colocasia esculenta and Pterocarpus officinalis Adult Trees and Seedlings

    PubMed Central

    Geoffroy, Alexandre; Sanguin, Hervé; Galiana, Antoine; Bâ, Amadou

    2017-01-01

    Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro (Colocasia esculenta) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta. However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta, notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network. PMID:28804479

  9. Relationships among community characteristics and walking and bicycling for transportation or recreation.

    PubMed

    Zlot, Amy I; Schmid, Tom L

    2005-01-01

    Compare walking and bicycling for transportation and recreation with the percentage of the community devoted to parklands. Behavioral Risk Factor Surveillance System (N = 206,992), Nationwide Personal Transportation Survey (N = 409,025), and Trust for Public Land (N = 55) data were used to estimate recreational walking and bicycling, utilitarian walking and bicycling, and parkland as a percentage of city acreage. Data were linked at the metropolitan statistical area or city level (N = 34). Pearson correlation coefficients were used to assess the associations among recreational and utilitarian walking and bicycling and parkland acreage. Utilitarian walking and bicycling and parkland acreage were significantly correlated (r = .62, p < .0001). No significant relationships were observed for leisure time walking or bicycling. Communities with more parks had significantly higher levels of walking and bicycling for transportation. Urban design features associated with leisure time physical activity might differ from those associated with transportation-related physical activity. Further studies are needed to articulate the relationships among community attributes and purposes of physical activity.

  10. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    NASA Astrophysics Data System (ADS)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (<1 km2) coffee agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  11. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  12. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    PubMed

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  13. Temporal and Spatial Separation of Water Use Averts Competition for Soil Water Resources in a Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Dick, R.; Ghezzehei, T. A.

    2016-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Large differences in crop success have been observed even during drough stress in peanut and millet grown in association with two native evergreen shrubs, Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Research plots at Keur Matar Arame and Nioro du Rip with no fertilizer added were monitored from 2012-2015 using two soil moisture sensor networks at depths of 10, 20, 40, 60, 100, 200, and 300cm. Our data show that there is more water available to crops in the shallow soil layers as a result of a temporal and spatial shift of shrub soil moisture use to deeper layers and the presence of hydraulic redistribution. At the beginning of the dry season just after the crop harvest, maximum weekly transpirational water use descends from 100 to 300cm over the course of one to two months. We hypothesize that after early February, 2-3 months into the dry season, the majority of water use by shrubs comes from below 3m depth. As the first rains come in June-July, the shrubs continue to use deep soil moisture until a significant portion of the soil profile undergoes infiltration. It is during this time that a large difference in hydraulic head can drive hydraulic redistribution, which, in addition to surface shading by the shrub canopy, can help to maintain higher soil moisture in the shallow soil layers near the shrubs. This builds on previous work at the site investigating growing season

  14. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses

    NASA Astrophysics Data System (ADS)

    Terêncio, D. P. S.; Sanches Fernandes, L. F.; Cortes, R. M. V.; Pacheco, F. A. L.

    2017-07-01

    This study introduces an improved rainwater harvesting (RWH) suitability model to help the implementation of agro-forestry projects (irrigation, wildfire combat) in catchments. The model combines a planning workflow to define suitability of catchments based on physical, socio-economic and ecologic variables, with an allocation workflow to constrain suitable RWH sites as function of project specific features (e.g., distance from rainfall collection to application area). The planning workflow comprises a Multi Criteria Analysis (MCA) implemented on a Geographic Information System (GIS), whereas the allocation workflow is based on a multiple-parameter ranking analysis. When compared to other similar models, improvement comes with the flexible weights of MCA and the entire allocation workflow. The method is tested in a contaminated watershed (the Ave River basin) located in Portugal. The pilot project encompasses the irrigation of a 400 ha crop land that consumes 2.69 Mm3 of water per year. The application of harvested water in the irrigation replaces the use of stream water with excessive anthropogenic nutrients that may raise nitrosamines in the food and accumulation in the food chain, with severe consequences to human health (cancer). The selected rainfall collection catchment is capable to harvest 12 Mm3·yr-1 (≈ 4.5 × the requirement) and is roughly 3 km far from the application area assuring crop irrigation by gravity flow with modest transport costs. The RWH system is an 8-meter high that can be built in earth with reduced costs.

  15. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    PubMed

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  16. Drought effects on soil COagroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2009-12-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month replicated experiment, we measured soil surface CO2 efflux (soil respiration) in three simulated drought plots compared with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture and decreased under increasingly dry conditions (drought induced), but also decreased when soils became water saturated, as evidenced in control plots. The simulated drought plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly ("responsive") to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all ("non-responsive") (n=7). The degree of soil CO2 respiration drought response was highest around cacao tree stems and decreased with distance from the stem (R2=0.22). A significant correlation was measured between "responsive" soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. During dry periods the litter layer contributed approximately 3-4% of the total CO2 efflux and up to 40% during wet periods. A CO2 flush was recorded during the rewetting phase that lasted for approximately two weeks, during which time accumulated labile carbon stocks mineralized. The net effect on soil CO2 emissions over the duration of the experiment was neutral, control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1.

  17. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  18. Community-Oriented Primary Care in Action: A Dallas Story

    PubMed Central

    Pickens, Sue; Boumbulian, Paul; Anderson, Ron J.; Ross, Samuel; Phillips, Sharon

    2002-01-01

    Dallas County, Texas, is the site of the largest urban application of the community-oriented primary care (COPC) model in the United States. We summarize the development and implementation of Dallas’s Parkland Health & Hospital System COPC program. The complexities of implementing and managing this comprehensive community-based program are delineated in terms of Dallas County’s political environment and the components of COPC (assessment, prioritization, community collaboration, health care system, evaluation, and financing). Steps to be taken to ensure the future growth and development of the Dallas program are also considered. The COPC model, as implemented by Parkland, is replicable in other urban areas. PMID:12406794

  19. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    PubMed Central

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  20. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    PubMed

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  1. Agroforestry In-Service Training. A Training Aid for Asia & the Pacific Islands (Honiara, Solomon Islands, South Pacific, October 23-29, 1983). Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-16.

    ERIC Educational Resources Information Center

    Fillion, Jacob; Weeks, Julius

    The Forestry/Natural Resources Sector in the Office of Training and Program Support of the Peace Corps conducted an agroforestry inservice training workshop in Honiara, Solomon Islands, in 1983. Participants included Peace Corps volunteers and their host country national counterparts from six countries of the Pacific Islands and Asia (Western…

  2. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  3. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  4. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    NASA Astrophysics Data System (ADS)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  5. Assessment of Agroforestry Trees in Dry-land Savanna Supports Ecohydrologic Separation

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Van de Giesen, Nick; Tyler, Scott; Parlange, Marc

    2016-04-01

    We use stable isotopes of water to demonstrate the ecohydrologic separation, or the plant controlled compartmentalization, of different water sources in a catchment in South Eastern Burkina Faso. We analyze water extracted from the groundwater, stream water, precipitation, perched aquifer, xylem water of agroforestry trees, and sub-canopy soil water over a 6 year period to explore how the separation affects different components of the system over time. The ratio between deuterium and O18 allows us to assess whether the water that plants use is the same as the water that recharges the aquifer and runs off in the stream. Water extracted from the tree at leaf out in February corresponded to deuterium and O18 concentrations of the groundwater, a drop from its dry season, enriched, levels which mimicked the soil water. Examination of the isotopic signature suggests that the size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Dates of leaf out were confirmed by analyzing sub-canopy radiation and photographs. Water extracted from roots suggests that the trees are performing hydraulic redistribution, or lifting the ground water and 'sharing it' with the rooting zone soil during the dry season. The enriched level of xylem, in this case, is a product of water loss and enrichment along the travel path of the water from the roots to the tip of the branch, as evidenced by the variation according to size of tree. Vapor pressure deficit, sap flow, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree. A second round of sampling focused on the leaf out period by extracting and analyzing stem water from throughout the canopy during the leaf out. Simultaneous large eddy correlation revealed high levels of latent energy flux, even during the dry season. Our isotope analysis allowed us to

  6. Summary and future directions

    Treesearch

    Janaki R.R. Alavalapati; D. Evan Mercer

    2004-01-01

    This chapter summarizes the main results from the preceding chapters, identifies gaps, and provides direction for fbture economics research on agroforestry systems. Although a common theme throughout the 1990s was that economic research on agroforestry continued to lag the advances made in the bio-physical sciences, the wide range of systems, regions, and techniques...

  7. Making biodiversity-friendly cocoa pay: combining yield, certification, and REDD for shade management.

    PubMed

    Waldron, A; Justicia, R; Smith, L E

    2015-03-01

    The twin United Nations' Millennium Development Goals of biodiversity preservation and poverty reduction both strongly depend on actions in the tropics. In particular, traditional agroforestry could be critical to both biological conservation and human livelihoods in human-altered rainforest areas. However, traditional agroforestry is rapidly disappearing, because the system itself is economically precarious, and because the forest trees that shade traditional crops are now perceived to be overly detrimental to agricultural yield. Here, we show a case where the commonly used agroforestry shade metric, canopy cover, would indeed suggest complete removal of shade trees to maximize yield, with strongly negative biodiversity and climate implications. However, a yield over 50% higher was achievable if approximately 100 shade trees per hectare were planted in a spatially organized fashion, a win-win for biodiversity and the smallholder. The higher yield option was detected by optimizing simultaneously for canopy cover, and a second shade metric, neighboring tree density, which was designed to better capture the yield value of ecological services flowing from forest trees. Nevertheless, even a 50% yield increase may prove insufficient to stop farmers converting away from traditional agroforestry. To further increase agroforestry rents, we apply our results to the design of a sustainable certification (eco-labelling) scheme for cocoa-based products in a biodiversity hotspot, and consider their implications for the use of the United Nations REDD (reducing emissions from deforestation and forest degradation) program in agroforestry systems. Combining yield boost, certification, and REDD has the potential to incentivize eco-friendly agroforestry and lift smallholders out of poverty, simultaneously.

  8. Temporal Trends and Predictors for Cancer Clinical Trial Availability for Medically Underserved Populations

    PubMed Central

    Lakoduk, Ashley M.; Priddy, Laurin L.; Yan, Jingsheng; Xie, Xian-Jin

    2015-01-01

    Background. Lack of access to available cancer clinical trials has been cited as a key factor limiting trial accrual, particularly among medically underserved populations. We examined the trends and factors in clinical trial availability within a major U.S. safety-net hospital system. Materials and Methods. We identified cancer clinical trials activated at the Harold C. Simmons Cancer from 1991 to 2014 and recorded the characteristics of the trials that were and were not activated at the Parkland Health and Hospital System satellite site. We used univariate and multivariate logistic regression to determine the association between trial characteristics and nonactivation status, and chi-square analysis to determine the association between the trial characteristics and the reasons for nonactivation. Results. A total of 773 trials were identified, of which 152 (20%) were not activated at Parkland. In multivariable analysis, nonactivation at Parkland was associated with trial year, sponsor, and phase. Compared with the 1991–2006 period, clinical trials in the 2007–2014 period were almost eightfold more likely not to be activated at Parkland. The most common reasons for nonactivation at Parkland were an inability to perform the study procedures (27%) and the startup costs (15%). Conclusion. Over time, in this single-center setting, a decreasing proportion of cancer clinical trials were available to underserved populations. Trial complexity and costs appeared to account for much of this trend. Efforts to overcome these barriers will be key to equitable access to clinical trials, efficient accrual, and the generalizability of the results. Implications for Practice: Despite numerous calls to increase and diversify cancer clinical trial accrual, the present study found that cancer clinical trial activation rates in a safety-net setting for medically underserved populations have decreased substantially in recent years. The principal reasons for study nonactivation were

  9. The Impact of Policy and Institutional Environment on Costs and Benefits of Sustainable Agricultural Land Uses: The Case of the Chittagong Hill Tracts, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasul, Golam; Thapa, Gopal B.

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  10. The impact of policy and institutional environment on costs and benefits of sustainable agricultural land uses: the case of the Chittagong Hill Tracts, Bangladesh.

    PubMed

    Rasul, Golam; Thapa, Gopal B

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation (jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  11. Agroforestry-based management of salt-affected croplands in irrigated agricultural landscape in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Khamzina, Asia; Kumar, Navneet; Heng, Lee

    2017-04-01

    In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.

  12. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age

    PubMed Central

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J.; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-01-01

    Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr−1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha−1 and NPP of perennial roots was 1·3 t ha−1 yr−1. Fine root biomass (0–30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha−1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha−1 yr−1 (69 % of total root NPP). Fine root turnover was 1·3 yr−1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the

  13. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    PubMed

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on

  14. Creating the Sustainable City: Building a Seminar (and Curriculum) through Interdisciplinary Learning

    ERIC Educational Resources Information Center

    Bryson, Michael A.; Zimring, Carl A.

    2010-01-01

    Using the wealth of sites available in the Chicago metropolitan area, online learning technologies, and classroom interactions, Roosevelt University's seminar "The Sustainable City" takes a multidisciplinary approach to urban ecology, waste management, green design, climate change, urban planning, parklands, water systems, environmental…

  15. Recovery of goat·damaged vegetation in an insular tropical montane forest

    Treesearch

    Paul G. Scowcroft; Robert Hobdy

    1987-01-01

    The feral goat (Capra hircus) is an alien herbivore that has wreaked havoc in island ecosystems, including the dry, rugged, and relatively inaccessible montane koa parkland on the islands of Maui and Hawai'i. The objective of the present work was to evaluate the ability of koa parkland on Maui to recover naturally from browsing damage if...

  16. Correlation of Carbon Stock and Biodiversity Index at the Small Scale Agroforestry Landscape in Ciliwung Watershed

    NASA Astrophysics Data System (ADS)

    Choliq, M. B. S.; Kaswanto, R. L.

    2017-10-01

    Pekarangan is part of a complex of small-scale agroforestry landscape. Pekarangan have 3 functions i.e. ecological, economic, and social. ecological function, for providing landscape services such as carbon stock and biodiversity; economic function, can supplies foods and nutrition; and social function, for building low carbon communities and increasing the environmental awareness. Therefore, this research aims to correlate carbon stocks and biodiversity index of Pekarangan in Ciliwung Watershed. This study has measured 48 samples which were divided in three stream, namely upstream, midstream, and downstream. The samples were divided into four groups, G1 (pekarangan size less than 120 m2 and doesn’t have other agricultural land (no other agricultural land - OAL), G2 (<120 m2 with OAL < 1000 m2), G3 (120-400 m2 with no OAL) and G4 (120-400 m2 with OAL < 1000 m2). The results show that correlation between carbon stock and biodiversity index value is R2 = 0.05. The results showed no correlation between carbon stocks and biodiversity index could be due to the amount of Pekarangan owners who prefer potted plants than plant a tree, so that the carbon sequestered in the Pekarangan only slightly.

  17. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  18. Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: implications for REDD+ implementation in a West African cacao landscape.

    PubMed

    Dawoe, Evans; Asante, Winston; Acheampong, Emmanuel; Bosu, Paul

    2016-12-01

    The promotion of cacao agroforestry is one of the ways of diversifying farmer income and creating incentives through their inclusion in REDD+ interventions. We estimated the aboveground carbon stocks in cacao and shade trees, determined the floristic diversity of shade trees and explored the possibility of implementing REDD+ interventions in cacao landscapes. Using replicated multi-site transect approach, data were collected from nine 1-ha plots established on 5 km long transects in ten cacao growing districts in Ghana West Africa. Biomass of cacao and shade trees was determined using allometric equations. One thousand four hundred and one (1401) shade trees comprising 109 species from 33 families were recorded. Total number of species ranged from 34 to 49. Newbouldia laevis (Bignoniacea) was the most frequently occurring specie and constituted 43.2 % of all shade trees. The most predominant families were Sterculiaceae and Moraceae (10 species each), followed by Meliaceae and Mimosaceae (8 species each) and Caesalpiniacaea (6 species). Shannon diversity indices (H', H max and J') and species richness were low compared to other similar studies. Shade tree densities ranged from 16.2 ± 3.0 to 22.8 ± 1.7 stems ha -1 and differed significantly between sites. Carbon stocks of shade trees differed between sites but were similar in cacao trees. The average C stock in cacao trees was 7.45 ± 0.41 Mg C ha -1 compared with 8.32 ± 1.15 Mg C ha -1 in the shade trees. Cacao landscapes in Ghana have the potential of contributing to forest carbon stocks enhancement by increasing the stocking density of shade trees to recommended levels.

  19. Elephants Also Like Coffee: Trends and Drivers of Human-Elephant Conflicts in Coffee Agroforestry Landscapes of Kodagu, Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.

    2011-05-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  20. Elephants also like coffee: trends and drivers of human-elephant conflicts in coffee agroforestry landscapes of Kodagu, Western Ghats, India.

    PubMed

    Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C

    2011-05-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  1. Modeling of afforestation possibilities on one part of Hungary

    NASA Astrophysics Data System (ADS)

    Bozsik, Éva; Riczu, Péter; Tamás, János; Burriel, Charles; Helilmeier, Hermann

    2015-04-01

    Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real - ecological - problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations. Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production. In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system

  2. If I were a band-aid, where would I be? Researching the use and location of supplies on two patient units.

    PubMed

    Bazuin, Doug; Martinez, Jessica; Harper, Kathy; Okland, Kathy; Bergquist, Patricia; Kumar, Shilpi

    2015-01-01

    The purpose of this study was to gain insight into the use and storage of supplies in the neonatal intensive care and women's health units of Parkland Hospital in Dallas, Texas. Construction of a new Parkland Hospital is underway, with completion of the 862-bed, 2.5-million square feet hospital in 2014. Leaders from the hospital and representatives from one of its major vendors collaborated on a research study to evaluate the hospital's current supply management system and develop criteria to create an improved system to be implemented at the new hospital. Approach includes qualitative and quantitative methods, that is, written survey, researcher observations, focus groups, and evaluation of hospital supply reports. Approaching the ideal location of supplies can be best approached by defining a nurse's activity at the point of care. Determining an optimal supply management system must be approached by understanding the "what" of caregivers' activities and then determining the "where" of the supplies that support those activities. An ideal supply management system locates supplies as close as possible to the point of use, is organized by activity, and is standardized within and across units. © The Author(s) 2015.

  3. Shea (Vitellaria paradoxa Gaertn C. F.) fruit yield assessment and management by farm households in the Atacora district of Benin

    PubMed Central

    Villamor, Grace B.; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi

    2018-01-01

    Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield. PMID:29346406

  4. Shea (Vitellaria paradoxa Gaertn C. F.) fruit yield assessment and management by farm households in the Atacora district of Benin.

    PubMed

    Aleza, Koutchoukalo; Villamor, Grace B; Nyarko, Benjamin Kofi; Wala, Kperkouma; Akpagana, Koffi

    2018-01-01

    Vitellaria paradoxa (Gaertn C. F.), or shea tree, remains one of the most valuable trees for farmers in the Atacora district of northern Benin, where rural communities depend on shea products for both food and income. To optimize productivity and management of shea agroforestry systems, or "parklands," accurate and up-to-date data are needed. For this purpose, we monitored120 fruiting shea trees for two years under three land-use scenarios and different soil groups in Atacora, coupled with a farm household survey to elicit information on decision making and management practices. To examine the local pattern of shea tree productivity and relationships between morphological factors and yields, we used a randomized branch sampling method and applied a regression analysis to build a shea yield model based on dendrometric, soil and land-use variables. We also compared potential shea yields based on farm household socio-economic characteristics and management practices derived from the survey data. Soil and land-use variables were the most important determinants of shea fruit yield. In terms of land use, shea trees growing on farmland plots exhibited the highest yields (i.e., fruit quantity and mass) while trees growing on Lixisols performed better than those of the other soil group. Contrary to our expectations, dendrometric parameters had weak relationships with fruit yield regardless of land-use and soil group. There is an inter-annual variability in fruit yield in both soil groups and land-use type. In addition to observed inter-annual yield variability, there was a high degree of variability in production among individual shea trees. Furthermore, household socioeconomic characteristics such as road accessibility, landholding size, and gross annual income influence shea fruit yield. The use of fallow areas is an important land management practice in the study area that influences both conservation and shea yield.

  5. Erratum to: Elephants also like coffee: Trends and drivers of human-elephant conflicts in coffee agroforestry landscapes of Kodagu, Western Ghats, India.

    PubMed

    Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C

    2011-08-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  6. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  7. [Soil mesofauna in differents systems of land use soil in Upper River Solimões, AM, Brazil].

    PubMed

    Morais, José W De; Oliveira, Viviane Dos S; Dambros, Cristian De S; Tapia-Coral, Sandra C; Acioli, Agno N S

    2010-01-01

    The mesofauna has an important function in the soil and it is represented mainly by Acari Oribatida and Collembola. We report the first data on the density and diversity of the soil mesofauna in Benjamin Constant, Amazonas State, Brazil. The following systems were evaluated: primary forest, secondary forest, agroforestry system, cultivated areas and pastures. A total of 101 samples were collected 100 m apart from each other and specimens were collected by using Berlese-Tullgren method. The highest density was registered in secondary forest (29,776 specimens.m-2). Acari Oribatida was the dominant group (7.072 specimens.m-2) in the pasture, suggesting that mites show higher capacity of adaptation to disturbed environments and/or due to the presence of gregarious species. The density of Collembola (5,632 specimens.m-2) was higher in secondary forest. Formicidae was the dominant group (27,824 specimens.m-2) and its highest density occurred in the secondary forest (12,336 specimens.m-2). Seven species and ten morphospecies of Isoptera and three species of Symphyla were identified. The highest density and diversity were found in secondary forest. One supposes that the low density of mesofauna found in all of the studied systems is being influenced by soil structure and composition as well as litter volume. For SUT, the composition of taxonomic groups in the cultivated areas is similar to the one found in primary forest, while the groups found in the agroforestry system are similar to those in the pasture, which may help to decide on land use strategies.

  8. Ecological Settings and State Economies as Factor Inputs in the Provision of Outdoor Recreation

    NASA Astrophysics Data System (ADS)

    Siderelis, Christos; Smith, Jordan W.

    2013-09-01

    State parks play a substantial role in the provision of outdoor recreation opportunities within the United States. Park operators must make crucial decisions in how they allocate capital expenditures, labor, and parkland to maintain recreation opportunities. Their decisions are influenced, in part, by the ecological characteristics of their state's park system as well as the vitality of their state's economy. In this research, we incorporate the characteristics of states' ecosystems and their local economies into a formal production analysis of the states' park systems from the years 1986 to 2011. Our analysis revealed all three factors of production were positive and inelastic. Expenditures on labor had the largest effect on both park utilization and operational expenditures. Our analysis also found a large degree of variability in the effects of ecological characteristics on both utilization and operating expenditures. Parkland utilization and operational expenditures were more elastic in areas such as Oceania and Mediterranean California relative to other ecological regions. These findings lead us to conclude that state park operators will experience variable levels of difficulty in both accommodating increasing demands for recreation from state parks and maintaining the existing quality of outdoor recreation provided within their system.

  9. Large-scale investment in green space as an intervention for physical activity, mental and cardiometabolic health: study protocol for a quasi-experimental evaluation of a natural experiment.

    PubMed

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S

    2016-04-06

    'Green spaces' such as public parks are regarded as determinants of health, but evidence from tends to be based on cross-sectional designs. This protocol describes a study that will evaluate a large-scale investment in approximately 5280 hectares of green space stretching 27 km north to south in Western Sydney, Australia. A Geographic Information System was used to identify 7272 participants in the 45 and Up Study baseline data (2006-2008) living within 5 km of the Western Sydney Parklands and some of the features that have been constructed since 2009, such as public access points, advertising billboards, walking and cycle tracks, BBQ stations, and children's playgrounds. These data were linked to information on a range of health and behavioural outcomes, with the second wave of data collection initiated by the Sax Institute in 2012 and expected to be completed by 2015. Multilevel models will be used to analyse potential change in physical activity, weight status, social contacts, mental and cardiometabolic health within a closed sample of residentially stable participants. Comparisons between persons with contrasting proximities to different areas of the Parklands will provide 'treatment' and 'control' groups within a 'quasi-experimental' study design. In line with expectations, baseline results prior to the enhancement of the Western Sydney Parklands indicated virtually no significant differences in the distribution of any of the outcomes with respect to proximity to green space preintervention. Ethical approval was obtained for the 45 and Up Study from the University of New South Wales Human Research Ethics Committee. Ethics approval for this study was obtained from the University of Western Sydney Ethics Committee. Findings will be disseminated through partner organisations (the Western Sydney Parklands and the National Heart Foundation of Australia), as well as to policymakers in parallel with scientific papers and conference presentations. Published by

  10. Erratum: Erratum to: Elephants Also Like Coffee: Trends and Drivers of Human-Elephant Conflicts in Coffee Agroforestry Landscapes of Kodagu, Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.

    2011-08-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  11. A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns.

    PubMed

    Berger, Mette M; Que, Yok Ai

    2013-11-11

    Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. Fluid administration guided by invasive hemodynamic parameters usually resulted in over-resuscitation. As reported in the previous issue of Critical Care, Sánchez-Sánchez and colleagues analyzed the performance of a 'permissive hypovolemia' protocol guided by invasive hemodynamic parameters (PiCCO, Pulsion Medical Systems, Munich, Germany) and vital signs in a prospective cohort over a 3-year period. The authors' results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals.

  12. The influence of agroforestry and other land-use types on the persistence of a Sumatran tiger (Panthera tigris sumatrae) population: an individual-based model approach.

    PubMed

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)--an individual-based model--to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.

  13. The Influence of Agroforestry and Other Land-Use Types on the Persistence of a Sumatran Tiger ( Panthera tigris sumatrae) Population: An Individual-Based Model Approach

    NASA Astrophysics Data System (ADS)

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)—an individual-based model—to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.

  14. Indigenous knowledge of shea processing and quality perception of shea products in Benin.

    PubMed

    Honfo, Fernande G; Linnemann, Anita R; Akissoe, Noël H; Soumanou, Mohamed M; van Boekel, Martinus A J S

    2012-01-01

    A survey among 246 people belonging to 14 ethnic groups and living in 5 different parklands in Benin revealed different practices to process shea kernels (namely boiling followed sun drying and smoking) and extract shea butter. A relation between parklands, gathering period, and sun-drying conditions was established. Moisture content and appearance of kernels were the selection criteria for users of shea kernels; color was the main characteristic to buy butter. Constraints to be solved are long processing times, lack of milling equipment and high water requirements. Best practices for smoking, sun drying, and roasting operations need to be established for further improvement.

  15. Analysis And Assistant Planning System Ofregional Agricultural Economic Inform

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhang, Junfeng

    For the common problems existed in regional development and planning, we try to design a decision support system for assisting regional agricultural development and alignment as a decision-making tool for local government and decision maker. The analysis methods of forecast, comparative advantage, liner programming and statistical analysis are adopted. According to comparative advantage theory, the regional advantage can be determined by calculating and comparing yield advantage index (YAI), Scale advantage index (SAI), Complicated advantage index (CAI). Combining with GIS, agricultural data are presented as a form of graph such as area, bar and pie to uncover the principle and trend for decision-making which can't be found in data table. This system provides assistant decisions for agricultural structure adjustment, agro-forestry development and planning, and can be integrated to information technologies such as RS, AI and so on.

  16. A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns

    PubMed Central

    2013-01-01

    Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. Fluid administration guided by invasive hemodynamic parameters usually resulted in over-resuscitation. As reported in the previous issue of Critical Care, Sánchez-Sánchez and colleagues analyzed the performance of a ‘permissive hypovolemia’ protocol guided by invasive hemodynamic parameters (PiCCO, Pulsion Medical Systems, Munich, Germany) and vital signs in a prospective cohort over a 3-year period. The authors’ results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals. PMID:24229466

  17. Assessing Conservation Values: Biodiversity and Endemicity in Tropical Land Use Systems

    PubMed Central

    Waltert, Matthias; Bobo, Kadiri Serge; Kaupa, Stefanie; Montoya, Marcela Leija; Nsanyi, Moses Sainge; Fermon, Heleen

    2011-01-01

    Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km2 spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (- 2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by - 18% (birds) to - 90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by

  18. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  19. Influence of low light intensity and soil flooding on cacao physiology

    USDA-ARS?s Scientific Manuscript database

    Growth and development of plants frequently are limited by multiple abiotic stresses that occur simultaneously in the environment. Cabruca’ an agroforestry system is a main cropping system invariably adapted for cultivation of cacao in southern Bahia, Brazil. In this system of management cacao is gr...

  20. Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study,

    DTIC Science & Technology

    1995-01-01

    and tropical latitudes, afforestation in the temperate regions, and agroforestry and natural reforestation in the tropics. Least promising from a...t-C. The most cost-efficient forestry and agroforestry practices, based on establishment costs, within zones of latitude are shown in the...Press, New Haven, CT. Schroeder, P.E., R.K. Dixon, and J.K. Winjum. 1993. Forest management and agroforestry to sequester and conserve atmospheric

  1. Trees, soils, and food security

    PubMed Central

    Sanchez, P. A.; Buresh, R. J.; Leakey, R. R. B.

    1997-01-01

    Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, 'Cinderella' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is

  2. Soil quality differences in a mature alley cropping system in temperate North America

    USDA-ARS?s Scientific Manuscript database

    Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...

  3. Socio-cultural studies of indigenous agricultural systems: the case for applied research

    Treesearch

    Randall L. Workman

    1993-01-01

    Agroforestry has the potential to contribute greatly to Pacific island development efforts. However, success will depend on fully realizing the social implications of agricultural research on island cultures. Agroforesters must recognize their role as "agents of change." Because of this, they must strive for the involvement of the community in all stages of...

  4. Evaluation of NYC's Coastal Vulnerability and Potential Adaptation Strategies in the Wake of Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Foti, R.; Montalto, F. A.

    2015-12-01

    New York City's coastlines are a mosaic of remnant natural habitat, man-made wetlands, manicured parkland, public beaches, housing, and industrial centers, all of which are extremely vulnerable to flooding, storm surge, and damaging wave action. Risks are projected to increase overtime as sea levels rise, population grows, and the frequency and severity of extreme events increases. In order to protect its citizens and infrastructure, New York City is planning to invest 20 billion into a coastal protection plan, including 200 million towards wetlands creation and restoration. Focusing on the role of wetlands and parkland in reducing damages during Hurricane Sandy, our study seeks to identify the primary causes of coastal vulnerability and to provide guidelines for the design of coastal protection measures. Our findings show that most of the small, fragmented NYC's wetlands did not provide significant protection from the violence of the hurricane. Large stretches of wetlands and parkland, on the other hand, were found to exacerbate storm surge along the coast, but did reduce surge penetration further inland. Much of the protection provided by wetlands and coastal green sites was in the form of cost avoidance. Wetlands existed in the most heavily hit areas and so averted damages that would have occurred if those areas had been developed. Our results suggest that, when positioned in the highest risk areas, coastal green infrastructure such as wetlands and parklands can reduce coastal flood risks associated with extreme events like Hurricane Sandy. Policy would ideally prioritize conservation, restoration, and enhancement of large contiguous areas of wetlands in the lowest elevation areas of the city. Where low-lying coastal development cannot be relocated, the risk of damage from storm surges is best reduced by elevating critical infrastructure.

  5. Development of the Parkland-UT Southwestern Colonoscopy Reporting System (CoRS) for evidence-based colon cancer surveillance recommendations

    PubMed Central

    Gupta, Samir; Halm, Ethan A; Wright, Shaun; McCallister, Katharine; Bishop, Wendy; Santini, Noel; Mayorga, Christian; Agrawal, Deepak; Moran, Brett; Sanders, Joanne M; Singal, Amit G

    2016-01-01

    Objective Through colonoscopy, polyps can be identified and removed to reduce colorectal cancer incidence and mortality. Appropriate use of surveillance colonoscopy, post polypectomy, is a focus of healthcare reform. Materials and Methods The authors developed and implemented the first electronic medical record–based colonoscopy reporting system (CoRS) that matches endoscopic findings with guideline-consistent surveillance recommendations and generates tailored results and recommendation letters for patients and providers. Results In its first year, CoRS was used in 98.6% of indicated cases. Via a survey, colonoscopists agreed/strongly agreed it is easy to use (83%), provides guideline-based recommendations (89%), improves quality of Spanish letters (94%), they would recommend it for other institutions (78%), and it made their work easier (61%), and led to improved practice (56%). Discussion CoRS’ widespread adoption and acceptance likely resulted from stakeholder engagement throughout the development and implementation process. Conclusion CoRS is well-accepted by clinicians and provides guideline-based recommendations and results communications to patients and providers. PMID:26254481

  6. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  7. 76 FR 79212 - Agency Information Collection Activities: Proposed Information Collection for Community Harvest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... parklands, the NPS needs information on harvest patterns among residents of communities with subsistence... been designated as resident zone communities for the respective park in recognition that many residents...

  8. 76 FR 47609 - Information Collection Sent to the Office of Management and Budget (OMB) for Approval; Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... management strategies for the parklands, the NPS needs information on harvest patterns among residents of... recognition that many residents of these communities have customarily and traditionally engaged in subsistence...

  9. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China.

    PubMed

    Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti

    2017-08-01

    Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.

  10. Cabruca agroforests of southern Bahia Brazil: tree component, management, species conservation and sustainability

    USDA-ARS?s Scientific Manuscript database

    In southern Bahia, cabruca is the agroforestry system in which cocoa is cultivated under the shade of sparse native forest trees. Aiming to characterize the tree component of this system and its management practices, we conducted an inventory of the non-cocoa trees in 16 ha of cabruca and do intervi...

  11. Optimisation of biomass productivity of black locust (Robinia pseudoacacia L.) on marginal lands - a case study in Lower Lusatia, NE Germany

    NASA Astrophysics Data System (ADS)

    Seserman, Diana-Maria; Veste, Maik; Freese, Dirk

    2017-04-01

    The profitability of reclaiming post-mining areas depends on the tree biomass productivity and the restoration of ecosystem functions, such as improving soil and water quality. Agroforestry systems, regarded as combined land-use systems of trees and crops, have the ability to facilitate soil development while reducing wind speed, soil erosion and evaporation. Achieving the maximum biomass productivity of the tree stands depends on the corresponding soil conditions and water availability, but is also influenced by stand structure and the competition between individual trees. For this purpose, black locust (Robinia pseudoacacia L.) trees were planted in a Nelder design in 2010, on a reclaimed post-mining site of the open-cast lignite mining in Welzow Süd (Brandenburg, Germany). Black locust is regarded as a drought-adapted tree species and commonly used for the reclamation of former lignite mining sites in Lower Lusatia, Germany. The Nelder design encompasses angles of arc of equal measure and with the same origin traversed by successive circumferences set at a predefined radial distance. Accordingly, a total of 1071 trees were planted in Welzow Süd at the intersection between 63 spokes and 17 circumferences and at densities ranging from 0.4 to 8.0 m2, with the aim of examining the influence of stand density on the tree growth in a timeframe of six years. In order to evaluate the biomass production of the trees and to determine an optimal planting density on a marginal land, various scenarios were assessed with the help of the Yield-SAFE model, a parameter-sparse process-based agroforestry model. The study revealed the consequences of choosing different tree densities on the tree biomass productivity and water use of trees in relation to the competition for light and water. References Keesman KJ, van der Werf W, van Keulen H, 2007. Production ecology of agroforestry systems: A minimal mechanistic model and analytical derivation of the land equivalent ratio

  12. Atributos físicos do solo para a cultura do cacaueiro [Physical attributes of soil for the culture of cacao] (In Portuguese)

    USDA-ARS?s Scientific Manuscript database

    Cacao has achieved great importance due to its globally consumed products such as chocolate. In addition to the environmental benefits, since this culture is mainly managed in agroforestry systems, contributing to climate change mitigation. However, the assessment of soils physical attributes for ef...

  13. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    USDA-ARS?s Scientific Manuscript database

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  14. Assessment of Professional Training Programmes in International Agricultural Research Institutions: The Case of ICRAF

    ERIC Educational Resources Information Center

    Wanjiku, Julliet; Mairura, Franklin; Place, Frank

    2010-01-01

    The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…

  15. National Food Strategy: Kenya’s Approach to the Problem of Feeding the Nation

    DTIC Science & Technology

    1990-02-01

    intercropping, agroforestry , preven- tion of soil erosion and rural afforestation. The new Arid and Semi Arid Lands Authority (ASAL) will establish irrigation...international organizations such as the International Council for Research in Agroforestry (ICRAF) has been beneficial. 13 To preserve Kenya’s forests, the

  16. Indigenous Fallow Management on Yap Island

    Treesearch

    M.V.C. Falanruw; Francis Ruegorong

    2002-01-01

    On Yap Island, indigenous management of the fallow in shifting agriculture has resulted in the development of site-stable taro patch and tree garden agroforestry systems. These systems are relatively sustainable and supportive of household economies , with some surplus for local market sales. however, a broad range of crops whose harvest is complementary to those...

  17. JPRS Report, China

    DTIC Science & Technology

    1989-06-09

    in the suburbs of Beijing. But they must be made more productive, said Bai Youguang, director of Beijing’s municipal government’s Agroforestry ...prises, building materials and the textiles and garments industry," said Zhuang Peiwei, an official with the municipal government’s Agroforestry

  18. Permanent field plot methodology and equipment

    Treesearch

    Thomas G. Cole

    1993-01-01

    Long-term research into the composition, phenology, yield, and growth rates of agroforests can be accomplished with the use of permanent field plots. The periodic remeasurement of these plots provides researchers a quantitative measure of what changes occur over time in indigenous agroforestry systems.

  19. Evaluation of soil quality in areas of cocoa cabruca, forest and multicropping in southern Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    The Atlantic Rain Forest is one of the most complex natural environments of the earth and, linked with this ecosystem, the cacao-cabruca system is agroforestry cultivation with an arrangement including a range of environmental, social and economical benefits and can protect many features of the biod...

  20. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  1. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land

    Treesearch

    Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize

    2014-01-01

    Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...

  2. A model for estimating windbreak carbon within COMET-Farm™

    Treesearch

    Justin ​Ziegler; Mark Easter; Amy Swan; James Brandle; William Ballesteros; Grant Domke; Adam Chambers; Marlen Eve; Keith Paustian

    2016-01-01

    Agroforestry as a land management practice presents a method for partially offsetting greenhouse gas emissions from agricultural land. Of all agroforestry practices in the United States, windbreaks in particular are used throughout the United States providing a useful starting point for deriving a modelling systemwhich could quantify the amount of carbon sequestered on...

  3. Effects of different agricultural systems on soil quality in Northern Limón province, Costa Rica.

    PubMed

    Cornwell, Emma

    2014-09-01

    Conversion of native rainforest ecosystems in Limón Province of Costa Rica to banana and pineapple monoculture has led to reductions in biodiversity and soil quality. Agroforestry management of cacao (Theobroma cacao) is an alternative system that may maintain the agricultural livelihood of the region while more closely mimicking native ecosystems. This study compared physical, biological and chemical soil quality indicators of a cacao plantation under organic agroforestry management with banana, pineapple, and pasture systems; a native forest nearby served as a control. For bulk density and earthworm analysis, 18 samples were collected between March and April 2012 from each ecosystem paired with 18 samples from the cacao. Cacao had a lower bulk density than banana and pineapple monocultures, but greater than the forest (p < 0.05). Cacao also hosted a greater number and mass of earthworms than banana and pineapple (p < 0.05), but similar to forest and pasture. For soil chemical characteristics, three composite samples were collected in March 2012 from each agroecosystem paired with three samples from the cacao plantation. Forest and pineapple ecosystems had the lowest pH, cation exchange capacity, and exchangeable nutrient cations, while cacao had the greatest (p < 0.05). Total nutrient levels of P and N were slightly greater in banana, pineapple and pasture than in cacao; probably related to addition of chemical fertilizer and manure from cattle grazing. Forest and cacao also had greater %C, than other ecosystems, which is directly related to soil organic matter content (p < 0.0001). Overall, cacao had more favorable physical, biological and chemical soil characteristics than banana and pineapple monocultures, while trends were less conclusive compared to the pastureland. While organic cacao was inferior to native forest in some soil characteristics such as bulk density and organic carbon, its soil quality did best mimic that of the native forest. This supports

  4. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model

    USDA-ARS?s Scientific Manuscript database

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), co...

  5. Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, J.F.

    1982-01-01

    Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.

  6. Habitat relationships of eastern red-backed salamanders (Plethodon cinereus) in Appalachian agroforestry and grazing systems

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin

    2008-01-01

    Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...

  7. 76 FR 17471 - Air Tour Management Plan Environmental Assessment for Mount Rainier National Park, WA; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... National Park, Washington. Attendance is open to the interested public but limited to space availability.... Bonney Lake Library Buckley Library Eatonville Library Enumclaw City Library Graham Library Orting Library Packwood Timberland Library Parkland-Spanaway Library Puyallup Library Seattle Central Library...

  8. Research Activities in Support of High-Resolution Land Cover Mapping in the North Central United States

    Treesearch

    Dacia M. Meneguzzo; Greg C. Liknes

    2015-01-01

    The USDA Agroforestry Strategic Framework and the 2014 Farm Bill call for inventory and monitoring of agroforestry practices; however, collecting such data over very large non-forested areas is costly. The Forest Inventory and Analysis (FIA) program at the Northern Research Station has addressed this challenge by forming a targeted task team whose primary purpose is to...

  9. Flood tolerance evaluation of bottomland oaks in a multi-channel field laboratory

    Treesearch

    Mark V. Coggeshall; J. W. Van Sambeek; Scott E. Schlarbaum

    2005-01-01

    A multi-channel field laboratory was designed and constructed by the University of Missouri Center for Agroforestry at the Horticulture and Agroforestry Research Center to assess the flood tolerance of forages and hardwood seedlings. This facility located in the Missouri River floodplain consists of twelve 6-m wide x 180-m long channels that had minimal disturbance to...

  10. Estimating surface energy fluxes over an Andalusian Dehesa ecosystem using a thermal-based two-source energy balance model and validation with flux tower measurements

    USDA-ARS?s Scientific Manuscript database

    The Dehesa, the most widespread agroforestry land-use system in Europe (˜ 3 million ha), is recognized as an example of sustainable land use and for its importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). It consists of widely-spaced oak forest (mostly Quercus Ilex L....

  11. 77 FR 29167 - Effluent Limitations Guidelines and New Source Performance Standards for the Airport Deicing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... reductions in dissolved oxygen, fish kills, reduced organism abundance and species diversity, contamination... 13045: Protection of Children From Environmental Health and Safety Risks H. EO 13211: Energy Effects I... water in residential areas and parkland, and other effects. Today, EPA is promulgating effluent...

  12. 75 FR 31463 - Comal County Regional Habitat Conservation Plan, Comal County, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... as school development, road construction and maintenance, and parkland. The ITP will cover Comal... activities including, but not limited to: Public or private construction and development, utility... Wildlife Service, 10711 Burnet Road, Suite 200, Austin, TX 78758 or 512-490-0057. SUPPLEMENTARY INFORMATION...

  13. Tool time: melding watershed and site goals on private lands

    Treesearch

    Gary Bentrup; Michele Schoeneberger; Mike Dosskey; Gary Wells; Todd Kellerman

    2005-01-01

    Creating effective agroforestry systems with broad public support requires simultaneously addressing landowner and societal goals while paying respect to ecological processes that cross spatial and political boundaries. To meet this challenge, a variety of planning and design tools are needed that are straight-forward and flexible enough to accommodate the range of...

  14. Effects of climate on numbers of northern prairie wetlands

    USGS Publications Warehouse

    Larson, Diane L.

    1995-01-01

    The amount of water held in individual wetland basins depends not only on local climate patterns but also on groundwater flow regime, soil permeability, and basin size. Most wetland basins in the northern prairies hold water in some years and are dry in others. To assess the potential effect of climate change on the number of wetland basins holding water in a given year, one must first determine how much of the variability in number of wet basins is accounted for by climatic variables. I used multiple linear regression to examine the relationship between climate variables and percentage of wet basins throughout the Prairie Pothole Region of Canada and the United States. The region was divided into three areas: parkland, Canadian grassland, and United States grassland (i.e., North Dakota and South Dakota). The models - which included variables for spring and fall temperature, yearly precipitation, the previous year's count of wet basins, and for grassland areas, the previous fall precipitation - accounted for 63 to 65% of the variation in the number of wet basins. I then explored the sensitivities of the models to changes in temperature and precipitation, as might be associated with increased greenhouse gas concentrations. Parkland wetlands are shown to be much more vulnerable to increased temperatures than are wetlands in either Canadian or United States grasslands. Sensitivity to increased precipitation did not vary geographically. These results have implications for waterfowl and other wildlife populations that depend on availability of wetlands in the parklands for breeding or during periods of drought in the southern grasslands.

  15. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems.

    PubMed

    Novais, Samuel M A; Macedo-Reis, Luiz E; DaRocha, Wesley D; Neves, Frederico S

    2016-06-01

    Human pressure on natural habitats increases the importance of agroforests for biodiversity conservation. The objective of this study was to evaluate the role of cacao traditional cultivation system (CTCS) on the conservation of the herbivorous insect community when compared with a monodominant rubber agroforest, a type of agricultural system for cacao cultivation. The insects were sampled in three habitats in Southeastern Bahia, Brazil: native forests, CTCS and rubber agroforests. In each habitat, 18 plots of 10 m2 were established, and the structural measures were collected and herbivorous insects were sampled with a Malaise/window trap. The diversity of folivorous decreased with the simplification of vegetation structure, but species composition was similar among habitats. In addition to a decrease in the availability of resources in monodominant rubber agroforests, the latex present in these systems have limited the occurrence of species that cannot circumvent latex toxicity. The diversity of sap-sucking insects was similar among habitats, but species composition was similar only in the CTCS and native forest, and it was different in the rubber agroforest. We observed turnover and a higher frequency of individuals of the family Psyllidae in the rubber agroforest. The biology and behavior of Psyllids and absence of natural enemies enable their diversity to increase when they are adapted to a new host. We observed a shift in the composition of xylophagous insects in the rubber agroforest compared to that in other habitats. Moreover, this agroforest has low species richness, but high individual abundance. Latex extraction is likely an important additional source of volatile compounds discharged into the environment, and it increases the attraction and recruitment of coleoborers to these sites. We concluded that CTCS has an herbivorous insect community with a structure similar to the community found in native forests of the region, and they present a more

  16. Impacts of climate change on soil erosion in Portuguese watersheds with contrasting Mediterranean climates and agroforestry practices

    NASA Astrophysics Data System (ADS)

    Nunes, J. P.; Lima, J. C.; Bernard-Jannin, L.; Veiga, S.; Rodríguez-Blanco, M. L.; Sampaio, E.; Batista, D. P.; Zhang, R.; Rial-Rivas, M. E.; Moreira, M.; Santos, J. M.; Keizer, J. J.; Corte-Real, J.

    2012-04-01

    Climate change in Mediterranean regions could lead to higher winter rainfall intensity and, due to higher climatic aridity, lower vegetation cover. This could lead to increasing soil erosion rates, accelerating ongoing soil degradation and desertification processes. Adaptation to these scenarios would have costs and benefits associated with soil protection but also agroforestry production and water usage. This presentation will cover project ERLAND, which is studying these impacts for two headwater catchments (<1000 ha) in Portugal, located in distinct climatic conditions within the Mediterranean climate area, and their land-use practices are adapted to these conditions. The Macieira de Alcoba catchment in northern Portugal has a wet Mediterranean climate (1800 mm/yr, but with a dry summer season). The high rainfall allows the plantation of fast growing tree species (pine and eucalypt) in the higher slopes, and the irrigation of corn in the lower slopes. Forest fires are a recurring problem, linked with the high biomass growth and the occurrence of a dry season. Potential impacts of climate change include less favorable conditions for eucalypt growth, higher incidence of wildfires, and less available water for summer irrigation, all of which could lead to lower vegetation cover. The Guadalupe catchment in southern Portugal has a dry Mediterranean climate (700 mm/yr, falling mostly in winter). The land-use is montado, an association between sclerophyllous oaks (cork and holm oaks) and annual herbaceous plans (winter wheat or pasture). The region suffers occasional severe droughts; climate change has the potential to increase the frequency and severity of these droughts, leading to lower vegetation cover and, potentially, limiting the conditions for cork and holm oak growth. Each catchment has been instrumented with erosion measurement plots and flow and turbidity measurements at the outlet, together with surveys of vegetation and soil properties; measurements in

  17. Mountains

    Treesearch

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  18. 78 FR 69524 - Preparation of an Environmental Impact Statement for High Capacity Transit Improvements for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... intervening high-density residential and commercial areas of northeastern and central Marion County. This is... of 10th Street where the street is narrow and eastbound traffic volumes are low. The transit lanes... impact areas include: land use, zoning, potential displacements, parkland, economic development...

  19. Population ecology of the mallard: II. Breeding habitat conditions, size of the breeding populations, and production indices

    USGS Publications Warehouse

    Pospahala, Richard S.; Anderson, David R.; Henny, Charles J.

    1974-01-01

    This report, the second in a series on a comprehensive analysis of mallard population data, provides information on mallard breeding habitat, the size and distribution of breeding populations, and indices to production. The information in this report is primarily the result of large-scale aerial surveys conducted during May and July, 1955-73. The history of the conflict in resource utilization between agriculturalists and wildlife conservation interests in the primary waterfowl breeding grounds is reviewed. The numbers of ponds present during the breeding season and the midsummer period and the effects of precipitation and temperature on the number of ponds present are analyzed in detail. No significant cycles in precipitation were detected and it appears that precipitation is primarily influenced by substantial seasonal and random components. Annual estimates (1955-73) of the number of mallards in surveyed and unsurveyed breeding areas provided estimates of the size and geographic distribution of breeding mallards in North America. The estimated size of the mallard breeding population in North America has ranged from a high of 14.4 million in 1958 to a low of 7.1 million in 1965. Generally, the mallard breeding population began to decline after the 1958 peak until 1962, and remained below 10 million birds until 1970. The decline and subsequent low level of the mallard population between 1959 and 1969 .generally coincided with a period of poor habitat conditions on the major breeding grounds. The density of mallards was highest in the Prairie-Parkland Area with an average of nearly 19.2 birds per square mile. The proportion of the continental mallard breeding population in the Prairie-Parkland Area ranged from 30% in 1962 to a high of 600/0 in 1956. The geographic distribution of breeding mallards throughout North America was significantly related to the number of May ponds in the Prairie-Parkland Area. Estimates of midsummer habitat conditions and indices to

  20. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  1. Straighttalk. The ideal master facility plan begins with business strategy and integrates operational improvement.

    PubMed

    Powder, Scott; Brown, Richard E; Haupert, John M; Smith, Ryder

    2007-04-02

    Given the scarcity of capital to meet ever-growing demands for healthcare services, master facility planning has become more important than ever. Executives must align their master facility plans with their overall business strategy, incorporating the best in care- and service-delivery models. In this installment of Straight Talk, executives from two health systems--Advocate Health Care in Oak Brook, Ill. and Parkland Health & Hospital System in Dallas--discuss master facility planning. Modern Healthcare and PricewaterhouseCoopers present Straight Talk. The session on master facility planning was held on March 8, 2007 at Modern Healthcare's Chicago Headquarters. Charles Lauer, former vice president of publishing and editorial director at Modern Healthcare, was the moderator.

  2. Certifying the harvest: developments in NTFP certification

    Treesearch

    Patrick Mallet

    2001-01-01

    I coordinate a Certification and Marketing program for Falls Brook Centre, an environmental organization based in New Brunswick. I first got interested in certification issues during my work with an international agroforestry network whose members wanted to highlight the ecological practices inherent in their production system. In my initial research, I found that a...

  3. The silviculture of silvopasture

    Treesearch

    Rebecca J. Barlow; Seth Hunt; John S. Kush

    2016-01-01

    Silvopasture is an agroforestry practice where livestock, forage, and timber are managed on the same parcel of land. The most common form of agroforestry in the Southeastern US is silvopasture. According to the most recent USDA Census of Agriculture, six of the top ten states in the Nation that report that they practice alley cropping or silvopasture are southern....

  4. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-11-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant–soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links −2.2 ± 0.4 Mg CO2e ha(−1) y(−1); Parkland − 2.0 ± 0.4 Mg CO2e ha(−1) y(−1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of −5.4 ± 0.9 Mg CO2e ha(−1) y(−1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of −1.6 ± 0.3 Mg CO2e ha(−1) y(−1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of

  5. A model of greenhouse gas emissions from the management of turf on two golf courses.

    PubMed

    Bartlett, Mark D; James, Iain T

    2011-03-15

    An estimated 32,000 golf courses worldwide (approximately 25,600 km(2)), provide ecosystem goods and services and support an industry contributing over $ 124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1Mg CO(2)e ha(-1)y(-1); Parkland 0.7 ± 0.2Mg CO(2)e ha(-1)y(-1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 ± 0.9 Mg CO(2e) ha(-1)y(-1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2Mg CO(2e) ha(-1)y(-1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range

  6. Comparing three approaches of evapotranspiration estimation in mixed urban vegetation; field-based, remote sensing-based and observational-based methods

    USGS Publications Warehouse

    Nouri, Hamideh; Glenn, Edward P.; Beecham, Simon; Chavoshi Boroujeni, Sattar; Sutton, Paul; Alaghmand, Sina; Nagler, Pamela L.; Noori, Behnaz

    2016-01-01

    Despite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications), highly treated drinking water is used for nearly all of Australia’s urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, and particularly urban parklands, is of growing concern. The estimation of ET and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water and climate characteristics. Accurate estimation of evapotranspiration (ET), which is the main component of a plant’s water requirement, in urban parks is highly desirable because this water maintains the health of green infrastructure and this in turn provides essential ecosystem services. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia.

  7. Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange.

    PubMed

    Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T

    1997-03-01

    A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.

  8. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India

    NASA Astrophysics Data System (ADS)

    Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.

    2016-01-01

    Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.

  9. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India

    NASA Astrophysics Data System (ADS)

    Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.

    2015-08-01

    Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.

  10. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  11. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  12. Accommodating Student Differences: A Resource for Teaching Gifted and Talented Children.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Education Response Centre.

    This document presents a selection of teacher designed activities to help meet the needs of gifted and talented students. The four teaching units focus on creativity, independent study, critical thinking, and communication skills. Introductory material explains how the teachers of Parkland County (Alberta) worked together in informal and…

  13. Analysis of community income on suren (Toona sureni (Blume) Merr.) and cacao crops (Theobroma cacao L.) in Simalungun, North Sumatera-Indonesia

    NASA Astrophysics Data System (ADS)

    Latifah, S.; Afifuddin, Y.; Widya, S.

    2018-02-01

    Agroforestry is the management and integration of trees, crops and/or livestock on the same plot of land and can be an integral component of productive agriculture. It may include existing native forests and forests established by landholders. The study was conducted in Mekar Sari Raya village, Panei sub, Simalungun regency, North Sumatera. This study aims to gain the ability to use agroforestry in suren crops and cocoa that provides benefits to farmers and the feasibility of the model farm. The study site has Net Present Value (NPV) is 2,670,306,905 ( IDR) for 15 of year, Gross B/C Ratio (BCR) is 2.3; Internal Rate of Return ( IRR) is 28 %; and Payback Period (PP) for 5 years 4 months 24 days. Agroforestry using commodities cacao and suren crops are financially feasible to be cultivated and developed.

  14. Assessment of seasonal features based on Landsat time series for tree crown cover mapping in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiu; Heiskanen, Janne; Aynekuly, Ermias; Pellikka, Petri

    2016-04-01

    Tree crown cover (CC) is an important vegetation attribute for land cover characterization, and for mapping and monitoring forest cover. Free data from Landsat and Sentinel-2 allow construction of fine resolution satellite image time series and extraction of seasonal features for predicting vegetation attributes. In the savannas, surface reflectance vary distinctively according to the rainy and dry seasons, and seasonal features are useful information for CC mapping. However, it is unclear if it is better to use spectral bands or vegetation indices (VI) for computation of seasonal features, and how feasible different VI are for CC prediction in the savanna woodlands and agroforestry parklands of West Africa. In this study, the objective was to compare seasonal features based on spectral bands and VI for CC mapping in southern Burkina Faso. A total of 35 Landsat images from November 2013 to October 2014 were processed. Seasonal features were computed using a harmonic model with three parameters (mean, amplitude and phase), and spectral bands, normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), normalized difference water index (NDWI), tasseled cap (TC) indices (brightness, greenness, wetness) as input data. The seasonal features were employed to predict field estimated CC (n = 160) using Random Forest algorithm. The most accurate results were achieved when using seasonal features based on TC indices (R2: 0.65; RMSE: 10.7%) and spectral bands (R2: 0.64; RMSE: 10.8%). GNDVI performed better than NDVI or NDWI, and NDWI resulted in the poorest results (R2: 0.56; RMSE: 11.9%). The results indicate that spectral features should be carefully selected for CC prediction as shown by relatively poor performance of commonly used NDVI. The seasonal features based on three TC indices and all the spectral bands provided superior accuracy in comparison to single VI. The method presented in this study provides a feasible method to map

  15. Revving up Students' Skills with Motor sports

    ERIC Educational Resources Information Center

    Thomas, Ingrid

    2008-01-01

    Drag racing is just one of the exciting sporting activities that students enrolled in the Parkland College's Engineering Science and Technologies program get an opportunity in which to participate. The college, located in Champaign, Illinois, has provided affordable career-tech and academic education to area residents since 1966. This article…

  16. Visions of nature: conflict and compatibility

    Treesearch

    Paul H. Gobster

    2001-01-01

    Although various disciplines have developed "objective" principles and practices for landscape restoration in recent decades, the concept of restoration itself often rests on subjective questions of cultural value. Issues related to restoring the naturalness of urban open spaces were explored in a planning effort for an area of parkland along Chicago's...

  17. John Brown's Raid: Park VideoPack for Home and Classroom.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This video pack is intended for parents, teachers, librarians, students, and travelers interested in learning about national parklands and how they relate to the nation's natural and cultural heritage. The video pack includes a VHS video cassette on Harpers Ferry National Historical Park, an illustrated handbook with historical information on…

  18. Private and public incomes in dehesas and coniferous forests in Andalusia, Spain

    Treesearch

    Paola Ovando; Pablo Campos; Jose L. Oviedo; Alejandro Caparrós

    2015-01-01

    We apply an ecosystem accounting system to estimate the total social income accrued from private and public products in a group of agroforestry farms in Andalusia (Spain). We provide bio-physical and economic indicators for two contrasting farm types, a sub-group of 15 publicly owned coniferous forests and a sub-group of 24 privately owned dehesa farms. Total social...

  19. Quantitative assessment of people-oriented forestry in Bangladesh: a case study in the Tangail forest division.

    PubMed

    Muhammed, Nur; Koike, Masao; Haque, Farhana; Miah, Md Danesh

    2008-07-01

    Forests represent more than just a livelihood to many people in developing countries. In Bangladesh, for example, overwhelming poverty and socio-economic pressures have resulted in an unstable situation where intensive pressure on forest resources is having increasingly negative consequences for the population. Some studies have evaluated the benefits of people-oriented forestry activities from an investment, as well as a participant, point of view. In the study area located in the Tangail Forest Division, a total of 11,854 ha of woodlot, 2704 ha of agroforestry and 945 km of strip plantations have been raised in a benefit-sharing program that is inclusive of land encroachers and other economically disadvantaged people. Since 2000-2001, a total of 3716 ha of woodlot, 890 ha of agroforestry and 163 km of strip plantations have been harvested to the benefit of 6326 individuals. Investment analysis indicates that woodlot plantation is not financially viable but agroforestry is the most profitable. These results were somewhat unexpected since initial analysis suggested that the woodlot plantation profit would be greater than, or at least equal to, that of the agroforestry plantation if the number of planted seedlings per unit area was taken into account. The per unit area net present value (NPV) was highest in the agroforestry plantation ($1662) and negative in the woodlot plantation (-$397). The benefit cost ratio (BCR) was also highest in the agroforestry plantation (1.64) and lowest in the woodlot plantation (0.86). This study also showed that some individuals who were formally classified as encroachers have now become vital stakeholders. On average, participants received $800, $1866 and $1327 over the course of 13 years from strip, agroforestry and woodlot plantations, respectively. Average annual return per participant was $62, $144 and $102, respectively, which was in addition to each individual's yearly income. This added income is a significant contribution to

  20. The Status of Agroforestry in the South

    Treesearch

    F. Christian Zinkhan; D. Evan.  Mercer

    1997-01-01

    Southern agroforestty has emerged as a significant research topic. Research results indicate that agroforestty can address such sustainability problems as erosion and water pollution, while improving economic performance in selected situatiOII& Silvopastoral systems are the most commonly adopted agroforestty application in the region; le!6-common alley-cropping...

  1. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA

    Treesearch

    Jerry A. Mohr; Cathy Whitlock; Carl N. Skinner

    2000-01-01

    Pollen and high-resolution charcoal data from Bluff Lake and Crater Lake, California, indicate simi lar changes in climate, vegetation and fire history during the last 15 500 years. Pollen data at Bluff Lake suggest that the vegetation betweenc. 15 500 and 13 100 cal. BP consisted of subalpine parkland with scattered Pinus...

  2. Health Services Utilization between Older and Younger Homeless Adults.(author Abstract)

    ERIC Educational Resources Information Center

    Nakonezny, Paul A.; Ojeda, Michael

    2005-01-01

    Purpose: Our purpose in the current study was to examine the relationship between health services utilization delivered by means of the Homeless Outreach Medical Services (HOMES) program and health services utilization delivered by means of the Parkland emergency room and inpatient units among a sample of older and younger homeless adults being…

  3. School-University Partnership: Perceptions of the Teachers

    ERIC Educational Resources Information Center

    Gilles, Carol; Wilson, Jennifer; Elias, Martille

    2009-01-01

    We investigated how and to what extent a school-university partnership might influence the teachers and the teaching in one school, Parkland. We interviewed 23 novice and veteran teachers, the principals, and the university liaison. The data suggest that the university structures (i.e., the practicum, the student teaching internship, the Senior…

  4. Intermountain Leisure Resources Symposium. Proceedings (9th, Salt Lake City, Utah, November 17, 1988).

    ERIC Educational Resources Information Center

    Ellis, Gary, Comp.

    Twelve of the papers of the 30 presented at this symposium are included in this publication: (1)"Toward a Higher State of Being" (Daniel L. Dustin); (2) "Parklands and Wilderness: An International Perspective" (Larry Beck); (3) "Selection Criteria for Outdoor Recreation Equipment" (John Cedarquist); (4) "Risk Management in Parks and Recreation:…

  5. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  6. Advances in pollination ecology from tropical plantation crops.

    PubMed

    Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf

    2008-04-01

    Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.

  7. Integrated Food-Energy Systems: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Locke, K. A.; Laser, M.; Raker, M.; Gooch, C.; Kapuscinski, A. R.

    2015-12-01

    Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. This is likely because IFES can have widely different configurations, from co-located renewable energy production on cropland to agroforestry. As a first step in creating a synthesis of IFES, our research team constructed a taxonomy using exploratory data analysis of diverse IFES cases (Gerst et al., 2015, ES&T 49:734-741). It was found that IFES may be categorized by type of primary product produced (plant- or animal-based food or energy) and the degree and direction of vertical supply chain coordination. To further explore these implications, we have begun a study of a highly-coordinated, animal-driven IFES: dairy farms with biogas production from anaerobic digestion of manure. The objectives of the research are to understand the barriers to adoption and the potential benefits to the farms financial resilience and to the environment. To address these objectives, we are interviewing 50 farms across New York and Vermont, collecting information on farmer decision-making and farm operation. These results will be used to calibrate biophysical and economic models of the farm in order understand the future conditions under which adoption of an IFES is beneficial.

  8. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  9. Variability in soil CO2 efflux across distinct urban land cover types

    NASA Astrophysics Data System (ADS)

    Weissert, Lena F.; Salmond, Jennifer A.; Schwendenmann, Luitgard

    2015-04-01

    As a main source of greenhouse gases urban areas play an important role in the global carbon cycle. To assess the potential role of urban vegetation in mitigating carbon emissions we need information on the magnitude of biogenic CO2 emissions and its driving factors. We examined how urban land use types (urban forest, parklands, sportsfields) vary in their soil CO2 efflux. We measured soil CO2 efflux and its isotopic signature, soil temperature and soil moisture over a complete growing season in Auckland, New Zealand. Soil physical and chemical properties and vegetation characteristics were also measured. Mean soil CO2 efflux ranged from 4.15 to 12 μmol m-2 s-1. We did not find significant differences in soil CO2 efflux among land cover types due to high spatial variability in soil CO2 efflux among plots. Soil (soil carbon and nitrogen density, texture, soil carbon:nitrogen ratio) and vegetation characteristics (basal area, litter carbon density, grass biomass) were not significantly correlated with soil CO2 efflux. We found a distinct seasonal pattern with significantly higher soil CO2 efflux in autumn (Apr/May) and spring (Oct). In urban forests and sportsfields over 80% of the temporal variation was explained by soil temperature and soil water content. The δ13C signature of CO2 respired from parklands and sportsfields (-20 permil - -25 permil) were more positive compared to forest plots (-29 permil) indicating that parkland and sportsfields had a considerable proportion of C4 grasses. Despite the large intra-urban variability, our results compare to values reported from other, often climatically different cities, supporting the hypothesis of homogenization across urban areas as a result of human management practices.

  10. Rural trustees brave the health care funding crisis. Interview by Matthew D. Pavelich.

    PubMed

    Ramstead, O

    1992-01-01

    Ole Ramstead, FCA, this issue's interview subject, is board chair at Parkland Regional Care Centre in Melfort, Saskatchewan. He is also a chartered accountant and income tax specialist. Mr. Ramstead discusses potential changes in Canadian health care directions--such as the amalgamation of hospital governing boards and administrations--and their special impact on rural facilities.

  11. Post-Secondary Education in Agricultural Marketing

    ERIC Educational Resources Information Center

    Curtis, Paul E.; Henebry, William J.

    1970-01-01

    Paul Curtis is Lead Instructor in Agriculture and William Henebry is Instructor in Agri-Marketing at Parkland College, Champaign, Illinois. Dr. Curtis holds a Ph.D. in agronomy from the University of Illinois where he conducted research and taught plant breeding and plant physiology. Mr. Henebry, with 23 years of experience as a grain elevator…

  12. Nature Education in the Urban Environment. Proceedings of the Forum (New York, New York, May 1991).

    ERIC Educational Resources Information Center

    Roger Tory Peterson Inst. of Natural History, Inc., Jamestown, NY.

    This document reports on a conference about the use of existing resources to teach nature education to urban children. The conference was organized around the question of how to encourage more positive use of parklands for outdoor nature education. The conference was held in New York City's Central Park and over 80 leaders representing city…

  13. Managing the emerald ash borer in Canada

    Treesearch

    Kenneth R. Marchant

    2007-01-01

    The Emerald ash borer, (EAB, Agrilus planipennis Fairmaire) continues to pose a major risk to Canadian urban and rural forests and parklands. EAB now occurs in four counties in southwestern Ontario. An estimated 1 million ash trees in Essex County, Ontario, and millions more in adjacent counties are in peril. Little natural resistance has been...

  14. 75 FR 13139 - Notice of Public Meetings for the National Park Service Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... National Park SRC and Gates of the Arctic National Park SRC will meet to develop and continue work on... Monday, April 19, 2010, from 9 a.m. to 5 p.m. at the National Park Service Northwest Arctic Heritage..., Superintendent, Western Arctic Parklands, or Willie Goodwin, Subsistence Manager, (907) 442-3890, Address: P.O...

  15. Grassland ecosystems of the Llano Estacado

    Treesearch

    Eileen Johnson

    2007-01-01

    The Llano Estacado, or Southern High Plains, has been a grassland throughout the Quaternary. The character of this grassland has varied through time, alternating between open, parkland, and savannah as the climate has changed. Different lines of evidence are used to reconstruct the climatic regimes and ecosystems, consisting of sediments and soils, vertebrate and...

  16. Use of columnar cacti in the Tehuacán Valley, Mexico: perspectives for sustainable management of non-timber forest products.

    PubMed

    Pérez-Negrón, Edgar; Dávila, Patricia; Casas, Alejandro

    2014-12-23

    TEK, ecological and economic aspects of columnar cacti were studied in the Tehuacán Valley, Mexico to design sustainable regimes of fruit harvest. We analysed the amounts of edible fruit, seeds and flowers produced per hectare of cardonal, jiotillal and tetechera forests, their economic value and actual extraction rates, hypothesizing that the economic benefits of these NTFP would potentially be comparable to maize agriculture, which involves forest removal. Our study comprised the whole territory of the community of Quiotepec, Oaxaca. Sustainable gathering rates were analysed through population dynamics models and simulations of harvesting regimes (10%, 25%, and 50% of fruit gathered) per hectare of forest type. We used estimations on economic benefit and ecological impact of these scenarios to evaluate their relative sustainability, compared with maize agroforestry systems harbouring 2-47% of vegetation cover. For the whole territory, the total annual fruit production is 509.3 ton of Pachycereus weberi, 267.4 ton of Neobuxbaumia tetetzo, 99.5 ton of Escontria chiotilla, and 8.1 ton of Myrtillocactus geometrizans. The total economic value of fruits per hectare was $315.00 U.S. dollars for cardonal, $244.60 for jiotillal, and $113.80 for tetechera, whereas rainfed agriculture of maize was on average $945.52. Demographic models for E. chiotilla and N. tetetzo indicate that 70% and 95% of fruit harvesting, respectively maintain λ > 1, but these harvest rates cannot be recommendable since the models do not consider the high inter-annual environmental variations and the non-estimated amount of fruit consumed by natural frugivorous. Extracting 25% of fruit is ecologically more sustainable, but with low economic benefits. Agroforestry systems maintaining the higher vegetation cover provide economic benefits from agriculture and forest resources. Combining forest extraction and agroforestry systems are ideal scenarios to sustainable fruit harvest programmes. In

  17. Ethnoagroforestry: integration of biocultural diversity for food sovereignty in Mexico.

    PubMed

    Moreno-Calles, Ana Isabel; Casas, Alejandro; Rivero-Romero, Alexis Daniela; Romero-Bautista, Yessica Angélica; Rangel-Landa, Selene; Fisher-Ortíz, Roberto Alexander; Alvarado-Ramos, Fernando; Vallejo-Ramos, Mariana; Santos-Fita, Dídac

    2016-11-23

    Documenting the spectrum of ecosystem management, the roles of forestry and agricultural biodiversity, TEK, and human culture for food sovereignty, are all priority challenges for contemporary science and society. Ethnoagroforestry is a research approach that provides a theoretical framework integrating socio-ecological disciplines and TEK. We analyze in this study general types of Agroforestry Systems of México, in which peasants, small agriculturalist, and indigenous people are the main drivers of AFS and planning of landscape diversity use. We analyzed the actual and potential contribution of ethnoagroforestry for maintaining diversity of wild and domesticated plants and animals, ecosystems, and landscapes, hypothesizing that ethnoagroforestry management forms may be the basis for food sufficiency and sovereignty in Mexican communities, regions and the whole nation. We conducted research and systematization of information on Mexican AFS, traditional agriculture, and topics related to food sovereignty from August 2011 to May 2015. We constructed the database Ethnoagroforestry based on information from our own studies, other databases, Mexican and international specialized journals in agroforestry and ethnoecology, catalogues and libraries of universities and research centers, online information, and unpublished theses. We analyzed through descriptive statistical approaches information on agroforestry systems of México including 148 reports on use of plants and 44 reports on use of animals. Maize, beans, squashes and chili peppers are staple Mesoamerican food and principal crops in ethnoagroforestry systems practiced by 21 cultural groups throughout Mexico (19 indigenous people) We recorded on average 121 ± 108 (SD) wild and domesticated plant species, 55 ± 27% (SD) of them being native species; 44 ± 23% of the plant species recorded provide food, some of them having also medicinal, firewood and fodder uses. A total of 684 animal species has been

  18. The response of the soil microbial food web to extreme rainfall under different plant systems

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-11-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.

  19. The response of the soil microbial food web to extreme rainfall under different plant systems

    PubMed Central

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-01-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors. PMID:27874081

  20. On the Over-use and Under-pay of Part-time Faculty in America's Colleges.

    ERIC Educational Resources Information Center

    Mendelowitz, Seth

    This paper addresses the overuse and underpay of part-time faculty at Illinois' Parkland College, and throughout American higher education in general. The proposed State of Illinois Senate Bill No. 1376 limits the use of part-time faculty to a supplementary capacity, or for use only when full-time faculty is unavailable, and will likely exacerbate…

  1. Greystone: A Family Lives Here

    ERIC Educational Resources Information Center

    Education Canada, 2009

    2009-01-01

    This article features Greystone Centennial Middle School, one of two middle schools in Parkland School Division, on the western edge of Edmonton, Alberta. About 500 students attend the school, which encompasses Grades 5-9. It's organized into two "loops": (1) a three-year loop (Grades 5-7); and (2) a two-year loop (Grades 8 and 9). The…

  2. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.

  3. Stories, shrines, and symbols: Recognizing psycho-social-spiritual benefits of urban parks and natural areas

    Treesearch

    Erika S. Svendsen; Lindsay K. Campbell; Heather L. McMillen

    2016-01-01

    Urban parklands are biological and social resources. While there is a growing recognition that park users interact with these resources to promote well-being, the diversity of these practices and benefits is not fully appreciated. Here we draw upon data from a social assessment of 40 New York City (NYC) parks spanning 11,200 acres and we focus on psycho-social-...

  4. Status of natural resources in Redwood Creek basin, Redwood National Park

    Treesearch

    Milton Kolipinski; Ed Helley; Luna Leopold; Steve Viers; Gerard Witucki; Robert Ziemer

    1975-01-01

    Redwood Creek drains a 280 square mile basin which is located in a region of high winter rainfall and high natural rates of erosion. Forests of commercial quality formerly covered about 238 square miles of the basin. Parklands, including a portion of Redwood National Park, occupy approximately 10% of the lower basin and include, amount other values, several of the...

  5. Streamflow, sediment and carbon transport from a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Rai, S. C.

    2004-04-01

    Rivers indeed serve an important role in the carbon fluxes being recognized as a major component to regional and global environmental change. The present study focuses the sediment and carbon transports in a Himalayan watershed (elevational range 300-2650 m asl, area of 3014 ha) at Sikkim, India. The watershed has five perennial streams, all attain significant size during rainy season. The micro-watershed for each perennial stream has a mosaic distribution of land-use practices, viz. forests, agroforestry, agriculture and wastelands. The average discharge in the Rinjikhola, the watershed outlet was 840-850 l s -1 in summer season that increased by 5-6 times in rainy season. Sediment concentration varied distinctly with seasons in different streams and the outlet of the watershed. The soil loss rate from the total watershed ranged from 6 to 7 t ha -1 yr -1 that accounts to a net loss of 833 t yr -1 organic carbon, and 2025 t yr -1 dissolved organic carbon from the watershed, and more than 90% of soil losses were attributable to open cropped area. The stream discharge, soil and carbon loss and precipitation partitioning through different pathways in forest and agroforestry land-use suggest that these land-uses promote conservation of soil and carbon. It is emphasized that a good understanding of carbon transfer through overland flow and discharge is important for policy decisions and management of soil and carbon loss of a Himalayan watershed as it is very sensitive to land-use/cover changes. Therefore, the conversion of forest to agricultural land should be reversed. Agroforestry systems should be included in agricultural land in mountainous regions.

  6. Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana.

    PubMed

    Abdulai, Issaka; Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe

    2018-01-01

    Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.

  7. Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana

    PubMed Central

    Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe

    2018-01-01

    Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers’ livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers’ coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific. PMID:29659629

  8. Effects of Distant Green Space on Physical Activity in Sydney, Australia.

    PubMed

    Chong, Shanley; Byun, Roy; Mazumdar, Soumya; Bauman, Adrian; Jalaludin, Bin

    2017-01-01

    The aim was to investigate the association between distant green space and physical activity modified by local green space. Information about physical activity, demographic and socioeconomic background at the individual level was extracted from the New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. There was a significant relationship between distant green space and engaging in moderate-to-vigorous physical activity (MVPA) at least once a week. No significant relationship was found between adequate physical activity and distant green space. No significant relationships were found between adequate physical activity, engaging in MVPA, and local green space. However, if respondents lived in greater local green space (≥25%), there was a significant relationship between engaging in MVPA at least once a week and distance green space of ≥20%. This study highlights the important effect of distant green space on physical activity. Our findings also suggest that moderate size of local green space together with moderate size of distant green space are important levers for participation of physical activity.

  9. Micronesian agroforestry: evidence from the past, implications for the future

    Treesearch

    Marjorie V. C. Falanruw

    1993-01-01

    Traditional agroforest systems exist throughout Micronesia. The system found on one Micronesian group of islands, Yap, is described and evaluated in ecological terms. Implications for future development of agriculture in Micronesia are discussed and some specific recommendations are given.

  10. Modeling aspen responses to climatic warming and insect defoliation in western Canada

    Treesearch

    E. H. Ted Hogg

    2001-01-01

    Effects of climate change at three aspen sites in Saskatchewan were explored using a climate-driven model that includes insect defoliation. A simulated warming of 4-5 °C caused complete mortality due to drought at all three sites. A simulated warming of 2-2.5 °C caused complete mortality of aspen at the parkland site, while aspen growth at two boreal sites showed...

  11. Environmental Assessment Aerial Application of Pesticide for Mosquito Control at Tyndall Air Force Base and Vicinity

    DTIC Science & Technology

    2008-10-27

    near the proposed treatment area. d. The pesticides used will not negatively affect parklands, farmlands, wetlands , wild and scenic rivers, or...alternative, application over human populated areas and residences would be minimal. Wild or culti vate-d bee colonies would not be affected and...proposed treatment area; 2) MechanicaJJ y manipulate marshland/ wetland breeding areas through drainage or open marsh management activities. The

  12. Spatial and temporal variations in the sediment state of North American dune fields

    NASA Astrophysics Data System (ADS)

    Halfen, Alan F.; Lancaster, Nicholas; Wolfe, Stephen

    2015-04-01

    This research evaluates geomorphic and chronologic data from the INQUA Dune Atlas for three areas of North America: 1) the Prairie, Parkland and Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Chronometric data for periods of dune activity and stability are compared with palaeoenvironment reconstructions to assess dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions. In the Central Great Plains, many dune fields are closely linked to fluvial sediment sources. Sediment supply was high in these dune fields during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8 - 8 ka and at short but repeated intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability, as a result of drought, being the primary driver of dune activity during the Holocene.

  13. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when

  14. Restoring fire to wilderness: Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Manley, Jeffrey; Keifer, MaryBeth; Stephenson, Nathan L.; Kaage, William

    2001-01-01

    Sequoia and Kings Canyon National Parks, established in 1890, consist of 863,741 acres (349,551 ha) of Sierra Nevada foothills, mid-elevation conifer forest, and high-elevation alpine environment. The parks contain 36 giant sequoia (Sequoiadendron giganteum) groves, including the largest known tree, the General Sherman. Ninety-four percent of the parklands is in designated or proposed wilderness (fig. 1), with conditions resembling roadless areas in national forests.

  15. Aquilla Lake, Brazos River Basin, Texas, Pre-Impoundment Environmental Study: Supplement to Design Memorandum Number 9, Master Plan (in Response to: 40CFR 1505.3),

    DTIC Science & Technology

    1983-06-01

    phaeacantha White Prairie Rose Rosa filiolosa Bur Oak Quercus macrocarpa Slippery Elm Ulrnus rubra Elbow-Bush Forestiera pubescens Southen Black-haw Virburnum...It LIST OF PLATES Plate Title Page 1 Above, a cedar elm woodland scene ( -5), herbaceous component consists primarily of Canada...3( 2 Above, view of a pecan parkland (T3-2), herbaceous and shrub components composed primarily of Smilax, June 1980. Below, a mesquite/cedar elm

  16. Natural ecosystem mimicry in traditional dryland agroecosystems: Insights from an empirical and holistic approach.

    PubMed

    Blanco, Julien; Michon, Geneviève; Carrière, Stéphanie M

    2017-12-15

    While the aim of Ecological Intensification is to enable the design of more sustainable and productive agricultural systems, it is not suited to dryland agroecosystems that are driven by non-equilibrium dynamics and intrinsic variability. Instead, a model based on mobility and variability management has been proposed for these agroecosystems. However, this model remains under-applied in southern Morocco where there have been few studies on the functioning of traditional agroecosystems. This paper focuses on an agroecosystem in the Moroccan Saharan fringe zone that combines agriculture and pastoralism in an acacia parkland. A grounded theory approach was used over a three-year investigation period (i) to highlight how agro-pastoral activities interface with environmental variability, and (ii) to analyze the formal and informal institutions that support these activities. Results show that farmers interface with rainfall variability through (i) an opportunistic agricultural calendar, (ii) a variation of cultivated areas, and (iii) crop diversification. Herders combine macro-mobility (nomads move over long distances to track rainfall) and micro-mobility (nomadic and sedentary herds are driven on a daily basis around settlements) to optimize the exploitation of ecological heterogeneity. During droughts, they also resort to State-subsidized forage supplies. Both cultivation and pastoral activities tend to interface with ecological dynamics and to mimic nature, resulting in a human-modified parkland that could be considered as a 'green agroecosystem'. The sustainability of natural resource use relies on flexible property rights, backed up by a social and cultural norm-based regulation system, that allow crop-livestock integration and landscape collective management. Despite encouraging results, the agroecosystem appears to be threatened by current agricultural policies, rural exodus and the lack of social recognition of nomadism. Nevertheless, because ecosystem mimicry of

  17. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  18. Over-the-counter fish oil use in a county hospital: Medication use evaluation and efficacy analysis

    PubMed Central

    Tatachar, Amulya; Pio, Margaret; Yeung, Denise; Moss, Elizabeth; Chow, Diem; Boatright, Steven; Quinones, Marissa; Mathew, Annie; Hulstein, Jeffrey; Adams-Huet, Beverley; Ahmad, Zahid

    2016-01-01

    BACKGROUND Little is known about the use and effectiveness of over-the-counter (OTC) fish oil supplements for triglyceride (TG) lowering. OBJECTIVES To (1) perform a medication-use evaluation (MUE) and (2) assess the efficacy of OTC fish oil. METHODS Retrospective, observational cohort study using electronic medical records and the pharmacy database from Parkland Health and Hospital System in Dallas, Texas. Parkland is a tax-supported county institution that provides patients with single-brand OTC fish oil. Two separate analyses were conducted. Six hundred seventeen patients (prescribed fish oil between July 1, 2012, and August 31, 2012) were included in the MUE analysis and 235 patients (109 fish oil, 72 fenofibrate, and 54 gemfibrozil, prescribed between January 1, 2012, and July 31, 2013) were included in the efficacy analysis. The main outcome measure for the MUE was fish oil prescribing habits including dosages and patient adherence, as defined by medication possession ratio. The main outcome measure for the efficacy analysis was change in lipids measured using the last value before fish oil treatment and the first value after fish oil treatment. RESULTS MUE: 617 patients received prescriptions for OTC fish oil. Sixty-four percent were prescribed a total daily dose of 2000 mg. Only 25% of patients were adherent. Efficacy analysis: despite being prescribed suboptimal doses, fish oil reduced TGs by 29% (95% confidence interval, 34.3–22.7). Compared with fish oil therapy, fibrate therapy resulted in a greater TG reduction: 48.5% (55.1–41.0) with fenofibrate and 49.8% (57.6–40.5) with gemfibrozil (P < 0001, both medications compared with fish oil). CONCLUSIONS Health care providers prescribe suboptimal doses of fish oil, and adherence is poor. Even at low doses (2 g/d), though, fish oil lowers TGs by 29%. PMID:26073390

  19. High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

    PubMed Central

    Schüepp, Christof; Rittiner, Sarah; Entling, Martin H.

    2012-01-01

    It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems. PMID:23300598

  20. More than carbon price

    NASA Astrophysics Data System (ADS)

    2012-04-01

    In collaboration with experts in agroforestry, agricultural economics and policy, development economist Utkur Djanibekov estimated the viability of small-scale Clean Development Mechanism afforestation in Uzbekistan.

  1. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system.

    PubMed

    Nygren, Pekka; Leblanc, Humberto A

    2015-02-01

    Natural abundance of (15)N (δ (15)N) was determined in bulk soil, rhizospheric soil and vegetation in an organically managed cacao (Theobroma cacao L.) plantation with Inga edulis Mart. legume trees (inga) as the principal shade for studying the nitrogen (N) cycle in the system. Cacao without contact with legumes in an adjacent plantation was used as the reference for N2 fixation and direct N transfer calculations. Bulk and rhizospheric soils contained 72 and 20%, respectively, of whole- system N. No vegetation effect on δ (15)N in rhizospheric soil was detected, probably due to the high native soil N pool. Fine roots of the cacaos associated with inga contained ∼35% of N fixed from the atmosphere (Nf) out of the total N. Leaves of all species had significantly higher δ (15)N than fine roots. Twenty percent of system Nf was found in cacao suggesting direct N transfer from inga via a common mycelial network of mycorrhizal fungi or recycling of N-rich root exudates of inga. Inga had accumulated 98 kg [Nf] ha(-1) during the 14-year history of the plantation. The conservative estimate of current N2 fixation rate was 41 kg [Nf] ha(-1) year(-1) based on inga biomass only and 50 kg [Nf] ha(-1) year(-1) based on inga and associated trees. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Black walnut in a new century, proceedings of the 6th Walnut Council research symposium; 2004 July 25-28; Lafayette, IN.

    Treesearch

    C. H. Michler; P.M. Pijut; J. Van Sambeek; M. Coggeshall; J. Seifert; K. Woeste; R. Overton; F., Jr., eds. Ponder

    2004-01-01

    Presents papers and abstracts relating to genetic improvement, nursery production, plantation establishment, natural stand management, pest management, agroforestry and economics of black walnut and related Juglans species.

  3. Agroforestry Economics and Policy

    Treesearch

    L.D. Godsey; D. Evan Mercer; Robert K. Grala; Stephen C. Grado; Janaki R.R. Alavalapati

    2009-01-01

    Essentially every living thing on Earth has applied the basic concepts of economics. That is, every living thing has had to use a limited set of resources to meet a minimum set of needs or wants. Although the study of economics is often confused with the study of markets or finance, economics is simply a social science that studies the choices people make. As a social...

  4. Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno

    2016-04-01

    Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce

  5. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-10-01

    Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  6. Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system.

    PubMed

    Sun, Feng; Pan, Kaiwen; Li, Zilong; Wang, Sizhong; Tariq, Akash; Olatunji, Olusanya Abiodun; Sun, Xiaoming; Zhang, Lin; Shi, Weiyu; Wu, Xiaogang

    2018-06-01

    A current challenge for ecological research in agriculture is to identify ways in which to improve the resilience of the soil food web to extreme climate events, such as severe rainfall. Plant species composition influence soil biota communities differently, which might affect the recovery of soil food web after extreme rainfall. We compared the effects of rainfall stress up on the soil microbial food web in three planting systems: a monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Medicago sativa or Z. bungeanum and Glycine max. We tested the effect of the presence of a legume on the recovery of trophic interactions between microorganisms and nematodes after extreme rainfall. Our results indicated that all chemical properties of the soil recovered to control levels (normal rainfall) in the three planting systems 45 days after exposure to extreme rain. However, on day 45, the bulk microbial community differed from controls in the monoculture treatment, but not in the two mixed planting treatments. The nematode community did not fully recover in the monoculture or Z. bungeanum and M. sativa treatments, while nematode populations in the combined Z. bungeanum and G. max treatment were indistinguishable from controls. G. max performed better than M. sativa in terms of increasing the resilience of microbial and nematode communities to extreme rainfall. Soil microbial biomass and nematode density were positively correlated with the available carbon and nitrogen content in soil, demonstrating a link between soil health and biological properties. This study demonstrated that certain leguminous plants can stabilize the soil food web via interactions with soil biota communities after extreme rainfall. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effectiveness of direct-acting antiviral therapy for hepatitis C in difficult-to-treat patients in a safety-net health system: a retrospective cohort study.

    PubMed

    Yek, Christina; de la Flor, Carolina; Marshall, John; Zoellner, Cindy; Thompson, Grace; Quirk, Lisa; Mayorga, Christian; Turner, Barbara J; Singal, Amit G; Jain, Mamta K

    2017-11-20

    Direct-acting antivirals (DAAs) have revolutionized chronic hepatitis C (HCV) treatment, but real-world effectiveness among vulnerable populations, including uninsured patients, is lacking. This study was conducted to characterize the effectiveness of DAAs in a socioeconomically disadvantaged and underinsured patient cohort. This retrospective observational study included all patients undergoing HCV treatment with DAA-based therapy between April 2014 and June 2016 at a large urban safety-net health system (Parkland Health and Hospital System, Dallas, TX, USA). The primary outcome was sustained virologic response (SVR), with secondary outcomes including treatment discontinuation, treatment relapse, and loss to follow-up. DAA-based therapy was initiated in 512 patients. The cohort was socioeconomically disadvantaged (56% uninsured and 13% Medicaid), with high historic rates of alcohol (41%) and substance (50%) use, and mental health disorders (38%). SVR was achieved in 90% of patients (n = 459); 26 patients (5%) were lost to follow-up. SVR was significantly lower in patients with decompensated cirrhosis (82% SVR; OR 0.37, 95% CI 0.16-0.85) but did not differ by insurance status (P = 0.98) or alcohol/substance use (P = 0.34). Reasons for treatment failure included loss to follow-up (n = 26, 5%), viral relapse (n = 16, 3%), non-treatment-related death (n = 7, 1%), and treatment discontinuation (n = 4, 1%). Of patients with viral relapse, 6 reported non-compliance and have not been retreated, 5 have been retreated and achieved SVR, 4 have undergone resistance testing but not yet initiated retreatment, and 1 was lost to follow-up. Effective outcomes with DAA-based therapy can be achieved in difficult-to-treat underinsured populations followed in resource-constrained safety-net health systems.

  8. The timing and nature of Late Quaternary vegetation changes in the northern Great Plains, USA and Canada: a re-assessment of the spruce phase

    NASA Astrophysics Data System (ADS)

    Yansa, Catherine H.

    2006-02-01

    This paper revises the chronology for the northward migration of Picea glauca (white spruce) across the northern Great Plains, following the recession of the Laurentide Ice Sheet, and reinterprets the species composition and structure of the late-glacial vegetation on the basis of pollen and plant-macrofossil analysis. The timing of spruce migration is based on 26 14C ages obtained from Picea macrofossils. The date for the appearance of white spruce in southern South Dakota, USA, remains unchanged, 12,600 14C yr BP (ca 15,000 cal yr BP), but its arrival in southern Saskatchewan, Canada, by 10,300 14C yr BP (ca 12,100 cal yr BP) is about 1500 years later than previously estimated based on an organic sediment date. Picea glauca thus migrated northwards at an average rate of 0.38 km/ 14C year (0.30 km/calendar year), significantly slower than the previously published rate of 2 km/ 14C year. White spruce trees probably inhabited lake shorelines, whereas prairie, parkland, and boreal plants occupied both lowlands and uplands, forming an open white spruce parkland. This interpretation differs from a previous reconstruction of a boreal-type spruce forest and thus offers another paleoclimatic interpretation. Precipitation was probably low and summer temperatures relatively mild, averaging about 19 °C.

  9. Late Quaternary paleoenvironments of an ephemeral wetland in North Dakota, USA: Relative interactions of ground-water hydrology and climate change

    USGS Publications Warehouse

    Yansa, C.H.; Dean, W.E.; Murphy, E.C.

    2007-01-01

    This study of fossils (pollen, plant macrofossils, stomata and fish) and sediments (lithostratigraphy and geochemistry) from the Wendel site in North Dakota, USA, emphasizes the importance of considering ground-water hydrology when deciphering paleoclimate signals from lakes in postglacial landscapes. The Wendel site was a paleolake from about 11,500 14C yr BP to 11,100 14C yr BP. Afterwards, the lake-level lowered until it became a prairie marsh by 9,300 14C yr BP and finally, at 8,500 14C yr BP, an ephemeral wetland as it is today. Meanwhile, the vegetation changed from a white spruce parkland (11,500 to 10,500 14C yr BP) to deciduous parkland, followed by grassland at 9,300 14C yr BP. The pattern and timing of these aquatic and terrestrial changes are similar to coeval kettle lake records from adjacent uplands, providing a regional aridity signal. However, two local sources of ground water were identified from the fossil and geochemical data, which mediated atmospheric inputs to the Wendel basin. First, the paleolake received water from the melting of stagnant ice buried under local till for about 900 years after glacier recession. Later, Holocene droughts probably caused the lower-elevation Wendel site to capture the ground water of up-gradient lakes. ?? 2007 Springer Science+Business Media, Inc.

  10. Integrated plant nutrient system - with special emphasis on mineral nutriton and biofertilizers for Black pepper and cardamom - A review.

    PubMed

    K P, Sangeeth; R, Suseela Bhai

    2016-05-01

    Integrated Plant Nutrition System (IPNS) as a concept and farm management strategy embraces and transcends from single season crop fertilization efforts to planning and management of plant nutrients in crop rotations and farming systems on a long-term basis for enhanced productivity, profitability and sustainability. It is estimated that about two-thirds of the required increase in crop production in developing countries will have to come from yield increases from lands already under cultivation. IPNS enhances soil productivity through a balanced use of soil nutrients, chemical fertilizers, combined with organic sources of plant nutrients, including bio-inoculants and nutrient transfer through agro-forestry systems and has adaptation to farming systems in both irrigated and rainfed agriculture. Horticultural crops, mainly plantation crops, management practices include application of fertilizers and pesticides which become inevitable due to the depletion of soil organic matter and incidence of pests and diseases. The extensive use of chemical fertilizers in these crops deteriorated soil health that in turn affected the productivity. To revitalize soil health and to enhance productivity, it is inexorable to enrich the soil using microorganisms. The lacunae observed here is the lack of exploitation of indigenous microbes having the potential to fix atmospheric nitrogen (N) and to solubilize Phosphorus (P) and Potassium (K). The concept of biofertilizer application appears to be technically simple and financially feasible, but the task of developing biofertilizers with efficient strains in appropriate combinations in a consortia mode is not easier. More than developing consortia, a suitable delivery system to discharge the microbial inoculants warranted much effort. This review focuses on the integrated plant nutrition system incorporating biofertilizer with special emphasis on developing and formulating biofertilizer consortium.

  11. Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers

    USDA-ARS?s Scientific Manuscript database

    Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...

  12. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach

    PubMed Central

    Kindt, Roeland; Loo, Judy; Schmidt, Marco; Bognounou, Fidèle; Da, Sié Sylvestre; Diallo, Ousmane Boukary; Ganaba, Souleymane; Gnoumou, Assan; Lompo, Djingdia; Lykke, Anne Mette; Mbayngone, Elisée; Nacoulma, Blandine Marie Ivette; Ouedraogo, Moussa; Ouédraogo, Oumarou; Parkouda, Charles; Porembski, Stefan; Savadogo, Patrice; Thiombiano, Adjima; Zerbo, Guibien; Vinceti, Barbara

    2017-01-01

    Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change). We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs), climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as ‘highly threatened’ due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted regeneration in

  13. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach.

    PubMed

    Gaisberger, Hannes; Kindt, Roeland; Loo, Judy; Schmidt, Marco; Bognounou, Fidèle; Da, Sié Sylvestre; Diallo, Ousmane Boukary; Ganaba, Souleymane; Gnoumou, Assan; Lompo, Djingdia; Lykke, Anne Mette; Mbayngone, Elisée; Nacoulma, Blandine Marie Ivette; Ouedraogo, Moussa; Ouédraogo, Oumarou; Parkouda, Charles; Porembski, Stefan; Savadogo, Patrice; Thiombiano, Adjima; Zerbo, Guibien; Vinceti, Barbara

    2017-01-01

    Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change). We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs), climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as 'highly threatened' due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted regeneration in the

  14. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Morales-Linares, Jonas; García-Franco, José G.; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E.; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia

    2016-12-01

    Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.

  15. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  16. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-07-01

    Litterfall is one of the major pathways connecting above- and belowground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. On the southern slope of Mt. Kilimanjaro, the annual pattern of litterfall depends on seasonal climatic conditions. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  17. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico.

    PubMed

    Morales-Linares, Jonas; García-Franco, José G; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia

    2016-12-01

    Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.

  18. Toward Understanding Dynamics in Shifting Biomes: An Individual Based Modeling Approach to Characterizing Drought and Mortality in Central Western Canada

    NASA Astrophysics Data System (ADS)

    Armstrong, A. H.; Foster, A.; Rogers, B. M.; Hogg, T.; Michaelian, M.; Shuman, J. K.; Shugart, H. H., Jr.; Goetz, S. J.

    2017-12-01

    The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. Persistent warming has already affected the high northern latitudes, altering vegetation productivity, carbon sequestration, and many other ecosystem processes and services. The central-western Canadian boreal forests and aspen parkland are experiencing a decade long drought, and rainfall has been identified as a key factor controlling the location of the boundary between forest and prairie in this region. Shifting biome with related greening and browning trends are readily measureable with remote sensing, but the dynamics that create and result from them are not well understood. In this study, we use the University of Virginia Forest Model Enhanced (UVAFME), an individual-based forest model, to simulate the changes that are occurring across the southern boreal and parkland forests of west-central Canada. We present a parameterization of UVAFME for western central Canadian forests, validated with CIPHA data (Climate Change Impacts on the Productivity and Health of Aspen), and improved mortality. In order to gain a fine-scale understanding of how climate change and specifically drought will continue to affect the forests of this region, we simulated forest conditions following CMIP5 climate scenarios. UVAFME predictions were compared with statistical models and satellite observations of productivity across the landscape. Changes in forest cover, forest type, aboveground biomass, and mortality and recruitment dynamics are presented, highlighting the high vulnerability of this region to vegetation transitions associated with future droughts.

  19. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  20. 36 CFR 230.40 - Eligible practices for cost-share assistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., silvopasture, alley cropping, or other agroforestry practices, including purposes for energy conservation and... Improvement and Watershed Protection—Establishment, maintenance, renovation, and restoration practices... restoration practices to create, protect, or improve fish and wildlife habitat, including any necessary design...

  1. Creation of an Internal Teledermatology Store-and-Forward System in an Existing Electronic Health Record

    PubMed Central

    Carter, Zachary A.; Goldman, Shauna; Anderson, Kristen; Li, Xiaxiao; Hynan, Linda S.; Chong, Benjamin F.

    2017-01-01

    Importance External store-and-forward (SAF) teledermatology systems operate separately from the primary health record and have many limitations, including care fragmentation, inadequate communication among clinicians, and privacy and security concerns, among others. Development of internal SAF workflows within existing electronic health records (EHRs) should be the standard for large health care organizations for delivering high-quality dermatologic care, improving access, and capturing other telemedicine benchmark data. Epic EHR software (Epic Systems Corporation) is currently one of the most widely used EHR system in the United States, and development of a successful SAF workflow within it is needed. Objectives To develop an SAF teledermatology workflow within the Epic system, the existing EHR system of Parkland Health and Hospital System (Dallas, Texas), assess its effectiveness in improving access to care, and validate its reliability; and to evaluate the system’s ability to capture meaningful outcomes. Design, Setting, and Participants Electronic consults were independently evaluated by 2 board-certified dermatologists, who provided diagnoses and treatment plans to primary care physicians (PCPs). Results were compared with in-person referrals from May to December 2013 from the same clinic (a community outpatient clinic in a safety-net public hospital system). Patients were those 18 years or older with dermatologic complaints who would have otherwise been referred to dermatology clinic. Main Outcomes and Measures Median time to evaluation; percentage of patients evaluated by a dermatologist through either teledermatology or in-person compared with the previous year. Results Seventy-nine teledermatology consults were placed by 6 PCPs from an outpatient clinic between May and December 2014; 57 (74%) were female and their mean (SD) age was 47.0 (12.4) years. Teledermatology reduced median time to evaluation from 70.0 days (interquartile range [IQR], 33

  2. Analysis of vegetation changes in Cidanau watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Khairiah, R. N.; Kunihiko, Y.; Prasetyo, L. B.; Setiawan, Y.

    2018-05-01

    Vegetation change detection is needed for conserve of quality and water cycle in Cidanau watershed. The NDVI was applied to quantify the vegetation changes of Cidanau watershed for three different years 1989, 2001, and 2015. Using NDVI we mapped the reflectance from chlorophyll and distinguished varying amounts of vegetation at the pixel level by index. In the present study, as a preliminary study, we proposed a vegetation change detection analysis based on the NDVI from 1989 through 2015. Multi-temporal satellite data i.e. Landsat imagery with 30 m spatial resolution are used in the present study. It is reported that agroforestry land exhibited the greatest reductions in highly dense vegetation class in 1989-2001 and also moderate vegetation class in 2001-2015. It’s mean that amount of vegetation present in agroforestry land is getting lower year by year.

  3. Environmental Assessment: Disposal and Reuse of NAS Dallas Family Housing in Duncanville, Texas

    DTIC Science & Technology

    1998-04-01

    protection as a result of the proposed action. The proposed action would be a positive impact to the City’s parklands. No impact on cultural resources...Utilities 3-9 3.3.9 Transportation 3-10 Vll 3.3.10 Education 3.3.11 Government 3.3.12 Police and Fire Protection 3.3.13 Recreation 3.4 Cultural ...4.3.10 Education 4-14 4.3.11 Police and Fire Protection 4-15 4.3.12 Recreation 4-15 4.4 Cultural Resources 4-15 4.5 Indirect Effects and Their

  4. Sunburn, Thermal, and Chemical Injuries to the Skin.

    PubMed

    Monseau, Aaron J; Reed, Zebula M; Langley, Katherine Jane; Onks, Cayce

    2015-12-01

    Sunburn, thermal, and chemical injuries to the skin are common in the United States and worldwide. Initial management is determined by type and extent of injury with special care to early management of airway, breathing, and circulation. Fluid management has typically been guided by the Parkland formula, whereas some experts now question this. Each type of skin injury has its own pathophysiology and resultant complications. All primary care physicians should have at least a basic knowledge of management of acute and chronic skin injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Knowledge for the future of black walnut; proceedings of the 5th black walnut symposium; 1996 July 28-31; Springfield, MO.

    Treesearch

    J.W. Van Sambeek

    1997-01-01

    Proceedings of the Fifth Black Walnut Symposium held 28-31 July 1996 in Springfield, Missouri. Includes 46 manuscripts and abstracts dealing with establishment, management, and utilization of black walnut with emphasis on increased use for agroforestry and nut culture.

  6. Patient navigation for lung cancer screening in an urban safety-net system: Protocol for a pragmatic randomized clinical trial.

    PubMed

    Gerber, David E; Hamann, Heidi A; Santini, Noel O; Abbara, Suhny; Chiu, Hsienchang; McGuire, Molly; Quirk, Lisa; Zhu, Hong; Lee, Simon J Craddock

    2017-09-01

    The National Lung Screening Trial demonstrated improved lung cancer mortality with annual low-dose computed tomography (CT) screening, leading to lung cancer screening endorsement by the United States Preventive Services Task Force and coverage by the Centers for Medicare and Medicaid. Adherence to annual CT screens in that trial was 95%, which may not be representative of real-world, particularly medically underserved populations. This pragmatic trial will determine the effect of patient-focused, telephone-based patient navigation on adherence to CT-based lung cancer screening in an urban safety-net population. 340 adults who meet standard eligibility for lung cancer screening (age 55-77years, smoking history≥30 pack-years, quit within 15years if former smoker) are referred through an electronic medical record-based order by physicians in community- and hospital-based primary care settings within the Parkland Health and Hospital System in Dallas County, Texas. Eligible patients are randomized to usual care or patient navigation, which addresses adherence, patient-reported barriers, smoking cessation, and psycho-social concerns related to screening completion. Patients complete surveys and semi-structured interviews at baseline, 6-month, and 18-month follow-ups to assess attitudes toward screening. The primary endpoint of this pragmatic trial is adherence to three sequential, prospectively defined steps in the screening protocol. Secondary endpoints include self-reported tobacco use and other patient-reported outcomes. Results will provide real-world insight into the impact of patient navigation on adherence to CT-based lung cancer screening in a medically underserved population. This study was registered with the NIH ClinicalTrials.gov database (NCT02758054) on April 26, 2016. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Model Optimization Planting Pattern Agroforestry Forest Land Based on Pine Tree

    ERIC Educational Resources Information Center

    Rajati, Tati

    2015-01-01

    This study aims to determine cropping patterns in class slopes 0 - <15% and the grade slope slopes 15% - <30% and the slopes> 30%. The method used in this study is a description of the dynamic system approach using a software power sim. Forest areas where the research, which is a type of plant that is cultivated by the people in the study…

  8. Calibration and use of plate meter regressions for pasture mass estimation in an Appalachian silvopasture

    USDA-ARS?s Scientific Manuscript database

    A standardized plate meter for measuring pasture mass was calibrated at the Agroforestry Research and Demonstration Site in Blacksburg, VA, using six ungrazed plots of established tall fescue (Festuca arundinaceae) overseeded with orchardgrass (Dactylis glomerata). Each plot was interplanted with b...

  9. Descriptor data of Castanea accessions at the University of Missouri

    USDA-ARS?s Scientific Manuscript database

    Chestnut, Castanea L., trees were propagated and planted in repositories at the Horticulture and Agroforestry Research Center, New Franklin, Missouri in 1996, 2002, 2009 with additional accessions acquired annually. Trees have been pruned, fertilized, irrigated, and pests controlled following Unive...

  10. Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship

    Treesearch

    Diego Valdez-Zamudio; Peter F. Ffolliot

    2000-01-01

    The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...

  11. Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications.

    PubMed

    Ziegler, Alan D; Phelps, Jacob; Yuen, Jia Qi; Webb, Edward L; Lawrence, Deborah; Fox, Jeff M; Bruun, Thilde B; Leisz, Stephen J; Ryan, Casey M; Dressler, Wolfram; Mertz, Ole; Pascual, Unai; Padoch, Christine; Koh, Lian Pin

    2012-10-01

    Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the

  12. Phenological responses of juvenile pecan and white oak on an upland site

    USDA-ARS?s Scientific Manuscript database

    Pecan (Carya illinoiensis) and white oak (Quercus alba) produce multiple products and wildlife values, but their phenological responses to N fertilization have not been well characterized in an mixed species agroforestry practice. We compared tree height at planting and for six consecutive growing ...

  13. Field windbreaks for bioenergy production and carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  14. Soil carbon dynamics of tree plantings for woody biomass feedstock

    USDA-ARS?s Scientific Manuscript database

    Agroforestry practices are being considered for their bioenergy potential as the wood could be harvested for direct combustion, cellulose to ethanol conversion, or pyrolysis to bio-oils. The objective of this project was to use spatially-distributed soil sampling and soil profile descriptions to det...

  15. Establishing oaks in Big River floodplains

    Treesearch

    Dan Dey; John Kabrick; Michael Gold

    2003-01-01

    Successful tree establishment is fundamental to implementing agroforestry practices, reforesting bottomland cropfields or regenerating green-tree reservoirs. Planting trees can be problematic in floodplains and riparian areas because of intense competition from herbaceous and woody plants, animal herbivory and browsing, and flooding and saturated soils.

  16. 36 CFR 230.36 - State priority plan-purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—purpose and scope. (a) The State priority plan shall be used to guide FLEP implementation in each... describe the various roles and responsibilities of the State Forester, State Forest Stewardship... private forest and agroforestry resources; (3) Identification of the desired objectives and environmental...

  17. Modeling Hydrological Services in Shade Grown Coffee Systems: Case Study of the Pico Duarte Region of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.

    2010-12-01

    The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.

  18. Urban landscape genetics: canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York City.

    PubMed

    Munshi-South, Jason

    2012-03-01

    In this study, I examine the influence of urban canopy cover on gene flow between 15 white-footed mouse (Peromyscus leucopus) populations in New York City parklands. Parks in the urban core are often highly fragmented, leading to rapid genetic differentiation of relatively nonvagile species. However, a diverse array of 'green' spaces may provide dispersal corridors through 'grey' urban infrastructure. I identify urban landscape features that promote genetic connectivity in an urban environment and compare the success of two different landscape connectivity approaches at explaining gene flow. Gene flow was associated with 'effective distances' between populations that were calculated based on per cent tree canopy cover using two different approaches: (i) isolation by effective distance (IED) that calculates the single best pathway to minimize passage through high-resistance (i.e. low canopy cover) areas, and (ii) isolation by resistance (IBR), an implementation of circuit theory that identifies all low-resistance paths through the landscape. IBR, but not IED, models were significantly associated with three measures of gene flow (Nm from F(ST) , BayesAss+ and Migrate-n) after factoring out the influence of isolation by distance using partial Mantel tests. Predicted corridors for gene flow between city parks were largely narrow, linear parklands or vegetated spaces that are not managed for wildlife, such as cemeteries and roadway medians. These results have implications for understanding the impacts of urbanization trends on native wildlife, as well as for urban reforestation efforts that aim to improve urban ecosystem processes. © 2012 Blackwell Publishing Ltd.

  19. Effect of understory management on phenological responses of eastern black walnut on an alluvial Arkansas soil

    USDA-ARS?s Scientific Manuscript database

    Black walnut (Juglans nigra L.) is commonly grown in agroforestry practices for nuts and/or timber with little knowledge of how understory herbage management might affect tree phenology. We compared black walnut plant type (variety and wild-type) for phenological response in date of budburst, leaf ...

  20. Quantifying Human Appropriated Net Primary Productivity (HANPP) in a Ghanaian Cocoa System

    NASA Astrophysics Data System (ADS)

    Morel, A.; Adu-Bredu, S.; Adu Sasu, M.; Ashley Asare, R.; Boyd, E.; Hirons, M. A.; Malhi, Y.; Mason, J.; Norris, K.; Robinson, E. J. Z.; McDermott, C. L.

    2015-12-01

    Ghana is the second largest producer of cocoa (Theobroma cacoa), exporting approximately 18 percent of global volumes. These cocoa farms are predominantly small-scale, ranging in size from 2-4 hectares (ha). Traditionally, the model of cocoa expansion in Ghana relied on clearing new areas of forest and establishing a farm under remnant forest trees. This is increasingly less practical due to few unprotected forest areas remaining and management practices favoring close to full sun cocoa to maximize short-term yields. This study is part of a larger project, ECOLMITS, which is an interdisciplinary, ESPA-funded[1] initiative exploring the ecological limits of ecosystem system services (ESS) for alleviating poverty in small-scale agroforestry systems. The ecological study plots are situated within and around the Kakum National Forest, a well-protected, moist-evergreen forest of the Lower Guinea Forest region. Net primary productivity (NPP) is a measure of the rate at which carbon dioxide (CO2) is incorporated into plant tissues (e.g. canopy, stem and root). For this study, NPP was monitored in situ using methods developed by the Global Environmental Monitoring Network (GEM, http://gem.tropicalforests.ox.ac.uk/). By comparing NPP measured in intact forest and farms, the human appropriated NPP (HANPP) of this system can be estimated. The forest measures provide the "potential" NPP of the region, and then the reduction in NPP for farm plots is calculated for both land-cover change (HANPPLUC) and cocoa harvesting (HANPPHARV). The results presented are of the first year of NPP measurements across the cocoa landscape, including measurements from intact forest, logged forest and cocoa farms across a shade gradient and located at varying distances from the forest edge (e.g. 100 m, 500 m, 1 km and 5 km). These measures will have implications for carbon sequestration potential over the region and long-term sustainability of the Ghanaian cocoa sector. [1] Ecosystem Services for

  1. Inventorying trees in agricultural landscapes: towards an accounting of working trees

    Treesearch

    C. H. Perry; C. W. Woodall; M.M. Schoeneberger

    2005-01-01

    Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative management options for addressing resource issues and achieving landscape-level goals. An understanding of the contributions from these and future plantings would provide critical information to policy and program developers, and a comprehensive...

  2. Filling the gap: improving estimates of working tree resources in agricultural landscapes

    Treesearch

    C.H. Perry; C.W. Woodall; G.C. Liknes; M.M. Schoeneberger

    2008-01-01

    Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative management options for addressing resource issues and achieving landscapelevel goals. An understanding of the ecosystem services contributed by these and future plantings would provide critical information to policy and program developers, and a...

  3. Managing fine hardwoods after a half century of research: Proceedings of the Seventh Walnut Council Research Symposium

    Treesearch

    J.W. Van Sambeek; Elizabeth A. Jackson; Mark V. Coggeshall; Andrew L. Thomas; Charles H. eds. Michler

    2013-01-01

    This report presents information from the Seventh Walnut Council Research Symposium, held August 1-3, 2011. This report includes 14 papers and abstracts relating to economics and utilization, pest management, nursery production, plantation establishment, tree improvement, stand management, agroforestry, and nut production of black walnut, related Juglans species, and...

  4. Watershed sediment measurement and sediment transport modeling techniques: Case study to quantify the impact of converting cropland to forested stream buffers on soil loss and water quality at the watershed scale

    USDA-ARS?s Scientific Manuscript database

    Watershed models such as the Soil and Water Assessment Tool (SWAT) have been widely used to simulate watershed hydrologic processes and the effect of management, such as agroforestry, on soil and water resources. In order to use model outputs for tasks ranging from aiding policy decision making to r...

  5. Inventorying trees in agricultural landscapes: toward an accounting of working trees

    Treesearch

    Carol H. Perry; Christopher W. Woodall; Michele M. Schoeneberger

    2005-01-01

    Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative managemnt options for addressing resource issues and achieving landscape-level goals, An understanding of the contributions from these and future plantings would provide critical information to policy and program developers, and a comprehensive inventory...

  6. Methods to prioritize placement of riparian buffers for improved water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2008-01-01

    Agroforestry buffers in riparian zones can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, surficial geology, and hydrology determine the capability of forest buffers to intercept and treat these flows. This paper describes two landscape analysis techniques for identifying...

  7. Sequence stratigraphy and environmental background of the late Pleistocene and Holocene occupation in the Southeast Primor'ye (the Russian Far East)

    NASA Astrophysics Data System (ADS)

    Chlachula, Jiri; Krupyanko, Alexander A.

    2016-06-01

    The paper presents the results of Quaternary palaeoecology and geoarchaeology studies in the Zerkal'naya Basin, with new insights about sequenced natural shifts during the prehistoric occupation of this marginally explored NE Asian maritime territory. The Basin is part of the continental drainage system and the main physiographic and biotic corridor for peopling of the transitive coastal interior SE Primor'ye Region. The Final Pleistocene and Holocene environmental (biotic and abiotic) proxy records from the Upper/Final Palaeolithic to early historical sites document a dynamic climate change with vegetation cover transformations within riverine and mountain valley ecosystems of the Russian Far East. Most of the archaeological sites located on the low terraces and bedrock promontories along the main river channel and its tributary streams suggest traditional hunter gathered lifestyles based on seasonal salmon-fishing supplemented by pastoral economy. Tundra-forests with larch trees, dwarf birch thickets and polypod ferns from the basal stratigraphic units of the late Last Glacial occupation sites associated with the Upper Palaeolithic micro-blade and bifacial stone tool traditions (14C-dated to 19,000-12,000 cal yrs BP) indicate rather pronounced conditions and much lower MAT comparing today. Following a final Pleistocene cooling event, a major climate warming marked the onset of Holocene accompanied by a regional humidity increase promoting the formation of a mixed broadleaved-coniferous oak-dominant taiga, and culminating in the mid-Holocene Climatic Optimum. The appearance of mosaic parklands ca. 5,000-4,000 cal yrs BP. may be partly attributed to the expansion of the Far Eastern Neolithic cultures practicing forest clearance for pastures and dwellings. A progressing landscape opening indicated by the spread of light-demanding thickets and birch-dominated riverine biotopes with Artemisia suggests a further vegetation cover transformation during the late Neolithic

  8. Agroforestry, climate change, and food security

    USDA-ARS?s Scientific Manuscript database

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  9. Tree establishment in floodplain agroforestry practices

    Treesearch

    Daniel C. Dey; John M. Kabrick; Michael A. Gold

    2004-01-01

    The benefits of soil mounding, a cover crop, and various nursery stock types were evaluated for establishing pin and swamp white oaks in floodplain crop fields. The two stock types were 1-0 bareroot and large (3- and 5-gallon) container seedlings grown by the RPMTM method.

  10. Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Kuzyakov, Yakov

    2015-04-01

    Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry

  11. Measuring and modelling interception loss by an isolated olive tree in a traditional olive grove - pasture system

    NASA Astrophysics Data System (ADS)

    Nóbrega, Cristina; Pereira, Fernando L.; Valente, Fernanda

    2015-04-01

    Water losses associated to the rainfall interception process by trees can be an important component of the local hydrologic balance and must be accounted for when implementing any sustainable water management programme. In many dry areas of the Mediterranean region where agro-forestry systems are common, those programmes are crucial to foster adequate water conservation measures. Recent studies have shown that the evaluation of interception loss in sparse forests or tree plantations should be made for individual trees, being the total value determined as the sum of the individual contributions. Following this approach, rainfall interception was measured and modelled over two years, in an isolated Olea europeaea L. tree, in a traditional low-density olive grove in Castelo Branco, central Portugal. Total interception loss over the experimental period was 243.5 mm, on a tree crown projected area basis, corresponding to 18.0% of gross rainfall (Pg). Modelling made for each rainfall event using the sparse version of the Gash model, slightly underestimated interception loss with a value of 240.5 mm, i.e., 17.8 % ofPg. Modelling quality, evaluated according to a number of criteria, was good, allowing the conclusion that the methodology used was adequate. Modelling was also made on a daily basis, i.e., assuming a single storm per rainday. In this case, interception loss was overestimated by 12%, mostly because 72% of all rainfall events lasted for more than a day.

  12. The effect of human activity on the structure and composition of a tropical forest in Puerto Rico

    Treesearch

    D.C. Garcia-Montiel; F.N. Scatena

    1994-01-01

    From European settlement to the 1940s, the Bisley watersheds of the Luquilio Experimental Forest, Puerto Rico, were used for agroforestry, selective logging, charcoal production, and timber management. Each of these activities affected different parts of the landscape in different ways and at different times. After nearly 50 years of unhindered regeneration, six...

  13. Pine straw production: from forest to front yard

    Treesearch

    Janice F. Dyer; Rebecca J. Barlow; John S. Kush; John C. Gilbert

    2012-01-01

    Southern forestry may be undergoing a paradigm shift in which timber production is not necessarily the major reason for owning forested land. However, there remains interest in generating income from the land and landowners are exploring alternatives, including agroforestry practices and production of non-timber forest products (NTFPs). One such alternative more recent...

  14. Shade Tolerance of Festuca paradoxa Desv., a Cool-Season Grass Native to North America

    Treesearch

    Nadia Navarrete-Tindall; Larry Mechlin; J. W. Van Sambeek

    2003-01-01

    Paradox grass (Festuca paradoxa Desv.) is a native cool-season grass found in prairies and forest openings. Paradox grass has not been included in tree plantings. To determine paradox grass adaptation to shaded environmmts, we established a pot experiment in the shade laboratory at the University of Missouri Horticulture and Agroforestry Research...

  15. Land use legacy effects on structure and composition of subtropical dry forests in St. Croix, U.S. Virgin Islands

    Treesearch

    Emily E. Atkinson; Erika Marín-Spiotta

    2015-01-01

    Tropical dry forests are subject to intense human pressure and land change, including conversion to agricultural crops, pasture or agroforestry, and urban encroachment. Decades, and even centuries, of conversion, expansion, regrowth, and changing land-use practices can result in a mosaic of secondary growth patches with different land-use histories. Whereas post-...

  16. Ranking agricultural practices on soil water improvements: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Basche, A.; DeLonge, M. S.; Gonzalez, J.

    2016-12-01

    Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta

  17. Participatory data collection and monitoring of agricultural pest dynamics for climate-resilient coffee production using Tiko'n, a generic tool to develop agroecological food web models

    NASA Astrophysics Data System (ADS)

    Rojas, M.; Malard, J. J.; Adamowski, J. F.; Tuy, H.

    2016-12-01

    Climate variability impacts agricultural processes through many mechanisms. For example, the proliferation of pests and diseases increases with warmer climate and alternated wind patterns, as longer growing seasons allow pest species to complete more reproductive cycles and changes in the weather patterns alter the stages and rates of development of pests and pathogens. Several studies suggest that enhancing plant diversity and complexity in farming systems, such as in agroforestry systems, reduces the vulnerability of farms to extreme climatic events. On the other hand, other authors have argued that vegetation diversity does not necessarily reduce the incidence of pests and diseases, highlighting the importance of understanding how, where and when it is recommendable to diversify vegetation to improve pest and disease control, and emphasising the need for tools to develop, monitor and evaluate agroecosystems. In order to understand how biodiversity can enhance ecosystem services provided by the agroecosystem in the context of climatic variability, it is important to develop comprehensive models that include the role of trophic chains in the regulation of pests, which can be achieved by integrating crop models with pest-predator models, also known as agroecosystem network (AEN) models. Here we present a methodology for the participatory data collection and monitoring necessary for running Tiko'n, an AEN model that can also be coupled to a crop model such as DSSAT. This methodology aims to combine the local and practical knowledge of farmers with the scientific knowledge of entomologists and agronomists, allowing for the simplification of complex ecological networks of plant and insect interactions. This also increases the acceptability, credibility, and comprehension of the model by farmers, allowing them to understand their relationship with the local agroecosystem and their potential to use key agroecosystem principles such as functional diversity to mitigate

  18. Predicting short-term mortality and long-term survival for hospitalized US patients with alcoholic hepatitis.

    PubMed

    Cuthbert, Jennifer A; Arslanlar, Sami; Yepuri, Jay; Montrose, Marc; Ahn, Chul W; Shah, Jessica P

    2014-07-01

    No study has evaluated current scoring systems for their accuracy in predicting short and long-term outcome of alcoholic hepatitis in a US population. We reviewed electronic records for patients with alcoholic liver disease (ALD) admitted to Parkland Memorial Hospital between January 2002 and August 2005. Data and outcomes for 148 of 1,761 admissions meeting pre-defined criteria were collected. The discriminant function (DF) was revised (INRdf) to account for changes in prothrombin time reagents that could potentially affect identification of risk using the previous DF threshold of >32. Admission and theoretical peak scores were calculated by use of the Model for End-stage Liver Disease (MELD). Analysis models compared five different scoring systems. INRdf was closely correlated with the old DF (r (2) = 0.95). Multivariate analysis of the data showed that survival for 28 days was significantly associated with a scoring system using a combination of age, bilirubin, coagulation status, and creatinine (p < 0.001), and an elevated ammonia result within two days of admission (p = 0.012). When peak values for MELD were included, they were the most significant predictor of short-term mortality (p < 0.001), followed by INRdf (p = 0.006). On admission, two scoring systems that identify a subset of patients with severe alcoholic liver disease are able to predict >50 % mortality at four weeks and >80 % mortality at six months without specific treatment.

  19. Design and analysis of mixed cropping experiments for indigenous Pacific Islands

    Treesearch

    Mareko P. Tofinga

    1993-01-01

    Mixed cropping (including agroforestry) often gives yield advan-tages as opposed to monocropping. Many criteria have been used to assess yield advantage in crop mixtures. Some of these are presented. In addition, the relative merits of replacement, additive and bivariate factorial designs are discussed. The concepts of analysis of mixed cropping are applied to an...

  20. Prescribed fire applications in Forest and Woodlands: Integration of models and field studies to guide fire use

    Treesearch

    Kevin C. Ryan; Eric Rigolot; Francisco C. Rego; Herminio Botelho; Jose A. Vega; Paulo M. Fernandes; Tatiana M. Sofronova

    2010-01-01

    Globally prescribed burning is widely used for agro-forestry, restoration, and conservation to modify species composition and stand structure. Commonly stated goals of prescribed burns include to reduce hazardous fuels, improve species’ habitat, reduce the potential for severe fires in the wildland urban interface or protect municipal watersheds. Treatments may focus...

  1. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity

    Treesearch

    Kejia Pang; J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Chung-Ho Lin; Shibu Jose; H. E. Garrett

    2017-01-01

    Annual screenings of forage grasses and legumes for shade tolerance were conducted from 1996 to 2001 in the outdoor Shade Tolerance Screening Laboratory at the Horticulture and Agroforestry Research Center, University of Missouri. Forty-three forages were grown under non-shade (100% of full sunlight), moderate shade (45%), and dense shade (20%) without competition for...

  2. Tree disease and wood decay as agents of environmental and social change

    Treesearch

    Kevin T. Smith

    2018-01-01

    The breakdown or decay of wood is a prominent process in landscape health and disease. The bulk of the energy captured and stored by natural woodlands, orchards, and agroforestry operations is allocated to produce wood. The release of that stored energy and the cycling of the constituent mineral elements into environmental pools and other organisms is through processes...

  3. Greenhouse Gas Emission Mitigation And Agriculture, Trade-off Or Win-win Situation: Bioeconomic Farm Modelling In The Sudanian Area of Burkina Faso

    NASA Astrophysics Data System (ADS)

    Some, T. E.; Barbier, B.

    2015-12-01

    Climate changes talks regularly underline that developing countries' agriculture could play a stronger role in GHGs mitigation strategies and benefit from the Kyoto Protocol program of subsidies. Scientists explain that agriculture can contribute to carbon mitigation by storing more carbon in the soil through greener cropping systems. In this context, a growing number of research projects have started to investigate how developing countries agriculture can contribute to these objectives. The clean development mechanism (CDM) proposed in the Kyoto protocol is one particular policy instrument that can incite farmers to mitigate the GHG balance towards more sequestration and less emission. Some economists such as Michael Porter think that environmental regulation lead to a win-win outcome, in which case subsidies are not necessary. If it is a trade-off between incomes and the environment, subsidies are required. CDM can be mobilized to support the mitigation strategy. Agriculture implies the use of inputs. Reducing the emission implies the reduction of those inputs which will in turn imply a yield decrease. The study aims to assess whether this measure will imply a trade-off between environmental and economic objectives or a win-win situation. I apply this study to the case of small farmers in Burkina Faso through environmental instruments such as the emissions limits and agroforestry using a bioeconomic model, in which the farmers maximize their utility subject to constraints. The study finds that the limitation of emissions in annual crops production involves a trade-off. by impacting negatively their net cash come. By integrating perennial crops in the farming system, the farmers' utility increases. Around 6,118 kg are sequestrated individually. By computing the value on this carbon balance, farmers' net cash incomes go better. Then practicing agroforestry is a win-win situation, as they reach a higher level of income, and reduce emissions. Policymakers must

  4. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    NASA Astrophysics Data System (ADS)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the pattern in the temporal stability of tree growth was clearly related to that one in SWC. Nevertheless, the treatments that represent the mean conditions in growth were not exactly the same than those in SWC, which could be attributable to other characteristics than soil.

  5. Trees' role in nitrogen leaching after organic, mineral fertilization: a greenhouse experiment.

    PubMed

    López-Díaz, M L; Rolo, V; Moreno, G

    2011-01-01

    New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  6. Soil greenhouse gas (GHG) emissions from smallholder crop-livestock systems in Central Kenya

    NASA Astrophysics Data System (ADS)

    Ortiz Gonzalo, Daniel; Vaast, Philippe; de Neergaard, Andreas; Oelofse, Myles; Albrecht, Alain; Rosenstock, Todd S.

    2017-04-01

    Few studies measured empirically greenhouse gas (GHG) emissions in sub-Saharan Africa. More specifically, there is no experimental data on GHG emissions from coffee systems in East Africa and estimations with GHG calculators have shown some limitations. The objectives of our study are to: 1) Quantify soil GHG fluxes in smallholder coffee-dairy farms in Central Kenya and; 2) Compare results with the GHG emissions estimated with GHG calculators. The study area is situated in Murang'a County at 1700 m.a.s.l. on the Eastern slopes of the Aberdares Range, where coffee (Coffee arabica) is cultivated within integrated crop-livestock-agroforestry systems. We carried out GHG measurements along two cropping seasons using non-flow through non-steady static chambers. Sixty rectangular frames (0.355m x 0.255m) were installed at two representative farms, including the three main cropping systems found in the area: 1) Coffee (Coffee arabica); 2) Napier grass (Pennisetum purpureum); 3) Maize intercropped with beans (Zea mays and Phaseolus vulgaris). We used the gas pooling technique to overcome spatial variability and obtain a composite sample from the two treatment chambers: fertilized and non-fertilized. The sampling was performed twice per week during the rainy season and once per week during the dry season. Fertilizer and manure applications were followed by daily measurements during seven days after application. Annual fluxes (cumulative) in coffee plots ranged from 0.8 to 2.1 kg N2O-N ha-1, 6.3 to 8.2 Mg CO2-C ha-1 and -1.3 to -0.8 kg CH4-C ha-1, with higher fluxes during the rainy seasons. Emissions of N2O and CO2 from coffee plots were 20 to 80% higher than those in maize and napier grass. We found significant higher emissions in fertilized hot-spots (45 -190 % higher around coffee bushes perimeter, within maize rows and in napier holes) than in non-fertilized locations (between trees, between rows and between holes). Though this aspect is crucial for upscaling the

  7. The role of trees in agroecology and sustainable agriculture in the tropics.

    PubMed

    Leakey, Roger R B

    2014-01-01

    Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.

  8. Quality and Quantity Evaluations of Shade Grown Forages

    Treesearch

    K. P. Ladyman; M. S. Kerley; R. L. Kallenbach; H. E. Garrett; J. W. Van Sambeek; N. E. Navarrete-Tindall

    2003-01-01

    Seven legumes were grown during the summer-fall of 2000, at the Horticulture and Agroforestry Research Center (39? 01 ' N, 92? 46' W) near New Franklin, MO. The forages were grown in 7.5L white pots placed on light-colored gravel either under full sunlight, 45% sunlight, or 20% sunlight created by a shade cloth over a rectangular frame. Drip irrigation was...

  9. Yapese land classification and use in relation to agroforests

    Treesearch

    Pius Liyagel

    1993-01-01

    Traditional land use classification on Yap Island, especially in regards to agroforestry, is described. Today there is a need to classify land on Yap to protect culturally significant areas and to make the best possible use of the land to support a rapidly growing population. Any new uses of land should be evaluated to assure that actions in one area, even private...

  10. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    PubMed

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright

  11. A two-concentric-loop iterative method in estimation of displacement height and roughness length for momentum and sensible heat.

    PubMed

    Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R

    2008-11-01

    A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds

  12. Sulfamethazine transport in agroforestry and cropland soils

    USDA-ARS?s Scientific Manuscript database

    Knowledge of veterinary antibiotic transport and persistence is critical to understanding environmental risks associated with these potential contaminants. To understand mobility of sulfamethazine (SMZ) and sorption processes involved during SMZ transport in soil, column leaching experiments were p...

  13. The effects of land use change on soil infiltration capacity in China: A meta-analysis.

    PubMed

    Sun, Di; Yang, Hong; Guan, Dexin; Yang, Ming; Wu, Jiabing; Yuan, Fenghui; Jin, Changjie; Wang, Anzhi; Zhang, Yushu

    2018-06-01

    Land use changes are often considered to be the main factors influencing soil infiltration. But the difference of soil infiltration capacity for different land use type is less clear. In this paper, we conduct a meta-analysis of all 42 papers that could be found associated with the effects of land use changes on soil infiltration capacity. The results showed that soil initial and steady infiltration rates increased after land use changes from grassland to forest (+41.35%, /), shrubland to forest (+42.73%, /) and cropland to agroforestry (+70.28%, +84.17%). Soil infiltration rates declined after land use changes from grassland to cropland (/, -45.23%), shrubland to cropland (-64.24%, /) and forest to cropland (-53.58%, -42.15%). It was evident that soil infiltration rates were negatively related to soil bulk density and initial moisture and positively related to soil total porosity and organic matter content. In sum, establishing agroforestry ecosystem was beneficial to improve soil infiltration capacity compare to cropland and plantation, which has important implications for developing sustainable agriculture and forest from the viewpoint of soil and water conservation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The Parkland Burn Center experience with 297 cases of child abuse from 1974 to 2010.

    PubMed

    Hodgman, Erica I; Pastorek, Rachel A; Saeman, Melody R; Cripps, Michael W; Bernstein, Ira H; Wolf, Steven E; Kowalske, Karen J; Arnoldo, Brett D; Phelan, Herb A

    2016-08-01

    Pediatric burns due to abuse are unfortunately relatively common, accounting for 5.8-8.8% of all cases of abuse annually. Our goal was to evaluate our 36-year experience in the evaluation and management of the victims of abuse in the North Texas area. A prospectively maintained database containing records on all admissions from 1974 through 2010 was queried for all patients aged less than 18 years. Patients admitted for management of a non-burn injury were excluded from the analysis. Of 5,553 pediatric burn admissions, 297 (5.3%) were due to abuse. Children with non-accidental injuries tended to be younger (2.1 vs. 5.0 years, p<0.0001) and male (66.0 vs. 56.5%, p=0.0008). Scald was the most common mechanism of injury overall (44.8%), and was also the predominant cause of inflicted burns (89.6 vs. 42.3%, p<0.0001). Multivariate logistic regression identified age, gender, presence of a scald, contact, or chemical burn, and injury to the hands, bilateral feet, buttocks, back, and perineum to be significant predictors of abuse. Victims of abuse were also found to have worse outcomes, including mortality (5.4 vs. 2.3%, p=0.0005). After adjusting for age, mechanism of injury, and burn size, abuse remained a significant predictor of mortality (OR 3.3, 95% CI 1.5-7.2) CONCLUSIONS: Clinicians should approach all burn injuries in young children with a high index of suspicion, but in particular those with scalds, or injuries to the buttocks, perineum, or bilateral feet should provoke suspicion. Burns due to abuse are associated with worse outcomes, including length of stay and mortality. Copyright © 2016. Published by Elsevier Ltd.

  15. Food sovereignty: an alternative paradigm for poverty reduction and biodiversity conservation in Latin America.

    PubMed

    Chappell, M Jahi; Wittman, Hannah; Bacon, Christopher M; Ferguson, Bruce G; Barrios, Luis García; Barrios, Raúl García; Jaffee, Daniel; Lima, Jefferson; Méndez, V Ernesto; Morales, Helda; Soto-Pinto, Lorena; Vandermeer, John; Perfecto, Ivette

    2013-01-01

    Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction.

  16. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.

    PubMed

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to

  18. Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.

    2016-12-01

    In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.

  19. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus.

    PubMed

    Shalygin, Sergei; Shalygina, Regina; Johansen, Jeffrey R; Pietrasiak, Nicole; Berrendero Gómez, Esther; Bohunická, Markéta; Mareš, Jan; Sheil, Christopher A

    2017-08-01

    Two populations of Rivularia-like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase-Escalante National Monument, a desert park-land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae. © 2017 Phycological Society of America.

  20. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields

    PubMed Central

    Classen, Alice; Peters, Marcell K.; Ferger, Stefan W.; Helbig-Bonitz, Maria; Schmack, Julia M.; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K. V.; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf

    2014-01-01

    Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro. PMID:24500173

  1. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  2. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields.

    PubMed

    Classen, Alice; Peters, Marcell K; Ferger, Stefan W; Helbig-Bonitz, Maria; Schmack, Julia M; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K V; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf

    2014-03-22

    Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro.

  3. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  4. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    NASA Astrophysics Data System (ADS)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  5. Food sovereignty: an alternative paradigm for poverty reduction and biodiversity conservation in Latin America

    PubMed Central

    Chappell, M Jahi

    2013-01-01

    Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction. PMID:24555109

  6. Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Skinner, Walter R.

    1997-10-01

    Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of

  7. Polycyclic aromatic hydrocarbon in urban soils of an Eastern European megalopolis: distribution, source identification and cancer risk evaluation

    NASA Astrophysics Data System (ADS)

    Shamilishvily, George; Abakumov, Evgeny; Gabov, Dmitriy

    2018-05-01

    This study explores qualitative and quantitative composition of 15 priority polycyclic aromatic hydrocarbons (PAHs) in urban soils of some parkland, residential and industrial areas of the large industrial centre of Saint Petersburg (Russian Federation) in Eastern Europe. The aim of the study was to test the hypothesis on the PAH loading differences among urban territories with different land use scenarios. Benzo(a)pyrene toxic equivalency factors (TEFs) were used to calculate BaPeq in order to evaluate carcinogenic risk of soil contamination with PAHs. Results of the study demonstrated that soils within residential and industrial areas are characterized by common loads of PAHs generally attributed to high traffic activity in the city. Considerable levels of soil contamination with PAHs were noted. Total PAH concentrations ranged from 0.33 to 8.10 mg kg-1. A larger portion of high-molecular-weight PAHs along with determined molecular ratios suggest the predominance of pyrogenic sources, mainly attributed to combustion of gasoline, diesel and oil. Petrogenic sources of PAHs have a significant portion and define the predominance of low-molecular-weight PAHs associated with petroleum, such as phenanthrene. Derived concentrations of seven carcinogenic PAHs as well as calculated BaPeq were multiple times higher than reported in a number of other studies. The obtained BaPeq concentrations of the sum of 15 PAHs ranged from 0.05 to 1.39 mg kg-1. A vast majority of examined samples showed concentrations above the safe value of 0.6 mg kg-1 (CCME, 2010). However, estimated incremental lifetime risks posed to the population through distinct routes of exposure were in an acceptable range. One-way ANOVA results showed significant differences in total PAHs and the sum of seven carcinogenic PAH concentrations as well as in levels of FLU, PHE, FLT, PYR, BaA, CHR, BbF, BaP and BPE among parkland, residential and industrial land uses, suggesting the influence of the land use factor.

  8. Estimating carbon storage in windbreak trees on U.S. agricultural lands

    Treesearch

    William Ballesteros Possu; James R. Brandle; Grant M. Domke; Michele Schoeneberger; Erin Blankenship

    2016-01-01

    Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15...

  9. Earth observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-08

    ISS007-E-16813 (8 October 2003) --- This view featuring Honolulu, Hawaii was photographed by an Expedition 7 crewmember onboard the International Space Station (ISS). The city is striking for the way it is bound by surrounding geography. Built-up fingers of the city extend northeast onto the steep volcanic slopes and surround the volcanic craters of Punchbowl crater and Diamond Head, leaving undeveloped only parklands and the steepest ridges. They are both tuff cones that formed as magma from the erupting volcano came in contact with ground water at a time when sea levels were higher than they are now. As the water turned to steam, according to NASA scientists, it caused an explosion that formed a hill of ash with a broad crater in the center.

  10. Assessing Farmer Innovations in Agroforestry in Eastern Zambia

    ERIC Educational Resources Information Center

    Katanga, R.; Kabwe, G.; Kuntashula, E.; Mafongoya, P. L.; Phiri, S.

    2007-01-01

    This paper describes farmer innovations on improved fallows developed by researchers to replenish soil fertility. The reasons for the innovations and how these innovations are facilitating wide adoption of improved fallows are discussed. Research designed trial results to evaluate the ecological robustness of these innovations are also analyzed in…

  11. Agroecology of corn production in Tlaxcala, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, M.A.; Trujillo, J.

    1987-06-01

    The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields moremore » than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.« less

  12. Comparative assessment of runoff characteristics under different land use patterns within a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Rai, S. C.; Sharma, E.

    1998-10-01

    Large quantities of sediments leave the Himalaya through its rivers. These rivers are charged with sediments depending on the types of land use in the watersheds. Land use/cover change and hydrology was studied in a watershed in the Sikkim Himalaya. The land use change from forest and agroforestry to open agriculture has increased by 11% from 1988 to 1992. During the same period substantial areas of dense mixed forests have been converted to open mixed and degraded forests as a result of high pressure on natural resources. Stream flow was highest in the rainy season and lowest in summer season in all the streams and all the three years (1994-1997) of the study. The water quality of streams from different microwatersheds varied significantly between seasons and streams. Sediment and nutrient loss was estimated in microwatersheds and soil loss from the total watershed ranged from 4·18 to 8·82 t ha-1 yr-1 during the three-year period of study. The annual total nitrogen loss estimated at the watershed outlet was at a rate of 33 kg ha-1, organic carbon 267 kg ha-1 and total phosphorus 5 kg ha-1. This study suggests that the upland microwatersheds can be hydroecologically sustainable only if good forest cover and dense forests with large cardamom-based agroforestry are maintained.

  13. Forestry in Tanzania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, D.P.

    1983-01-01

    Forest types and plantations, and associated forest industries are described. Forests occupy 47% of the total land area, mostly open miombo woodland dominated by Julbernardia and Brachystegia, with small areas of tropical high forest, mangroves and plantations. About 97% of the total roundwood consumed is used as fuelwood or for charcoal. Early results from village forestry programmes (partially financed by SIDA), the less successful communal village plantations, and agroforestry practices are described briefly. Education, training and the importance of wildlife are discussed.

  14. Geologic map of the national parks in the National Capital region, Washington, D.C., Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Denenny, Danielle

    2006-01-01

    More than 51,000 acres within the National Capital Region (NCR) are administered by the National Park Service (NPS). These parks consist of parkways, trails, statues, monuments, memorials, historic sites, scenic areas, theatres, parks for performing arts, and Civil War battlefields. Although largely established for historical and cultural resources, each park is situated on a landscape that is influenced by bedrock and surficial geology of the central Appalachian mid-Atlantic region. Geologic mapping and field studies conducted for over 130 years are summarized here to provide the earliest history of the parklands. The age, type, names, and the interpreted origin of the rocks, as well as the processes active in the formation of surficial deposits and the landscape are discussed. These data are intended for educational and interpretative programs for visitors as well as the management of natural resources.

  15. Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.

    PubMed

    Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon

    2014-10-01

    Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p < .001), state attention (p < .05), and exercise enjoyment (p < .001). The music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.

  16. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    PubMed

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon

  17. Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia.

    PubMed

    Rate, Andrew W

    2018-06-15

    Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A social assessment of urban parkland: Analyzing park use and meaning to inform management and resilience planning

    Treesearch

    Lindsay K. Campbell; Erika S. Svendsen; Nancy Falxa Sonti; Michelle L. Johnson

    2016-01-01

    Globally, municipalities are tackling climate adaptation and resilience planning. Urban green space has crucial biophysical buffering capacities, but also affects social interactions and human well-being. This paper considers the social dimension of urban green space, through an assessment focused on park use, function, and meanings, and compares results to categories...

  19. Africa's Great Green Wall Initiative: a model for restoration success

    NASA Astrophysics Data System (ADS)

    Berrahmouni, Nora; Sacande, Moctar

    2014-05-01

    The Great Green Wall for the Sahara and the Sahel Initiative was launched to address the increasing challenges of land degradation, desertification and drought, climate change, food insecurity and poverty in more than 20 countries. Restoration of agro-sylvo-pastoral landscapes and degraded lands is one of the priority interventions initiated, enabling the springing up of green nests of life. When complete, the Great Green Wall of Africa will reverse the seemingly unstoppable desertification and address the development of its drylands' inhabitant rural communities. Today's planting of modest seedlings will grow into vast mosaics of forest and agroforestry landscapes and grasslands, which will provide essential ecosystem goods and services, restore lost livelihoods and create new wealth. The ambition of reforestation efforts within this initiative - the like of which the world has never seen before - sounds like an impossible dream. However, learning from past mistakes and capitalising on current advancement in science and technology, it is a reality that is taking root. Following a successful restoration model that RBG Kew experts have devised, we are helping to mobilise, train and support communities in four border regions in Burkina Faso, Mali and Niger. In collaboration with FAO, the Millennium Seed Bank Partnership is using its unique expertise to ensure that seeds of environmentally well-adapted and economically useful local species are collected and planted in communal gardens and village agroforestry systems managed by the communities themselves. In our first year, an estimated total of 162,000 seedlings and 61 kg of seeds from 40 useful native species, including grasses for livestock, have been planted to cover 237 ha of farmer-managed land in 19 villages. The keen interest it has created has indicated that these figures will rise five-fold in the second year. These green bricks are the foundations of the living wall that will eventually reach across the

  20. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia

    PubMed Central

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to

  1. Community-based agroforestry initiatives in Nicaragua and Costa Rica

    Treesearch

    David I. King; Richard B. Chandler; John H. Rappole; Raul Raudales; Rich. Turbey

    2012-01-01

    Curbing the loss of biodiversity is a primary challenge to conservationists. Estimates of current rates of species loss range from 14,000 - 40,000 species per year (Hughes et al., 2007), and although a variety of factors are implicated, habitat loss is repeatedly cited as an important cause (Sala et al., 2000). Most ecosystems are under some degree of threat, however...

  2. Watershed management implications of agroforestry expansion on Minnesota's farmlands

    Treesearch

    C. Hobart Perry; Ryan C. Miller; Anthony R. Kaster; Kenneth N. Brooks

    2000-01-01

    Minnesota’s agricultural landscape is changing. The increasing use of woody perennials in agricultural fields, living snow fences, windbreaks, and riparian areas has important watershed management implications for agricultural watersheds in northwestern Minnesota. These changes in land use could lead to reductions in annual water yield, annual flood peaks, and dry...

  3. Needs and priorities in agroforestry research in the Pacific

    Treesearch

    Roger R. Bay

    1993-01-01

    This paper summarizes a longer presentation of research needs identified by two working groups commissioned by the Land Grant Colleges of the Pacific. Major discussion points by the workshop participants are also summarized.

  4. Predicting Pleistocene climate from vegetation

    NASA Astrophysics Data System (ADS)

    Loehle, C.

    2006-10-01

    Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare

  5. Greenhouse gas mitigation options in the Forest sector of Russia: National and project level assessments

    NASA Astrophysics Data System (ADS)

    Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.

    1996-01-01

    Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  6. The built environment moderates effects of family-based childhood obesity treatment over 2 years.

    PubMed

    Epstein, Leonard H; Raja, Samina; Daniel, Tinuke Oluyomi; Paluch, Rocco A; Wilfley, Denise E; Saelens, Brian E; Roemmich, James N

    2012-10-01

    Research suggests the neighborhood built environment is related to child physical activity and eating. The purpose of this study was to determine if characteristics of the neighborhood environment moderate the relationship between obesity treatment and weight loss, and if outcomes of particular treatments are moderated by built environment characteristics. The relationship between the built environment and standardized BMI (zBMI) changes for 191 8-12-year-old children who participated in one of four randomized, controlled trials of pediatric weight management was assessed using mixed models analysis of covariance. At 2-year follow-up, greater parkland, fewer convenience stores, and fewer supermarkets were associated with greater zBMI reduction across all interventions. No treatments interacted with characteristics of the built environment. Activity- and eating-related built neighborhood characteristics are associated with child success in behavioral obesity treatments. Efficacy may be improved by individualizing treatments based on built environment characteristics.

  7. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    PubMed Central

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  8. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    NASA Astrophysics Data System (ADS)

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  9. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs.

    PubMed

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-04

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  10. The Association of Health Literacy with the Management of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Kumar, Samita

    Introduction: Type 2 Diabetes (T2D) is a chronic metabolic disease characterized by high blood glucose levels in the blood. It is associated with microvascular and macrovascular complications which can lead to potential threats such as to amputations and even death. The irony of the disease is that these complications are preventable with appropriate treatment and self-management. The Emergency Medicine Department (ED) at University of Southwestern Medical center conducted this study to assess health literacy in Parkland Memorial Hospital patients with T2D. The objective for the research study was to assess the association of health literacy with management of T2D. Methods: This was a prospective study with collection of personal health information (PHI) and 30 day-follow up for ED recidivism for patients with T2D presenting to ED with diabetic complications. Eligibility was assessed by pre-screening via EPIC (Electronic Medical Record System for Parkland). The tool for measuring health literacy was the Short Assessment of Health Literacy (SAHL) and data was collected. The cut-off used for the SAHL to determine adequate or inadequate health literacy was 15. Low health literacy is defined as a score of <15 on the short assessment of health literacy (SAHL) scale. Results: The total number of subjects enrolled was 23, with 43.48% males and 56.52% females who spoke either Spanish or English. Mean age of the subjects was 50 years with standard deviation of 10 years. About 74% were white hispanic males. According to the data collected, 30% of the patients demonstrated inadequate health literacy based on SAHL score survey. The total number of subjects required to have adequate power was 400. Since the study could not reach adequate power due to low enrollment, no significant associations could be made from this small sample size. Conclusions: Due to low enrollment period at this time the recommendation would be to continue collecting data to have a larger sample size to

  11. Agricultural Carbon Sinks

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.; Lal, R.

    2016-12-01

    Agriculture is a source or sink of greenhouse gases depending on land use and management. Diverse activities of agroecosystems include croplands, grazing lands, forestlands, integration among these three land use systems (e.g., agroforestry, agro-pastoral, silvo-pastoral, and agro-silvo-pastoral systems), and urban and degraded lands. Conversion of natural to agroecosystems leads to decline in soil organic carbon (SOC) pool because of reduction in input of biomass-C (C­i) and increase in losses (Cl) by mineralization, erosion and leaching (Cil) through changes in micro-climate, components of the hydrologic cycle and energy budgets, and alterations in biogeochemical cycles. Historic loss from soils of agroecosystems may range from 25 to 50% in temperate regions and 50 to 75% in the tropics. The magnitude of SOC depletion is aggravated by soil degradation caused by erosion, salinization, etc. Thus, there exists a soil/ecosystem C sink which can be refilled through best management practices which create a positive C budget (Ci>Cl) and lead to recarbonization. The average rate of SOC sequestration is 0-250 kg C/ha•yr for warm and dry regions vs. 250-500 kgC/ha•yr for cool and moist climates. The potential of C sequestration is estimated at 0.4-1.2 Pg C/yr for cropland; 0.3-0.5 PgC/yr savanna and grasslands; 1.2-1.4 PgC/yr for afforestation, agroforestry, forest succession and peatlands; 0.2-0.5 PgC/yr for forest plantations; 0.3-0.7 PgC/yr for restoration of salt affected soils, and 0.2-0.7 PgC/yr for erosion and desertification control. There is an emission-avoidance by enhancing eco-efficiency of farm operations (e.g., plowing, irrigation, and input of herbicides and pesticides). These strategies are in accord with the implementation of "4 per Thousand" initiative proposed at the COP21 and COP22 Summits in Paris and Marrakech, respectively. Payments to land managers for ecosystem services, based on societal value of soil C, can promote adoption of BMPs, advance

  12. Evaluating the Performance of Volunteers in Mapping Invasive Plants in Public Conservation Lands

    NASA Astrophysics Data System (ADS)

    Jordan, Rebecca C.; Brooks, Wesley R.; Howe, David V.; Ehrenfeld, Joan G.

    2012-02-01

    Citizen science programs are touted as useful tools for engaging the public in science and for collecting important data for scientists and resource managers. To accomplish the latter, it must be shown that data collected by volunteers is sufficiently accurate and reliable. We engaged 119 volunteers over three years to map and estimate abundance of invasive plants in New York and New Jersey parklands. We tested their accuracy via collected pressed samples and by subsampling their transect points. We also compared the performances of volunteers and botanical experts. Our results support the notion that volunteer participation can enhance the data generated by scientists alone. We found that the quality of data collected might be affected by the environment in which the data are collected. We suggest that giving consideration to how people learn can not only help to achieve educational goals but can also help to produce more data to be used in scientific study.

  13. Assessment of multifaceted environmental issues and model development of an Indo-Burma hotspot region.

    PubMed

    Rai, Prabhat Kumar

    2012-01-01

    The present article provides a multifaceted critical research review on environmental issues intimately related with the socio-economy of North East India (NE), a part of Indo-Burma hotspot. Further, the article addresses the issue of sustainable development of NE India through diverse ecological practices inextricably linked with traditional ecological knowledge (TEK). The biodiversity of NE India comprises endemic floral diversity, particularly medicinal plants of importance to pharmaceutical industry, and unique faunal diversity. Nevertheless, it is very unfortunate that this great land of biodiversity is least explored taxonomically as well as biotechnologically, probably due to geographical and political constraints. Different anthropogenic and socio-economic factors have perturbed the pristine ecology of this region, leading to environmental degradation. Also, the practice of unregulated shifting cultivation (jhooming), bamboo flowering, biological invasions and anthropogenic perturbations to biodiversity exacerbate the gloomy situation. Instead of a plethora of policies, the TEK of NE people may be integrated with modern scientific knowledge in order to conserve the environment which is the strong pillar for socio-economic sector here. The aforesaid approach can be practiced in NE India through the broad implementation and extension of agroforestry practices. Further, case studies on Apatanis, ethnomedicinal plants use by indigenous tribal groups and sacred forests are particularly relevant in the context of conservation of environmental health in totality while addressing the socioeconomic impact as well. In context with the prevailing scenarios in this region, we developed an eco-sustainable model for natural resource management through agroforestry practices in order to uplift the social as well as environmental framework.

  14. Aeroponics for adventitious rhizogenesis in evergreen haloxeric tree Tamarix aphylla (L.) Karst.: influence of exogenous auxins and cutting type.

    PubMed

    Sharma, Udit; Kataria, Vinod; Shekhawat, N S

    2018-02-01

    Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla . Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l -1 ) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l -1 . However, stem cuttings treated with a combination of auxins (2.0 mg l -1 IBA and 1.0 mg l -1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.

  15. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers' Net Returns in West Africa

    PubMed Central

    Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  16. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  17. A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists.

    PubMed

    Sanchez-Lucas, Rosa; Mehta, Angela; Valledor, Luis; Cabello-Hurtado, Francisco; Romero-Rodrıguez, M Cristina; Simova-Stoilova, Lyudmila; Demir, Sekvan; Rodriguez-de-Francisco, Luis E; Maldonado-Alconada, Ana M; Jorrin-Prieto, Ana L; Jorrín-Novo, Jesus V

    2016-03-01

    The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia

    PubMed Central

    León, Juan D.; Osorio, Nelson W.

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6–13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems. PMID:24696656

  19. Role of litter turnover in soil quality in tropical degraded lands of Colombia.

    PubMed

    León, Juan D; Osorio, Nelson W

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.

  20. Eco-buffers: A high density agroforestry design using native species

    Treesearch

    William Schroeder

    2012-01-01

    This study showed that Eco-Buffers are characterized by rapid establishment and superior survival when compared to single species buffers. Height of green ash (Fraxinus pennsylvanica Marsh. var. subintegerrima (Vahl.) Fern.) after eight growing seasons averaged 415 cm when growing in an Eco-Buffer compared to 333cm in the single species buffer. Site capture in the Eco-...