Sample records for parp-1-deficient mice demonstrate

  1. Poly(ADP-ribose) polymerase-1 (Parp-1)-deficient mice demonstrate abnormal antibody responses

    PubMed Central

    Ambrose, Helen E; Willimott, Shaun; Beswick, Richard W; Dantzer, Françoise; de Murcia, Josiane Ménissier; Yelamos, José; Wagner, Simon D

    2009-01-01

    Poly(ADP-ribosylation) of acceptor proteins is an epigenetic modification involved in DNA strand break repair, recombination and transcription. Here we provide evidence for the involvement of poly(ADP-ribose) polymerase-1 (Parp-1) in antibody responses. Parp-1−/− mice had increased numbers of T cells and normal numbers of total B cells. Marginal zone B cells were mildly reduced in number, and numbers of follicular B cells were preserved. There were abnormal levels of basal immunoglobulins, with reduced levels of immunoglobulin G2a (IgG2a) and increased levels of IgA and IgG2b. Analysis of specific antibody responses showed that T cell-independent responses were normal but T cell-dependent responses were markedly reduced. Germinal centres were normal in size and number. In vitro purified B cells from Parp-1−/− mice proliferated normally and showed normal IgM secretion, decreased switching to IgG2a but increased IgA secretion. Collectively our results demonstrate that Parp-1 has essential roles in normal T cell-dependent antibody responses and the regulation of isotype expression. We speculate that Parp-1 forms a component of the protein complex involved in resolving the DNA double-strand breaks that occur during class switch recombination. PMID:18778284

  2. Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays.

    PubMed

    Kumar, M A Suresh; Laiakis, Evagelia C; Ghandhi, Shanaz A; Morton, Shad R; Fornace, Albert J; Amundson, Sally A

    2018-05-10

    There is a current interest in the development of biodosimetric methods for rapidly assessing radiation exposure in the wake of a large-scale radiological event. This work was initially focused on determining the exposure dose to an individual using biological indicators. Gene expression signatures show promise for biodosimetric application, but little is known about how these signatures might translate for the assessment of radiological injury in radiosensitive individuals, who comprise a significant proportion of the general population, and who would likely require treatment after exposure to lower doses. Using Parp1 -/- mice as a model radiation-sensitive genotype, we have investigated the effect of this DNA repair deficiency on the gene expression response to radiation. Although Parp1 is known to play general roles in regulating transcription, the pattern of gene expression changes observed in Parp1 -/- mice 24 h postirradiation to a LD 50/30 was remarkably similar to that in wild-type mice after exposure to LD 50/30 . Similar levels of activation of both the p53 and NFκB radiation response pathways were indicated in both strains. In contrast, exposure of wild-type mice to a sublethal dose that was equal to the Parp1 -/- LD 50/30 , which resulted in a lower magnitude gene expression response. Thus, Parp1 -/- mice displayed a heightened gene expression response to radiation, which was more similar to the wild-type response to an equitoxic dose than to an equal absorbed dose. Gene expression classifiers trained on the wild-type data correctly identified all wild-type samples as unexposed, exposed to a sublethal dose or exposed to an LD 50/30 . All unexposed samples from Parp1 -/- mice were also correctly classified with the same gene set, and 80% of irradiated Parp1 -/- samples were identified as exposed to an LD 50/30 . The results of this study suggest that, at least for some pathways that may influence radiosensitivity in humans, specific gene expression

  3. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  4. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xi; Zhou, Xixi; Du, Libo

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects ofmore » arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of

  5. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    PubMed

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  6. Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1.

    PubMed

    Mangerich, Aswin; Herbach, Nadja; Hanf, Benjamin; Fischbach, Arthur; Popp, Oliver; Moreno-Villanueva, María; Bruns, Oliver T; Bürkle, Alexander

    2010-06-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a sensor for DNA strand breaks and some unusual DNA structures and catalyzes poly(ADP-ribosyl)ation of nuclear proteins with NAD(+) serving as substrate. PARP-1 is involved in the regulation of genomic integrity, transcription, inflammation, and cell death. Due to its versatile role, PARP-1 is discussed both as a longevity factor and as an aging-promoting factor. Recently, we generated a mouse model with ectopic integration of full-length hPARP-1 [Mangerich, A., Scherthan, H., Diefenbach, J., Kloz, U., van der Hoeven, F., Beneke, S. and Bürkle, A., 2009. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res. 18, 261-279]. Here, we show that hPARP-1 mice exhibit impaired survival rates accompanied by reduced hair growth and premature development of several inflammation and age-associated pathologies, such as adiposity, kyphosis, nephropathy, dermatitis, pneumonitis, cardiomyopathy, hepatitis, and anemia. Moreover, mutant male mice showed impaired glucose tolerance, yet without developing manifest diabetes. Overall tumor burden was comparable in wild-type and hPARP-1 mice, but tumor spectrum was shifted in mutant mice, showing lower incidence of sarcomas, but increased incidence of carcinomas. Furthermore, DNA repair was delayed in splenocytes of hPARP-1 mice, and gene expression of pro-inflammatory cytokines was dysregulated. Our results suggest that in hPARP-1 mice impaired DNA repair, accompanied by a continuous low-level increase in pro-inflammatory stimuli, causes development of chronic diseases leading to impaired survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  7. 53BP1 depletion causes PARP inhibitor resistance in ATM-deficient breast cancer cells.

    PubMed

    Hong, Ruoxi; Ma, Fei; Zhang, Weimin; Yu, Xiying; Li, Qing; Luo, Yang; Zhu, Changjun; Jiang, Wei; Xu, Binghe

    2016-09-09

    Mutations in DNA damage response factors BRCA1 and BRCA2 confer sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors in breast and ovarian cancers. BRCA1/BRCA2-defective tumors can exhibit resistance to PARP inhibitors via multiple mechanisms, one of which involves loss of 53BP1. Deficiency in the DNA damage response factor ataxia-telangiectasia mutated (ATM) can also sensitize tumors to PARP inhibitors, raising the question of whether the presence or absence of 53BP1 can predict sensitivity of ATM-deficient breast cancer to these inhibitors. Cytotoxicity of PARP inhibitor and ATM inhibitor in breast cancer cell lines was assessed by MTS, colony formation and apoptosis assays. ShRNA lentiviral vectors were used to knockdown 53BP1 expression in breast cancer cell lines. Phospho-ATM and 53BP1 protein expressions were determined in human breast cancer tissues by immunohistochemistry (IHC). We show that inhibiting ATM increased cytotoxicity of PARP inhibitor in triple-negative and non-triple-negative breast cancer cell lines, and depleting the cells of 53BP1 reduced this cytotoxicity. Inhibiting ATM abrogated homologous recombination induced by PARP inhibitor, and down-regulating 53BP1 partially reversed this effect. Further, overall survival was significantly better in triple-negative breast cancer patients with lower levels of phospho-ATM and tended to be better in patients with negative 53BP1. These results suggest that 53BP1 may be a predictor of PARP inhibitor resistance in patients with ATM-deficient tumors.

  8. MicroRNA expression and protein acetylation pattern in respiratory and limb muscles of Parp-1(-/-) and Parp-2(-/-) mice with lung cancer cachexia.

    PubMed

    Chacon-Cabrera, Alba; Fermoselle, Clara; Salmela, Ida; Yelamos, Jose; Barreiro, Esther

    2015-12-01

    Current treatment options for cachexia, which impairs disease prognosis, are limited. Muscle-enriched microRNAs and protein acetylation are involved in muscle wasting including lung cancer (LC) cachexia. Poly(ADP-ribose) polymerases (PARP) are involved in muscle metabolism. We hypothesized that muscle-enriched microRNA, protein hyperacetylation, and expression levels of myogenic transcription factors (MTFs) and downstream targets, muscle loss and function improve in LC cachectic Parp-1(−/−) and Parp-2(−/−) mice. Body and muscle weights, grip strength, muscle phenotype, muscle-enriched microRNAs (miR-1, -133, -206, and -486), protein acetylation, acetylated levels of FoxO1, FoxO3, and PGC-1α, histone deacetylases (HDACs) including SIRT1, MTFs, and downstream targets (α-actin, PGC-1α, and creatine kinase) were evaluated in diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) wild type (WT), Parp-1(−/−) and Parp-2−/− mice. Compared to WT cachectic animals, in both respiratory and limb muscles of Parp-1(−/−) and Parp-2(−/−) cachectic mice: downregulation of muscle-specific microRNAs was counterbalanced especially in gastrocnemius of Parp-1(−/−) mice; increased protein acetylation was attenuated (improvement in HDAC3, SIRT-1, and acetylated FoxO3 levels in both muscles, acetylated FoxO1 levels in the diaphragm); reduced MTFs and creatine kinase levels were mitigated; body and muscle weights, strength, and muscle fiber sizes improved, while tumor weight and growth decreased. These molecular findings may explain the improvements seen in body and muscle weights, limb muscle force and fiber sizes in both Parp-1(−/−) and Parp-2(−/−) cachectic mice. PARP-1 and -2 play a role in cancer-induced cachexia, thus selective pharmacological inhibition of PARP-1 and -2 may be of interest in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significancemore » or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.« less

  10. The NAD+/PARP1/SIRT1 Axis in Aging.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2017-06-01

    NAD+ levels decline with age in diverse animals from Caenorhabditis elegans to mice. Raising NAD+ levels by dietary supplementation with NAD+ precursors, nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), improves mitochondrial function and muscle and neural and melanocyte stem cell function in mice, as well as increases murine life span. Decreased NAD+ levels with age reduce SIRT1 function and reduce the mitochondrial unfolded protein response, which can be overcome by NR supplementation. Decreased NAD+ levels cause NAD+-binding protein DBC1 to form a complex with PARP1, inhibiting poly(adenosine diphosphate-ribose) polymerase (PARP) catalytic activity. Old mice have increased amounts of DBC1-PARP1 complexes, lower PARP activity, increased DNA damage, and reduced nonhomologous end joining and homologous recombination repair. DBC1-PARP1 complexes in old mice can be broken by increasing NAD+ levels through treatment with NMN, reducing DNA damage and restoring PARP activity to youthful levels. The mechanism of declining NAD+ levels and its fundamental importance to aging are yet to be elucidated. There is a correlation of PARP activity with mammalian life span that suggests that NAD+/SIRT1/PARP1 may be more significant than the modest effects on life span observed for NR supplementation in old mice. The NAD+/PARP1/SIRT1 axis may link NAD+ levels and DNA damage with the apparent epigenomic DNA methylation clocks that have been described.

  11. X-Ray Induced DNA Damage and Repair in Germ Cells of PARP1−/− Male Mice

    PubMed Central

    Villani, Paola; Fresegna, Anna Maria; Ranaldi, Roberto; Eleuteri, Patrizia; Paris, Lorena; Pacchierotti, Francesca; Cordelli, Eugenia

    2013-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX. PMID:24009020

  12. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  13. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma.

    PubMed

    Gill, Sonja J; Travers, Jon; Pshenichnaya, Irina; Kogera, Fiona A; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H; Stratton, Michael R; McDermott, Ultan; Jackson, Stephen P; Garnett, Mathew J

    2015-01-01

    Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors.

  14. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  15. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Pshenichnaya, Irina; Kogera, Fiona A.; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H.; Stratton, Michael R.; McDermott, Ultan; Jackson, Stephen P.; Garnett, Mathew J.

    2015-01-01

    Ewing’s sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing’s sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing’s sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing’s sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing’s sarcoma patients with PARP inhibitors. PMID:26505995

  16. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.

    PubMed

    Chen, Wenhua; Guo, Ne; Qi, Minghui; Dai, Haiying; Hong, Minghuang; Guan, Longfei; Huan, Xiajuan; Song, Shanshan; He, Jinxue; Wang, Yingqing; Xi, Yong; Yang, Xinying; Shen, Yanyan; Su, Yi; Sun, Yiming; Gao, Yinglei; Chen, Yi; Ding, Jian; Tang, Yun; Ren, Guobin; Miao, Zehong; Li, Jian

    2017-09-29

    Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially breast and ovarian cancers, and tumor cell lines deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, with the help of molecular docking, we identified a novel series of 2,3-difluorophenyl-linker analogues (15-54) derived from olaparib (1) as PARP1 inhibitors. Lead optimization led to the identification of 47, which showed high selectivity and high potency against PARP1 enzyme (IC 50  = 1.3 nM), V-C8 cells (IC 50  = 0.003 nM), Capan-1 cells (IC 50  = 7.1 nM) and MDA-MB-436 cells (IC 50  = 0.2 nM). Compound 47 had more potent PARP1-DNA trapping and double-strand breaks (DSBs)-induction activities than 1 and induced G2/M arrest and caspase-dependent apoptosis. Compound 47 (50 mg/kg, 94.2%) had a more beneficial effect on tumor growth inhibition than 1 (100 mg/kg, 65.0%) in a BRCA1-mutated xenograft model and significantly inhibited tumor growth (40 mg/kg, 48.1%) in a BRCA2-mutated xenograft model, with no negative influence on the body weight of the mice. Collectively, these data demonstrated that 47 might be an excellent drug candidate for the treatment of cancer, especially for BRCA-deficient tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes

    PubMed Central

    Pieper, Andrew A.; Brat, Daniel J.; Krug, David K.; Watkins, Crystal C.; Gupta, Alok; Blackshaw, Seth; Verma, Ajay; Wang, Zhao-Qi; Snyder, Solomon H.

    1999-01-01

    Streptozotocin (STZ) selectively destroys insulin-producing beta islet cells of the pancreas providing a model of type I diabetes. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme whose overactivation by DNA strand breaks depletes its substrate NAD+ and then ATP, leading to cellular death from energy depletion. We demonstrate DNA damage and a major activation of PARP in pancreatic islets of STZ-treated mice. These mice display a 500% increase in blood glucose and major pancreatic islet damage. In mice with homozygous targeted deletion of PARP (PARP −/−), blood glucose and pancreatic islet structure are normal, indicating virtually total protection from STZ diabetes. Partial protection occurs in PARP +/− animals. Thus, PARP activation may participate in the pathophysiology of type I diabetes, for which PARP inhibitors might afford therapeutic benefit. PMID:10077636

  18. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer

    PubMed Central

    Belz, Jodi E.; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S.; Royce, Darlene B.; Zhang, Di; van de Ven, Anne L.; Liby, Karen T.; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. PMID:29158830

  19. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.

    PubMed

    Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.

  20. The Long Noncoding RNA lncPARP1 Contributes to Progression of Hepatocellular Carcinoma through Upregulation of PARP1.

    PubMed

    Qi, Heqiang; Lu, Yuyan; Lv, Jie; Wu, Huita; Lu, Jing; Zhang, Changmao; Zhang, Sheng; Bao, Qing; Zhang, Xiuming; Xie, Chengrong; Yin, Zhenyu

    2018-05-18

    Hepatocellular carcinoma (HCC) accounts for a large proportion of cancer-associated mortality worldwide. The functional impact of long noncoding RNAs (lncRNAs) in human cancer is not fully understood. Here, we identified a novel oncogenic lncRNA termed lncPARP1, which was significantly upregulated in HCC. Increase of lncPARP1 expression was associated with age, AFP levels, tumor size, recurrence, and poor prognosis of HCC patients. Loss-of-function approaches showed that knockdown of lncPARP1 inhibited proliferation, migration and invasion, while induced apoptosis in HCC cells. Moreover, mechanistic investigation demonstrated that PARP1 was an underlying target of lncPARP1 in HCC. In summary, we provide the first evidence that lncPARP1 exerts an oncogene to promote HCC development and progression, at least in part, by affecting PARP1 expression. ©2018 The Author(s).

  1. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  2. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition.

    PubMed

    Wang, Shuai; Shi, Xiao-Lei; Feng, Min; Wang, Xun; Zhang, Zhi-Heng; Zhao, Xin; Han, Bing; Ma, Hu-Cheng; Dai, Bo; Ding, Yi-Tao

    2016-09-01

    Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    PubMed

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  4. Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

    PubMed Central

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-01-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308

  5. Sick sinus syndrome in HCN1-deficient mice.

    PubMed

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  6. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  7. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells.

    PubMed

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M F; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-12-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure-function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1-PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure-function relationships of natural and artificial PARP1 variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway.

    PubMed

    Luo, Hao; Liang, Hairong; Chen, Jiajia; Xu, Yongchun; Chen, Yuting; Xu, Longmei; Yun, Lin; Liu, Jiaxian; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2017-09-01

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells. © 2017 Wiley Periodicals, Inc.

  9. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype.

    PubMed

    Chacon-Cabrera, Alba; Mateu-Jimenez, Mercè; Langohr, Klaus; Fermoselle, Clara; García-Arumí, Elena; Andreu, Antoni L; Yelamos, Jose; Barreiro, Esther

    2017-12-01

    Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1 -/- ) and Parp-2 -/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1 -/- , and Parp-2 -/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1 -/- and Parp-2 -/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention. © 2017 Wiley Periodicals, Inc.

  10. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  11. Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji

    2009-05-08

    Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependentmore » on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.« less

  12. PARP inhibition: PARP1 and beyond

    PubMed Central

    Rouleau, Michèle; Patel, Anand; Hendzel, Michael J.; Kaufmann, Scott H.; Poirier, Guy G.

    2010-01-01

    Recent findings have thrust poly(ADP-ribose) polymerases (PARPs) into the limelight as potential chemotherapeutic targets. To provide a framework for understanding these recent observations, we review what is known about the structures and functions of the family of PARP enzymes, and then outline a series of questions that should be addressed to guide the rational development of PARP inhibitors as anticancer agents. PMID:20200537

  13. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    DOE PAGES

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less

  14. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model.

    PubMed

    Kuenzler, Michael B; Nuss, Katja; Karol, Agnieszka; Schär, Michael O; Hottiger, Michael; Raniga, Sumit; Kenkel, David; von Rechenberg, Brigitte; Zumstein, Matthias A

    2017-05-01

    Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter.

    PubMed

    Lupey-Green, Lena N; Moquin, Stephanie A; Martin, Kayla A; McDevitt, Shane M; Hulse, Michael; Caruso, Lisa B; Pomerantz, Richard T; Miranda, Jj L; Tempera, Italo

    2017-07-01

    The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice.

    PubMed

    Rasmiena, Aliki A; Barlow, Christopher K; Stefanovic, Nada; Huynh, Kevin; Tan, Ricardo; Sharma, Arpeeta; Tull, Dedreia; de Haan, Judy B; Meikle, Peter J

    2015-12-01

    We previously reported a negative association of circulating plasmalogens (phospholipids with proposed atheroprotective properties) with coronary artery disease. Plasmalogen modulation was previously demonstrated in animals but its effect on atherosclerosis was unknown. We assessed the effect of plasmalogen enrichment on atherosclerosis of murine models with differing levels of oxidative stress. Six-week old ApoE- and ApoE/glutathione peroxidase-1 (GPx1)-deficient mice were fed a high-fat diet with/without 2% batyl alcohol (precursor to plasmalogen synthesis) for 12 weeks. Mass spectrometry analysis of lipids showed that batyl alcohol supplementation to ApoE- and ApoE/GPx1-deficient mice increased the total plasmalogen levels in both plasma and heart. Oxidation of plasmalogen in the treated mice was evident from increased level of plasmalogen oxidative by-product, sn-2 lysophospholipids. Atherosclerotic plaque in the aorta was reduced by 70% (P = 5.69E-07) and 69% (P = 2.00E-04) in treated ApoE- and ApoE/GPx1-deficient mice, respectively. A 40% reduction in plaque (P = 7.74E-03) was also seen in the aortic sinus of only the treated ApoE/GPx1-deficient mice. Only the treated ApoE/GPx1-deficient mice showed a decrease in VCAM-1 staining (-28%, P = 2.43E-02) in the aortic sinus and nitrotyrosine staining (-78%, P = 5.11E-06) in the aorta. Plasmalogen enrichment via batyl alcohol supplementation attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient mice, with a greater effect in the latter group. Plasmalogen enrichment may represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular disease risk, particularly under conditions of elevated oxidative stress and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    PubMed

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors.

    PubMed

    Singh, Sardar Shamshair; Sarma, Jagarlapudi A R P; Narasu, Lakshmi; Dayam, Raveendra; Xu, Shili; Neamati, Nouri

    2014-01-01

    A tremendous research on Poly (ADP-ribose) polymerase (PARP) pertaining to cancer and ischemia is in very rapid progress. PARP's are a specific class of enzymes that repairs the damaged DNA. Recent findings suggest also that PARP-1 is the most abundantly expressed nuclear enzyme which involves in various therapeutic areas like inflammation, stroke, cardiac ischemia, cancer and diabetes. The current review describes the overview on clinical candidates of PARP1 and its current status in clinical trials. This paper also covers identification of potent PARP1 inhibitors using structure and ligand based pharmacophore models. Finally 36 potential hits were identified from the virtual screening of pharmacophore models and screened for PARP1 activity. 15 actives were identified as potent PARP1 inhibitors and further optimization of these analogues are in progress.

  19. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  20. PARP-1 regulates the expression of caspase-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Lang; Hong, Seokheon; Shin, Ki Soon

    2011-05-13

    Highlights: {yields} Knockdown of PARP-1 suppresses the LPS-induced expression of caspase-11. {yields} Knockdown of PARP-1 suppresses the caspase-11 promoter activity following LPS stimulation. {yields} PARP-1 is recruited to the caspase-11 promoter region containing NF-{kappa}B-binding sites following LPS stimulation. {yields} PARP-1 inhibitors cannot suppress the caspase-11 induction. {yields} PARP-1 does not suppress IFN-{gamma}-induced expression of caspase-11. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a multifunctional enzyme that regulates DNA repair, cell death and transcription of inflammatory proteins. In the present study, we present evidence that PARP-1 regulates the expression of caspase-11 following lipopolysaccharide (LPS) stimulation. Knockdown of PARP-1 suppressed the LPS-induced expressionmore » of caspase-11 at both mRNA and protein levels as well as caspase-11 promoter activity. Importantly, PARP-1 was recruited to the caspase-11 promoter region containing predicted nuclear factor (NF)-{kappa}B-binding sites when examined by chromatin immunoprecipitation assay. However, knockdown of PARP-1 did not suppress the expression of caspase-11 induced by interferon-{gamma} that activates signal transducer and activator of transcription 1 but not NF-{kappa}B. PARP-1 enzymatic activity was not required for the caspase-11 upregulation since pharmacological inhibitors of PARP-1 did not suppress the induction of caspase-11. Our results suggest that PARP-1, as a transcriptional cofactor for NF-{kappa}B, regulates the induction of caspase-11 at a transcriptional level.« less

  1. Impaired social recognition memory in Recombination Activating Gene 1-deficient mice

    PubMed Central

    McGowan, Patrick O.; Hope, Thomas A.; Meck, Warren H.; Kelsoe, Garnett; Williams, Christina L.

    2012-01-01

    The Recombination Activating Genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation. PMID:21354115

  2. Parp1 activation in mouse embryonic fibroblasts promotes Pol β-dependent cellular hypersensitivity to alkylation damage

    PubMed Central

    Jelezcova, Elena; Trivedi, Ram N.; Wang, Xiao-hong; Tang, Jiang-bo; Brown, Ashley R.; Goellner, Eva M.; Schamus, Sandy; Fornsaglio, Jamie L.; Sobol, Robert W.

    2010-01-01

    Alkylating agents induce cell death in wild-type (WT) mouse embryonic fibroblasts (MEFs) by multiple mechanisms, including apoptosis, autophagy and necrosis. DNA polymerase β (Pol β) knockout (KO) MEFs are hypersensitive to the cytotoxic effect of alkylating agents, as compared to WT MEFs. To test the hypothesis that Parp1 is preferentially activated by methyl methanesulfonate (MMS) exposure of Pol β KO MEFs, we have examined the relationship between Pol β expression, Parp1 activation and cell survival following MMS exposure in a series of WT and Pol β deficient MEF cell lines. Consistent with our hypothesis, we observed elevated Parp1 activation in Pol β KO MEFs as compared to matched WT MEFs. Both the MMS-induced activation of Parp1 and the MMS-induced cytoxicity of Pol β KO MEFs are attenuated by pre-treatment with the Parp1/Parp2 inhibitor PJ34. Further, elevated Parp1 activation is observed following knockdown (KD) of endogenous Pol β, as compared to WT cells. Pol β KD MEFs are hypersensitive to MMS and both the MMS-induced hypersensitivity and Parp1 activation is prevented by pre-treatment with PJ34. In addition, the MMS-induced cellular sensitivity of Pol β KO MEFs is reversed when Parp1 is also deleted (Pol β/Parp1 double KO MEFs) and we observe no MMS sensitivity differential between Pol β/Parp1 double KO MEFs and those that express recombinant mouse Pol β. These studies suggest that Parp1 may function as a sensor of BER to initiate cell death when BER is aborted or fails. Parp1 may therefore function in BER as a tumor suppressor by initiating cell death and preventing the accumulation of cells with chromosomal damage due to a BER defect. PMID:20096707

  3. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b

    PubMed Central

    Dash, Sabyasachi; Balasubramaniam, Muthukumar; Godino, Arthur; Villalta, Fernando; Calipari, Erin S.; Dash, Chandravanu

    2017-01-01

    Abstract Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA “miR-125b” plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3’-untranslated region (3’UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3’UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b’s regulatory effect on PARP-1 3’UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action. PMID:28828398

  4. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-09

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia.

    PubMed

    del Moral, Raimundo M G; Gómez-Morales, Mercedes; Hernández-Cortés, Pedro; Aguilar, David; Caballero, Trinidad; Aneiros-Fernández, Jose; Caba-Molina, Mercedes; Rodríguez-Martínez, M Dolores; Peralta, Andreina; Galindo-Moreno, Pablo; Osuna, Antonio; Oliver, F Javier; del Moral, Raimundo G; O'Valle, Francisco

    2013-01-01

    We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  6. Poly(ADP-ribose) Polymerase 1, PARP1, modifies EZH2 and inhibits EZH2 histone methyltransferase activity after DNA damage

    PubMed Central

    Lauretti, Elisabetta; Hulse, Michael; Siciliano, Micheal; Lupey-Green, Lena N.; Abraham, Aaron; Skorski, Tomasz; Tempera, Italo

    2018-01-01

    The enzyme Poly(ADP-ribose) polymerase 1 (PARP1) plays a very important role in the DNA damage response, but its role in numerous aspects is not fully understood. We recently showed that in the absence of DNA damage, PARP1 regulates the expression of the chromatin-modifying enzyme EZH2. Work from other groups has shown that EZH2 participates in the DNA damage response. These combined data suggest that EZH2 could be a target of PARP1 in both untreated and genotoxic agent-treated conditions. In this work we tested the hypothesis that, in response to DNA damage, PARP1 regulates EZH2 activity. Here we report that PARP1 regulates EZH2 activity after DNA damage. In particular, we find that EZH2 is a direct target of PARP1 upon induction of alkylating and UV-induced DNA damage in cells and in vitro. PARylation of EZH2 inhibits EZH2 histone methyltransferase (H3K27me) enzymatic activity. We observed in cells that the induction of PARP1 activity by DNA alkylating agents decreases the association of EZH2 with chromatin, and PARylation of histone H3 reduces EZH2 affinity for its target histone H3. Our findings establish that PARP1 and PARylation are important regulators of EZH2 function and link EZH2-mediated heterochromatin formation, DNA damage and PARylation. These findings may also have clinical implications, as they suggest that inhibitors of EZH2 can improve anti-tumor effects of PARP1 inhibitors in BRCA1/2-deficient cancers. PMID:29535829

  7. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  8. PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications.

    PubMed

    Barreiro, Esther; Gea, Joaquim

    2018-01-26

    Skeletal muscle dysfunction and mass loss is a characteristic feature in patients with chronic diseases including cancer and acute conditions such as critical illness. Maintenance of an adequate muscle mass is crucial for the patients' prognosis irrespective of the underlying condition. Moreover, aging-related sarcopenia may further aggravate the muscle wasting process associated with chronic diseases and cancer. Poly(adenosine diphosphate-ribose) polymerase (PARP) activation has been demonstrated to contribute to the pathophysiology of muscle mass loss and dysfunction in animal models of cancer-induced cachexia. Genetic inhibition of PARP activity attenuated the deleterious effects seen on depleted muscles in mouse models of oncologic cachexia. In the present minireview the mechanisms whereby PARP activity inhibition may improve muscle mass and performance in models of cancer-induced cachexia are discussed. Specifically, the beneficial effects of inhibition of PARP activity on attenuation of increased oxidative stress, protein catabolism, poor muscle anabolism and mitochondrial content and epigenetic modulation of muscle phenotype are reviewed in this article. Finally, the potential therapeutic strategies of pharmacological PARP activity inhibition for the treatment of cancer-induced cachexia are also being described in this review.

  9. Isoflurane anesthesia exacerbates learning and memory impairment in zinc-deficient APP/PS1 transgenic mice.

    PubMed

    Feng, Chunsheng; Liu, Ya; Yuan, Ye; Cui, Weiwei; Zheng, Feng; Ma, Yuan; Piao, Meihua

    2016-12-01

    Zinc (Zn) is known to play crucial roles in numerous brain functions including learning and memory. Zn deficiency is believed to be widespread throughout the world, particularly in patients with Alzheimer's disease (AD). A number of studies have shown that volatile anesthetics, such as isoflurane, might be potential risk factors for the development of AD. However, whether isoflurane exposure accelerates the process of AD and cognitive impairment in AD patients with Zn deficiency is yet to be documented. The aim of the present study was to explore the effects of 1.4% isoflurane exposure for 2 h on learning and memory function, and neuropathogenesis in 10-month-old Zn-adequate, Zn-deficient, and Zn-treated APP/PS1 mice with the following parameters: behavioral tests, neuronal apoptosis, Aβ, and tau pathology. The results demonstrated that isoflurane exposure showed no impact on learning and memory function, but induced transient elevation of neuroapoptosis in Zn-adequate APP/PS1 mice. Exposure of isoflurane exhibited significant neuroapoptosis, Aβ generation, tau phosphorylation, and learning and memory impairment in APP/PS1 mice in the presence of Zn deficiency. Appropriate Zn treatment improved learning and memory function, and prevented isoflurane-induced neuroapoptosis in APP/PS1 mice. Isoflurane exposure may cause potential neurotoxicity, which is tolerated to some extent in Zn-adequate APP/PS1 mice. When this tolerance is limited, like in AD with Zn deficiency, isoflurane exposure markedly exacerbated learning and memory impairment, and neuropathology, indicating that AD patients with certain conditions such as Zn deficiency may be vulnerable to volatile anesthetic isoflurane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro

    PubMed Central

    Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.

    2016-01-01

    The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915

  11. Trial watch – inhibiting PARP enzymes for anticancer therapy

    PubMed Central

    Sistigu, Antonella; Manic, Gwenola; Obrist, Florine; Vitale, Ilio

    2016-01-01

    ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients. PMID:27308587

  12. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  13. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types

    PubMed Central

    Ossovskaya, Valeria; Koo, Ingrid Chou; Kaldjian, Eric P.; Alvares, Christopher; Sherman, Barry M.

    2010-01-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair and is implicated in pathways of tumorigenesis. PARP inhibitors have gained recent attention as rationally designed therapeutics for the treatment of several malignancies, particularly those associated with dysfunctional DNA repair pathways, including triple-negative breast cancer (TNBC). We investigated the PARP1 gene expression profile in surgical samples from more than 8,000 primary malignant and normal human tissues. PARP1 expression was found to be significantly increased in several malignant tissues, including those isolated from patients with breast, uterine, lung, ovarian, and skin cancers, and non-Hodgkin’s lymphoma. Within breast infiltrating ductal carcinoma (IDC) samples tested, mean PARP1 expression was significantly higher relative to normal breast tissue, with over 30% of IDC samples demonstrating upregulation of PARP1, compared with 2.9% of normal tissues. Because of known DNA repair defects, including BRCA1 dysfunction, associated with TNBC, exploration of PARP1 expression in breast cancers related to expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) led to the observation that negative expression of any of the 3 receptors was associated with upregulation of PARP1 expression, compared with receptor-positive tissues. To validate these observations, an independent set of breast adenocarcinomas was evaluated and demonstrated >2-fold upregulation of PARP1 in approximately 70% of primary breast adenocarcinomas, including TNBC, compared with syngeneic nonmalignant breast tissues. Immunohistochemistry (IHC) showed that upregulation of the PARP1 gene was consistent with increased protein expression in TNBC. These analyses suggest a potential biological role for PARP1 in several distinct malignancies, including TNBC. Further investigation of PARP1 as a biomarker for the therapeutic activity of PARP inhibitor

  15. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transcriptional Control by PARP-1: Chromatin Modulation, Enhancer-binding, Coregulation, and Insulation

    PubMed Central

    Kraus, W. Lee

    2008-01-01

    Summary The regulation of gene expression requires a wide array of protein factors that can modulate chromatin structure, act at enhancers, function as transcriptional coregulators, or regulate insulator function. Poly(ADP-ribose) polymerase-1 (PARP-1), an abundant and ubiquitous nuclear enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been implicated in all of these functions. Recent biochemical, genomic, proteomic, and cell-based studies have highlighted the role of PARP-1 in each of these processes and provided new insights about the molecular mechanisms governing PARP-1-dependent regulation of gene expression. In addition, these studies have demonstrated how PARP-1 functions as an integral part of cellular signaling pathways that culminate in gene regulatory outcomes. PMID:18450439

  17. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  18. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  19. Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    PubMed Central

    Boamah, Ernest K.; Kotova, Elena; Garabedian, Mikael; Jarnik, Michael; Tulin, Alexei V.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis. PMID:22242017

  20. Increased ethanol preference and serotonin 1A receptor-dependent attenuation of ethanol-induced hypothermia in PACAP-deficient mice.

    PubMed

    Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice.

    PubMed

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-08-10

    The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding was not significantly different between the genotypes. Present results indicate that the effects of Wfs1-deficiency on behavioral rhythmicity are subtle suggesting that Wfs1 is not a major player in the neural networks responsible for circadian rhythmicity of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  3. Circadian behaviour in neuroglobin deficient mice.

    PubMed

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  4. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    PubMed

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  5. Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice1

    PubMed Central

    Dicken, Cary L.; Israel, Davelene D.; Davis, Joe B.; Sun, Yan; Shu, Jun; Hardin, John; Neal-Perry, Genevieve

    2012-01-01

    ABSTRACT The mechanism(s) by which vitamin D3 regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D3 deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D3) null mice to study the effect of vitamin D3 deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D3-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D3 deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D3-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D3-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D3-replete diet. Estrous cycles were restored when vitamin D3-deficient Cyp27b1 null young adult females were transferred to a vitamin D3-replete diet. This study is the first to demonstrate that peripubertal vitamin D3 sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D3 is a key regulator of neuroendocrine and ovarian physiology. PMID:22572998

  6. Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing

    PubMed Central

    McNamee, Kay; Przybycien, Paulina M.; Lu, Xin; Williams, Richard O.; Bou-Gharios, George; Saklatvala, Jeremy; Dean, Jonathan L. E.

    2013-01-01

    There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27kip1 and p21waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation. PMID:24143227

  7. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype

    PubMed Central

    Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.

    2016-01-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  9. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    PubMed

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice.

    PubMed

    Yang, Ya-Li; Sun, Li-Feng; Yu, Yan; Xiao, Tian-Xia; Wang, Bao-Bei; Ren, Pei-Gen; Tang, Hui-Ru; Zhang, Jian V

    2018-05-24

    Polycystic ovary syndrome (PCOS) is a complex genetic disease with multifarious phenotypes. Many researches use dehydroepiandrosterone (DHEA) to induce PCOS in pubertal mouse models. The aim of this study was to investigate the role of GPR1 in dehydroepiandrosterone (DHEA)-induced hyperandrogenized mice. Prepubertal C57BL/6 mice (25 days of age) and Gpr1-deficient mice were each divided into two groups and injected daily with sesame oil with or without DHEA (6 mg/100 g) for 21 consecutive days. Hematoxylin and eosin (H&E) staining was performed to determine the characteristics of the DHEA-treated ovaries. Real-time PCR was used to examine steroid synthesis enzymes gene expression. Granulosa cell was cultured to explore the mechanism of DHEA-induced, GPR1-mediated estradiol secretion. DHEA treatment induced some aspects of PCOS in wild-type mice, such as increased body weight, elevated serum testosterone, increased number of small, cystic, atretic follicles, and absence of corpus luteum in ovaries. However, Gpr1 deficiency significantly attenuated the DHEA-induced weight gain and ovarian phenotype, improving steroidogenesis in ovaries and estradiol synthesis in cultured granulosa cells, partially through mTOR signaling. In conclusion, Gpr1 deficiency leads to the improvement of steroid synthesis in mice hyperandrogenized with DHEA, indicating that GPR1 may be a therapeutic target for DHEA-induced hyperandrogenism.

  11. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  12. MCPIP1 Deficiency in Mice Results in Severe Anemia Related to Autoimmune Mechanisms

    PubMed Central

    Zhou, Zhou; Miao, Ruidong; Huang, Shengping; Elder, Brandon; Quinn, Tim; Papasian, Christopher J.; Zhang, Jifeng; Fan, Daping; Chen, Y. Eugene; Fu, Mingui

    2013-01-01

    Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12) deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease. PMID:24324805

  13. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  14. FAF1 mediates regulated necrosis through PARP1 activation upon oxidative stress leading to dopaminergic neurodegeneration

    PubMed Central

    Yu, Changsun; Kim, Bok-seok; Kim, Eunhee

    2016-01-01

    Cumulative damage caused by oxidative stress results in diverse pathological conditions. Therefore, elucidating the molecular mechanisms underlying cell death following oxidative stress is important. Here, we describe a novel role for Fas-associated factor 1 (FAF1) as a crucial regulator of necrotic cell death elicited by hydrogen peroxide. Upon oxidative insult, FAF1 translocated from the cytoplasm to the nucleus and promoted the catalytic activation of poly(ADP-ribose) polymerase 1 (PARP1) through physical interaction. Moreover, FAF1 depletion prevented PARP1-linked downstream events involved in the triggering of cell death, including energetic collapse, mitochondrial depolarization and nuclear translocation of apoptosis-inducing factor (AIF), implying that FAF1 has a key role in PARP1-dependent necrosis in response to oxidative stress. We further investigated whether FAF1 might contribute to the pathogenesis of Parkinson's disease through excessive PARP1 activation. Indeed, the overexpression of FAF1 using a recombinant adeno-associated virus system in the mouse ventral midbrain promoted PARP1 activation and dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Collectively, our data demonstrate the presence of an FAF1PARP1 axis that is involved in oxidative stress-induced necrosis and in the pathology of Parkinson's disease. PMID:27662363

  15. Structural Implications for Selective Targeting of PARPs.

    PubMed

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  16. Structural Implications for Selective Targeting of PARPs

    PubMed Central

    Steffen, Jamin D.; Brody, Jonathan R.; Armen, Roger S.; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD+ as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed “synthetic lethality.” In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients. PMID:24392349

  17. The PARP1-Siah1 Axis Controls HIV-1 Transcription and Expression of Siah1 Substrates.

    PubMed

    Yu, Dan; Liu, Rongdiao; Yang, Geng; Zhou, Qiang

    2018-06-26

    Recent studies have revealed a key role of PARP1 that catalyzes the poly-ADP-ribosylation (PARylation) of substrates in regulating gene transcription. We show here that HIV-1 transcriptional activation also requires PARP1 activity. Because efficient HIV-1 transactivation is known to depend on the ELL2-containing super elongation complex (SEC), we investigated the functional relationship between PARP1 and ELL2-SEC in HIV-1 transcriptional control. We show that PARP1 elevates ELL2 protein levels to form more ELL2-SEC in cells. This effect is caused by PARP1's suppression of expression of Siah1, an E3 ubiquitin ligase for ELL2, at both mRNA and protein levels. At the mRNA level, PARP1 coordinates with the co-repressor NCoR to suppress Siah1 transcription. At the protein level, PARP1 promotes Siah1 proteolysis, likely through inducing PARylation-dependent ubiquitination (PARdU) of Siah1. Thus, a PARP1-Siah1 axis activates HIV-1 transcription and controls the expression of ELL2 and other Siah1 substrates. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS.

    PubMed

    Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J

    2017-09-01

    Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ( 1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD + ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD + levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD + levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD + levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD + depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD + levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD + would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.

    2013-01-01

    Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an

  20. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  1. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides

    PubMed Central

    Grond, Susanne; Eichmann, Thomas O.; Dubrac, Sandrine; Kolb, Dagmar; Schmuth, Matthias; Fischer, Judith; Crumrine, Debra; Elias, Peter M.; Haemmerle, Guenter; Zechner, Rudolf; Lass, Achim; Radner, Franz P.W.

    2017-01-01

    Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency. PMID:27751867

  2. Signaling Mechanism of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Inflammatory Diseases

    PubMed Central

    Ba, Xueqing; Garg, Nisha Jain

    2011-01-01

    Poly(ADP-ribosyl)ation, attaching the ADP-ribose polymer chain to the receptor protein, is a unique posttranslational modification. Poly(ADP-ribose) polymerase-1 (PARP-1) is a well-characterized member of the PARP family. In this review, we provide a general update on molecular structure and structure-based activity of this enzyme. However, we mainly focus on the roles of PARP-1 in inflammatory diseases. Specifically, we discuss the signaling pathway context that PARP-1 is involved in to regulate the pathogenesis of inflammation. PARP-1 facilitates diverse inflammatory responses by promoting inflammation-relevant gene expression, such as cytokines, oxidation-reduction–related enzymes, and adhesion molecules. Excessive activation of PARP-1 induces mitochondria-associated cell death in injured tissues and constitutes another mechanism for exacerbating inflammation. PMID:21356345

  3. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Chen, X; Cvetkovic, D

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals weremore » euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.« less

  4. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    PubMed

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  5. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    PubMed

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yan; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; Li, Guodong

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in micemore » leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.« less

  7. Angiopoietin-1 deficiency increases tumor metastasis in mice.

    PubMed

    Michael, Iacovos P; Orebrand, Martina; Lima, Marta; Pereira, Beatriz; Volpert, Olga; Quaggin, Susan E; Jeansson, Marie

    2017-08-11

    Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.

  8. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    PubMed

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  9. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  10. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer.

    PubMed

    Makvandi, Mehran; Pantel, Austin; Schwartz, Lauren; Schubert, Erin; Xu, Kuiying; Hsieh, Chia-Ju; Hou, Catherine; Kim, Hyoung; Weng, Chi-Chang; Winters, Harrison; Doot, Robert; Farwell, Michael D; Pryma, Daniel A; Greenberg, Roger A; Mankoff, David A; Simpkins, Fiona; Mach, Robert H; Lin, Lilie L

    2018-05-01

    Poly(ADP-ribose) polymerase (PARP) inhibitors are effective in a broad population of patients with ovarian cancer; however, resistance caused by low enzyme expression of the drug target PARP-1 remains to be clinically evaluated in this context. We hypothesize that PARP-1 expression is variable in ovarian cancer and can be quantified in primary and metastatic disease using a novel PET imaging agent. We used a translational approach to describe the significance of PET imaging of PARP-1 in ovarian cancer. First, we produced PARP1-KO ovarian cancer cell lines using CRISPR/Cas9 gene editing to test the loss of PARP-1 as a resistance mechanism to all clinically used PARP inhibitors. Next, we performed preclinical microPET imaging studies using ovarian cancer patient-derived xenografts in mouse models. Finally, in a phase I PET imaging clinical trial we explored PET imaging as a regional marker of PARP-1 expression in primary and metastatic disease through correlative tissue histology. We found that deletion of PARP1 causes resistance to all PARP inhibitors in vitro, and microPET imaging provides proof of concept as an approach to quantify PARP-1 in vivo. Clinically, we observed a spectrum of standard uptake values (SUVs) ranging from 2-12 for PARP-1 in tumors. In addition, we found a positive correlation between PET SUVs and fluorescent immunohistochemistry for PARP-1 (r2 = 0.60). This work confirms the translational potential of a PARP-1 PET imaging agent and supports future clinical trials to test PARP-1 expression as a method to stratify patients for PARP inhibitor therapy. Clinicaltrials.gov NCT02637934. Research reported in this publication was supported by the Department of Defense OC160269, a Basser Center team science grant, NIH National Cancer Institute R01CA174904, a Department of Energy training grant DE-SC0012476, Abramson Cancer Center Radiation Oncology pilot grants, the Marsha Rivkin Foundation, Kaleidoscope of Hope Foundation, and Paul Calabresi K12

  11. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  12. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  13. Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity.

    PubMed

    Porcelli, Letizia; Quatrale, Anna E; Mantuano, Paola; Leo, Maria G; Silvestris, Nicola; Rolland, Jean F; Carioggia, Enza; Lioce, Marco; Paradiso, Angelo; Azzariti, Amalia

    2013-06-01

    Cancer cells may use PARP enzymes and Homologous Recombination to repair single and double strand breaks caused by genotoxic insults. In this study, the PARP-1 inhibitor Rucaparib was utilized to increase the sensitivity to chemoradiotherapy treatment in BRCA-2-deficient and -proficient pancreatic cancer cells. We used the pancreatic cancer cell lines, Capan-1 with mutated BRCA-2 and Panc-1, AsPC-1 and MiaPaCa-2 with BRCA-1/2 wild type. Cells were treated with Rucaparib and/or radiotherapy (4-10 Gy) plus Gemcitabine then the capability to proliferate was evaluated by colony formation, cell counting and MTT assays. Flow cytometry, immunocytochemistry and western blotting were utilized to assess cell response to Rucaparib plus irradiation. The antitumour effectiveness of combining the PARP-1 inhibitor before, together and after radiotherapy evidenced the first as the optimal schedule in blocking cell growth. Pre-exposure to Rucaparib increased the cytotoxicity of Gemcitabine plus radiotherapy by heavily inducing the accumulation of cells in G2/M phase, impairing mitosis and finally inducing apoptosis and authophagy. The upregulation of p-Akt and downregulation of p53 were evidenced in MiaPaCa-2 which displayed replication stress features. For the first time, the rationale of using a PARP inhibitor as chemoradiosensitizer in pancreatic cancer models has been hypothesized and demonstrated. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Huestis, Juliana; Xu, Huan; Burchiel, Scott W.; Hudson, Laurie G.; Liu, Ke Jian

    2016-01-01

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis. PMID:27741521

  15. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite.

    PubMed

    Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Xu, Huan; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2016-12-06

    Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis.

  16. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  17. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma

    PubMed Central

    Brenner, J. Chad; Feng, Felix Y.; Han, Sumin; Patel, Sonam; Goyal, Siddharth V.; Bou-Maroun, Laura M.; Liu, Meilan; Lonigro, Robert; Prensner, John R.; Tomlins, Scott A.; Chinnaiyan, Arul M.

    2012-01-01

    Ewing's sarcoma family tumors (ESFTs) are aggressive malignancies which frequently harbor characteristic EWS-FLI1 or EWS-ERG genomic fusions. Here we report that these fusion products interact with the DNA damage response protein and transcriptional co-regulator PARP-1. ESFT cells, primary tumor xenografts and tumor metastases were all highly sensitive to PARP1 inhibition. Addition of a PARP1 inhibitor to the second-line chemotherapeutic agent temozolamide resulted in complete responses of all treated tumors in an EWS-FLI1-driven mouse xenograft model of ESFT. Mechanistic investigations revealed that DNA damage induced by expression of EWS-FLI1 or EWS-ERG fusion genes was potentiated by PARP1 inhibition in ESFT cell lines. Notably, EWS-FLI1 fusion genes acted in a positive feedback loop to maintain the expression of PARP1, which was required for EWS-FLI-mediated transcription, thereby enforcing oncogene-dependent sensitivity to PARP-1 inhibition. Together, our findings offer a strong preclinical rationale to target the EWS-FLI1: PARP1 intersection as a therapeutic strategy to improve the treatment of Ewing's sarcoma family tumors. PMID:22287547

  18. Autoimmune response to PARP and BRCA1/BRCA2 in cancer

    PubMed Central

    Zhu, Qing; Han, Su-Xia; Zhou, Cong-Ya; Cai, Meng-Jiao; Dai, Li-Ping; Zhang, Jian-Ying

    2015-01-01

    Purpose To determine the role of autoantibodies to PARP1 and BRCA1/BRCA2 which were involved in the synthetic lethal interaction in cancer. Methods Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect autoantibodies to PARP1 and BRCA1/BRCA2 in 618 serum samples including 131 from breast cancer, 94 from lung cancer, 34 from ovarian cancer, 107 from prostate cancer, 76 from liver cancer, 41 from pancreatic cancer and 135 from normal individuals. The positive sera with ELISA were confirmed by Western blot. Immunohistochemistry was used to examine the expression of PARP1 and BRCA1/BRCA2 in breast cancer. Results Autoantibody frequency to PARP1, BRCA1, and BRCA2 in cancer varied from 0% to 50%. When the sera from cancer patients were tested for the presence of autoantibodies to PARP1 and BRCA1/BRCA2, the autoantibody responses slightly decreased and the positive autoantibody reactions varied from 0% to 50.0%. This was significantly higher autoantibody responses to PARP1 and BRCA1/BRCA2 (especially to PARP1 and BRCA1) in ovarian cancer and breast cancer compared to normal control sera (P < 0.001 and P < 0.01). Immunohistochemistry indicated that Pathology Grade at diagnosis to PARP1 expression in breast cancer was different (P < 0.05). Conclusions Different cancers have different profiles of autoantibodies. The autoantibodies to proteins involving the synthetic lethal interactions would be novel serological biomarker in some selective cancers. PMID:25865228

  19. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  20. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    PubMed

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  1. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  2. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia

    PubMed Central

    Herriott, Ashleigh; Tudhope, Susan J.; Junge, Gesa; Rodrigues, Natalie; Patterson, Miranda J.; Woodhouse, Laura; Lunec, John; Hunter, Jill E.; Mulligan, Evan A.; Cole, Michael; Allinson, Lisa M.; Wallis, Jonathan P.; Marshall, Scott; Wang, Evelyn; Curtin, Nicola J.; Willmore, Elaine

    2015-01-01

    In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors. We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 – 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 – 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2′-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function. PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib. PMID:26539646

  3. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice.

    PubMed

    Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M

    2018-05-01

    Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  5. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice

    PubMed Central

    Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David

    2016-01-01

    In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878

  6. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    PubMed

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  7. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  8. Commensal Microbiota Contributes to Chronic Endocarditis in TAX1BP1 Deficient Mice

    PubMed Central

    Nakano, Satoko; Ikebe, Emi; Tsukamoto, Yoshiyuki; Wang, Yan; Matsumoto, Takashi; Mitsui, Takahiro; Yahiro, Takaaki; Inoue, Kunimitsu; Kawazato, Hiroaki; Yasuda, Aiko; Ito, Kanako; Yokoyama, Shigeo; Takahashi, Naohiko; Hori, Mitsuo; Shimada, Tatsuo; Moriyama, Masatsugu; Kubota, Toshiaki; Ono, Katsushige; Fujibuchi, Wataru; Jeang, Kuan-Teh; Iha, Hidekatsu; Nishizono, Akira

    2013-01-01

    Tax1-binding protein 1 (Tax1bp1) negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO) mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old) revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3), CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1) exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced ‘germ free’ status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named ‘pseudo-infective endocarditis’ were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction. PMID:24086273

  9. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  10. Iron Overload and Heart Fibrosis in Mice Deficient for Both β2-Microglobulin and Rag1

    PubMed Central

    Santos, Manuela M.; de Sousa, Maria; Rademakers, Luke H. P. M.; Clevers, Hans; Marx, J. J. M.; Schilham, Marco W.

    2000-01-01

    Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, a β2-microglobulin (β2m)-associated major histocompatibility complex class I-like protein. Accordingly, mutant β2m−/− mice have increased intestinal iron absorption and develop parenchymal iron overload in the liver. In humans, other genetic and environmental factors have been suggested to influence the pathology and severity of HH. Previously, an association has been reported between low numbers of lymphocytes and the severity of clinical expression of the iron overload in HH. In the present study, the effect of a total absence of lymphocytes on iron overload was investigated by crossing β2m−/− mice (which develop iron overload resembling human disease) with mice deficient in recombinase activator gene 1 (Rag1), which is required for normal B and T lymphocyte development. Iron overload was more severe in β2mRag1 double-deficient mice than in each of the single deficient mice, with iron accumulation in parenchymal cells of the liver, in acinar cells of the pancreas, and in heart myocytes. With increasing age β2mRag1−/− mice develop extensive heart fibrosis, which could be prevented by reconstitution with normal hematopoietic cells. Thus, the development of iron-mediated cellular damage is substantially enhanced when a Rag1 mutation, which causes a lack of mature lymphocytes, is introduced into β2m−/− mice. Mice deficient in β2m and Rag1 thus offer a new experimental model of iron-related cardiomyopathy. PMID:11106561

  11. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  12. A PARP1-ERK2 synergism is required for the induction of LTP.

    PubMed

    Visochek, L; Grigoryan, G; Kalal, A; Milshtein-Parush, H; Gazit, N; Slutsky, I; Yeheskel, A; Shainberg, A; Castiel, A; Seger, R; Langelier, M F; Dantzer, F; Pascal, J M; Segal, M; Cohen-Armon, M

    2016-04-28

    Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.

  13. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    PubMed

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  14. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice. [X Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-04-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F/sub 1/ (BLCF/sub 1/) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF/sub 1/ mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (..mu..-suppressed) BLCF/sub 1/ mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the ..mu..-suppressed mice that resisted a sporozoite challenge suggests amore » minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF/sub 1/ mice against a P. berghei sporozoite infection.« less

  15. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent.

    PubMed

    Seiffert, Martina; Custodio, Joseph M; Wolf, Ingrid; Harkey, Michael; Liu, Yan; Blattman, Joseph N; Greenberg, Philip D; Rohrschneider, Larry R

    2003-04-01

    Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.

  16. Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1

    PubMed Central

    Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan

    2009-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases. PMID:19479052

  17. A PARP1-ERK2 synergism is required for the induction of LTP

    PubMed Central

    Visochek, L.; Grigoryan, G.; Kalal, A.; Milshtein-Parush, H.; Gazit, N.; Slutsky, I.; Yeheskel, A.; Shainberg, A.; Castiel, A.; Seger, R.; Langelier, M. F.; Dantzer, F.; Pascal, J. M.; Segal, M.; Cohen-Armon, M.

    2016-01-01

    Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence. PMID:27121568

  18. [Correlation of insulin-like growth factor-1 (IGF-1) to angiogenesis of breast cancer in IGF-1-deficient mice].

    PubMed

    Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping

    2007-11-01

    Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.

  19. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.

    PubMed

    Cohen-Armon, Malka; Visochek, Leonid; Rozensal, Dana; Kalal, Adi; Geistrikh, Ilona; Klein, Rodika; Bendetz-Nezer, Sarit; Yao, Zhong; Seger, Rony

    2007-01-26

    PolyADP-ribose polymerases (PARPs) catalyze a posttranslational modification of nuclear proteins by polyADP-ribosylation. The catalytic activity of the abundant nuclear protein PARP-1 is stimulated by DNA strand breaks, and PARP-1 activation is required for initiation of DNA repair. Here we show that PARP-1 also acts within extracellular signal-regulated kinase (ERK) signaling cascade that mediates growth and differentiation. The findings reveal an alternative mode of PARP-1 activation, which does not involve binding to DNA or DNA damage. In a cell-free system, recombinant PARP-1 was intensively activated and thereby polyADP-ribosylated by a direct interaction with phosphorylated ERK2, and the activated PARP-1 dramatically increased ERK2-catalyzed phosphorylation of the transcription factor Elk1. In cortical neurons treated with nerve growth factors and in stimulated cardiomyocytes, PARP-1 activation enhanced ERK-induced Elk1-phosphorylation, core histone acetylation, and transcription of the Elk1-target gene c-fos. These findings constitute evidence for PARP-1 activity within the ERK signal-transduction pathway.

  20. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2015-12-01

    lifetime risk for breast cancer (King, Marks, & Mandell, 2003). PARP inhibitors (PARPi) have been tested with promising results for the treatment of...for Rad51 loading following PARPi treatment (Figure 5I-J). Additionally, this Rad51 loading in the PARPi resistant lines is necessary for resistance...as knockdown of either PALB2 or BRCA2 results in restored sensitivity to PARPi treatment (Figure 6A and B). b) Confirmation of targets with

  1. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Xujun; Department of Toxicology, Fourth Military Medical University, Xi'an, Shaanxi, 710032; Hudson, Laurie G.

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/ormore » UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite ({<=} 2 {mu}M) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 {mu}M arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic.« less

  2. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice.

    PubMed

    Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A

    2015-10-01

    We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.

  3. Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells

    PubMed Central

    Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F.; Hendrickson, Eric A.; Gewirtz, David A.

    2016-01-01

    Radiotherapy continues to be a primary modality in the treatment of cancer. DNA damage induced by radiation can promote apoptosis as well as both autophagy and senescence, where autophagy and senescence can theoretically function to prolong tumor survival. A primary aim of this work was to investigate the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiation sensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair proficient HCT116 colon carcinoma cells and a repair deficient Ligase IV (−/−) isogenic cell line. Irradiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines; however inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Irradiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the Ligase IV (−/−) cells; however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors (Olaparib) and (Niraparib) increased the extent of persistent DNA damage induced by radiation as well as the extent of both autophagy and senescence; neither cell line underwent significant apoptosis by radiation alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiation sensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative

  4. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    PubMed

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  5. Proteomic Analysis of the Downstream Signaling Network of PARP1.

    PubMed

    Zhen, Yuanli; Yu, Yonghao

    2018-01-30

    Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.

  6. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum.

    PubMed

    Ieraci, Alessandro; Herrera, Daniel G

    2018-06-01

    Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

  7. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    PubMed Central

    Sultanov, Daniel C.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Maluchenko, Natalya V.; Kotova, Elena Y.; Langelier, Marie-France; Pascal, John M.; Kirpichnikov, Mikhail P.; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose)polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA. PMID:28804761

  8. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    DTIC Science & Technology

    2015-10-01

    1 Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors 5a. CONTRACT NUMBER W81XWH...BRCAlike, i.e. not HR deficient and are resistant to PARPis but are sensitive to platinum . These tumors exhibit alterations in another DNA repair

  9. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    PubMed Central

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-transplanted 1α(OH)ase-/- recipients. Serum calcium, 1,25(OH)2D3 levels and body weight were significantly increased in BM-MSC-transplanted 1α(OH)ase-/- recipients compared to vehicle-treated 1α(OH)ase-/- mice. Skeletal mineralization improved in 1α(OH)ase-/- recipients as demonstrated by BMD measurement, micro-CT analysis and von Kossa staining of undecalcified sections. Expression levels of type I collagen, osteocalcin, bone sialoprotein and vitronectin and the size of calcified nodules were decreased in BM-MSC cultures from 1α(OH)ase-/- mice compared with those from wild-type mice, however, these parameters were increased in those from BM-MSCs-transplanted 1α(OH)ase-/- recipients compared with those from vehicle-treated 1α(OH)ase-/- mice. This study indicates that donor BM-MSCs cells can relocate to multiple tissues where they synthesize 1α(OH)ase and produce 1,25(OH)2D that contributes to the improvement of serum calcium and skeletal mineralization. Results from this study suggest that BM-MSC transplantation may provide a therapeutic approach to treatment of pseudovitamin D-deficiency rickets. PMID:27830022

  10. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice.

    PubMed

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH) 2 D deficiency-induced rachitic phenotype, 2×10 6 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH) 2 D due to targeted deletion of 1α(OH)ase (1α(OH)ase -/- ). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-transplanted 1α(OH)ase -/- recipients. Serum calcium, 1,25(OH) 2 D 3 levels and body weight were significantly increased in BM-MSC-transplanted 1α(OH)ase -/- recipients compared to vehicle-treated 1α(OH)ase -/- mice. Skeletal mineralization improved in 1α(OH)ase -/- recipients as demonstrated by BMD measurement, micro-CT analysis and von Kossa staining of undecalcified sections. Expression levels of type I collagen, osteocalcin, bone sialoprotein and vitronectin and the size of calcified nodules were decreased in BM-MSC cultures from 1α(OH)ase -/- mice compared with those from wild-type mice, however, these parameters were increased in those from BM-MSCs-transplanted 1α(OH)ase -/- recipients compared with those from vehicle-treated 1α(OH)ase -/- mice. This study indicates that donor BM-MSCs cells can relocate to multiple tissues where they synthesize 1α(OH)ase and produce 1,25(OH) 2 D that contributes to the improvement of serum calcium and skeletal mineralization. Results from this study suggest that BM-MSC transplantation may provide a therapeutic approach to treatment of pseudovitamin D-deficiency rickets.

  11. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  12. Wound Healing in Mac-1 Deficient Mice

    DTIC Science & Technology

    2017-05-01

    36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a

  13. Heightened aggressive behavior in mice deficient in aldo-keto reductase 1a (Akr1a).

    PubMed

    Homma, Takujiro; Akihara, Ryusuke; Okano, Satoshi; Shichiri, Mototada; Yoshida, Yasukazu; Yamada, Ken-Ichi; Miyata, Satoshi; Nakajima, Osamu; Fujii, Junichi

    2017-02-15

    Aldehyde reductase (Akr1a) is involved in the synthesis of ascorbic acid (AsA) which may play a role in social behavior. In the current study, we performed analyses on Akr1a-deficient (Akr1a -/- ) mice that synthesize about 10% as much AsA as wild-type mice from the viewpoint of intermale aggression. The use of the resident-intruder test revealed that the Akr1a -/- mice exhibited more aggressive phenotypes than wild-type control mice. Unexpectedly, however, the oral administration of additional AsA failed to reduce the aggressive behavior of Akr1a -/- mice, suggesting that the heightened aggression was independent of AsA biosynthesis. The findings also show that the plasma levels of corticosterone, but not serotonin and testosterone, were increased in the absence of Akr1a in mice, suggesting that the mice were highly stressed. These results suggest that Akr1a might be involved in the metabolism of steroids and other carbonyl-containing compounds and, hence, the absence of Akr1a results in heightened aggression via a malfunction in a metabolic pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  15. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    PubMed

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1α-deficient

  16. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis

    PubMed Central

    2018-01-01

    ABSTRACT Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  17. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  18. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaalishvili, Giorgi, E-mail: giozaal@gmail.com; Margiani, Dina; Kutalia, Ketevan

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  19. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  20. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  1. Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: evidence for increased tumor cell apoptosis in vivo.

    PubMed

    Hans, M A; Müller, M; Meyer-Ficca, M; Bürkle, A; Küpper, J H

    1999-11-25

    Poly(ADP-ribose) polymerase (PARP4) catalyzes the formation of ADP-ribose polymers covalently attached to proteins by using NAD+ as substrate. PARP is strongly activated by DNA single- or double-strand breaks and is thought to be involved in cellular responses to DNA damage. We characterized a dominant negative PARP mutant, i.e. the DNA-binding domain of this enzyme, whose overexpression in cells leads to increased genetic instability following DNA damage. In order to study whether PARP activity is also implicated in the process of tumorigenesis, we generated stably transfected HeLa cell clones with constitutive overexpression of dominant negative PARP and investigated tumor formation of these clones in nude mice. We found that inhibition of PARP activity dramatically reduces tumor forming ability of HeLa cells. Moreover, we provide strong evidence that the observed reduction in tumor forming ability is due to increased tumor cell apoptosis in vivo. Viewed together, our data and those from other groups show that inhibition of PARP enzyme activity interferes with DNA base excision repair and leads to increased genetic instability and recombination but, on the other hand, can sensitize cells to apoptotic stimuli and by this mechanism may prevent tumor formation.

  2. Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway.

    PubMed

    Xu, Ping; Cai, Xinhua; Zhang, Wenbo; Li, Yana; Qiu, Peiyong; Lu, Dandan; He, Xiaoyang

    2016-10-01

    The objective of our study was to assess the radioprotective effect of flavonoids extracted from Rosa roxburghii Tratt (FRT) and investigate the role of Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in radiation-induced apoptosis. Cells and mice were exposed to (60)Co γ-rays at a dose of 6 Gy. The radiation treatment induced significant effects on tissue pathological changes, apoptosis, Ca(2+), ROS, DNA damage, and expression levels of Bcl-2, Caspase-3 (C-Caspase-3), and PARP-1. The results showed that FRT acted as an antioxidant, reduced DNA damage, corrected the pathological changes of the tissue induced by radiation, promoted the formation of spleen nodules, resisted sperm aberration, and protected the thymus. FRT significantly reduced cell apoptosis compared with the irradiation group. The expression of Ca(2+) and C-Caspase-3 was decreased after FRT treatment compared with the radiation-treated group. At the same time, expression of prototype PARP-1 and Bcl-2 increased, leading to a decrease in the percentage of apoptosis cells in FRT treatment groups. We conclude that FRT acts as a radioprotector. Apoptosis signals were activated via the Bcl-2(Ca(2+))/Caspase-3/PARP-1 pathway in irradiated cells and FRT inhibited this pathway of apoptosis by down-regulation of C-Caspase-3 and Ca(2+) and up-regulation of prototype PARP-1 and Bcl-2.

  3. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  4. Recombination-activating gene 1 (Rag1)-deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome.

    PubMed

    van Til, Niek P; Sarwari, Roya; Visser, Trudi P; Hauer, Julia; Lagresle-Peyrou, Chantal; van der Velden, Guus; Malshetty, Vidyasagar; Cortes, Patricia; Jollet, Arnaud; Danos, Olivier; Cassani, Barbara; Zhang, Fang; Thrasher, Adrian J; Fontana, Elena; Poliani, Pietro L; Cavazzana, Marina; Verstegen, Monique M A; Villa, Anna; Wagemaker, Gerard

    2014-04-01

    Recombination-activating gene 1 (RAG1) deficiency results in severe combined immunodeficiency (SCID) caused by a complete lack of T and B lymphocytes. If untreated, patients succumb to recurrent infections. We sought to develop lentiviral gene therapy for RAG1-induced SCID and to test its safety. Constructs containing the viral spleen-focus-forming virus (SF), ubiquitous promoters, or cell type-restricted promoters driving sequence-optimized RAG1 were compared for efficacy and safety in sublethally preconditioned Rag1(-/-) mice undergoing transplantation with transduced bone marrow progenitors. Peripheral blood CD3(+) T-cell reconstitution was achieved with SF, ubiquitous promoters, and cell type-restricted promoters but 3- to 18-fold lower than that seen in wild-type mice, and with a compromised CD4(+)/CD8(+) ratio. Mitogen-mediated T-cell responses and T cell-dependent and T cell-independent B-cell responses were not restored, and T-cell receptor patterns were skewed. Reconstitution of mature peripheral blood B cells was approximately 20-fold less for the SF vector than in wild-type mice and often not detectable with the other promoters, and plasma immunoglobulin levels were abnormal. Two months after transplantation, gene therapy-treated mice had rashes with cellular tissue infiltrates, activated peripheral blood CD44(+)CD69(+) T cells, high plasma IgE levels, antibodies against double-stranded DNA, and increased B cell-activating factor levels. Only rather high SF vector copy numbers could boost T- and B-cell reconstitution, but mRNA expression levels during T- and B-cell progenitor stages consistently remained less than wild-type levels. These results underline that further development is required for improved expression to successfully treat patients with RAG1-induced SCID while maintaining low vector copy numbers and minimizing potential risks, including autoimmune reactions resembling Omenn syndrome. Copyright © 2013 American Academy of Allergy, Asthma

  5. An analysis of the gene interaction networks identifying the role of PARP1 in metastasis of non-small cell lung cancer.

    PubMed

    Chen, Kai; Li, Yajie; Xu, Hui; Zhang, Chunfeng; Li, Zhiqiang; Wang, Wei; Wang, Baofeng

    2017-10-20

    Though there were many researches about the effects of cancer cells on non-small cell lung cancer (NSCLC) currently, it has been rarely reported completed oncogene and its mechanism in tumors by far. Here, we used biological methods with known oncogene of NSCLC to find new oncogene and explore its functionary mechanism in NSCLC. The study firstly built NSCLC genetic interaction network based on bioinformatics methods and then combined shortest path algorithm with significance test to confirmed core genes that were closely involved with given genes; real-time qPCR was conducted to detect expression levels between patients with NSCLC and normal people; additionally, detection of PARP1's role in migration and invasion was performed by trans-well assays and wound-healing. Through gene interaction network, it was found that, core genes like PARP1, EGFR and ALK had a direct interaction. TCGA database showed that PARP1 presented strong expression in NSCLC and the expression level of metastatic NSCLC was significantly higher than that of non-metastatic NSCLC. Cell migration of NSCLC in accordance to the scratch test was suppressed by PARP1 silence but stimulated noticeably by PARP1 overexpression. According to Kaplan-meier survival curve, the higher PARP1 expression, the poorer patient survival rate and prognosis. Thus, PARP1 expression had a negative correction with patient survival rate and prognosis. New oncogene PARP1 was found from known NSCLC oncogene in terms of gene interaction network, demonstrating PARP1's impact on NSCLC cell migration.

  6. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Langelier; J Planck; S Roy

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less

  7. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  8. Discovery of novel quinazoline-2,4(1H,3H)-dione derivatives as potent PARP-2 selective inhibitors.

    PubMed

    Zhao, Hailong; Ji, Ming; Cui, Guonan; Zhou, Jie; Lai, Fangfang; Chen, Xiaoguang; Xu, Bailing

    2017-08-01

    The PARP-2 selective inhibitor is important for clarifying specific roles of PARP-2 in the pathophysiological process and developing desired drugs with reduced off-target side effects. In this work, a series of novel quinazoline-2,4(1H,3H)-dione derivatives was designed and synthesized to explore isoform selective PARP inhibitors. As a result, compound 11a (PARP-1 IC 50 =467nM, PARP-2 IC 50 =11.5nM, selectivity PARP-1/PARP-2=40.6) was disclosed as the most selective PARP-2 inhibitor with high potency to date. The binding features of compound 11a within PARP-1 and PARP-2 were investigated respectively to provide useful insights for the further construction of new isoform selective inhibitors of PARP-1 and PARP-2 by using CDOCKER program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  10. Therapeutic Applications of PARP Inhibitors: Anticancer Therapy and Beyond

    PubMed Central

    Curtin, Nicola; Szabo, Csaba

    2013-01-01

    The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination (HRR) repair is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology

  11. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  12. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.

    PubMed

    Clinkenbeard, Erica L; Farrow, Emily G; Summers, Lelia J; Cass, Taryn A; Roberts, Jessica L; Bayt, Christine A; Lahm, Tim; Albrecht, Marjorie; Allen, Matthew R; Peacock, Munro; White, Kenneth E

    2014-02-01

    Fibroblast growth factor 23 (FGF23) gain of function mutations can lead to autosomal dominant hypophosphatemic rickets (ADHR) disease onset at birth, or delayed onset following puberty or pregnancy. We previously demonstrated that the combination of iron deficiency and a knock-in R176Q FGF23 mutation in mature mice induced FGF23 expression and hypophosphatemia that paralleled the late-onset ADHR phenotype. Because anemia in pregnancy and in premature infants is common, the goal of this study was to test whether iron deficiency alters phosphate handling in neonatal life. Wild-type (WT) and ADHR female breeder mice were provided control or iron-deficient diets during pregnancy and nursing. Iron-deficient breeders were also made iron replete. Iron-deficient WT and ADHR pups were hypophosphatemic, with ADHR pups having significantly lower serum phosphate (p < 0.01) and widened growth plates. Both genotypes increased bone FGF23 mRNA (>50 fold; p < 0.01). WT and ADHR pups receiving low iron had elevated intact serum FGF23; ADHR mice were affected to a greater degree (p < 0.01). Iron-deficient mice also showed increased Cyp24a1 and reduced Cyp27b1, and low serum 1,25-dihydroxyvitamin D (1,25D). Iron repletion normalized most abnormalities. Because iron deficiency can induce tissue hypoxia, oxygen deprivation was tested as a regulator of FGF23, and was shown to stimulate FGF23 mRNA in vitro and serum C-terminal FGF23 in normal rats in vivo. These studies demonstrate that FGF23 is modulated by iron status in young WT and ADHR mice and that hypoxia independently controls FGF23 expression in situations of normal iron. Therefore, disturbed iron and oxygen metabolism in neonatal life may have important effects on skeletal function and structure through FGF23 activity on phosphate regulation. © 2014 American Society for Bone and Mineral Research.

  13. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.

    PubMed

    Li, Lili; Zhao, Hui; Liu, Ping; Li, Chunfeng; Quanquin, Natalie; Ji, Xue; Sun, Nina; Du, Peishuang; Qin, Cheng-Feng; Lu, Ning; Cheng, Genhong

    2018-06-19

    Zika virus infection stimulates a type I interferon (IFN) response in host cells, which suppresses viral replication. Type I IFNs exert antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). To screen for antiviral ISGs that restricted Zika virus replication, we individually knocked out 21 ISGs in A549 lung cancer cells and identified PARP12 as a strong inhibitor of Zika virus replication. Our findings suggest that PARP12 mediated the ADP-ribosylation of NS1 and NS3, nonstructural viral proteins that are involved in viral replication and modulating host defense responses. This modification of NS1 and NS3 triggered their proteasome-mediated degradation. These data increase our understanding of the antiviral activity of PARP12 and suggest a molecular basis for the potential development of therapeutics against Zika virus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  15. Haploinsufficiency of E-selectin ligand-1 is Associated with Reduced Atherosclerotic Plaque Macrophage Content while Complete Deficiency Leads to Early Embryonic Lethality in Mice

    PubMed Central

    Luo, Wei; Wang, Hui; Guo, Chiao; Wang, Jintao; Kwak, Jeffrey; Bahrou, Kristina L; Eitzman, Daniel T.

    2012-01-01

    E-selectin-1 (ESL-1), also known as golgi complex-localized glycoprotein-1 (GLG1), homocysteine-rich fibroblast growth factor receptor (CGR-1), and latent transforming growth factor-β complex protein 1 (LTCP-1), is a multifunctional protein with widespread tissue distribution. To determine the functional consequences of ESL-1 deficiency, mice were generated carrying an ESL-1 gene trap. After backcrossing to C57BL6/J for 6 generations, mice heterozygous for the gene trap (ESL-1+/-) were intercrossed to produce ESL-1-/- mice, however ESL-1-/- mice were not viable, even at embryonic day E10.5. To determine the effect of heterozygous ESL-1 deficiency on atherosclerosis, apolipoprotein E deficient (ApoE-/-), ESL-1+/- mice were generated and fed western diet. Compared to ApoE-/-, ESL-1++ mice, atherosclerotic lesions from ApoE-/-, ESL-1+/- contained more collagen and fewer macrophages, suggesting increased plaque stability. In conclusion, heterozygous deficiency of ESL-1 is associated with features of increased atherosclerotic plaque stability while complete deficiency of ESL-1 leads to embryonic lethality. PMID:22939356

  16. Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer

    PubMed Central

    Kawahara, Naoki; Ogawa, Kenji; Nagayasu, Mika; Kimura, Mai; Sasaki, Yoshikazu; Kobayashi, Hiroshi

    2017-01-01

    Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC. PMID:29109859

  17. PARP-1 serves as a novel molecular marker for hepatocellular carcinoma in a Southern Chinese Zhuang population.

    PubMed

    Li, Jiatong; Dou, Dongwei; Li, Ping; Luo, Wenqi; Lv, Wenxin; Zhang, Chengdong; Song, Xiaowei; Yang, Yuan; Zhang, Yuening; Xu, Yanzhen; Xiao, Feifan; Wei, Yan; Qin, Jian; Li, Hongtao; Yang, Xiaoli

    2017-07-01

    PARP-1 (poly(ADP-ribose) polymerase-1) plays an important role in tumorigenesis. Since its effects on different populations are varied, this study investigated the impact of PARP-1 on primary hepatocellular carcinoma in a Southern Chinese Zhuang population. We assessed the global PARP-1 messenger RNA expression in patients with hepatocellular carcinoma using The Cancer Genome Atlas dataset. Increased PARP-1 expression, related to alpha-fetoprotein level, was observed. The area under the receiver operating characteristic curve value was 0.833. Kaplan-Meier survival curves indicated that higher PARP-1 expression was not correlated with poorer overall survival and recurrence-free survival. In a Zhuang population, PARP-1 messenger RNA and protein levels were increased in the hepatocellular carcinoma tissue and its adjacent liver tissues as assessed by quantitative polymerase chain reaction, immunohistochemistry, and western blotting. Higher PARP-1 level was associated with a higher tumor stage (p < 0.05), without correlation with age, gender, smoking, drinking, tumor size, serum alpha-fetoprotein level, hepatitis B virus infection, metastasis, and invasion (p > 0.05). Further analysis suggested that H2AX, a PARP-1 protein interaction partner, was coordinated with PARP-1 in hepatocellular carcinoma tumorigenesis. Overall, some new characteristics of PARP-1 expression were noted in the Zhuang population. PARP-1 is a novel promising diagnostic marker for hepatocellular carcinoma in the Southern Chinese Zhuang population.

  18. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    PubMed Central

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  19. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    PubMed

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.

  1. Allelic Variation of Ets1 Does Not Contribute to NK and NKT Cell Deficiencies in Type 1 Diabetes Susceptible NOD Mice

    PubMed Central

    Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.

    2009-01-01

    The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240

  2. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    PubMed

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  3. Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice

    PubMed Central

    Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.

    2011-01-01

    OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251

  4. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    PubMed

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency

  5. Preclinical Demonstration of Lentiviral Vector-mediated Correction of Immunological and Metabolic Abnormalities in Models of Adenosine Deaminase Deficiency

    PubMed Central

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-01-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)–deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA−/− mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA−/− mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34+ cells transduced with 1–5 × 107 TU/ml had 1–3 vector copies/cell and expressed 1–2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis. PMID:24256635

  6. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  7. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6.

    PubMed

    Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M

    2006-12-01

    Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.

  8. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.

    PubMed

    Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero

    2010-02-11

    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.

  9. New PARP targets for cancer therapy

    PubMed Central

    Vyas, Sejal; Chang, Paul

    2015-01-01

    Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD+ as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5a, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, the majority of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer relevant functions for these PARPs, indicating that we need to understand more about these PARPs in order to target them effectively. PMID:24898058

  10. PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs.

    PubMed

    Olaussen, Ken A; Adam, Julien; Vanhecke, Elsa; Vielh, Philippe; Pirker, Robert; Friboulet, Luc; Popper, Helmut; Robin, Angélique; Commo, Fréderic; Thomale, Jürgen; Kayitalire, Louis; Filipits, Martin; Le Chevalier, Thierry; André, Fabrice; Brambilla, Elisabeth; Soria, Jean-Charles

    2013-05-01

    Evaluation of DNA repair proteins might provide meaningful information in relation to prognosis and chemotherapy efficacy in Non-Small Cell Lung Cancer (NSCLC) patients. The role of Poly(ADP-Ribose) Polymerase (PARP) in DNA repair of platinum adducts has not been firmly established. We used a DNA repair functional test based on antibody recognition of cisplatin intrastrand platinum adducts on DNA. We evaluated the effect of PARP inhibition on DNA repair functionality in a panel of cisplatin cell lines treated by the clinical-grade pharmacological inhibitor CEP8983 (a 4-methoxy-carbazole derivate) and the commercially available inhibitor PJ34 (phenanthridinone). We determined PARP1 protein expression in whole tumor sections from the International Adjuvant Lung cancer Trial (IALT)-bio study and tested a 3-marker PARP1/MSH2/ERCC1 algorithm combining PARP1 tumor status with previously published data. Chemosensitivity of cisplatin in NSCLC cell lines was correlated with the accumulation of cisplatin DNA adducts (P=0.0004). Further, the pharmacological inhibition of PARP induced a 1.7 to 2.3-fold increase in platinum adduct accumulation (24h) in A549 cell line suggesting a slow-down of platinum DNA-adduct repair capacity. In parallel, PARP1 inhibition increased the sensitivity to cisplatin treatment. In patient samples, PARP1 expression levels did not influence patient survival or the effect of platinum-based post-operative chemotherapy in the global IALT-bio population (interaction P=0.79). Among cases with high expression of all three markers (triple positive), untreated patients had prolonged survival with a median DFS of 7.8 years, (HR=0.34, 95%CI [0.19-0.61], adjusted P=0.0003) compared to triple negative patients (1.4 years). Remarkably, triple positive patients suffered from a detrimental effect (4.9-year reduction of median DFS) by post-operative cisplatin-based chemotherapy (HR=1.79, 95%CI [1.01-3.17], adjusted P=0.04, chemotherapy vs. control). Combinatorial

  11. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  12. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.

    PubMed

    Li, Zhiping; Oben, Jude A; Yang, Shiqi; Lin, Huizhi; Stafford, Elizabeth A; Soloski, Mark J; Thomas, Steven A; Diehl, Anna Mae

    2004-08-01

    It is not known why natural killer T (NKT) cells, which modulate liver injury by regulating local cytokine production, are reduced in leptin-deficient ob/ob mice. NKT cells express adrenoceptors. Thus, we hypothesize that the low norepinephrine (NE) activity of ob/ob mice promotes depletion of liver NKT cells, thereby sensitizing ob/ob livers to lipopolysaccharide (LPS) toxicity. To evaluate this hypothesis, hepatic NKT cells were quantified in wild-type mice before and after treatment with NE inhibitors, and in dopamine beta-hydroxylase knockout mice (which cannot synthesize NE) and ob/ob mice before and after 4 weeks of NE supplementation. Decreasing NE activity consistently reduces liver NKT cells, while increasing NE has the opposite effect. Analysis of hepatic and thymic NKT cells in mice of different ages demonstrate an age-related accumulation of hepatic NKT cells in normal mice, while liver NKT cells become depleted after birth in ob/ob mice, which have increased apoptosis of hepatic NKT cells. NE treatment inhibits apoptosis and restores hepatic NKT cells. In ob/ob mice with reduced hepatic NKT cells, hepatic T and NKT cells produce excessive T helper (Th)-1 proinflammatory cytokines and the liver is sensitized to LPS toxicity. NE treatment decreases Th-1 cytokines, increases production of Th-2 cytokines, and reduces hepatotoxicity. Studies of CD1d-deficient mice, which lack the receptor required for NKT cell development, demonstrate that they are also unusually sensitive to LPS hepatotoxicity. In conclusion, low NE activity increases hepatic NKT cell apoptosis and depletes liver NKT cells, promoting proinflammatory polarization of hepatic cytokine production that sensitizes the liver to LPS toxicity. Copyright 2004 American Association for the Study of Liver Diseases

  13. Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: evidence of defective M-cell formation in vivo.

    PubMed

    Westphal, Sabine; Lügering, Andreas; von Wedel, Julia; von Eiff, Christof; Maaser, Christian; Spahn, Thomas; Heusipp, Gerhard; Schmidt, M Alexander; Herbst, Hermann; Williams, Ifor R; Domschke, Wolfram; Kucharzik, Torsten

    2008-03-01

    M cells, specialized cells within Peyer's patches (PPs), are reduced in number in chemokine receptor 6 (CCR6)-deficient mice. The pathogenic microorganism Yersinia enterocolitica exploits M cells for the purpose of mucosal tissue invasion exclusively through PPs. The aim of this study was to evaluate the course of yersiniosis in CCR6-deficient mice and to investigate whether these mice might be used as an in vivo model to determine M-cell function. After oral challenge with Y. enterocolitica, control mice suffered from lethal septic infection whereas CCR6-deficient mice showed very limited symptoms of infection. Immunohistochemical analysis demonstrated PP invasion by Y. enterocolitica in control mice whereas no bacteria could be found in CCR6-deficient mice. In addition, a significant induction of proinflammatory cytokines could be found in control mice whereas proinflammatory cytokine levels in CCR6-deficient mice remained unchanged. In contrast, intraperitoneal infection resulted in severe systemic yersiniosis in both mouse groups. Abrogated oral Y. enterocolitica infection in CCR6-deficient mice demonstrates the importance of CCR6 expression in the physiological and pathological immune responses generated within PPs by influencing M-cell differentiation, underscoring the important role of M cells in the process of microbial uptake. CCR6-deficient mice may therefore represent a suitable model for the study of M-cell function in vivo.

  14. DHTKD1 Deficiency Causes Charcot-Marie-Tooth Disease in Mice.

    PubMed

    Xu, Wang-Yang; Zhu, Houbao; Shen, Yan; Wan, Ying-Han; Tu, Xiao-Die; Wu, Wen-Ting; Tang, Lingyun; Zhang, Hong-Xin; Lu, Shun-Yuan; Jin, Xiao-Long; Fei, Jian; Wang, Zhu-Gang

    2018-07-01

    DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1 -/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero ( Mpz ) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P 0 ) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies. Copyright © 2018 American Society for Microbiology.

  15. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  16. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    PubMed

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis.

    PubMed

    Tang, Maochun; Zong, Pengfei; Zhang, Ting; Wang, Dongyan; Wang, Yuhui; Zhao, Yan

    2016-10-01

    To investigate the severity of pancreatitis in lipoprotein lipase (LPL)-deficient hypertriglyceridaemic (HTG) heterozygous mice and to establish an experimental animal model for HTG pancreatitis study. LPL-deficient HTG heterozygous mice were rescued by somatic gene transfer and mated with wild-type mice. The plasma amylase, triglyceride, and pathologic changes in the pancreas of the LPL-deficient HTG heterozygous mice were compared with those of wild-type mice to assess the severity of pancreatitis. In addition, acute pancreatitis (AP) was induced by caerulein (50 µg/kg) for further assessment. The levels of plasma amylase and triglyceride were significantly higher in the LPL-deficient HTG heterozygous mice. According to the pancreatic histopathologic scores, the LPL-deficient HTG heterozygous mice showed more severe pathologic damage than the wild-type mice. Lipoprotein lipase deficient heterozygous mice developed severe caerulein-induced pancreatitis. In addition, their high triglyceride levels were stable. Therefore, LPL-deficient HTG heterozygous mice are a useful experimental model for studying HTG pancreatitis.

  18. Sulforaphane inhibits damage-induced poly (ADP-ribosyl)ation via direct interaction of its cellular metabolites with PARP-1.

    PubMed

    Piberger, Ann Liza; Keil, Claudia; Platz, Stefanie; Rohn, Sascha; Hartwig, Andrea

    2015-11-01

    The isothiocyanate sulforaphane, a major breakdown product of the broccoli glucosinolate glucoraphanin, has frequently been proposed to exert anticarcinogenic properties. Potential underlying mechanisms include a zinc release from Kelch-like ECH-associated protein 1 followed by the induction of detoxifying enzymes. This suggests that sulforaphane may also interfere with other zinc-binding proteins, e.g. those essential for DNA repair. Therefore, we explored the impact of sulforaphane on poly (ADP-ribose)polymerase-1 (PARP-1), poly (ADP-ribosyl)ation (PARylation), and DNA single-strand break repair (SSBR) in cell culture. Immunofluorescence analyses showed that sulforaphane diminished H2 O2 -induced PARylation in HeLa S3 cells starting from 15 μM despite increased lesion induction under these conditions. Subcellular experiments quantifying the damage-induced incorporation of (32) P-ADP-ribose by PARP-1 displayed no direct impact of sulforaphane itself, but cellular metabolites, namely the glutathione conjugates of sulforaphane and its interconversion product erucin, reduced PARP-1 activity concentration dependently. Interestingly, this sulforaphane metabolite-induced PARP-1 inhibition was prevented by thiol compounds. PARP-1 is a stimulating factor for DNA SSBR-rate and we further demonstrated that 25 μM sulforaphane also delayed the rejoining of H2 O2 -induced DNA strand breaks, although this might be partly due to increased lesion frequencies. Sulforaphane interferes with damage-induced PARylation and SSBR, which implies a sulforaphane-dependent impairment of genomic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficacy of PARP inhibitor rucaparib in orthotopic glioblastoma xenografts is limited by ineffective drug penetration into the central nervous system

    PubMed Central

    Parrish, Karen E.; Cen, Ling; Murray, James; Calligaris, David; Kizilbash, Sani; Mittapalli, Rajendar K.; Carlson, Brett L.; Schroeder, Mark A.; Sludden, Julieann; Boddy, Alan V.; Agar, Nathalie Y.R.; Curtin, Nicola J.; Elmquist, William F.; Sarkaria, Jann N.

    2015-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibition can enhance the efficacy of temozolomide (TMZ) and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with TMZ and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with TMZ was highly effective in vitro in short-term explant cultures derived from GBM12, and similarly, the combination of rucaparib and TMZ (dosed for 5 days every 28 days × 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of TMZ in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b−/−Bcrp1−/− knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared to normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with TMZ in GBM. PMID:26438157

  20. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System.

    PubMed

    Parrish, Karen E; Cen, Ling; Murray, James; Calligaris, David; Kizilbash, Sani; Mittapalli, Rajendar K; Carlson, Brett L; Schroeder, Mark A; Sludden, Julieann; Boddy, Alan V; Agar, Nathalie Y R; Curtin, Nicola J; Elmquist, William F; Sarkaria, Jann N

    2015-12-01

    PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM. ©2015 American Association for Cancer Research.

  1. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  2. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  3. PARP10 (ARTD10) modulates mitochondrial function

    PubMed Central

    Nagy, Lilla; Vida, András; Kis, Gréta; Brunyánszki, Attila; Antal, Miklós; Lüscher, Bernhard; Bai, Péter

    2018-01-01

    Poly(ADP-ribose) polymerase (PARP)10 is a PARP family member that performs mono-ADP-ribosylation of target proteins. Recent studies have linked PARP10 to metabolic processes and metabolic regulators that prompted us to assess whether PARP10 influences mitochondrial oxidative metabolism. The depletion of PARP10 by specific shRNAs increased mitochondrial oxidative capacity in cellular models of breast, cervical, colorectal and exocrine pancreas cancer. Upon silencing of PARP10, mitochondrial superoxide production decreased in line with increased expression of antioxidant genes pointing out lower oxidative stress upon PARP10 silencing. Improved mitochondrial oxidative capacity coincided with increased AMPK activation. The silencing of PARP10 in MCF7 and CaCo2 cells decreased the proliferation rate that correlated with increased expression of anti-Warburg enzymes (Foxo1, PGC-1α, IDH2 and fumarase). By analyzing an online database we showed that lower PARP10 expression increases survival in gastric cancer. Furthermore, PARP10 expression decreased upon fasting, a condition that is characterized by increases in mitochondrial biogenesis. Finally, lower PARP10 expression is associated with increased fatty acid oxidation. PMID:29293500

  4. PARP-1 may be involved in hydroquinone-induced apoptosis by poly ADP-ribosylation of ZO-2

    PubMed Central

    Liu, Jiaxian; Yuan, Qian; Ling, Xiaoxuan; Tan, Qiang; Liang, Hairong; Chen, Jialong; Lin, Lianzai; Xiao, Yongmei; Chen, Wen; Liu, Linhua; Tang, Huanwen

    2017-01-01

    Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in the PAR polymerase (PARP) family and mediates different biological processes, including apoptosis. Zona occludens 2 (ZO-2) is a tight junction scaffold protein, which is involved in cell proliferation and apoptosis. The present study investigated the activity and mechanisms regulated by PARP-1 during HQ-induced apoptosis using TK6 lymphoblastoid cells and PARP-1-silenced TK6 cells. The results revealed that exposure to 10 µM HQ for 72 h induced apoptosis in TK6 cells and that apoptosis was attenuated in PARP-1-silenced TK6 cells. In cells treated with HQ, inhibition of PARP-1 increased the expression of B cell leukemia/lymphoma 2 (Bcl-2), increased ATP production and reduced reactive oxygen species (ROS) production relative to the levels observed in cells treated with HQ alone. Co-localization of ZO-2 and PAR (or PARP-1 protein) was determined using immunofluorescence confocal microscopy. The findings of the present study revealed that ZO-2 was PARylated via an interaction with PARP-1, which was consistent with an analysis of protein expression that was performed using western blot analysis, which determined that ZO-2 protein expression was upregulated in HQ-treated control cells and downregulated in HQ-treated PARP-1-silenced TK6 cells. These findings indicated that prolonged exposure to a low dose of HQ induced TK6 cells to undergo apoptosis, whereas inhibiting PARP-1 attenuates cellular apoptosis by activating Bcl-2 and energy-saving processes and reducing ROS. The present study determined that PARP-1 was involved in HQ-induced apoptosis by PARylation of ZO-2. PMID:28983606

  5. Lethal Effect of CD3-Specific Antibody in Mice Deficient in TGF-β1 by Uncontrolled Flu-Like Syndrome1

    PubMed Central

    Perruche, Sylvain; Zhang, Pin; Maruyama, Takashi; Bluestone, Jeffrey A.; Saas, Philippe; Chen, WanJun

    2010-01-01

    CD3-specific Ab therapy results in a transient, self-limiting, cytokine-associated, flu-like syndrome in experimental animals and in patients, but the underlying mechanism for this spontaneous resolution remains elusive. By using an in vivo model of CD3-specific Ab-induced flu-like syndrome, we show in this paper that a single injection of sublethal dose of the Ab killed all TGF-β1−/− mice. The death of TGF-β1−/− mice was associated with occurrence of this uncontrolled flu-like syndrome, as demonstrated by a sustained storm of systemic inflammatory TNF and IFN-γ cytokines. We present evidence that deficiency of professional phagocytes to produce TGF-β1 after apoptotic T cell clearance may be responsible, together with hypersensitivity of T cells to both activation and apoptosis, for the uncontrolled inflammation. These findings indicate a key role for TGF-β1 and phagocytes in protecting the recipients from lethal inflammation and resolving the flu-like syndrome after CD3-specific Ab treatment. The study may also provide a novel molecular mechanism explaining the early death in TGF-β1−/− mice. PMID:19561097

  6. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity.

    PubMed

    Sulkowski, Parker L; Corso, Christopher D; Robinson, Nathaniel D; Scanlon, Susan E; Purshouse, Karin R; Bai, Hanwen; Liu, Yanfeng; Sundaram, Ranjini K; Hegan, Denise C; Fons, Nathan R; Breuer, Gregory A; Song, Yuanbin; Mishra-Gorur, Ketu; De Feyter, Henk M; de Graaf, Robin A; Surovtseva, Yulia V; Kachman, Maureen; Halene, Stephanie; Günel, Murat; Glazer, Peter M; Bindra, Ranjit S

    2017-02-01

    2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors. This "BRCAness" phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability. Copyright © 2017, American Association for the Advancement of Science.

  7. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  8. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity.

    PubMed

    Rom, Slava; Reichenbach, Nancy L; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60-80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.

  9. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  10. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  11. Aquaporin-1 Deficiency Protects Against Myocardial Infarction by Reducing Both Edema and Apoptosis in Mice

    PubMed Central

    Li, Lihua; Weng, Zhiyong; Yao, Chenjuan; Song, Yuanlin; Ma, Tonghui

    2015-01-01

    Many studies have determined that AQP1 plays an important role in edema formation and resolution in various tissues via water transport across the cell membrane. The aim of this research was to determine both if and how AQP1 is associated with cardiac ischemic injury, particularly the development of edema following myocardial infarction (MI). AQP1+/+ and AQP1−/− mice were used to create the MI model. Under physiological conditions, AQP1−/− mice develop normally; however, in the setting of MI, they exhibit cardioprotective properties, as shown by reduced cardiac infarct size determined via NBT staining, improved cardiac function determined via left ventricular catheter measurements, decreased AQP1-dependent myocardial edema determined via water content assays, and decreased apoptosis determined via TUNEL analysis. Cardiac ischemia caused by hypoxia secondary to AQP1 deficiency stabilized the expression of HIF-1α in endothelial cells and subsequently decreased microvascular permeability, resulting in the development of edema. The AQP1-dependent myocardial edema and apoptosis contributed to the development of MI. AQP1 deficiency protected cardiac function from ischemic injury following MI. Furthermore, AQP1 deficiency reduced microvascular permeability via the stabilization of HIF-1α levels in endothelial cells and decreased cellular apoptosis following MI. PMID:26348407

  12. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  13. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  14. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    PubMed

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  15. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    PubMed Central

    Pasieka, Tracy Jo; Collins, Lynne; O'Connor, Megan A.; Chen, Yufei; Parker, Zachary M.; Berwin, Brent L.; Piwnica-Worms, David R.; Leib, David A.

    2011-01-01

    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons

  17. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice

    PubMed Central

    Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J

    2005-01-01

    The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571

  18. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression.

    PubMed

    Augustin, Angélique; Spenlehauer, Catherine; Dumond, Hélène; Ménissier-De Murcia, Josiane; Piel, Matthieu; Schmit, Anne-Catherine; Apiou, Françoise; Vonesch, Jean-Luc; Kock, Michael; Bornens, Michel; De Murcia, Gilbert

    2003-04-15

    A novel member of the poly(ADP-ribose) polymerase (PARP) family, hPARP-3, is identified here as a core component of the centrosome. hPARP-3 is preferentially localized to the daughter centriole throughout the cell cycle. The N-terminal domain (54 amino acids) of hPARP-3 is responsible for its centrosomal localization. Full-length hPAPR-3 (540 amino acids, with an apparent mass of 67 kDa) synthesizes ADP-ribose polymers during its automodification. Overexpression of hPARP-3 or its N-terminal domain does not influence centrosomal duplication or amplification but interferes with the G1/S cell cycle progression. PARP-1 also resides for part of the cell cycle in the centrosome and interacts with hPARP-3. The presence of both PARP-1 and PARP-3 at the centrosome may link the DNA damage surveillance network to the mitotic fidelity checkpoint.

  19. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    PubMed

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  20. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  1. Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice

    PubMed Central

    Sonnemann, Kevin J.; Heun-Johnson, Hanke; Turner, Amy J.; Baltgalvis, Kristen A.; Lowe, Dawn A.; Ervasti, James M.

    2009-01-01

    Background The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. Methods and Findings Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT). Conclusions These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin. PMID:19478831

  2. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  3. Target engagement imaging of PARP inhibitors in small-cell lung cancer.

    PubMed

    Carney, Brandon; Kossatz, Susanne; Lok, Benjamin H; Schneeberger, Valentina; Gangangari, Kishore K; Pillarsetty, Naga Vara Kishore; Weber, Wolfgang A; Rudin, Charles M; Poirier, John T; Reiner, Thomas

    2018-01-12

    Insufficient chemotherapy response and rapid disease progression remain concerns for small-cell lung cancer (SCLC). Oncologists rely on serial CT scanning to guide treatment decisions, but this cannot assess in vivo target engagement of therapeutic agents. Biomarker assessments in biopsy material do not assess contemporaneous target expression, intratumoral drug exposure, or drug-target engagement. Here, we report the use of PARP1/2-targeted imaging to measure target engagement of PARP inhibitors in vivo. Using a panel of clinical PARP inhibitors, we show that PARP imaging can quantify target engagement of chemically diverse small molecule inhibitors in vitro and in vivo. We measure PARP1/2 inhibition over time to calculate effective doses for individual drugs. Using patient-derived xenografts, we demonstrate that different therapeutics achieve similar integrated inhibition efficiencies under different dosing regimens. This imaging approach to non-invasive, quantitative assessment of dynamic intratumoral target inhibition may improve patient care through real-time monitoring of drug delivery.

  4. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  5. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  6. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors

    PubMed Central

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W.; Potter, S. Steven; McKnight, Steven L.

    2004-01-01

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  7. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53.

    PubMed

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-11-02

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.

  8. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  9. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. PKK deficiency in B cells prevents lupus development in Sle lupus mice

    PubMed Central

    Oleksyn, D.; Zhao, J.; Vosoughi, A.; Zhao, JC.; Misra, R; Pentland, AP; Ryan, D.; Anolik, J.; Ritchlin, C.; Looney, J.; Anandarajah, AP.; Schwartz, G.; Calvi, LM; Georger, M; Mohan, C.; Sanz, I.; Chen, L

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B- lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment. PMID:28274793

  11. Energy homeostasis in leptin deficient Lepob/ob mice.

    PubMed

    Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A

    2017-01-01

    Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.

  12. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    PubMed

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  13. Gender Affects Skin Wound Healing in Plasminogen Deficient Mice

    PubMed Central

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and

  14. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    PubMed

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  15. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    PubMed

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Novel mechanisms of PARP inhibitor resistance in BRCA1 deficient cancers

    DTIC Science & Technology

    2016-08-01

    cells isolated from a BRCA1-deficient ovarian cancer patient who progressed after Olaparib treatment. DNA fiber analysis revealed that HU- induced...treatment of the tumor cells increased fork degradation. In contrast, tumor cells isolated from a non-BRCA1/2 ovarian cancer patient did not display fork... cells were used. Circulating tumor cells (CTCs) derived from a breast cancer patient harboring a BRCA2 mutation, but shown to be resistant to PARPi

  17. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  18. Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice.

    PubMed

    Chung, Leeyup; Wang, Xiaoming; Zhu, Li; Towers, Aaron J; Cao, Xinyu; Kim, Il Hwan; Jiang, Yong-hui

    2015-12-10

    CYFIP1 maps to the interval between proximal breakpoint 1 (BP1) and breakpoint 2 (BP2) of chromosomal 15q11-q13 deletions that are implicated in the Angelman (AS) and Prader-Willi syndrome (PWS). There is only one breakpoint (BP3) at the distal end of deletion. CYFIP1 is deleted in AS patients with the larger class I deletion (BP1 to BP3) and the neurological presentations in these patients are more severe than that of patients with class II (BP2 to BP3) deletion. The haploinsufficiency of CYFIP1 is hypothesized to contribute to more severe clinical presentations in class I AS patients. The expression of CYFIP1 is suggested to be bi-allelic in literature but the possibility of parental origin of expression is not completely excluded. We generated and characterized Cyfip1 mutant mice. Homozygous Cyfip1 mice were early embryonic lethal. However, there was a parental origin specific effect between paternal Cyfip1 deficiency (m+/p-) and maternal deficiency (m-/p+) on both synaptic transmissions and behaviors in hippocampal CA1 synapses despite no evidence supporting the parental origin difference for the expression. Both m-/p+ and m+/p- showed the impaired input-output response and paired-pulse facilitation. While the long term-potentiation and group I mGluR mediated long term depression induced by DHPG was not different between Cyfip1 m-/p+ and m+/p- mice, the initial DHPG induced response was significantly enhanced in m-/p+ but not in m+/p- mice. m+/p- but not m-/p+ mice displayed increased freezing in cued fear conditioning and abnormal transitions in zero-maze test. The impaired synaptic transmission and behaviors in haploinsufficiency of Cyfip1 mice provide the evidence supporting the role of CYFIP1 modifying the clinical presentation of class I AS patients and in human neuropsychiatric disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Losartan and captopril treatment rescue normal thrombus formation in microfibril associated glycoprotein-1 (MAGP1) deficient mice.

    PubMed

    Vassequi-Silva, Tallita; Pereira, Danielle Sousa; Nery Diez, Ana Cláudia C; Braga, Guilherme G; Godoy, Juliana A; Mendes, Camila B; Dos Santos, Leonardo; Krieger, José E; Antunes, Edson; Costa, Fábio T M; Vicente, Cristina P; Werneck, Claudio C

    2016-02-01

    MAGP1 is a glycoprotein present in the elastic fibers and is a part of the microfibrils components. MAGP1 interacts with von Willebrand factor and the active form of TGF-β and BMP. In mice lacking MAGP1, thrombus formation is delayed, increasing the occlusion time of carotid artery despite presenting normal blood coagulation in vitro. MAGP1-containing microfibrils may play a role in hemostasis and thrombosis. In this work, we evaluated the function of MAGP1 and its relation to TGF-β in the arterial thrombosis process. We analyzed thrombus formation time in wild type and MAGP1-deficient mice comparing Rose Bengal and Ferric Chloride induced arterial lesion. The potential participation of TGF-β in this process was accessed when we treated both wild type and MAGP1-deficient mice with losartan (an antihypertensive drug that decreases TGF-β activity) or captopril (an angiotensin converting enzyme inhibitor that was used as a control antihypertensive drug). Besides, we evaluated thrombus embolization and the gelatinolytic activity in the arterial walls in vitro and ex vivo. Losartan and captopril were able to recover the thrombus formation time without changing blood pressure, activated partial thromboplastin time (aPTT), PT (prothrombin time), platelet aggregation and adhesion, but decreased gelatinase activity. Our results suggest that both treatments are effective in the prevention of the sub-endothelial ECM degradation, allowing the recovery of normal thrombus formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses.

    PubMed

    Schijns, V E; Haagmans, B L; Rijke, E O; Huang, S; Aguet, M; Horzinek, M C

    1994-09-01

    The lymphokine IFN-gamma is a pleiotropic immunomodulator and possesses intrinsic antiviral activity. We studied its significance in the development of antiviral immune responses by using IFN-gamma receptor-deficient (IFN-gamma R-/-) mice. After inoculation with live attenuated pseudorabies virus (PRV), the mutant mice showed no infectivity titers in various tissues, and transient viral Ag expression only in the spleen, similar as in wild-type mice. However, the absence of the IFN-gamma R resulted in increased proliferative splenocyte responses. The PRV-immune animals showed a normal IFN-gamma and IL-2 production, without detectable IL-4, and with decreased IL-10 secretion in response to viral Ag or Con A. Immunohistochemically, an increased ratio of IFN-gamma:IL-4-producing spleen cells was found. After immunization with either live attenuated or inactivated PRV, IFN-gamma R-/- mice produced significantly less antiviral Ab, and more succumbed to challenge infection than the intact control animals. The reduction in Ab titers in the mutant mice correlated with lower protection by their sera in transfer experiments. Our data demonstrate that ablation of the IFN-gamma receptor surprisingly does not inhibit the generation of antiviral Th1-type and increase Th2-type cytokine responses. However, it profoundly impairs the generation of protective antiviral Ab.

  1. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis.

    PubMed

    Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai

    2013-08-01

    Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.

  2. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis

    PubMed Central

    Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai

    2013-01-01

    Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. PMID:23835476

  3. Combining poly(ADP-ribose) polymerase 1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage

    PubMed Central

    Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.

    2013-01-01

    Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622

  4. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    PubMed

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  5. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1.

    PubMed

    Yan, Siyuan; Liu, Ling; Ren, Fengxia; Gao, Quan; Xu, Shanshan; Hou, Bolin; Wang, Yange; Jiang, Xuejun; Che, Yongsheng

    2017-08-10

    Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability.

  6. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1

    PubMed Central

    Yan, Siyuan; Liu, Ling; Ren, Fengxia; Gao, Quan; Xu, Shanshan; Hou, Bolin; Wang, Yange; Jiang, Xuejun; Che, Yongsheng

    2017-01-01

    Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability. PMID:28796254

  7. Theophylline prevents NAD{sup +} depletion via PARP-1 inhibition in human pulmonary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moonen, Harald J.J.; Geraets, Liesbeth; Vaarhorst, Anika

    2005-12-30

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD{sup +}, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD{sup +} pool, and of NAD{sup +}-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD{sup +} levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzymemore » inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.« less

  8. Cited1 Deficiency Suppresses Intestinal Tumorigenesis

    PubMed Central

    Young, Madeleine; Poetz, Oliver; Parry, Lee; Jenkins, John R.; Williams, Geraint T.; Dunwoodie, Sally L.; Watson, Alastair; Clarke, Alan R.

    2013-01-01

    Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with ApcMin/+ and AhCre+Apcfl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in ApcMin/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in ApcMin/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1. PMID:23935526

  9. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival.

    PubMed

    Zheng, Qiao; Dunlap, Sarah M; Zhu, Jinling; Downs-Kelly, Erinn; Rich, Jeremy; Hursting, Stephen D; Berger, Nathan A; Reizes, Ofer

    2011-08-01

    Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

  10. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors

    PubMed Central

    Yang, Guang; Liu, Chao; Chen, Shih-Hsun; Kassab, Muzaffer A; Hoff, J Damon; Yu, Xiaochun

    2018-01-01

    Abstract DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors. Using super-resolved fluorescent particle tracking, we further examine the relocation kinetics of PARP1 and the Ku70/80 complex to a single DSB, and find that PARP1 and the Ku70/80 complex are recruited to the DSB almost at the same time. Notably, only the Ku70/80 complex occupies the DSB exclusively in the G1 phase; whereas PARP1 competes with the Ku70/80 complex at the DSB in the S/G2 phase. Moreover, in the S/G2 phase, PARP1 removes the Ku70/80 complex through its enzymatic activity, which is further confirmed by in vitro DSB-binding assays. Taken together, our results reveal PARP1 and the Ku70/80 complex as critical DSB sensors, and suggest that PARP1 may function as an important regulator of the Ku70/80 complex at the DSBs in the S/G2 phase. PMID:29447383

  11. B-vitamin deficiency is protective against DSS-induced colitis in mice

    PubMed Central

    Benight, Nancy M.; Stoll, Barbara; Chacko, Shaji; da Silva, Vanessa R.; Marini, Juan C.; Gregory, Jesse F.; Stabler, Sally P.

    2011-01-01

    Vitamin deficiencies are common in patients with inflammatory bowel disease (IBD). Homocysteine (Hcys) is a thrombogenic amino acid produced from methionine (Met), and its increase in patients with IBD indicates a disruption of Met metabolism; however, the role of Hcys and Met metabolism in IBD is not well understood. We hypothesized that disrupted Met metabolism from a B-vitamin-deficient diet would exacerbate experimental colitis. Mice were fed a B6-B12-deficient or control diet for 2 wk and then treated with dextran sodium sulfate (DSS) to induce colitis. We monitored disease activity during DSS treatment and collected plasma and tissue for analysis of inflammatory tissue injury and Met metabolites. We also quantified Met cycle activity by measurements of in vivo Met kinetics using [1-13C-methyl-2H3]methionine infusion in similarly treated mice. Unexpectedly, we found that mice given the B-vitamin-deficient diet had improved clinical outcomes, including increased survival, weight maintenance, and reduced disease scores. We also found lower histological disease activity and proinflammatory gene expression (TNF-α and inducible nitric oxide synthase) in the colon in deficient-diet mice. Metabolomic analysis showed evidence that these effects were associated with deficient B6, as markers of B12 function were only mildly altered. In vivo methionine kinetics corroborated these results, showing that the deficient diet suppressed transsulfuration but increased remethylation. Our findings suggest that disrupted Met metabolism attributable to B6 deficiency reduces the inflammatory response and disease activity in DSS-challenged mice. These results warrant further human clinical studies to determine whether B6 deficiency and elevated Hcys in patients with IBD contribute to disease pathobiology. PMID:21596995

  12. PARP inhibition as a prototype for synthetic lethal screens.

    PubMed

    Liu, Xuesong

    2013-01-01

    Although DNA damaging chemotherapy and radiation therapy remain the main stay of current treatments for cancer patient, these therapies usually have toxic side effect and narrow therapeutic window. One of the challenges in cancer drug discovery is how to identify drugs that selectively kill cancer cells while leaving the normal cell intact. Recently, synthetic lethality has been applied to cancer drug discovery in various settings, and has become a promising approach for identifying novel agents for the treatment of cancer. A prototypical example is the synthetic lethal interaction between PARP inhibition and BRCA deficiency. PARP inhibitors represent the most advanced clinical agents targeting specifically DNA repair mechanisms in cancer therapy. In this chapter, I will review the molecular mechanism for this synthetic lethality and the clinical applications for PARP inhibitors. I will also discuss the formats of synthetic lethal screens, current progress on the utilization of these screens, and some of the advantages and challenges of synthetic lethal screens in cancer drug discovery.

  13. Identification and mechanism of action analysis of the new PARP-1 inhibitor 2″-hydroxygenkwanol A.

    PubMed

    Dal Piaz, Fabrizio; Ferro, Piera; Vassallo, Antonio; Vasaturo, Michele; Forte, Giovanni; Chini, Maria Giovanna; Bifulco, Giuseppe; Tosco, Alessandra; De Tommasi, Nunziatina

    2015-09-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) activity has been implicated in the pathogenesis of numerous diseases as cancer, inflammation, diabetes and neurodegenerative disorders, therefore the research for new PARP-1 inhibitors is still an active area. To identify new potential PARP-1 inhibitors, we performed a screening of a small-molecule library consisting of polyphenols isolated from plants used in the traditional medicine, by Surface Plasmon Resonance (SPR). Biochemical and cellular assays were performed to confirm SPR results and select the promising candidate(s). Finally, limited proteolysis and ligand docking analyses allowed defining the protein region involved in the interaction with the putative inhibitor(s). The dimeric spiro-flavonoid 2″-hydroxygenkwanol A, member of a relatively recently discovered class of flavonoids containing a spirane C-atom, has been identified as possible PARP-1 inhibitor. This compound showed a high affinity for the polymerase (KD: 0.32±0.05μM); moreover PARP-1 activity in the presence of 2″-hydroxygenkwanol A was significantly affected both when using the recombinant protein and when measuring the cellular effects. Finally, our study suggests this compound to efficiently interact with the protein catalytic domain, into the nicotine binding pocket. 2″-hydroxygenkwanol A efficiently binds and inhibits PARP-1 at submicromolar concentrations, thus representing a promising lead for the design of a new class of PARP-1 modulators, useful as therapeutic agents and/or biochemical tools. Our study has identified an additional class of plant molecules, the spiro-biflavonoids, with known beneficial pharmacological properties but with an unknown mechanism of action, as a possible novel class of PARP-1 activity inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Impact of PACAP and PAC1 Receptor Deficiency on the Neurochemical and Behavioral Effects of Acute and Chronic Restraint Stress in Male C57BL/6 Mice

    PubMed Central

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M.; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E.

    2016-01-01

    Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress. PMID:25853791

  15. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    PubMed

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.

  16. Host defense against systemic infection with Streptococcus pneumoniae is impaired in E-, P-, and E-/P-selectin-deficient mice.

    PubMed Central

    Munoz, F M; Hawkins, E P; Bullard, D C; Beaudet, A L; Kaplan, S L

    1997-01-01

    Endothelial selectins mediate rolling of leukocytes on endothelium, a crucial step for leukocyte firm adhesion and emigration into sites of tissue injury and infection. To characterize the role of the endothelial selectins during bacterial sepsis in vivo, Streptococcus pneumoniae (1-10 x 10(6) colony-forming units) was inoculated intraperitoneally into wild-type mice and mice with E-, P-, or E-/P-selectin deficiencies. Mice were followed 10 d for morbidity, survival, clearance of bacteremia, and leukocyte migration to the peritoneal cavity and organs 48 h after infection. All selectin-deficient mice showed a more pronounced morbidity, a significantly higher mortality associated with persistent bacteremia, and a higher bacterial load when compared with wild-type mice. These differences were most remarkable in the E-selectin-deficient mice, which showed the highest rate of mortality and bacteremia (P deficient mice. Although the absence of endothelial selectins did not substantially impair leukocyte emigration to sites of infection 48 h after pneumococcal sepsis, it resulted in increased mortality and a higher bacterial load in the bloodstream of selectin-deficient mice. These results demonstrate a definitive phenotypic abnormality in E-selectin-deficient mice, and suggest that E- and P-selectin are important in the host defense against S. pneumoniae infection. PMID:9329976

  17. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF.

    PubMed

    Swee, Lee Kim; Tardivel, Aubry; Schneider, Pascal; Rolink, Antonius

    2010-06-15

    BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. PARP inhibition causes premature loss of cohesion in cancer cells

    PubMed Central

    Kukolj, Eva; Kaufmann, Tanja; Dick, Amalie E.; Zeillinger, Robert; Gerlich, Daniel W.; Slade, Dea

    2017-01-01

    Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation. PMID:29262611

  19. Pathway-Enriched Gene Signature Associated with 53BP1 Response to PARP Inhibition in Triple-Negative Breast Cancer.

    PubMed

    Hassan, Saima; Esch, Amanda; Liby, Tiera; Gray, Joe W; Heiser, Laura M

    2017-12-01

    Effective treatment of patients with triple-negative (ER-negative, PR-negative, HER2-negative) breast cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, biomarkers are needed to identify patients who will most benefit from anti-PARP therapy. We determined the responses of three PARP inhibitors (veliparib, olaparib, and talazoparib) in a panel of eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were elucidated using high-content imaging and quantitative immunofluorescence to assess markers of DNA damage (53BP1) and apoptosis (cleaved PARP). We determined the pharmacodynamic changes as percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, and percentage of cells positive for cleaved PARP. Inspired by traditional dose-response measures of cell viability, an EC 50 value was calculated for each cellular phenotype and each PARP inhibitor. The EC 50 values for both 53BP1 metrics strongly correlated with IC 50 values for each PARP inhibitor. Pathway enrichment analysis identified a set of DNA repair and cell cycle-associated genes that were associated with 53BP1 response following PARP inhibition. The overall accuracy of our 63 gene set in predicting response to olaparib in seven breast cancer patient-derived xenograft tumors was 86%. In triple-negative breast cancer patients who had not received anti-PARP therapy, the predicted response rate of our gene signature was 45%. These results indicate that 53BP1 is a biomarker of response to anti-PARP therapy in the laboratory, and our DNA damage response gene signature may be used to identify patients who are most likely to respond to PARP inhibition. Mol Cancer Ther; 16(12); 2892-901. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    PubMed

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  1. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  2. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    PubMed Central

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A; Ploug, Michael; Almholt, Kasper; Lilla, Jennifer; Nielsen, Boye S; Christensen, Ib J; Craik, Charles S; Werb, Zena; Danø, Keld; Rømer, John

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation. PMID:16763560

  3. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  4. Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.

    PubMed Central

    Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.

    2014-01-01

    Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270

  5. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene

    PubMed Central

    Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.

    2018-01-01

    Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral

  6. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    PubMed Central

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  7. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  8. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome.

    PubMed

    Oller, Jorge; Méndez-Barbero, Nerea; Ruiz, E Josue; Villahoz, Silvia; Renard, Marjolijn; Canelas, Lizet I; Briones, Ana M; Alberca, Rut; Lozano-Vidal, Noelia; Hurlé, María A; Milewicz, Dianna; Evangelista, Arturo; Salaices, Mercedes; Nistal, J Francisco; Jiménez-Borreguero, Luis Jesús; De Backer, Julie; Campanero, Miguel R; Redondo, Juan Miguel

    2017-02-01

    Heritable thoracic aortic aneurysms and dissections (TAAD), including Marfan syndrome (MFS), currently lack a cure, and causative mutations have been identified for only a fraction of affected families. Here we identify the metalloproteinase ADAMTS1 and inducible nitric oxide synthase (NOS2) as therapeutic targets in individuals with TAAD. We show that Adamts1 is a major mediator of vascular homeostasis, given that genetic haploinsufficiency of Adamts1 in mice causes TAAD similar to MFS. Aortic nitric oxide and Nos2 levels were higher in Adamts1-deficient mice and in a mouse model of MFS (hereafter referred to as MFS mice), and Nos2 inactivation protected both types of mice from aortic pathology. Pharmacological inhibition of Nos2 rapidly reversed aortic dilation and medial degeneration in young Adamts1-deficient mice and in young or old MFS mice. Patients with MFS showed elevated NOS2 and decreased ADAMTS1 protein levels in the aorta. These findings uncover a possible causative role for the ADAMTS1-NOS2 axis in human TAAD and warrant evaluation of NOS2 inhibitors for therapy.

  9. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    PubMed

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    PubMed Central

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  11. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice.

    PubMed

    Boeuf, Julien; Trigo, José Manuel; Moreau, Pierre-Henri; Lecourtier, Lucas; Vogel, Elise; Cassel, Jean-Cristophe; Mathis, Chantal; Klosen, Paul; Maldonado, Rafael; Simonin, Frédéric

    2009-09-01

    G protein-coupled receptor (GPCR) associated sorting protein 1 (GASP-1) interacts with GPCRs and is implicated in their postendocytic sorting. Recently, GASP-1 has been shown to regulate dopamine (D(2)) and cannabinoid (CB1) receptor signalling, suggesting that preventing GASP-1 interaction with GPCRs might provide a means to limit the decrease in receptor signalling upon sustained agonist treatment. In order to test this hypothesis, we have generated and behaviourally characterized GASP-1 knockout (KO) mice and have examined the consequences of the absence of GASP-1 on chronic cocaine treatments. GASP-1 KO and wild-type (WT) mice were tested for sensitization to the locomotor effects of cocaine. Additional mice were trained to acquire intravenous self-administration of cocaine on a fixed ratio 1 schedule of reinforcement, and the motivational value of cocaine was then assessed using a progressive ratio schedule of reinforcement. The dopamine and muscarinic receptor densities were quantitatively evaluated in the striatum of WT and KO mice tested for sensitization and self-administration. Acute and sensitized cocaine-locomotor effects were attenuated in KO mice. A decrease in the percentage of animals that acquired cocaine self-administration was also observed in GASP-1-deficient mice, which was associated with pronounced down-regulation of dopamine and muscarinic receptors in the striatum. These data indicate that GASP-1 participates in acute and chronic behavioural responses induced by cocaine and are in agreement with a role of GASP-1 in postendocytic sorting of GPCRs. However, in contrast to previous studies, our data suggest that upon sustained receptor stimulation GASP-1 stimulates recycling rather than receptor degradation.

  12. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice

    PubMed Central

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  13. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.

  14. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    PubMed Central

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  15. Inner ear dysfunction in caspase-3 deficient mice

    PubMed Central

    2011-01-01

    Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/-) mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P < 0.05) compared to Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P < 0.05) in Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule. PMID:21988729

  16. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    PubMed

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  17. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    PubMed

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  18. Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo

    PubMed Central

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling

  19. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  20. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  1. GFPT1 deficiency in muscle leads to myasthenia and myopathy in mice.

    PubMed

    Issop, Yasmin; Hathazi, Denisa; Khan, Muzamil Majid; Rudolf, Rüdiger; Weis, Joachim; Spendiff, Sally; Slater, Clarke R; Roos, Andreas; Lochmüller, Hanns

    2018-06-14

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme in the hexosamine biosynthetic pathway which yields precursors required for protein and lipid glycosylation. Mutations in GFPT1 and other genes downstream of this pathway cause congenital myasthenic syndrome (CMS) characterised by fatigable muscle weakness due to impaired neurotransmission. The precise pathomechanisms at the neuromuscular junction (NMJ) due to a deficiency in GFPT1 is yet to be discovered. One of the challenges we face is the viability of Gfpt1 -/- knockout mice. In this study, we use Cre/LoxP technology to generate a muscle-specific GFPT1 knockout mouse model, Gfpt1tm1d/tm1d, characteristic of the human CMS phenotype. Our data suggests a critical role for muscle derived GFPT1 in the development of the NMJ, neurotransmission, skeletal muscle integrity, and highlights that a deficiency in skeletal muscle alone is sufficient to cause morphological postsynaptic NMJ changes that are accompanied by presynaptic alterations despite the conservation of neuronal GFPT1 expression. In addition to the conventional morphological NMJ changes and fatigable muscle weakness, Gfpt1tm1d/tm1d mice display a progressive myopathic phenotype with the presence of tubular aggregates in muscle, characteristic of the GFPT1-CMS phenotype. We further identify an upregulation of skeletal muscle proteins glypican-1, farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha and Muscle-specific kinase which are known to be involved in the differentiation and maintenance of the NMJ. The Gfpt1tm1d/tm1d model allows for further investigation of pathophysiological consequences on genes and pathways downstream of GFPT1 likely to involve misglycosylation or hypoglycosylation of NMJs and muscle targets.

  2. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  3. PARP inhibitors--current status and the walk towards early breast cancer.

    PubMed

    Glendenning, Jennifer; Tutt, Andrew

    2011-10-01

    Epithelial carcinomas in general arise as a result of the acquisition of and selection for multiple mutations in a parental somatic cell clone within the tissues of the primary organ of origin. In the last two decades genome caretakers, which function in key areas of DNA damage response, have been recognized as important tumour suppressor genes. Inactivating mutations in these genes occur both as germline and/or somatic mutations with increasing evidence of epigenetic silencing as an additional cause of loss of function. In any event, loss of function in a tumour cell pre-cursor clone leads to accelerated mutation acquisition and underpins the aetiology of the tumour. With increasing understanding of the complex network that is the DNA damage response, signaling pathways already recognized to be central to the establishment of the cancer phenotype are gaining additional roles as controllers of DNA repair. This has relevance to identification of wider populations of patients with tumours susceptible to approaches that target DNA repair deficiency. These have classically been with DNA damaging chemotherapy but the recently developed small molecule inhibitors of DNA repair enzymes such as Poly-ADP polymerases PARP-1 and PARP-2 have been shown to target tumour deficiencies in DNA repair as well sensitizing to DNA damaging therapeutics such as radiation and chemotherapy. Early phase trials with efficacy endpoints have been presented for the PARP inhibitors AG014699, olaparib, veliparib, iniparib and MK4827. The results of the first phase II trials exploring monotherapy PARP inhibitor strategies, which are based on revisiting the concept of synthetic lethality, have emerged and are reviewed herein. The clinical trials that have or are exploring combinations with DNA damaging therapy in these contexts are discussed with particular reference to breast cancer, as are biomarkers that have been proposed and are being investigated to develop optimal drug schedule and patient

  4. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  5. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu.

    PubMed

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-12-01

    Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of

  6. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca.

    PubMed

    Song, Xiu Jun; Li, De-Quan; Farley, William; Luo, Li Hui; Heuckeroth, Robert O; Milbrandt, Jeffrey; Pflugfelder, Stephen C

    2003-10-01

    Neurturin has been identified as a neurotrophic factor for parasympathetic neurons. Neurturin-deficient (NRTN(-/-)) mice have defective parasympathetic innervation of their lacrimal glands. This study was conducted to evaluate tear function and ocular surface phenotype in NRTN(-/-) mice. Determined by tail genomic DNA PCR, 25 NRTN(-/-) mice and 17 neurturin-normal (NRTN(+/+)) mice aged 6 weeks to 4 months were evaluated. Aqueous tear production, tear fluorescein clearance and corneal sensation were serially measured. Corneal permeability to AlexaFluor dextran (AFD; Molecular Probes, Eugene, OR) was measured by a fluorometric assay at 485 nm excitation and 530 nm emission. Histology was evaluated in PAS-stained sections. Mucin and HLA class II (IA) antigen were assessed by immunofluorescent staining. Tear IL-1beta was measured by ELISA, and tear matrix metalloproteinase (MMP)-9 by zymography. Gene expression in the corneal epithelia was analyzed by semiquantitative RT-PCR. In comparison to that in age-matched NRTN(+/+) mice, aqueous tear production, tear fluorescein clearance, and corneal sensation were significantly reduced in NRTN(-/-) mice, whereas corneal permeability to AFD was significantly increased. Immunoreactive MUC-4 and -5AC mucin and goblet cell density (P < 0.001) in the conjunctiva of NRTN(-/-) mice were lower than in NRTN(+/+) mice. The expression of MUC-1 and -4 mRNA by the corneal epithelium was reduced in NRTN(-/-) mice. There were a significantly greater number of IA antigen-positive conjunctival epithelial cells in NRTN(-/-) mice than NRTN(+/+) mice. Tear fluid IL-1beta and MMP-9 concentrations and the expression of IL-1beta, TNF-alpha, macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), and MMP-9 mRNA by the corneal epithelia were significantly increased in NRTN(-/-) mice, compared with NRTN(+/+) mice. Neurturin-deficient mice show phenotypic changes and ocular surface inflammation that mimic human

  7. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  8. Amelioration of Behavioral Abnormalities in BH4-deficient Mice by Dietary Supplementation of Tyrosine

    PubMed Central

    Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.

    2013-01-01

    This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163

  9. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  10. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  11. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    PubMed

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  12. PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways

    PubMed Central

    Douglas, Diana L.; Baines, Christopher P.

    2014-01-01

    ABSTRACT Poly(ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme that can trigger caspase-independent necrosis. Two main mechanisms for this have been proposed: one involving RIP1 and JNK kinases and mitochondrial permeability transition (MPT), the other involving calpain-mediated activation of Bax and mitochondrial release of apoptosis-inducing factor (AIF). However, whether these two mechanisms represent distinct pathways for PARP1-induced necrosis, or whether they are simply different components of the same pathway has yet to be tested. Mouse embryonic fibroblasts (MEFs) were treated with either N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or β-Lapachone, resulting in PARP1-dependent necrosis. This was associated with increases in calpain activity, JNK activation and AIF translocation. JNK inhibition significantly reduced MNNG- and β-Lapachone-induced JNK activation, AIF translocation, and necrosis, but not calpain activation. In contrast, inhibition of calpain either by Ca2+ chelation or knockdown attenuated necrosis, but did not affect JNK activation or AIF translocation. To our surprise, genetic and/or pharmacological inhibition of RIP1, AIF, Bax and the MPT pore failed to abrogate MNNG- and β-Lapachone-induced necrosis. In conclusion, although JNK and calpain both contribute to PARP1-induced necrosis, they do so via parallel mechanisms. PMID:25052090

  13. Heart rate dynamics in monoamine oxidase-A- and -B-deficient mice

    PubMed Central

    HOLSCHNEIDER, D. P.; SCREMIN, O. U.; CHIALVO, D. R.; CHEN, K.; SHIH, J. C.

    2014-01-01

    Heart rate (HR) dynamics were investigated in mice deficient in monoamine oxidase A and B, whose phenotype includes elevated tissue levels of norepinephrine, serotonin, dopamine, and phenylethylamine. In their home cages, spectral analysis of R-R intervals revealed more pronounced fluctuations at all frequencies in the mutants compared with wild-type controls, with a particular enhancement at 1–4 Hz. No significant genotypic differences in HR variability (HRV) or entropies calculated from Poincaré plots of the R-R intervals were noted. During exposure to the stress of a novel environment, HR increased and HRV decreased in both genotypes. However, mutants, unlike controls, demonstrated a rapid return to baseline HR during the 10-min exposure. Such modulation may result from an enhanced vagal tone, as suggested by the observation that mutants responded to cholinergic blockade with a decrease in HRV and a prolonged tachycardia greater than controls. Monoamine oxidase-deficient mice may represent a useful experimental model for studying compensatory mechanisms responsible for changes in HR dynamics in chronic states of high sympathetic tone. PMID:11959640

  14. Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    PubMed Central

    Haase, Volker H.; King, Rhonda; Polyak, Erzsebet; Selak, Mary; Yudkoff, Marc; Hancock, Wayne W.; Meade, Ray; Saiki, Ryoichi; Lunceford, Adam L.; Clarke, Catherine F.; Gasser, David L.

    2008-01-01

    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment. PMID:18437205

  15. REV7 counteracts DNA double-strand break resection and impacts PARP inhibition

    PubMed Central

    Xu, Guotai; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Summary Error-free repair of DNA double-strand breaks (DSB) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway1. In the absence of BRCA1-mediated HR, administration of PARP inhibitors induces synthetic lethality of tumor cells of patients with breast or ovarian cancers2,3. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration4. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases5. In particular, little is known about BRCA1-independent restoration of HR. Here, we show that loss of REV7 (also known as MAD2L2) re-establishes CtIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and appears to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance6. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining (NHEJ) during immunoglobulin class switch recombination. Our results reveal an unexpected critical function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells. PMID:25799992

  16. Distinct role of IL-1β in instigating disease in Sharpincpdm mice

    PubMed Central

    Gurung, Prajwal; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi

    2016-01-01

    Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade. PMID:27892465

  17. Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages

    PubMed Central

    Zhou, Yi; Yu, Xueqing; Chen, Huimei; Sjöberg, Sara; Roux, Joséphine; Zhang, Lijun; Ivoulsou, Al-Habib; Bensaid, Farid; Liu, Conglin; Liu, Jian; Tordjman, Joan; Clement, Karine; Lee, Chih-Hao; Hotamisligil, Gokhan S.; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    SUMMARY Mast cells (MCs) contribute to the pathogenesis of obesity and diabetes. This study demonstrates that leptin deficiency slants MCs toward anti-inflammatory functions. MCs in the white adipose tissues (WAT) of lean humans and mice express negligible leptin. Adoptive transfer of leptin-deficient MCs expanded ex vivo mitigates diet-induced and pre-established obesity and diabetes in mice. Mechanistic studies show that leptin-deficient MCs polarize macrophages from M1 to M2 functions because of impaired cell signaling and an altered balance between pro- and anti-inflammatory cytokines, but do not affect T-cell differentiation. Rampant body weight gain in ob/ob mice, a strain that lacks leptin, associates with reduced MC content in WAT. In ob/ob mice, genetic depletion of MCs exacerbates obesity and diabetes, and repopulation of ex vivo expanded ob/ob MCs ameliorates these diseases. PMID:26481668

  18. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    PubMed

    Wang, Hao; Shun, Ming-Chieh; Dickson, Amy K; Engelman, Alan N

    2015-01-01

    Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1

  19. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.

    PubMed

    Cho, Sung Hoon; Ahn, Annie K; Bhargava, Prerna; Lee, Chih-Hao; Eischen, Christine M; McGuinness, Owen; Boothby, Mark

    2011-09-20

    Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.

  20. TLR9 deficiency breaks tolerance to RNA-associated antigens and upregulates TLR7 protein in Sle1 mice.

    PubMed

    Celhar, Teja; Yasuga, Hiroko; Lee, Hui-Yin; Zharkova, Olga; Tripathi, Shubhita; Thornhill, Susannah I; Lu, Hao K; Au, Bijin; Lim, Lina H K; Thamboo, Thomas P; Akira, Shizuo; Wakeland, Edward K; Connolly, John E; Fairhurst, Anna-Marie

    2018-04-24

    Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of Systemic Lupus Erythematosus (SLE). While multiple studies support a dependency on TLR7 for disease development, genetic ablation of TLR9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. The present study was designed to examine the suppressive role of TLR9 in the development of severe lupus. We crossed Sle1 lupus-prone mice with TLR9-deficient mice to generate Sle1TLR9 -/- . These mice were aged and evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total immunoglobulin profiles, kidney dendritic cell (DC) function and TLR7 protein expression. Young mice were used for functional B cell studies, immunoglobulin profiling and TLR7 expression. Sle1TLR9 -/- mice developed severe disease similar to TLR9-deficient MRL and Nba2 models. Sle1TLR9 -/- B cells produced more class-switched antibodies and the autoantibody repertoire was skewed towards RNA-containing antigens. GN in these mice was associated with DC infiltration and purified Sle1TLR9 -/- renal DCs were more efficient at TLR7-dependent antigen presentation and expressed higher levels of TLR7 protein. Importantly, this increase in TLR7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. The increase in TLR7-reactive immune complexes (IC) and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9 -/- mice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2

    PubMed Central

    Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi

    2016-01-01

    Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046

  2. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  3. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors.

    PubMed

    Eltze, Tobias; Boer, Rainer; Wagner, Thomas; Weinbrenner, Steffen; McDonald, Michelle C; Thiemermann, Christoph; Bürkle, Alexander; Klein, Thomas

    2008-12-01

    We have identified three novel structures for inhibitors of the poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA and implicated in DNA repair, apoptosis, organ dysfunction or necrosis. 2-[4-(5-Methyl-1H-imidazol-4-yl)-piperidin-1-yl]-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK49187), 2-(4-pyridin-2-yl-phenyl)-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK236864), 6-chloro-8-hydroxy-2,3-dimethyl-imidazo-[1,2-alpha]-pyridine (BYK20370), and 4-(1-methyl-1H-pyrrol-2-ylmethylene)-4H-isoquinolin-1,3-dione (BYK204165) inhibited cell-free recombinant human PARP-1 with pIC(50) values of 8.36, 7.81, 6.40, and 7.35 (pK(i) 7.97, 7.43, 5.90, and 7.05), and murine PARP-2 with pIC(50) values of 7.50, 7.55, 5.71, and 5.38, respectively. BYK49187, BYK236864, and BYK20370 displayed no selectivity for PARP-1/2, whereas BYK204165 displayed 100-fold selectivity for PARP-1. The IC(50) values for inhibition of poly(ADP-ribose) synthesis in human lung epithelial A549 and cervical carcinoma C4I cells as well in rat cardiac myoblast H9c2 cells after PARP activation by H(2)O(2) were highly significantly correlated with those at cell-free PARP-1 (r(2) = 0.89-0.96, P < 0.001) but less with those at PARP-2 (r(2) = 0.78-0.84, P < 0.01). The infarct size caused by coronary artery occlusion and reperfusion in the anesthetized rat was reduced by 22% (P < 0.05) by treatment with BYK49187 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. during 2-h reperfusion), whereas the weaker PARP inhibitors, BYK236864 and BYK20370, were not cardioprotective. In conclusion, the imidazoquinolinone BYK49187 is a potent inhibitor of human PARP-1 activity in cell-free and cellular assays in vitro and reduces myocardial infarct size in vivo. The isoquinolindione BYK204165 was found to be 100-fold more selective for PARP-1. Thus, both compounds might be novel and valuable tools for investigating PARP-1-mediated effects.

  4. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype.

    PubMed

    Christophi, George P; Panos, Michael; Hudson, Chad A; Christophi, Rebecca L; Gruber, Ross C; Mersich, Akos T; Blystone, Scott D; Jubelt, Burk; Massa, Paul T

    2009-07-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that

  5. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  6. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  7. Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype*

    PubMed Central

    Ye, Ling; Mishina, Yuji; Chen, Di; Huang, Haiyang; Dallas, Sarah L.; Dallas, Mark R.; Sivakumar, Pitchumani; Kunieda, Tetsuo; Tsutsui, Takeo W.; Boskey, Adele; Bonewald, Lynda F.; Feng, Jian Q.

    2009-01-01

    Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1−/−) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1−/−) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1−/− mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis. PMID:15590631

  8. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    PubMed

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  9. SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

    PubMed Central

    Ding, Feng; Li, Hong Hua; Zhang, Shengwen; Solomon, Nicola M.; Camper, Sally A.; Cohen, Pinchas; Francke, Uta

    2008-01-01

    Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation. PMID:18320030

  10. Increased red cell turnover in a line of CD22-deficient mice is caused by Gpi1c: a model for hereditary haemolytic anaemia.

    PubMed

    Walker, Jennifer A; Hall, Andrew M; Kotsopoulou, Ekaterini; Espeli, Marion; Nitschke, Lars; Barker, Robert N; Lyons, Paul A; Smith, Kenneth G C

    2012-12-01

    CD22, an inhibitory co-receptor of the BCR, has been identified as a potential candidate gene for the development of autoimmune haemolytic anaemia in mice. In this study, we have examined Cd22(tm1Msn) CD22-deficient mice and identified an increase in RBC turnover and stress erythropoiesis, which might be consistent with haemolysis. We then, however, eliminated CD22 deficiency as the cause of accelerated RBC turnover and established that enhanced RBC turnover occurs independently of B cells and anti-RBC autoanti-bodies. Accelerated RBC turnover in this particular strain of CD22-deficient mice is red cell intrinsic and appears to be the consequence of a defective allele of glucose phosphate isomerase, Gpi1(c). This form of Gpi1 was originally derived from wild mice and results in a substantial reduction in enzyme activity. We have identified the polymorphism that causes impaired catalytic activity in the Gpi1(c) allele, and biochemically confirmed an approximate 75% reduction of GPI1 activity in Cd22(-/-) RBCs. The Cd22(-/-).Gpi1(c) congenic mouse provides a novel animal model of GPI1-deficiency, which is one of the most common causes of chronic non-spherocytic haemolytic anaemia in humans. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration.

    PubMed

    Neira-Peña, T; Rojas-Mancilla, E; Munoz-Vio, V; Perez, R; Gutierrez-Hernandez, M; Bustamante, D; Morales, P; Hermoso, M A; Gebicke-Haerter, P; Herrera-Marschitz, M

    2015-05-01

    Perinatal asphyxia (PA) is a leading cause of neuronal damage in newborns, resulting in long-term neurological and cognitive deficits, in part due to impairment of mesostriatal and mesolimbic neurocircuitries. The insult can be as severe as to menace the integrity of the genome, triggering the overactivation of sentinel proteins, including poly (ADP-ribose) polymerase-1 (PARP-1). PARP-1 overactivation implies increased energy demands, worsening the metabolic failure and depleting further NAD(+) availability. Using a global PA rat model, we report here evidence that hypoxia increases PARP-1 activity, triggering a signalling cascade leading to nuclear translocation of the NF-κB subunit p65, modulating the expression of IL-1β and TNF-α, pro-inflammatory molecules, increasing apoptotic-like cell death in mesencephalon of neonate rats, monitored with Western blots, qPCR, TUNEL and ELISA. PARP-1 activity increased immediately after PA, reaching a maximum 1-8 h after the insult, while activation of the NF-κB signalling pathway was observed 8 h after the insult, with a >twofold increase of p65 nuclear translocation. IL-1β and TNF-α mRNA levels were increased 24 h after the insult, together with a >twofold increase in apoptotic-like cell death. A single dose of the PARP-1 inhibitor nicotinamide (0.8 mmol/kg, i.p.), 1 h post delivery, prevented the effect of PA on PARP-1 activity, p65 translocation, pro-inflammatory cytokine expression and apoptotic-like cell death. The present study demonstrates that PA leads to PARP-1 overactivation, increasing the expression of pro-inflammatory cytokines and cell death in mesencephalon, effects prevented by systemic neonatal nicotinamide administration, supporting the idea that PARP-1 inhibition represents a therapeutic target against the effects of PA.

  12. Vitamin D-binding protein deficiency in mice decreases systemic and select tissue levels of inflammatory cytokines in a murine model of acute muscle injury.

    PubMed

    Kew, Richard R; Tabrizian, Tahmineh; Vosswinkel, James A; Davis, James E; Jawa, Randeep S

    2018-06-01

    Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.

  13. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.

    PubMed

    Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E

    2009-02-13

    Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.

  14. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  15. Impaired Self-Renewal and Increased Colitis and Dysplastic Lesions in Colonic Mucosa of AKR1B8 Deficient Mice

    PubMed Central

    Shen, Yi; Ma, Jun; Yan, Ruilan; Ling, Hongyan; Li, Xiaoning; Yang, Wancai; Gao, John; Huang, Chenfei; Bu, Yiwen; Cao, Yu; He, Yingchun; Wan, Laxiang; Zu, Xuyu; Liu, Jianghua; Huang, Mei Chris; Stenson, William F; Liao, Duan-Fang; Cao, Deliang

    2015-01-01

    Purpose Ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Aldo-keto reductase 1B10 (AKR1B10) is specifically expressed in the colonic epithelium, but down-regulated in colorectal cancer. This study was aimed to investigate the etiopathogenic role of AKR1B10 in UC and CAC. Experimental design UC and CAC biopsies (paraffin-embedded sections) and frozen tissues were collected to examine AKR1B10 expression. Aldo-keto reductase 1B8 (the ortholog of human AKR1B10) knockout (AKR1B8 −/−) mice were produced to estimate its role in the susceptibility and severity of chronic colitis and associated dysplastic lesions, induced by dextran sulfate sodium (DSS) at a low dose (2%). Genome-wide Exome sequencing was used to profile DNA damage in DSS-induced colitis and tumors. Results AKR1B10 expression was markedly diminished in over 90% of UC and CAC tissues. AKR1B8 deficiency led to reduced lipid synthesis from butyrate and diminished proliferation of colonic epithelial cells. The DSS-treated AKR1B8 −/− mice demonstrated impaired injury repair of colonic epithelium and more severe bleeding, inflammation, and ulceration. These AKR1B8 −/− mice had more severe oxidative stress and DNA damage, and dysplasias were more frequent and at a higher grade in the AKR1B8 −/− mice than in wild type mice. Palpable masses were seen in the AKR1B8 −/− mice only, not in wild type. Conclusion AKR1B8 is a critical protein in the proliferation and injury repair of the colonic epithelium and in the pathogenesis of UC and CAC, being a new etiopathogenic factor of these diseases. PMID:25538260

  16. Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Neumeier, Markus; Schmidhofer, Sandra; Pohl, Rebekka; Haberl, Elisabeth M; Liebisch, Gerhard; Kopp, Andrea; Schmid, Andreas; Krautbauer, Sabrina; Buechler, Christa

    2018-06-01

    Alpha-syntrophin (SNTA) is a molecular adapter protein which is expressed in adipocytes. Knock-down of SNTA in 3T3-L1 preadipocytes increases cell proliferation, and differentiated adipocytes display small lipid droplets. These effects are both characteristics of healthy adipose tissue growth which is associated with metabolic improvements in obesity. To evaluate a role of SNTA in adipose tissue morphology and obesity associated metabolic dysfunction, SNTA deficient mice were fed a standard chow or a high fat diet. Mice deficient of SNTA had less fat mass and smaller adipocytes in obesity when compared to control animals. Accordingly, these animals did not develop liver steatosis and did not store excess triglycerides in skeletal muscle upon high fat diet feeding. SNTA-/- animals were protected from hyperinsulinemia and hepatic insulin resistance. Of note, body-weight, food uptake, and serum lipids were normal in the SNTA null mice. SNTA was induced in adipose tissues but not in the liver of diet induced obese and ob/ob mice. In human subcutaneous and visceral fat of seven patients SNTA was similarly expressed and was not associated with body mass index. Current data demonstrate beneficial effects of SNTA deficiency in obesity which is partly attributed to smaller adipocytes and reduced white adipose tissue mass. Higher SNTA protein in fat depots of obese mice may contribute to adipose tissue hypertrophy and ectopic lipid deposition which has to be confirmed in humans. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  18. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  19. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  20. Hematopoietic stem cell gene therapy for IFNγR1 deficiency protects mice from mycobacterial infections.

    PubMed

    Hetzel, Miriam; Mucci, Adele; Blank, Patrick; Nguyen, Ariane Hai Ha; Schiller, Jan; Halle, Olga; Kühnel, Mark-Philipp; Billig, Sandra; Meineke, Robert; Brand, Daniel; Herder, Vanessa; Baumgärtner, Wolfgang; Bange, Franz-Christoph; Goethe, Ralph; Jonigk, Danny; Förster, Reinhold; Gentner, Bernhard; Casanova, Jean-Laurent; Bustamante, Jacinta; Schambach, Axel; Kalinke, Ulrich; Lachmann, Nico

    2018-02-01

    Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 ( IFNGR1 or IFNGR2 ) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1 -/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1 -/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients. © 2018 by The American Society of Hematology.

  1. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  2. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    PubMed

    Komnig, Daniel; Imgrund, Silke; Reich, Arno; Gründer, Stefan; Falkenburger, Björn H

    2016-01-01

    Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  3. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice.

    PubMed

    Peuhu, Emilia; Salomaa, Siiri I; De Franceschi, Nicola; Potter, Christopher S; Sundberg, John P; Pouwels, Jeroen

    2017-01-01

    SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.

  4. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  5. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  6. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    PubMed

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors.

    PubMed

    Molenaar, Remco J; Radivoyevitch, Tomas; Nagata, Yasunobu; Khurshed, Mohammed; Przychodzen, Bartolomiej; Makishima, Hideki; Xu, Mingjiang; Bleeker, Fonnet E; Wilmink, Johanna W; Carraway, Hetty E; Mukherjee, Sudipto; Sekeres, Mikkael A; van Noorden, Cornelis J F; Maciejewski, Jaroslaw P

    2018-04-01

    Purpose: Somatic mutations in IDH1/2 occur in approximately 20% of patients with myeloid neoplasms, including acute myeloid leukemia (AML). IDH1/2 MUT enzymes produce D -2-hydroxyglutarate ( D 2HG), which associates with increased DNA damage and improved responses to chemo/radiotherapy and PARP inhibitors in solid tumor cells. Whether this also holds true for IDH1/2 MUT AML is not known. Experimental Design: Well-characterized primary IDH1 MUT , IDH2 MUT , and IDH1/2 WT AML cells were analyzed for DNA damage and responses to daunorubicin, ionizing radiation, and PARP inhibitors. Results: IDH1/2 MUT caused increased DNA damage and sensitization to daunorubicin, irradiation, and the PARP inhibitors olaparib and talazoparib in AML cells. IDH1/2 MUT inhibitors protected against these treatments. Combined treatment with a PARP inhibitor and daunorubicin had an additive effect on the killing of IDH1/2 MUT AML cells. We provide evidence that the therapy sensitivity of IDH1/2 MUT cells was caused by D 2HG-mediated downregulation of expression of the DNA damage response gene ATM and not by altered redox responses due to metabolic alterations in IDH1/2 MUT cells. Conclusions: IDH1/2 MUT AML cells are sensitive to PARP inhibitors as monotherapy but especially when combined with a DNA-damaging agent, such as daunorubicin, whereas concomitant administration of IDH1/2 MUT inhibitors during cytotoxic therapy decrease the efficacy of both agents in IDH1/2 MUT AML. These results advocate in favor of clinical trials of PARP inhibitors either or not in combination with daunorubicin in IDH1/2 MUT AML. Clin Cancer Res; 24(7); 1705-15. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice

    PubMed Central

    Qadri, Fatimunnisa; Penninger, Josef M.; Santos, Robson Augusto S.; Bader, Michael

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2−/y) mice. Methods. Male C57BL/6 and ACE2−/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2−/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2−/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2−/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2−/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis. PMID:28101297

  10. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    PubMed Central

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  11. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle

    PubMed Central

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-01

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle. PMID:27992376

  12. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    PubMed

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  13. Preservation of Eumelanin Hair Pigmentation in Proopiomelanocortin-Deficient Mice on a Nonagouti (a/a) Genetic Background

    PubMed Central

    Slominski, Andrzej; Plonka, Przemyslaw M.; Pisarchik, Alexander; Smart, James L.; Tolle, Virginie; Wortsman, Jacobo; Low, Malcolm J.

    2005-01-01

    The original strain of proopiomelanocortin (POMC)-deficient mice (Pomc−/− ) was generated by homologous recombination in 129X1/SvJ (Aw/Aw)-derived embryonic stem cells using a targeting construct that deleted exon 3, encoding all the known functional POMC-derived peptides including αMSH, from the Pomc gene. Although these Pomc−/− mice exhibited adrenal hypoplasia and obesity similar to the syndrome of POMC deficiency in children, their agouti coat color was only subtly altered. To further investigate the mechanism of hair pigmentation in the absence of POMC peptides, we studied wild-type (Pomc+/+), heterozygous (Pomc+/−), and homozygous (Pomc−/−) mice on a nonagouti (a/a) 129;B6 hybrid genetic background. All three genotypes had similar black fur pigmentation with yellow hairs behind the ears, around the nipples, and in the perianal area characteristic of inbred C57BL/6 mice. Histologic and electron paramagnetic resonance spectrometry examination demonstrated that hair follicles in back skin of Pomc−/− mice developed with normal structure and eumelanin pigmentation; corresponding molecular analyses, however, excluded local production of αMSH and ACTH because neither Pomc nor putative Pomc pseudogene mRNAs were detected in the skin. Thus, 129;B6 Pomc null mutant mice produce abundant eumelanin hair pigmentation despite their congenital absence of melanocortin ligands. These results suggest that either the mouse melanocortin receptor 1 has sufficient basal activity to trigger and sustain eumelanogenesis in vivo or that redundant nonmelanocortin pathway(s) compensate for the melanocortin deficiency. Whereas the latter implies feedback control of melanogenesis, it is also possible that the two mechanisms operate jointly in hair follicles. PMID:15564334

  14. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice

    EPA Science Inventory

    This study demonstrates that early-life persistent vitamin D deficiency alters the cardiopulmonary response to smog in mice and may increase risk of adverse effects. Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environme...

  15. Regulation of HFE expression by Poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter

    PubMed Central

    Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M. Rafiq

    2013-01-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700 bp (−1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. PMID:24184271

  16. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter.

    PubMed

    Pelham, Christopher; Jimenez, Tamara; Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M Rafiq

    2013-12-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. © 2013.

  17. Plasminogen Activator Inhibitor-1 Deficiency Augments Visceral Mesothelial Organization, Intrapleural Coagulation, and Lung Restriction in Mice with Carbon Black/Bleomycin–Induced Pleural Injury

    PubMed Central

    Jeffers, Ann; Alvarez, Alexia; Owens, Shuzi; Koenig, Kathleen; Quaid, Brandon; Komissarov, Andrey A.; Florova, Galina; Kothari, Hema; Pendurthi, Usha; Mohan Rao, L. Vijaya; Idell, Steven

    2014-01-01

    Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1−/− mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1−/− mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1−/− mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial–mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1−/− mice, D-dimer and thrombin–antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction. PMID:24024554

  18. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    PubMed Central

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  19. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    PubMed

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  20. Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice

    PubMed Central

    Liedert, Astrid; Röntgen, Viktoria; Schinke, Thorsten; Benisch, Peggy; Ebert, Regina; Jakob, Franz; Klein-Hitpass, Ludger; Lennerz, Jochen K.; Amling, Michael; Ignatius, Anita

    2014-01-01

    The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. PMID:25061805

  1. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.

    PubMed

    Luo, Xin; Ryu, Keun Woo; Kim, Dae-Seok; Nandu, Tulip; Medina, Carlos J; Gupte, Rebecca; Gibson, Bryan A; Soccio, Raymond E; Yu, Yonghao; Gupta, Rana K; Kraus, W Lee

    2017-01-19

    Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins mediated by PARP family members, such as PARP-1. Although PARylation has been studied extensively, few examples of definitive biological roles for site-specific PARylation have been reported. Here we show that C/EBPβ, a key pro-adipogenic transcription factor, is PARylated by PARP-1 on three amino acids in a conserved regulatory domain. PARylation at these sites inhibits C/EBPβ's DNA binding and transcriptional activities and attenuates adipogenesis in various genetic and cell-based models. Interestingly, PARP-1 catalytic activity drops precipitously during the first 48 hr of differentiation, corresponding to a release of C/EBPβ from PARylation-mediated inhibition. This promotes the binding of C/EBPβ at enhancers controlling the expression of adipogenic target genes and continued differentiation. Depletion or chemical inhibition of PARP-1, or mutation of the PARylation sites on C/EBPβ, enhances these early adipogenic events. Collectively, our results provide a clear example of how site-specific PARylation drives biological outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice

    PubMed Central

    Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea

    2013-01-01

    Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661

  3. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  4. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  5. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    PubMed

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  6. Neurochemical, behavioral and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

    PubMed Central

    Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.

    2008-01-01

    Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364

  7. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-09-22

    was the predominant mode of cell death and no autophagic death was observed. Our study demonstrates for the first time that PARP-1 inhibition in combination with carbon ion synergistically decreases MMPs activity along with overall increase of TIMPs. These data open up the possibilities of improvement of carbon ion therapy with PARP-1 inhibition to control highly metastatic cancers.

  8. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Acquisition of relative interstrand crosslinker resistance and PARP inhibitor sensitivity in Fanconi anemia head and neck cancers

    PubMed Central

    Lombardi, Anne J.; Hoskins, Elizabeth E.; Foglesong, Grant D.; Wikenheiser-Brokamp, Kathryn A.; Wiesmüller, Lisa; Hanenberg, Helmut; Andreassen, Paul R.; Jacobs, Allison J.; Olson, Susan B.; Keeble, Winifred W.; Hays, Laura E.; Wells, Susanne I.

    2015-01-01

    Purpose Fanconi anemia (FA) is an inherited disorder associated with a constitutional defect in the FA DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with FA are predisposed to formation of head and neck squamous cell carcinomas (HNSCCs) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. Experimental Design Using HNSCC cell lines derived from the tumors of FA patients, and murine HNSCC cell lines derived from the tumors of wild type and Fancc−/− mice, we sought to define FA-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of FA HNSCC cells for non-homologous end joining (NHEJ). Results Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily FA-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in FA cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by poly(ADP-ribose) polymerase (PARP) in FA-deficient cells. Moreover, human and murine FA HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by FA gene complementation. Conclusions The observed reliance upon PARP-mediated mechanisms reveals a means by which FA HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual. PMID:25609062

  10. Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers.

    PubMed

    Lombardi, Anne J; Hoskins, Elizabeth E; Foglesong, Grant D; Wikenheiser-Brokamp, Kathryn A; Wiesmüller, Lisa; Hanenberg, Helmut; Andreassen, Paul R; Jacobs, Allison J; Olson, Susan B; Keeble, Winifred W; Hays, Laura E; Wells, Susanne I

    2015-04-15

    Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual. ©2015 American Association for Cancer Research.

  11. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    PubMed Central

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  12. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells.

    PubMed

    Yu, Songtao; Wang, Xiaojiao; Geng, Peiliang; Tang, Xudong; Xiang, Lisha; Lu, Xin; Li, Jianjun; Ruan, Zhihua; Chen, Jianfang; Xie, Ganfeng; Wang, Zhe; Ou, Juanjuan; Peng, Yuan; Luo, Xi; Zhang, Xuan; Dong, Yan; Pang, Xueli; Miao, Hongming; Chen, Hongshan; Liang, Houjie

    2017-08-01

    Cellular senescence is an important tumor-suppressive mechanism. However, acquisition of a senescence-associated secretory phenotype (SASP) in senescent cells has deleterious effects on the tissue microenvironment and, paradoxically, promotes tumor progression. In a drug screen, we identified melatonin as a novel SASP suppressor in human cells. Strikingly, melatonin blunts global SASP gene expression upon oncogene-induced senescence (OIS). Moreover, poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, was identified as a new melatonin-dependent regulator of SASP gene induction upon OIS. Here, we report two different but potentially coherent epigenetic strategies for melatonin regulation of SASP. The interaction between the telomeric repeat-containing RNA (TERRA) and PARP-1 stimulates the SASP, which was attenuated by 67.9% (illustrated by the case of IL8) by treatment with melatonin. Through binding to macroH2A1.1, PARP-1 recruits CREB-binding protein (CBP) to mediate acetylation of H2BK120, which positively regulates the expression of target SASP genes, and this process is interrupted by melatonin. Consequently, the findings provide novel insight into melatonin's epigenetic role via modulating PARP-1 in suppression of SASP gene expression in OIS-induced senescent cells. Our studies identify melatonin as a novel anti-SASP molecule, define PARP-1 as a new target by which melatonin regulates SASP, and establish a new epigenetic paradigm for a pharmacological mechanism by which melatonin interrupts PARP-1 interaction with the telomeric long noncoding RNA(lncRNA) or chromatin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling.

    PubMed

    Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan

    2018-06-12

    There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression

    PubMed Central

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-01-01

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT-repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells. PMID:28977912

  15. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression.

    PubMed

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-09-22

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT- repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells.

  16. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining

    PubMed Central

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E.; Iliakis, George

    2014-01-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. PMID:24748665

  17. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators.

    PubMed

    Duffney, Lara J; Zhong, Ping; Wei, Jing; Matas, Emmanuel; Cheng, Jia; Qin, Luye; Ma, Kaijie; Dietz, David M; Kajiwara, Yuji; Buxbaum, Joseph D; Yan, Zhen

    2015-06-09

    Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  19. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.

    PubMed

    Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos

    2010-12-01

    Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  20. Immunity to Trichinella spiralis infection in vitamin A-deficient mice

    PubMed Central

    1992-01-01

    Vitamin A-deficient (A-) mice make strikingly poor IgG responses when they are immunized with purified protein antigens. Previously, we showed that A- T cells overproduce interferon gamma (IFN-gamma), which then could inhibit interleukin 4 (IL-4)-stimulated B cell IgG responses. To determine if the altered IFN-gamma regulation pattern and its immunological consequences would extend to a natural infection, we studied mice infected with the parasitic helminth Trichinella spiralis. The course of the infection was similar in A- and A-sufficient (A+) mice. These mice did not differ with respect to newborn larvae/female/hour produced in the intestine, or muscle larvae burden 5 wk postinfection. They also did not differ in the intestinal worm expulsion rate until day 15, when A- mice still harbored parasites, whereas A+ mice had cleared intestinal worms. Vitamin A deficiency reduced both the frequency of B lymphocytes secreting IgG1 antibodies to parasite antigens, and the bone marrow eosinophilia associated with helminth infection. The cytokine secretion patterns in infected mice were consistent with these observations and with previous studies. Mesenteric lymph node cells from infected A- mice secreted significantly more IFN-gamma, and significantly less IL-2, IL-4, and IL- 5 than infected A+ controls. A- splenocytes secreted significantly more IFN-gamma, and equivalent amounts of IL-2, IL-4, and IL-5 compared with A+ controls. Interestingly, CD4-CD8- cells secreted the majority of the IL-4 produced in the spleen. The IL-2, IL-4, and IL-5 steady-state transcript levels correlated with secreted protein levels, but IFN- gamma transcripts did not. Although they secreted more protein, A- cells contained fewer IFN-gamma transcripts than A+ cells. These results suggest two vitamin A-mediated regulation steps in IFN-gamma gene expression: positive regulation of IFN-gamma transcript levels, and negative regulation posttranscriptionally. The essentially unaltered outcome of T

  1. Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mice

    PubMed Central

    Smart, James L.; Tolle, Virginie; Low, Malcolm J.

    2006-01-01

    Null mutations of the proopiomelanocortin gene (Pomc–/–) cause obesity in humans and rodents, but the contributions of central versus pituitary POMC deficiency are not fully established. To elucidate these roles, we introduced a POMC transgene (Tg) that selectively restored peripheral melanocortin and corticosterone secretion in Pomc–/– mice. Rather than improving energy balance, the genetic replacement of pituitary POMC in Pomc–/–Tg+ mice aggravated their metabolic syndrome with increased caloric intake and feed efficiency, reduced oxygen consumption, increased subcutaneous, visceral, and hepatic fat, and severe insulin resistance. Pair-feeding of Pomc–/–Tg+ mice to the daily intake of lean controls normalized their rate of weight gain but did not abolish obesity, indicating that hyperphagia is a major but not sole determinant of the phenotype. Replacement of corticosterone in the drinking water of Pomc–/– mice recapitulated the hyperphagia, excess weight gain and fat accumulation, and hyperleptinemia characteristic of genetically rescued Pomc–/–Tg+ mice. These data demonstrate that CNS POMC peptides play a critical role in energy homeostasis that is not substituted by peripheral POMC. Restoration of pituitary POMC expression to create a de facto neuronal POMC deficiency exacerbated the development of obesity, largely via glucocorticoid modulation of appetite, metabolism, and energy partitioning. PMID:16440060

  2. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  3. CDKL5 deficiency entails sleep apneas in mice.

    PubMed

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  4. Microhemorrhage is an Early Event in the Pulmonary Fibrotic Disease of PECAM-1 Deficient FVB/n Mice

    PubMed Central

    Young, Lena C.; Woods, Steven J.; Groshong, Steven D.; Basaraba, Randall J.; Gilchrist, John M.; Higgins, David M.; Gonzalez-Juarrero, Mercedes; Bass, Todd A.; Muller, William A.; Schenkel, Alan R.

    2014-01-01

    Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) deficient mice in the FVB/n strain exhibit fatal chronic pulmonary fibrotic disease. The illness occurs in the absence of a detectable pro-inflammatory event. PECAM-1 is vital to the stability of vascular permeability, leukocyte extravasation, clotting of platelets, and clearance of apoptotic cells. We show here that the spontaneous development of fibrotic disease in PECAM-1 deficient FVB/n mice is characterized by early loss of vascular integrity in pulmonary capillaries, resulting in spontaneous microbleeds. Hemosiderin-positive macrophages were found in interstitial spaces and bronchoalveolar lavage (BAL) fluid in relatively healthy animals. We also observed a gradually increasing presence of hemosiderin-positive macrophages and fibrin deposition in the advanced stages of disease, corresponding to the accumulation of collagen, IL-10 expression, and myofibroblasts expressing alpha smooth muscle actin (SMA). Together with the growing evidence that pulmonary microbleeds and coagulation play an active part in human pulmonary fibrosis, this data further supports our hypothesis that PECAM-1 expression is necessary for vascular barrier function control and regulation of homeostasis specifically, in the pulmonary environment. PMID:24972347

  5. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    PubMed

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins. (c) 2008 Wiley-Liss, Inc.

  6. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice

    PubMed Central

    Takamatsu, Shinji; Antonopoulos, Aristotelis; Ohtsubo, Kazuaki; Ditto, David; Chiba, Yasunori; Le, Dzung T.; Morris, Howard R.; Haslam, Stuart M.; Dell, Anne; Marth, Jamey D.; Taniguchi, Naoyuki

    2010-01-01

    N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcβ1-4 branch synthesis on the Manα1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs. GnT-IVb deficiency induced aberrant GnT-IVa expression corresponding to the GnT-IVb distribution pattern that might be attributed to increased Ets-1, which conceivably activates the Mgat4a promoter, and thereafter preserved apparent GnT-IV activity. The compensative GnT-IVa expression might contribute to amelioration of the GnT-IVb-deficient phenotype. GnT-IVb deficiency showed mild phenotypic alterations in hematopoietic cell populations and hemostasis. GnT-IVa/-IVb double deficiency completely abolished GnT-IV activity that resulted in the disappearance of the GlcNAcβ1-4 branch on the Manα1-3 arm that was confirmed by MALDI-TOF MS and GC-MS linkage analyses. Comprehensive glycomic analyses revealed that the abundance of terminal moieties was preserved in GnT-IVa/-IVb double deficiency that was due to the elevated expression of glycosyltransferases regarding synthesis of terminal moieties. Thereby, this may maintain the expression of glycan ligands for endogenous lectins and prevent cellular dysfunctions. The fact that the phenotype of GnT-IVa/-IVb double deficiency largely overlapped that of GnT-IVa single deficiency can be attributed to the induced glycomic compensation. This is the first report that mammalian organs have highly organized glycomic compensation systems to preserve N-glycan branch complexity. PMID:20015870

  7. The PARP inhibitor ABT-888 potentiates dacarbazine-induced cell death in carcinoids.

    PubMed

    Somnay, Y; Lubner, S; Gill, H; Matsumura, J B; Chen, H

    2016-10-01

    Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy, ASCL1 and chromogranin A, as shown by western analysis. Ataxia telangiectasia mitogen factor phosphorylation and p21 Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies.

  8. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure

    PubMed Central

    Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.

    2017-01-01

    Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or

  9. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme.

    PubMed

    Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R

    2007-07-01

    PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.

  10. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  11. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.

    PubMed

    d'Uscio, Livius V; Smith, Leslie A; Katusic, Zvonimir S

    2011-12-01

    In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.

  12. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in

  13. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    PubMed

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  14. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  15. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice1

    PubMed Central

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2014-01-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1f/f;Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2 weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous by EXT mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME. PMID:23958822

  16. Production of Mice Deficient in Genes for Interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 Receptor Antagonist Shows that IL-1β Is Crucial in Turpentine-induced Fever Development and Glucocorticoid Secretion

    PubMed Central

    Horai, Reiko; Asano, Masahide; Sudo, Katsuko; Kanuka, Hirotaka; Suzuki, Masatoshi; Nishihara, Masugi; Takahashi, Michio; Iwakura, Yoichiro

    1998-01-01

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1α/β doubly deficient (KO) mice together with mice deficient in either the IL-1α, IL-1β, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1β as well as IL-1α/β KO mice, but not in IL-1α KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1β mRNA in the diencephalon decreased 1.5-fold in IL-1α KO mice, whereas expression of IL-1α mRNA decreased >30-fold in IL-1β KO mice, suggesting mutual induction between IL-1α and IL-1β. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1β KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1β but not IL-1α KO mice. These observations suggest that IL-1β but not IL-1α is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1α expression in the brain is dependent on IL-1β. The importance of IL-1ra both in normal physiology and under stress is also suggested. PMID:9565638

  17. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion.

    PubMed

    Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y

    1998-05-04

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.

  18. MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis

    PubMed Central

    Silver, Adam C.; Dunne, Dana W.; Zeiss, Caroline J.; Bockenstedt, Linda K.; Radolf, Justin D.; Salazar, Juan C.; Fikrig, Erol

    2013-01-01

    Research on syphilis, a sexually transmitted infection caused by the non-cultivatable spirochete Treponema pallidum, has been hampered by the lack of an inbred animal model. We hypothesized that Toll-like receptor (TLR)-dependent responses are essential for clearance of T. pallidum and, consequently, compared infection in wild-type (WT) mice and animals lacking MyD88, the adaptor molecule required for signaling by most TLRs. MyD88-deficient mice had significantly higher pathogen burdens and more extensive inflammation than control animals. Whereas tissue infiltrates in WT mice consisted of mixed mononuclear and plasma cells, infiltrates in MyD88-deficient animals were predominantly neutrophilic. Although both WT and MyD88-deficient mice produced antibodies that promoted uptake of treponemes by WT macrophages, MyD88-deficient macrophages were deficient in opsonophagocytosis of treponemes. Our results demonstrate that TLR-mediated responses are major contributors to the resistance of mice to syphilitic disease and that MyD88 signaling and FcR-mediated opsonophagocytosis are linked to the macrophage-mediated clearance of treponemes. PMID:23940747

  19. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    PubMed Central

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  20. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    PubMed

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice.

    PubMed

    Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi

    2017-01-01

    Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.

  2. Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors

    PubMed Central

    Sun, Xinguo; Song, Zhenyuan; McClain, Craig J.; Zhou, Zhanxiang

    2013-01-01

    Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency. PMID:24155903

  3. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency.

    PubMed

    Kobayashi, Masahiro; Kato, Hiroki; Hada, Hiroshi; Itoh-Nakadai, Ari; Fujiwara, Tohru; Muto, Akihiko; Inoguchi, Yukihiro; Ichiyanagi, Kenji; Hojo, Wataru; Tomosugi, Naohisa; Sasaki, Hiroyuki; Harigae, Hideo; Igarashi, Kazuhiko

    2017-03-01

    Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1 -/- mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1 -/- mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin. Copyright© Ferrata Storti Foundation.

  4. Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent.

    PubMed

    Kossatz, Susanne; Weber, Wolfgang; Reiner, Thomas

    2017-01-01

    More sensitive and specific methods for early detection are imperative to improve survival rates in oral cancer. However, oral cancer detection is still largely based on visual examination and histopathology of biopsy material, offering no molecular selectivity or spatial resolution. Intuitively, the addition of optical contrast could improve oral cancer detection and delineation, but so far no molecularly targeted approach has been translated. Our fluorescently labeled small-molecule inhibitor PARPi-FL binds to the DNA repair enzyme poly(ADP-ribose)polymerase 1 (PARP1) and is a potential diagnostic aid for oral cancer delineation. Based on our preclinical work, a clinical phase I/II trial opened in March 2017 to evaluate PARPi-FL as a contrast agent for oral cancer imaging. In this commentary, we discuss why we chose PARP1 as a biomarker for tumor detection and which particular characteristics make PARPi-FL an excellent candidate to image PARP1 in optically guided applications. We also comment on the potential benefits of our molecularly targeted PARPi-FL-guided imaging approach in comparison to existing oral cancer screening adjuncts and mention the adaptability of PARPi-FL imaging to other environments and tumor types.

  5. Global proteomic profiling in multistep hepatocarcinogenesis and identification of PARP1 as a novel molecular marker in hepatocellular carcinoma

    PubMed Central

    Wang, Jianguo; Xie, Haiyang; Li, Jie; Cao, Jili; Zhou, Lin; Zheng, Shusen

    2016-01-01

    The more accurate biomarkers have long been desired for hepatocellular carcinoma (HCC). Here, we characterized global large-scale proteomics of multistep hepatocarcinogenesis in an attempt to identify novel biomarkers for HCC. Quantitative data of 37874 sequences and 3017 proteins during hepatocarcinogenesis were obtained in cohort 1 of 75 samples (5 pooled groups: normal livers, hepatitis livers, cirrhotic livers, peritumoral livers, and HCC tissues) by iTRAQ 2D LC-MS/MS. The diagnostic performance of the top six most upregulated proteins in HCC group and HSP70 as reference were subsequently validated in cohort 2 of 114 samples (hepatocarcinogenesis from normal livers to HCC) using immunohistochemistry. Of seven candidate protein markers, PARP1, GS and NDRG1 showed the optimal diagnostic performance for HCC. PARP1, as a novel marker, showed comparable diagnostic performance to that of classic markers GS and NDRG1 in HCC (AUCs = 0.872, 0.856 and 0.792, respectively). A significant higher AUC of 0.945 was achieved when three markers combined. For diagnosis of HCC, the sensitivity and specificity were 88.2% and 81.0% when at least two of the markers were positive. Similar diagnostic values of PARP1, GS and NDRG1 were confirmed by immunohistochemistry in cohort 3 of 180 HCC patients. Further analysis indicated that PARP1 and NDRG1 were associated with some clinicopathological features, and the independent prognostic factors for HCC patients. Overall, global large-scale proteomics on spectrum of multistep hepatocarcinogenesis are obtained. PARP1 is a novel promising diagnostic/prognostic marker for HCC, and the three-marker panel (PARP1, GS and NDRG1) with excellent diagnostic performance for HCC was established. PMID:26883192

  6. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  7. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    PubMed

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    PubMed

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  9. Helicobacter cinaedi Induced Typhlocolitis in Rag-2-Deficient Mice

    PubMed Central

    Shen, Zeli; Feng, Yan; Rickman, Barry; Fox, James G.

    2015-01-01

    Background Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an important human pathogen and is associated with a wide range of diseases, especially in immunocompromised patients. It has been convincingly demonstrated that innate immune response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand the mechanisms of human IBD and its association with development of colon cancer, we investigated whether H. cinaedi could induce pathological changes noted with murine enterohepatic helicobacter infections in the Rag2−/− mouse model. Materials and Methods Sixty 129SvEv Rag2−/− mice mouse were experimentally or sham infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. cinaedi colonized the cecum, colon, and stomach in infected mice. Results H. cinaedi induced typhlocolitis in Rag2−/− mice by 3 MPI and intestinal lesions became more severe by 9 MPI. H. cinaedi was also associated with the elevation of proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, Cox-2, and c-myc mRNA expressions were not detected. Conclusions Our results indicated that the Rag2−/− mouse model will be useful to continue investigating the pathogenicity of H. cinaedi, and to study the association of host immune responses in IBD caused by EHS. PMID:25381744

  10. High-sensitivity O-glycomic analysis of mice deficient in core 2 β1,6-N-acetylglucosaminyltransferases

    PubMed Central

    Ismail, Mohd Nazri; Stone, Erica L; Panico, Maria; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Ho, Samuel B; Fukuda, Minoru; Marth, Jamey D; Haslam, Stuart M; Dell, Anne

    2011-01-01

    Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1–3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids. PMID:20855471

  11. Atherosclerosis and leukocyte-endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice.

    PubMed

    Wright, Andrew P; Öhman, Miina K; Hayasaki, Takanori; Luo, Wei; Russo, Hana M; Guo, Chiao; Eitzman, Daniel T

    2010-10-01

    To determine the effect of myocardial infarction (MI) on progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. MI was induced following left anterior descending coronary artery (LAD) ligation in wild-type (WT) (n=9) and ApoE-/- (n=25) mice. Compared to sham-operated animals, MI mice demonstrated increased intravascular leukocyte rolling and firm adhesion by intravital microscopy, reflecting enhanced systemic leukocyte-endothelial interactions. To determine if MI was associated with accelerated atherogenesis, LAD ligation was performed in ApoE-/- mice. Six weeks following surgery, atherosclerosis was quantitated throughout the arterial tree by microdissection and Oil-Red-O staining. There was 1.6-fold greater atherosclerotic burden present in ApoE-/- MI mice compared to sham-operated mice. Acute MI accelerates atherogenesis in mice. These results may be related to the increased risk of recurrent ischemic coronary events following MI in humans. Published by Elsevier Ireland Ltd.

  12. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    PubMed

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  13. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice

    PubMed Central

    Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H.; Li, Ailian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Henderson, Janet E.; Martineau, Paul A.

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair. PMID:28350850

  14. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  15. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    PubMed

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  16. Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex.

    PubMed

    Gisslen, Tate; Ennis, Kathleen; Bhandari, Vineet; Rao, Raghavendra

    2015-11-01

    Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.

  17. Zinc Deficiency Augments Leptin Production and Exacerbates Macrophage Infiltration into Adipose Tissue in Mice Fed a High-Fat Diet123

    PubMed Central

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R.; Burris, Dara L.; Xu, Xiaohua; Sun, Qinghua; Killilea, David W.; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A.; Failla, Mark L.; Knoell, Daren L.

    2013-01-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5–1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8–9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity. PMID:23700340

  18. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice

    PubMed Central

    Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; DeMayo, Francesco J.; Lydon, John P.; Das, Sanjoy K.; Dey, Sudhansu K.

    2007-01-01

    An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation. PMID:17986609

  19. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice.

    PubMed

    Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; Demayo, Francesco J; Lydon, John P; Das, Sanjoy K; Dey, Sudhansu K

    2007-11-13

    An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation.

  20. Effect of Notch and PARP Pathways' Inhibition in Leukemic Cells.

    PubMed

    Horvat, Luka; Antica, Mariastefania; Matulić, Maja

    2018-06-14

    Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after γ-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

  1. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    PubMed

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Design, synthesis and biological evaluation of novel para-substituted 1-benzyl-quinazoline-2, 4 (1H, 3H)-diones as human PARP-1 inhibitors].

    PubMed

    Yao, Hai-Ping; Zhu, Zhi-Xiang; Ji, Ming; Chen, Xiao-Guang; Xu, Bai-Ling

    2014-04-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising anticancer drug target due to its key role in the DNA repair process. It can polymerize ADP-ribose units on its substrate proteins which are involved in the regulation of DNA repair. In this work, a novel series of para-substituted 1-benzyl-quinazoline-2, 4 (1H, 3H)-diones was designed and synthesized, and the inhibitory activities against PARP-1 of compounds 7a-7e, 8a-8f, 9a-9c and 10a-10c were evaluated. Of all the tested compounds, nine compounds displayed inhibitory activities with IC50 values ranging from 4.6 to 39.2 micromol x L(-1). In order to predict the binding modes of the potent molecules, molecular docking was performed using CDOCKER algorithm, and that will facilitate to further develop more potent PARP-1 inhibitors with a quinazolinedione scaffold.

  3. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice.

    PubMed

    Rogala, Allison R; Schoenborn, Alexi A; Fee, Brian E; Cantillana, Viviana A; Joyce, Maria J; Gharaibeh, Raad Z; Roy, Sayanty; Fodor, Anthony A; Sartor, R Balfour; Taylor, Gregory A; Gulati, Ajay S

    2018-02-07

    Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M ( IRGM ) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1 -/- mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1 -/- mice. Remarkably, in contrast to CV mice, SPF Irgm1 -/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1 -/- mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1 -/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1 -/- mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1 -/- mice as a model to elucidate host-environment interactions that regulate

  4. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    PubMed

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  5. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  6. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice.

    PubMed

    Zhao, Qun; Yu, XianJun; Zhang, HaiWei; Liu, YongBo; Zhang, XiXi; Wu, XiaoXia; Xie, Qun; Li, Ming; Ying, Hao; Zhang, Haibing

    2017-04-25

    RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3 Δ/Δ mice), thus abolishing its kinase activity. Ripk3 Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3 Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3 Δ/Δ mutation rescued embryonic lethality in Fadd -/- embryos, Fadd -/- Ripk3 Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd -/- mice. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  8. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

    PubMed Central

    Fu, Jianxin; Gerhardt, Holger; McDaniel, J. Michael; Xia, Baoyun; Liu, Xiaowei; Ivanciu, Lacramioara; Ny, Annelii; Hermans, Karlien; Silasi-Mansat, Robert; McGee, Samuel; Nye, Emma; Ju, Tongzhong; Ramirez, Maria I.; Carmeliet, Peter; Cummings, Richard D.; Lupu, Florea; Xia, Lijun

    2008-01-01

    Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1–derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn–/– mice). EHC T-syn–/– mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn–/– mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn–/– lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn–/– defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn–/– mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn–/– pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression. PMID:18924607

  9. Angiogenic Deficiency and Adipose Tissue Dysfunction Are Associated with Macrophage Malfunction in SIRT1−/− Mice

    PubMed Central

    Xu, Fen; Burk, David; Gao, Zhanguo; Yin, Jun; Zhang, Xia

    2012-01-01

    The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue. PMID:22315447

  10. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

    PubMed

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-05-16

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.

  11. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  12. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  13. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    PubMed

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Impact of CD1d deficiency on metabolism.

    PubMed

    Kotas, Maya E; Lee, Hui-Young; Gillum, Matthew P; Annicelli, Charles; Guigni, Blas A; Shulman, Gerald I; Medzhitov, Ruslan

    2011-01-01

    Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.

  15. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice

    PubMed Central

    Baiguera, Cristina; Alghisi, Manuela; Pinna, Annalisa; Bellucci, Arianna; De Luca, Maria Antonietta; Frau, Lucia; Morelli, Micaela; Ingrassia, Rosaria; Benarese, Marina; Porrini, Vanessa; Pellitteri, Michele; Bertini, Giuseppe; Fabene, Paolo Francesco; Sigala, Sandra; Spillantini, Maria Grazia; Liou, Hsiou-Chi; Spano, Pier Franco

    2012-01-01

    Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel−/−) mice developed a Parkinson’s disease-like neuropathology with ageing. At 18 months of age, c-rel−/− mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel−/− mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel−/− mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel−/− mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel−/− mice may be a suitable model of Parkinson’s disease. PMID:22915735

  17. Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice

    PubMed Central

    Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2006-01-01

    Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908

  18. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.

    PubMed

    Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A

    2012-06-15

    Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.

  19. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet

    PubMed Central

    Hikone, Kumiko; Hasegawa, Tomoka; Tsuchiya, Erika; Hongo, Hiromi; Sasaki, Muneteru; Yamamoto, Tomomaya; Kudo, Ai; Oda, Kimimitsu; Haraguchi, Mai; de Freitas, Paulo Henrique Luiz; Li, Minqi; Iida, Junichiro; Amizuka, Norio

    2017-01-01

    To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho−/− mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho−/−norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase–positive osteoblasts and tartrate-resistant acid phosphatase–reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho−/− lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling. PMID:28122194

  20. Treatment of Tuberculosis with Rifamycin-containing Regimens in Immune-deficient Mice

    PubMed Central

    Zhang, Ming; Li, Si-Yang; Rosenthal, Ian M.; Almeida, Deepak V.; Ahmad, Zahoor; Converse, Paul J.; Peloquin, Charles A.; Nuermberger, Eric L.; Grosset, Jacques H.

    2011-01-01

    Rationale: Daily rifapentine plus isoniazid-pyrazinamide in mice infected with Mycobacterium tuberculosis produces cure in 3 months. Whether cure corresponds to latent infection contained by host immunity or true tissue sterilization is unknown. Objectives: To determine the length of treatment with rifapentine-isoniazid-pyrazinamide or rifampin-isoniazid-pyrazinamide needed to prevent relapse in immune-deficient mice. Methods: Aerosol-infected BALB/c and nude mice were treated 5 days per week with either 2 months of the rifapentine-based regimen followed by rifapentine-isoniazid up to 12 months or the same regimen with rifampin instead of rifapentine. Cultures of lung homogenates were performed during the first 3 months and then every 3 months. Relapse rates were assessed after 3, 6, 9, and 12 months of treatment in BALB/c (± 1 mo of cortisone) and nude mice. Measurements and Main Results: All rifapentine-treated mice were lung culture–negative at 3 months but 13% of BALB/c that received cortisone and 73% of nude mice relapsed. After 6, 9, and 12 months of treatment no mouse relapsed. Rifampin-treated BALB/c mice remained culture positive at 3 months. All were culture negative at 6, 9, and 12 months. None, including those receiving cortisone, relapsed. Rifampin-treated nude mice harbored more than 4 log10 lung cfu at Month 2 and approximately 6 log10 cfu with isoniazid resistance at Month 3. A supplementary experiment demonstrated that 7 days a week treatment did not prevent isoniazid resistance, whereas addition of ethambutol did. Conclusions: In nude mice, sterilization of tuberculosis is obtained with rifapentine-containing treatment, whereas failure with development of isoniazid resistance is obtained with rifampin-containing treatment. PMID:21330452

  1. STAT4 deficiency reduces the development of atherosclerosis in mice.

    PubMed

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice

    PubMed Central

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes

  3. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  4. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice

    PubMed Central

    Harrison, F. E.; May, J. M.; McDonald, M. P.

    2010-01-01

    Vitamin C is a powerful antioxidant and its levels are decreased in Alzheimer's patients. Even sub-clinical vitamin C deficiency could impact disease development. To investigate this principle we crossed APP/PSEN1 transgenic mice with Gulo knockout mice unable to synthesize their own vitamin C. Experimental mice were maintained from 6 weeks of age on standard (0.33 g/L) or reduced (0.099 g/L) levels of vitamin C and then assessed for changes in behavior and neuropathology. APP/PSEN1 mice showed impaired spatial learning in the Barnes maze and water maze that was not further impacted by vitamin C level. However, long-term decreased vitamin C levels led to hyperactivity in transgenic mice, with altered locomotor habituation and increased omission errors in the Barnes maze. Decreased vitamin C also led to increased oxidative stress. Transgenic mice were more susceptible to the activity-enhancing effects of scopolamine and low vitamin C attenuated these effects in both genotypes. These data indicate an interaction between the cholinergic system and vitamin C that could be important given the cholinergic degeneration associated with Alzheimer's disease. PMID:19941887

  5. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  6. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency.

    PubMed

    Kurosawa, Yuko; Degrauw, Ton J; Lindquist, Diana M; Blanco, Victor M; Pyne-Geithman, Gail J; Daikoku, Takiko; Chambers, James B; Benoit, Stephen C; Clark, Joseph F

    2012-08-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8-/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8-/y mouse was comparable to that of human patients. We successfully treated the Slc6a8-/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8-/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8-/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency.

  7. Preclinical evaluation of the PARP inhibitor BMN-673 for the treatment of ovarian clear cell cancer

    PubMed Central

    Samartzis, Eleftherios Pierre; Dedes, Ioannis; Lambros, Maryou B; Natrajan, Rachael; Gauthier, Arnaud; Piscuoglio, Salvatore; Töpfer, Chantal; Vukovic, Vesna; Daley, Frances; Weigelt, Britta; Reis-Filho, Jorge S

    2017-01-01

    Purpose To determine if models of ovarian clear cell carcinomas (OCCCs) harbouring defects in homologous recombination (HR) DNA repair of double strand breaks (DSBs) are sensitive to cisplatin and/or PARP inhibition. Experimental Design The HR status of 12 OCCC cell lines was determined using RAD51/γH2AX foci formation assays. Sensitivity to cisplatin and the PARP inhibitor BMN-673 was correlated with HR status. BRCA1, BRCA2, MRE11 and PTEN loss of expression was investigated as a potential determinant of BMN-673 sensitivity. A tissue microarray containing 50 consecutive primary OCCC was assessed for PTEN expression using immunohistochemistry. Results A subset of OCCC cells displayed reduced RAD51 foci formation in the presence of DNA DSBs, suggestive of HR defects. HR-defective OCCC cells, with the exception of KOC-7c, had higher sensitivity to cisplatin/ BMN-673 than HR-competent OCCC cell lines (Log10 SF50 –9.4 (SD +/− 0.29) vs –8.1 (SD +/− 0.35), mean difference 1.3, p < 0.01). Of the cell lines studied, two, TOV-21G and KOC-7c, showed loss of PTEN expression. In primary OCCCs, loss of PTEN expression was observed in 10% (5/49) of cases. Conclusions A subset of OCCC cells are sensitive to PARP inhibition in vitro, which can be predicted by HR defects as defined by γH2AX/RAD51 foci formation. These results provide a rationale for the testing of HR deficiency and PARP inhibitors as a targeted therapy in a subset of OCCCs. PMID:28002809

  8. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  9. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality.

    PubMed

    Papadimitriou, Marios; Mountzios, Giannis; Papadimitriou, Christos A

    2018-05-02

    Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancers and is characterized by a lack of immunohistochemical expression of estrogen receptors (ER), progesterone receptors (PR) and HER2. TNBC is associated with poor long-term outcomes compared with other breast cancer subtypes. Many of these tumors are also basal-like cancers which are characterized by an aggressive biological behavior with a distant recurrence peak observed early at 3 years following diagnosis. Furthermore, metastatic TNBC bears a dismal prognosis with an average survival of 12 months. Although the prevalence of genetic alterations among women with TNBC differs significantly by ethnicity, race and age, BRCA mutations (including both germline mutations and somatic genetic aberrations) are found in up to 20-25% of unselected patients and especially in those of the basal-like immunophenotype. Therefore, defects in the DNA repair pathway could represent a promising therapeutic target for this subgroup of TNBC patients. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in BRCA1 or BRCA2 mutation carriers. Several PARP inhibitors are currently being evaluated in the adjuvant, neo-adjuvant, and metastatic setting for the treatment of breast cancer patients with a deficient homologous recombination pathway. In this article, we review the major molecular characteristics of TNBC, the mechanisms of homologous recombination, and the role of PARP inhibition as an emerging therapeutic strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  11. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  12. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    PubMed

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency.

    PubMed

    Pindolia, Kirit; Li, Hong; Cardwell, Cisley; Wolf, Barry

    2014-05-01

    Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease

    PubMed Central

    Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.

    2011-01-01

    The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044

  16. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

    PubMed Central

    Krishnan, Devishree; Pan, Wanling; Beggs, Megan R.; Trepiccione, Francesco; Chambrey, Régine; Eladari, Dominique; Cordat, Emmanuelle; Dimke, Henrik; Alexander, R. Todd

    2018-01-01

    Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice. PMID:29354070

  17. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice

    PubMed Central

    Summer, R.; Little, F. F.; Ouchi, N.; Takemura, Y.; Aprahamian, T.; Dwyer, D.; Fitzsimmons, K.; Suki, B.; Parameswaran, H.; Fine, A.; Walsh, K.

    2013-01-01

    Adiponectin is an adipocyte-derived collectin that acts on a wide range of tissues including liver, brain, heart, and vascular endothelium. To date, little is known about the actions of adiponectin in the lung. Herein, we demonstrate that adiponectin is present in lung lining fluid and that adiponectin deficiency leads to increases in proinflammatory mediators and an emphysema-like phenotype in the mouse lung. Alveolar macrophages from adiponectin-deficient mice spontaneously display increased production of tumor necrosis factor-α (TNF-α) and matrix metalloproteinase (MMP-12) activity. Consistent with these observations, we found that pretreatment of alveolar macrophages with adiponectin leads to TNF-α and MMP-12 suppression. Together, our findings show that adiponectin leads to macrophage suppression in the lung and suggest that adiponectin-deficient states may contribute to the pathogenesis of inflammatory lung conditions such as emphysema. PMID:18326826

  18. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE−/− mice

    PubMed Central

    Vujic, Nemanja; Korbelius, Melanie; Leopold, Christina; Duta-Mare, Madalina; Rainer, Silvia; Schlager, Stefanie; Goeritzer, Madeleine; Kolb, Dagmar; Eichmann, Thomas O.; Diwoky, Clemens; Zimmer, Andreas; Zimmermann, Robert; Lass, Achim; Radovic, Branislav; Kratky, Dagmar

    2017-01-01

    Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (−/−) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)−/− mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system. PMID:28380440

  19. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  20. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    PubMed

    Sugimoto, H; Ikeda, K; Kawakami, K

    2018-06-01

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  2. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not alteredmore » in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.« less

  3. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics.

    PubMed

    Engert, Florian; Kovac, Michal; Baumhoer, Daniel; Nathrath, Michaela; Fulda, Simone

    2017-07-25

    We recently discovered mutation signatures reminiscent of BRCA deficiency in the vast majority of a set of primary osteosarcomas (OS). In the current study, we therefore investigated the sensitivity of a panel of OS cell lines to the poly(ADP)-ribose polymerase (PARP) inhibitor talazoparib alone and in combination with several chemotherapeutic drugs (i.e. temozolomide (TMZ), SN-38, doxorubicin, cisplatin, methotrexate (MTX), etoposide/carboplatin). Here, we identified an association between homologous recombination (HR) repair deficiency and the response of OS cell lines to talazoparib. All OS cell lines with molecular features characteristic of BRCA1/2 mutant tumors (so-called "BRCAness"), such as disruptive gains in PTEN or FANCD2 and/or losses of ATM, BAP1, BARD1 or CHEK2, were susceptible to talazoparib-induced reduction of cell viability (i.e. MG63, ZK-58,, SaOS-2 and MNNG-HOS). Consistent with their high sensitivity to talazoparib, MG63 and ZK-58 cells scored positive in a DNA-based measure of genomic instability (i.e. homologous recombination deficiency (HRD)-loss of heterozygosity (LOH) score). In contrast, U2OS cells that carry a heterozygous BRCA2 mutation and therefore most likely have one intact BRCA2 allele left proved to be resistant to talazoparib. Furthermore, we identified TMZ as the most potent chemotherapeutic drug together with talazoparib to synergistically reduce cell viability, as confirmed by calculation of combination index (CI) values, and to suppress long-term clonogenic survival. Mechanistically, talazoparib and TMZ cooperated to induce apoptotic cell death, as demonstrated by activation of BAX and BAK, loss of mitochondrial membrane potential (MMP), caspase activation, DNA fragmentation and caspase-dependent cell death. Genetic silencing of BAX and BAK or pharmacological inhibition of caspases by zVAD.fmk significantly rescued OS cells from talazoparib/TMZ-induced apoptosis. These findings have important implications for the development

  4. Deficiency of cholesterol 7α‐hydroxylase in bile acid synthesis exacerbates alcohol‐induced liver injury in mice

    PubMed Central

    Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik

    2017-01-01

    Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516

  5. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers

    PubMed Central

    Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Varnes, Marie; Anderson, Vernon; Pink, John J.; Li, Long Shan; Patel, Malina; Cao, Lifen; Moore, Zachary; Rommel, Amy; Boatman, Michael; Lewis, Cheryl; Euhus, David M.; Bornmann, William G.; Buchsbaum, Donald J.; Spitz, Douglas R.; Gao, Jinming; Boothman, David A.

    2013-01-01

    Improving patient outcome by personalized therapy involves a thorough understanding of an agent’s mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ~120 moles of superoxide were formed per mole of β-lapachone in 5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single strand break-dependent PARP1 hyperactivation, caused dramatic loss of essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast cancer cells. While PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor, and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included AIF translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs. PMID:23883585

  6. Deficiency in Monocarboxylate Transporter 1 (MCT1) in Mice Delays Regeneration of Peripheral Nerves following Sciatic Nerve Crush

    PubMed Central

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothstein, Jeffrey D.

    2014-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence and MCT1 tdTomato BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves in MCT1 heterozygous null mice are crushed and peripheral nerve regeneration quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly through failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940

  7. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    PubMed

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  8. β-Arrestin-1 deficiency ameliorates renal interstitial fibrosis by blocking Wnt1/β-catenin signaling in mice.

    PubMed

    Xu, Huiyan; Li, Quanxin; Liu, Jiang; Zhu, Jiaqing; Li, Liang; Wang, Ziying; Zhang, Yan; Sun, Yu; Sun, Jinpeng; Wang, Rong; Yi, Fan

    2018-01-01

    Despite substantial progress being made in understanding the mechanisms contributing to the pathogenesis of renal fibrosis, there are only a few therapies available to treat or prevent renal fibrosis in clinical use today. Therefore, identifying the key cellular and molecular mediators involved in the pathogenesis of renal fibrosis will provide new therapeutic strategy for treating patients with chronic kidney disease (CKD). β-Arrestin-1, a member of β-arrestin family, not only is a negative adaptor of G protein-coupled receptors (GPCRs), but also acts as a scaffold protein and regulates a diverse array of cellular functions independent of GPCR activation. In this study, we identified for the first time that β-arrestin-1 was upregulated in the kidney from mice with unilateral ureteral obstruction nephropathy as well as in the paraffin-embedded sections of human kidneys from the patients with diabetic nephropathy, polycystic kidney, or uronephrosis, which normally causes renal fibrosis. Deficiency of β-arrestin-1 in mice significantly alleviated renal fibrosis by the regulation of inflammatory responses, kidney fibroblast activation, and epithelial-mesenchymal transition (EMT) in both in vivo and in vitro studies. Furthermore, we found that among the major isoforms of Wnts, Wnt1 was regulated by β-arrestin-1 and gene silencing of Wnt1 inhibited the activation of β-catenin and suppressed β-arrestin-1-mediated renal fibrosis. Collectively, our results indicate that β-arrestin-1 is one of the critical components of signal transduction pathways in the development of renal fibrosis. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with renal fibrosis. β-Arrestin-1 was upregulated in the kidney from mice with UUO nephropathy. β-Arrestin-1 regulated kidney fibroblast activation and epithelial-mesenchymal transition. β-Arrestin-1 exacerbated renal fibrosis via mediating Wnt1/β-catenin signaling.

  9. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases.

    PubMed

    Hassa, Paul O; Hottiger, Michael O

    2008-01-01

    Poly-ADP-ribose metabolism plays a mayor role in a wide range of biological processes, such as maintenance of genomic stability, transcriptional regulation, energy metabolism and cell death. Poly-ADP-ribose polymerases (PARPs) are an ancient family of enzymes, as evidenced by the poly-ADP-ribosylating activities reported in dinoflagellates and archaebacteria and by the identification of Parp-like genes in eubacterial and archaeabacterial genomes. Six genes encoding "bona fide" PARP enzymes have been identified in mammalians: PARP1, PARP2, PARP3, PARP4/vPARP, PARP5/Tankyrases-1 and PARP6/Tankyrases-2. The best studied of these enzymes PARP1 plays a primary role in the process of poly-ADP-ribosylation. PARP1-mediated poly-ADP-ribosylation has been implicated in the pathogenesis of cancer, inflammatory and neurodegenerative disorders. This review will summarize the novel findings and concepts for PARP enzymes and their poly-ADP-ribosylation activity in the regulation of physiological and pathophysiological processes. A special focus is placed on the proposed molecular mechanisms involved in these processes, such as signaling, regulation of telomere dynamics, remodeling of chromatin structure and transcriptional regulation. A potential functional cross talk between PARP family members and other NAD+-consuming enzymes is discussed.

  10. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1

    PubMed Central

    Carr, Daniel J.J.; Ash, John; Lane, Thomas E.; Kuziel, William A.

    2006-01-01

    Summary Ocular herpes simplex virus type 1 (HSV-1) infection elicits a strong inflammatory response that is associated with production of the β chemokines CCL3 and CCL5, which share a common receptor, CCR5. To gain insight into the role of these molecules in ocular immune responses, we infected the corneas of WT and CCR5-deficient (CCR5-/-) mice with HSV-1 and measured inflammatory parameters. In the absence of CCR5, the early infiltration of neutrophils into the cornea was diminished. Associated with this aberrant leukocyte recruitment, neutrophils in CCR5-/- mice were restricted to the stroma whereas in wild type mice these cells trafficked to the stroma and epithelial layers of the infected cornea. Virus titers and cytokine/chemokine levels in the infected tissue of these mice were similar for the first 5 days after infection. However, by day 7 post-infection, the CCR5-/- mice showed a significant elevation in the chemokines CCL2, CCL5, CXCL9, and CXCL10 in the trigeminal ganglion and brain stem as well as a significant increase in viral burden. The increase in chemokine expression was associated with an increase in the infiltration of CD4 and/or CD8 T cells into the trigeminal ganglion and brain stem of CCR5-/- mice. Surprisingly, even though infected CCR5-/- mice were less efficient at controlling the progression of virus replication, there was no difference in mortality. These results suggest that, although CCR5 plays a role in regulating leukocyte trafficking and control of virus burden, compensatory mechanisms are involved in preventing mortality following HSV-1 infection. PMID:16476970

  11. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  12. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis

    PubMed Central

    Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning

    2017-01-01

    Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC. PMID:28686677

  13. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis.

    PubMed

    Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning; Cario, Elke

    2017-01-01

    Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.

  14. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency

    PubMed Central

    Kurosawa, Yuko; DeGrauw, Ton J.; Lindquist, Diana M.; Blanco, Victor M.; Pyne-Geithman, Gail J.; Daikoku, Takiko; Chambers, James B.; Benoit, Stephen C.; Clark, Joseph F.

    2012-01-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8–/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8–/y mouse was comparable to that of human patients. We successfully treated the Slc6a8–/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8–/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8–/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency. PMID:22751104

  15. Nur77 deficiency leads to systemic inflammation in elderly mice.

    PubMed

    Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua

    2015-01-01

    Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.

  16. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    PubMed

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    DOE PAGES

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; ...

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less

  18. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    PubMed

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  19. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase.

    PubMed

    Krämer, Heidrun H; He, Lan; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2009-08-01

    The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. After chronic constriction injury (CCI) of the right sciatic nerve, NEP ko mice were more sensitive to heat, to mechanical stimuli, and to cold than wild type mice. Tissue injury without nerve injury produced no differences between genotypes. After CCI, NEP ko mice showed increased hind paw edema but lower skin temperatures than wild type mice. Substance P (SP) and endothelin 1 (ET 1) determined by enzyme immuno assay (EIA) were increased in sciatic nerves from NEP ko mice after CCI. Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.

  20. PARP13 and RNA regulation in immunity and cancer

    PubMed Central

    Todorova, Tanya; Bock, Florian; Chang, Paul

    2015-01-01

    Posttranscriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) Polymerase-13 (PARP13), also known as ZC3HAV1 and Zinc-finger Antiviral Protein (ZAP), is an RNA-binding protein that regulates the stability, and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally impact miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the pro-survival cytokine receptor TRAILR4 suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target. PMID:25851173

  1. Impact of Glutathione Peroxidase-1 Deficiency on Macrophage Foam Cell Formation and Proliferation: Implications for Atherogenesis

    PubMed Central

    Degreif, Adriana; Rossmann, Heidi; Canisius, Antje; Lackner, Karl J.

    2013-01-01

    Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation

  2. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  3. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein.

    PubMed

    Vu, Trang T; Zhou, Ji; Leslie, Beverly A; Stafford, Alan R; Fredenburgh, James C; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P; Gross, Peter L; Weitz, Jeffrey I

    2015-04-23

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid-driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. © 2015 by The American Society of Hematology.

  4. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein

    PubMed Central

    Vu, Trang T.; Zhou, Ji; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P.; Gross, Peter L.; Weitz, Jeffrey I.

    2015-01-01

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid–driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. PMID:25691157

  5. Altered small intestinal absorptive enzyme activities in leptin-deficient obese mice: influence of bowel resection.

    PubMed

    Kiely, James M; Noh, Jae H; Svatek, Carol L; Pitt, Henry A; Swartz-Basile, Deborah A

    2006-07-01

    Residual bowel increases absorption after massive small bowel resection. Leptin affects intestinal adaptation, carbohydrate, peptide, and lipid handling. Sucrase, peptidase, and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) are involved in carbohydrate, protein, and lipid absorption. We hypothesized that leptin-deficient obese mice would have altered absorptive enzymes compared with controls before and after small bowel resection. Sucrase, peptidase (aminopeptidase N [ApN], dipeptidyl peptidase IV [DPPIV]), and MGAT activities were determined from lean control (C57BL/6J, n = 16) and leptin-deficient (Lep(ob), n = 16) mice small bowel before and after 50% resection. Ileal sucrase activity was greater in obese mice before and after resection. Jejunal ApN and DPPIV activities were lower for obese mice before resection; ileal ApN activity was unaltered after resection for both strains. Resection increased DPPIV activity in both strains. Jejunal MGAT in obese mice decreased postresection. In both strains, ileal MGAT activity decreased after resection, and obese mice had greater activity in remnant ileum. After small bowel resection, leptin-deficient mice have increased sucrase activity and diminished ileal ApN, DPPIV, and MGAT activity compared with controls. Therefore, we conclude that leptin deficiency alters intestinal enzyme activity in unresected animals and after small bowel resection. Altered handling of carbohydrate, protein, and lipid may contribute to obesity and diabetes in leptin-deficient mice.

  6. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis

    PubMed Central

    Zhu, Yan; Li, Guodong; Williams, Jessica A.; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P.

    2016-01-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXRhep−/−) in liver tumor formation. The results showed that FXRhep−/− mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXRhep−/− mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXRhep−/− mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXRhep−/− mice presented with severe liver injury and tumors. Interestingly, FXRhep−/− mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXRhep−/− mice. However, cholic acid feeding reversed these effects in FXRhep−/− mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  7. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  8. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice.

    PubMed

    Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel

    2010-11-01

    Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. (c) 2010 Wiley-Liss, Inc.

  9. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    PubMed Central

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  10. Prefrontal single-unit firing associated with deficient extinction in mice

    PubMed Central

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of Sthan B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and

  11. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.

    PubMed

    Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Overexpression of TGF-ß1 in Macrophages Reduces and Stabilizes Atherosclerotic Plaques in ApoE-Deficient Mice

    PubMed Central

    Orning, Carolin; Crain, Jeanine; Küpper, Ines; Wiese, Elena; Protschka, Martina; Blessing, Manfred; Lackner, Karl J.; Torzewski, Michael

    2012-01-01

    Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PMID:22829904

  13. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse.

    PubMed

    Nyman, Lara R; Cox, Keith B; Hoppel, Charles L; Kerner, Janos; Barnoski, Barry L; Hamm, Doug A; Tian, Liqun; Schoeb, Trenton R; Wood, Philip A

    2005-01-01

    To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.

  14. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responsesmore » to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at

  15. miR-520 promotes DNA-damage-induced trophoblast cell apoptosis by targeting PARP1 in recurrent spontaneous abortion (RSA).

    PubMed

    Dong, Xiujuan; Yang, Long; Wang, Hui

    2017-04-01

    The establishment and maintenance of successful pregnancy mainly depends on trophoblast cells. Their dysfunction has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy. However, the underlying mechanisms of trophoblasts dysfunction remain unclear. DNA-damage-induced cell apoptosis has been reported to play a vital role in cell death. In this study, we identified a novel microRNA (miR-520) in RSA progression via regulating trophoblast cell apoptosis. Microarray analysis showed that miR-520 was highly expressed in villus of RSA patients. By using flow cytometry analysis, we observed miR-520 expression was correlated with human trophoblast cell apoptosis in vitro, along with decreased poly (ADP-ribose) polymerase-1 (PARP1) expression. With the analysis of clinic samples, we observed that miR-520 level was negatively correlated with PARP1 level in RSA villus. In addition, overexpression of PARP1 restored the miR-520-induced trophoblast cell apoptosis in vitro. The status of chromosome in trophoblast implied that miR-520-promoted DNA-damage-induced cell apoptosis to regulate RSA progression. These results indicated that the level of miR-520 might associate with RSA by prompting trophoblast cell apoptosis via PARP1 dependent DNA-damage pathway.

  16. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  17. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  18. Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice

    PubMed Central

    2013-01-01

    Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542

  19. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny

  20. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  1. Crybb2 deficiency impairs fertility in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Sun, Li-Li; Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2more » deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.« less

  2. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  3. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice.

    PubMed

    Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son

    2014-01-01

    Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.

  5. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis.

    PubMed

    Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the

  6. N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice

    PubMed Central

    Martin, Paul T; Camboni, Marybeth; Xu, Rui; Golden, Bethannie; Chandrasekharan, Kumaran; Wang, Chiou-Miin; Varki, Ajit; Janssen, Paul M L

    2013-01-01

    Roughly 3 million years ago, an inactivating deletion occurred in CMAH, the human gene encoding CMP-Neu5Ac (cytidine-5′-monophospho-N-acetylneuraminic acid) hydroxylase (Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA. 95:11751–11756). This inactivating deletion is now homozygous in all humans, causing the loss of N-glycolylneuraminic acid (Neu5Gc) biosynthesis in all human cells and tissues. The CMAH enzyme is active in other mammals, including mice, where Neu5Gc is an abundant form of sialic acid on cellular membranes, including those in cardiac and skeletal muscle. We recently demonstrated that the deletion of mouse Cmah worsened the severity of pathophysiology measures related to muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy (Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med. 2:42–54). Here, we demonstrate similar changes in cardiac and skeletal muscle pathology and physiology resulting from Cmah deletion in α-sarcoglycan-deficient (Sgca−/−) mice, a model for limb girdle muscular dystrophy 2D. These experiments demonstrate that loss of mouse Cmah can worsen disease severity in more than one form of muscular dystrophy and suggest that Cmah may be a general genetic modifier of muscle disease. PMID:23514716

  7. Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice

    PubMed Central

    Howell, Christopher S.; Roa, Juan; Augustine, Rachael A.; Grattan, David R.; Anderson, Greg M.

    2011-01-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect. PMID:21325051

  8. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice.

    PubMed

    Quennell, Janette H; Howell, Christopher S; Roa, Juan; Augustine, Rachael A; Grattan, David R; Anderson, Greg M

    2011-04-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect.

  9. Endogenous Siderophore 2,5-Dihydroxybenzoic Acid Deficiency Promotes Anemia and Splenic Iron Overload in Mice

    PubMed Central

    Liu, Zhuoming; Ciocea, Alieta

    2014-01-01

    Eukaryotes produce a siderophore-like molecule via a remarkably conserved biosynthetic pathway. 3-OH butyrate dehydrogenase (BDH2), a member of the short-chain dehydrogenase (SDR) family of reductases, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA). Depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of intracellular iron and mitochondrial iron deficiency in cultured mammalian cells, as well as in yeast cells and zebrafish embryos We disrupted murine bdh2 by homologous recombination to analyze the effect of bdh2 deletion on erythropoiesis and iron metabolism. bdh2 null mice developed microcytic anemia and tissue iron overload, especially in the spleen. Exogenous supplementation with 2,5-DHBA alleviates splenic iron overload in bdh2 null mice. Additionally, bdh2 null mice exhibit reduced serum iron. Although BDH2 has been proposed to oxidize ketone bodies, we found that BDH2 deficiency did not alter ketone body metabolism in vivo. In sum, our findings demonstrate a key role for BDH2 in erythropoiesis. PMID:24777603

  10. Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia

    PubMed Central

    Siegel, Chad S.; McCullough, Louise D.

    2013-01-01

    Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179

  11. Morphological study of tooth development in podoplanin-deficient mice.

    PubMed

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  12. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  13. Hip1-related mutant mice grow and develop normally but have accelerated spinal abnormalities and dwarfism in the absence of HIP1.

    PubMed

    Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S

    2004-05-01

    In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.

  14. FGF23 Deficiency Leads to Mixed Hearing Loss and Middle Ear Malformation in Mice

    PubMed Central

    Lysaght, Andrew C.; Yuan, Quan; Fan, Yi; Kalwani, Neil; Caruso, Paul; Cunnane, MaryBeth; Lanske, Beate; Stanković, Konstantina M.

    2014-01-01

    Fibroblast growth factor 23 (FGF23) is a circulating hormone important in phosphate homeostasis. Abnormal serum levels of FGF23 result in systemic pathologies in humans and mice, including renal phosphate wasting diseases and hyperphosphatemia. We sought to uncover the role FGF23 plays in the auditory system due to shared molecular mechanisms and genetic pathways between ear and kidney development, the critical roles multiple FGFs play in auditory development and the known hearing phenotype in mice deficient in klotho (KL), a critical co-factor for FGF23 signaling. Using functional assessments of hearing, we demonstrate that Fgf mice are profoundly deaf. Fgf mice have moderate hearing loss above 20 kHz, consistent with mixed conductive and sensorineural pathology of both middle and inner ear origin. Histology and high-voltage X-ray computed tomography of Fgf mice demonstrate dysplastic bulla and ossicles; Fgf mice have near-normal morphology. The cochleae of mutant mice appear nearly normal on gross and microscopic inspection. In wild type mice, FGF23 is ubiquitously expressed throughout the cochlea. Measurements from Fgf mice do not match the auditory phenotype of Kl −/− mice, suggesting that loss of FGF23 activity impacts the auditory system via mechanisms at least partially independent of KL. Given the extensive middle ear malformations and the overlap of initiation of FGF23 activity and Eustachian tube development, this work suggests a possible role for FGF23 in otitis media. PMID:25243481

  15. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice.

    PubMed

    Uribe, Valeria; Wong, Bibiana K Y; Graham, Rona K; Cusack, Corey L; Skotte, Niels H; Pouladi, Mahmoud A; Xie, Yuanyun; Feinberg, Konstantin; Ou, Yimiao; Ouyang, Yingbin; Deng, Yu; Franciosi, Sonia; Bissada, Nagat; Spreeuw, Amanda; Zhang, Weining; Ehrnhoefer, Dagmar E; Vaid, Kuljeet; Miller, Freda D; Deshmukh, Mohanish; Howland, David; Hayden, Michael R

    2012-05-01

    Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.

  16. Cigarette smoke exposure promotes arterial thrombosis and vessel remodeling after vascular injury in apolipoprotein E-deficient mice.

    PubMed

    Schroeter, Marco R; Sawalich, Matthias; Humboldt, Tim; Leifheit, Maren; Meurrens, Kris; Berges, An; Xu, Haiyan; Lebrun, Stefan; Wallerath, Thomas; Konstantinides, Stavros; Schleef, Raymond; Schaefer, Katrin

    2008-01-01

    Cigarette smoking is a major risk factor for the development of cardiovascular disease. However, in terms of the vessel wall, the underlying pathomechanisms of cigarette smoking are incompletely understood, partly due to a lack of adequate in vivo models. Apolipoprotein E-deficient mice were exposed to filtered air (sham) or to cigarette mainstream smoke at a total particulate matter (TPM) concentration of 600 microg/l for 1, 2, 3, or 4 h, for 5 days/week. After exposure for 10 +/- 1 weeks, arterial thrombosis and neointima formation at the carotid artery were induced using 10% ferric chloride. Mice exposed to mainstream smoke exhibited shortened time to thrombotic occlusion (p < 0.01) and lower vascular patency rates (p < 0.001). Morphometric and immunohistochemical analysis of neointimal lesions demonstrated that mainstream smoke exposure increased the amount of alpha-actin-positive smooth muscle cells (p < 0.05) and dose-dependently increased the intima-to-media ratio (p < 0.05). Additional analysis of smooth muscle cells in vitro suggested that 10 microg TPM/ml increased cell proliferation without affecting viability or apoptosis, whereas higher concentrations (100 and 500 microg TPM/ml) appeared to be cytotoxic. Taken together, these findings suggest that cigarette smoking promotes arterial thrombosis and modulates the size and composition of neointimal lesions after arterial injury in apolipoprotein E-deficient mice. Copyright 2008 S. Karger AG, Basel.

  17. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method

    PubMed Central

    Bartko, Susan J.; Romberg, Carola; White, Benjamin; Wess, Jürgen; Bussey, Timothy J.; Saksida, Lisa M.

    2014-01-01

    Cholinergic receptors have been implicated in schizophrenia, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, to better target therapeutically the appropriate receptor subsystems, we need to understand more about the functions of those subsystems. In the current series of experiments, we assessed the functional role of M1 receptors in cognition by testing M1 receptor-deficient mice (M1R−/−) on the five-choice serial reaction time test of attentional and response functions, carried out using a computer-automated touchscreen test system. In addition, we tested these mice on several tasks featuring learning, memory and perceptual challenges. An advantage of the touchscreen method is that each test in the battery is carried out in the same task setting, using the same types of stimuli, responses and feedback, thus providing a high level of control and task comparability. The surprising finding, given the predominance of the M1 receptor in cortex, was the complete lack of effect of M1 deletion on measures of attentional function per se. Moreover, M1R−/− mice performed relatively normally on tests of learning, memory and perception, although they were impaired in object recognition memory with, but not without an interposed delay interval. They did, however, show clear abnormalities on a variety of response measures: M1R−/− mice displayed fewer omissions, more premature responses, and increased perseverative responding compared to wild-types. These data suggest that M1R−/− mice display abnormal responding in the face of relatively preserved attention, learning and perception. PMID:21903112

  18. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.

    PubMed

    Sala, Federica; Aranda, Juan F; Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo

    2014-10-01

    The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Ldlr-/- and Ldlr-/--miR-143/145-/- (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. We further confirmed the direct regulation of miR-145 on ABCA1 expression by qRT-PCR, Western blotting and 3'UTR-luciferase reporter assays. In summary, miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease.

  19. Upregulation of PEDF expression by PARP inhibition contributes to the decrease in hyperglycemia-induced apoptosis in HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Haibing; Department of Ophthalmology, Anhui Provincial Hospital, Hefei; Jia Weiping

    2008-05-02

    Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might representmore » a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.« less

  20. 8-oxoguanine DNA Glycosylase 1-Deficiency Modifies Allergic Airway Inflammation by Regulating STAT6 and IL-4 in Cells and in Mice

    PubMed Central

    Li, Guoping; Yuan, Kefei; Yan, Chunguang; Fox, John; Gaid, Madeleine; Breitwieser, Wayne; Bansal, Arvind K.; Zeng, Huawei; Gao, Hongwei; Wu, Min

    2013-01-01

    8-oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein impacts allergic airway inflammation following sensitization and challenge by ovalbumin (OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased INF-γ production in cultured epithelial cells following exposure to house dust mite (HDM) extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1-deficiency negatively regulates allergen-induced airway inflammatory response. PMID:22100973

  1. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    PubMed

    Becker, Matthias; Siems, Wolf-Eberhard; Kluge, Reinhart; Gembardt, Florian; Schultheiss, Heinz-Peter; Schirner, Michael; Walther, Thomas

    2010-09-16

    According to the World Health Organization (WHO) there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP), also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  2. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  3. Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality*

    PubMed Central

    Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming

    2010-01-01

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277

  4. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality.

    PubMed

    Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming

    2010-04-30

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.

  5. Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice

    PubMed Central

    Steiner, Michel A; Marsicano, Giovanni; Nestler, Eric J; Holsboer, Florian; Lutz, Beat; Wotjak, Carsten T

    2008-01-01

    Summary Hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity is associated with major depressive disorders, and treatment with classical antidepressants ameliorates not only psychopathological symptoms, but also the dysregulation of the HPA axis. Here, we further elucidated the role of impaired cannabinoid type 1 (CB1) receptor signaling for neuroendocrine and behavioral stress coping in the mouse forced swim test (FST). We demonstrate that the genetic inactivation of CB1 is accompanied by increased plasma corticosterone levels both under basal conditions and at different time points following exposure to the FST. The latter effect could be mimicked in C57BL/6N mice by acute, subchronic and chronic administration of the selective CB1 antagonist SR141716. Further experiments confirmed the specificity of corticosterone-elevating SR141716 actions for CB1 in CB1-deficient mice. Subchronic and chronic pharmacological blockade of CB1, but not its genetic deletion, induced antidepressant-like behavioral responses in the FST that were characterized by decreased floating and/or increased struggling behavior. The antidepressant-like behavioral effects of acute desipramine treatment in the FST were absent in CB1-deficient mice, but the dampening effects of desipramine on FST stress-induced corticosterone secretion were not compromised by CB1-deficiency. However, antidepressant-like behavioral desipramine effects were intact in C57BL/6N mice pre-treated with SR141716, indicating potential developmental deficits in CB1-deficient mice. We conclude that pharmacological blockade of CB1 signaling shares antidepressant-like behavioral effects with desipramine, but reveals opposite effects on HPA axis activity. PMID:17976922

  6. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  7. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome.

    PubMed

    Burnett, Lisa C; LeDuc, Charles A; Sulsona, Carlos R; Paull, Daniel; Rausch, Richard; Eddiry, Sanaa; Carli, Jayne F Martin; Morabito, Michael V; Skowronski, Alicja A; Hubner, Gabriela; Zimmer, Matthew; Wang, Liheng; Day, Robert; Levy, Brynn; Fennoy, Ilene; Dubern, Beatrice; Poitou, Christine; Clement, Karine; Butler, Merlin G; Rosenbaum, Michael; Salles, Jean Pierre; Tauber, Maithe; Driscoll, Daniel J; Egli, Dieter; Leibel, Rudolph L

    2017-01-03

    Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.

  8. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome

    PubMed Central

    Burnett, Lisa C.; LeDuc, Charles A.; Sulsona, Carlos R.; Paull, Daniel; Rausch, Richard; Eddiry, Sanaa; Carli, Jayne F. Martin; Morabito, Michael V.; Skowronski, Alicja A.; Hubner, Gabriela; Zimmer, Matthew; Wang, Liheng; Day, Robert; Levy, Brynn; Dubern, Beatrice; Poitou, Christine; Clement, Karine; Rosenbaum, Michael; Salles, Jean Pierre; Tauber, Maithe; Egli, Dieter

    2016-01-01

    Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell–derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p–/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p–/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p–/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH–releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency. PMID:27941249

  9. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    PubMed

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  10. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.

    PubMed

    Zhen, Yuanli; Zhang, Yajie; Yu, Yonghao

    2017-11-21

    PARP1 plays a critical role in regulating many biological processes linked to cellular stress responses. Although DNA strand breaks are potent stimuli of PARP1 enzymatic activity, the context-dependent mechanism regulating PARP1 activation and signaling is poorly understood. We performed global characterization of the PARP1-dependent, Asp/Glu-ADP-ribosylated proteome in a panel of cell lines originating from benign breast epithelial cells, as well as common subtypes of breast cancer. From these analyses, we identified 503 specific ADP-ribosylation sites on 322 proteins. Despite similar expression levels, PARP1 is differentially activated in these cell lines under genotoxic conditions, which generates signaling outputs with substantial heterogeneity. By comparing protein abundances and ADP-ribosylation levels, we could dissect cell-specific PARP1 targets that are driven by unique expression patterns versus cell-specific regulatory mechanisms of PARylation. Intriguingly, PARP1 modifies many proteins in a cell-specific manner, including those involved in transcriptional regulation, mRNA metabolism, and protein translation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice.

    PubMed

    Puig, Kendra L; Kulas, Joshua A; Franklin, Whitney; Rakoczy, Sharlene G; Taglialatela, Giulio; Brown-Borg, Holly M; Combs, Colin K

    2016-04-01

    APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Substrains of 129 Mice Are Resistant to Yersinia pestis KIM5: Implications for Interleukin-10-Deficient Mice▿

    PubMed Central

    Turner, Joshua K.; Xu, John L.; Tapping, Richard I.

    2009-01-01

    Interleukin-10 (IL-10)-deficient mice are resistant to several pathogens, including Yersinia pestis. Surprisingly, we observed that heterozygous IL-10+/− mice also survive high-dose intravenous infection with Y. pestis KIM5 (Pgm−). Analysis of commercial IL-10−/− mice revealed that at least 30 cM of genomic DNA from the original 129 strain remains, including a functional Slc11a1 (Nramp1) gene. Interestingly, two substrains of 129 mice were resistant to high-dose Y. pestis KIM5. Resistance does not appear to be recessive, as F1 mice (C57BL/6J × 129) also survived a high-dose challenge. A QTL-based genetic scan of chromosome 1 with 35 infected F1 backcrossed mice revealed that resistance to KIM5 maps to a region near IL-10. Two novel IL-10+/+ mouse strains which each possess most of the original 30-cM stretch of 129 DNA maintained resistance to high-dose infection with Y. pestis KIM5 even in a heterozygous state. Conversely, a novel IL-10−/− mouse strain in which most of the 129 DNA has been crossed out exhibited intermediate resistance to KIM5, while the corresponding IL-10+/− strain was completely susceptible. Taken together, these results demonstrate that 129-derived genomic DNA near IL-10 confers resistance to Yersinia pestis KIM5 and contributes to the observed resistance of IL-10−/− mice. PMID:18955473

  13. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  14. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet.

    PubMed

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-07-28

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  15. SCARLESS SKIN WOUND HEALING IN FOXN1 DEFICIENT (NUDE) MICE IS ASSOCIATED WITH DISTINCTIVE MATRIX METALLOPROTEINASE EXPRESSION

    PubMed Central

    Gawronska-Kozak, Barbara

    2011-01-01

    Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2,-3,-8,-9,-10,-12,-13,-14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of type I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing. PMID:21539913

  16. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts.

    PubMed

    Daugherty, Matthew D; Young, Janet M; Kerns, Julie A; Malik, Harmit S

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  17. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  18. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  19. Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy.

    PubMed

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-06-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD(-/-) mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD(-/-) mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD(-/-) mice maintained euglycemia, whereas untreated VLCAD(-/-) mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.

  20. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409