NASA Astrophysics Data System (ADS)
Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.
2011-12-01
The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.
77 FR 7523 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... with 2 flow metering systems equipped with upgraded water absorbing filter elements. This AD was prompted by reports of partial blockage of a certain water absorbing filter element. We are issuing this AD to prevent partial blockage of a certain water absorbing filter element, which could lead to...
Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages
NASA Astrophysics Data System (ADS)
Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark
2014-05-01
The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.
Single Protein Structural Analysis with a Solid-state Nanopore Sensor
NASA Astrophysics Data System (ADS)
Li, Jiali; Golovchenko, Jene; McNabb, David
2005-03-01
We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.
... may be closed or covered by a thin film, which causes a partial blockage. In adults, the ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...
Kaul, D K; Liu, X; Nagel, R L
2001-11-15
In sickle cell (SS) vaso-occlusion, the culminating event is blockage of blood vessels by sickled red blood cells (SS RBCs). As shown in animal models, SS RBC-induced vaso-occlusion is often partial, allowing for a residual flow, hence oxygen delivery to partially occluded vessels could reduce vaso-occlusion. The efficacy of an oxygenated perflubron-based fluorocarbon emulsion (PFE) was tested for its anti-vaso-occlusive effects in the ex vivo mesocecum vasculature of the rat. Microvascular obstruction was induced by the infusion of deoxygenated SS RBCs into ex vivo preparations with or without pretreatment with platelet-activating factor (PAF). PAF induced enhanced SS RBC-endothelium interactions, leading to greater vaso-occlusion. Microvascular blockage resulted in increased peripheral resistance units (PRU). Deoxygenated SS RBCs caused a persistent 1.5-fold PRU increase in untreated preparations and approximately a 2-fold PRU increase in PAF-treated preparations. The greater PRU in PAF-treated preparations was caused by widespread adhesion and postcapillary blockage. Oxygenated PFE, but not deoxygenated PFE, resulted in PRU decreases to baseline values in both groups of experiments (with or without PAF). The PRU decrease caused by oxygenated PFE infusion was caused by unsickling of SS RBCs in partially occluded vessels, with no antiadhesive effect on already adherent SS RBCs as assessed by intravital microscopy. PFE had no effect on vascular tone. The efficacy of PFE appears to result from its greater capacity to dissolve oxygen (10-fold higher than plasma). The dislodgement of trapped SS RBCs and an increase in wall shear rates will help reverse the partial obstruction. Thus, oxygenated PFE is capable of reducing SS RBC-induced vaso-occlusion, and further development of this approach is advisable.
Arnáiz-García, María Elena; González-Santos, Jose María; Bueno-Codoñer, María E; López-Rodríguez, Javier; Dalmau-Sorlí, María José; Arévalo-Abascal, Adolfo; Arribas-Jiménez, Antonio; Diego-Nieto, Alejandro; Rodríguez-Collado, Javier; Rodríguez-López, Jose María
2015-02-01
A 78-year-old woman was admitted to our institution with progressive dyspnea. She had previously been diagnosed with rheumatic heart disease and had undergone cardiac surgery for mechanical mitral valve replacement ten years previously. Transesophageal echocardiography revealed blockage of the mechanical prosthesis and the patient was scheduled for surgery, in which a thrombus was removed from the left atrial appendage. A partial thrombosis of the mechanical prosthesis and circumferential pannus overgrowth were concomitantly detected. Prosthetic heart valve blockage is a rare but life-threatening complication, the main causes of which are thrombosis and pannus formation. The two conditions are different but both are usually misdiagnosed. Two concurrent mechanisms of prosthesis blockage were found in this patient. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Analysis of Blood Flow in a Partially Blocked Bifurcated Blood Vessel
NASA Astrophysics Data System (ADS)
Abdul-Razzak, Hayder; Elkassabgi, Yousri; Punati, Pavan K.; Nasser, Naseer
2009-09-01
Coronary artery disease is a major cause of death in the United States. It is the narrowing of the lumens of the coronary blood vessel by a gradual build-up of fatty material, atheroma, which leads to the heart muscle not receiving enough blood. This my ocardial ischemia can cause angina, a heart attack, heart failure as well as sudden cardiac death [9]. In this project a solid model of bifurcated blood vessel with an asymmetric stenosis is developed using GAMBIT and imported into FLUENT for analysis. In FLUENT, pressure and velocity distributions in the blood vessel are studied under different conditions, where the size and position of the blockage in the blood vessel are varied. The location and size of the blockage in the blood vessel are correlated with the pressures and velocities distributions. Results show that such correlation may be used to predict the size and location of the blockage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian; Wright, Ian
Boiler tubes in steam power plants experience tube blockages due to exfoliation of oxide grown on the inner side of the tubes. In extreme cases, significant tube blockages can lead to forced power plant outages. It is thus desired to predict through modeling the amount of tube blockage in order to inform power plant operators of possible forced outages. SpalLoop solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages for the entire boiler tube length. At each operational outage, i.e., temperature excursions down to room temperature, the amount of exfoliated areamore » for the entire tube loop is estimated the amount of tube blockage is predicted based assumed blockage geometry and site. The SpaLLoop code contains modules developed for oxide growth, stress analysis, tube loop geometry, blockage area by taking into account the following phenomena and features, (a) Plant operation schedule with periodic alternate full-load and partial-load regimes and shut-downs, i.e., temperature excursions from high-load to room temperature, (b) axisymmetric formulation for cylindrical tubes, (c) oxide growth in a temperature gradient with multiple oxide layers, (d) geometry of a boiler tube with a single tube loop or two tube loops, (e) temperature variation along the tube length based on hot gas temperature distribution outside the tube and inlet steam temperature, (f) non-uniform oxide growth along the tube length according to the local steam tube temperature, (g) exfoliated area module: at each operational outage considered, the amount of exfoliated area and exfoliated volume along the tube is estimated, (h) blockage module: at each operational outage considered, the exfoliated volume/mass for each tube loop is estimated from which the amount of tube blockage is predicted based on given blockage geometry (length, location, and geometry). The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1981-01-01
An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.
Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Wen, Wei; Jin, Ying; Hu, Mingjun; Liu, Xianlong; Cai, Yangjian; Zou, Chenjuan; Luo, Mi; Zhou, Liwang; Chu, Xiuxiang
2018-05-01
The beam wander properties of coherent and partially coherent Airy beam arrays in a turbulent atmosphere are investigated. Based on the analytical results, we find that the beam wander of partially coherent Airy beam arrays is significantly reduced compared with the wander of a partially coherent Airy beam by numerical simulation. Moreover, the beam wander of a 2 × 2 partially coherent Airy beam arrays is significantly reduced compared with the wander of a 2 × 2 partially coherent Gaussian beam arrays. By using the definition of beam wander arrays factor which is used to characterize the capability of beam arrays for reducing the beam wander effect compared with a single beam, we find that the arrays factor of partially coherent Airy beam arrays is significantly less than that of partially coherent Gaussian beam arrays with the same arrays order. We also find that an artificial reduction of the initial coherence of laser arrays can be used to decrease the beam wander effect. These results indicate that the partially coherent Airy beam arrays have potential applications in long-distance free-space optical communications.
Effect of turbulence on the beam quality of apertured partially coherent beams.
Ji, Xiaoling; Ji, Guangming
2008-06-01
The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.
NASA Astrophysics Data System (ADS)
Cai, Yangjian
2011-03-01
Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.
Biological Half-Life of Cardiolite[R
ERIC Educational Resources Information Center
Jesse, Kenneth
2008-01-01
I recently had a cardiac stress test. It was my fourth. Its purpose was to determine whether my heart is pumping an adequate quantity of blood during exercise. Additionally, is there a partial arterial blockage or damaged heart muscle? The test involves the patient receiving an injection of Cardiolite[R], a substance containing a molecule to which…
Beamformed nearfield imaging of a simulated coronary artery containing a stenosis.
Owsley, N L; Hull, A J
1998-12-01
This paper is concerned with the potential for the detection and location of an artery containing a partial blockage by exploiting the space-time properties of the shear wave field in the surrounding elastic soft tissue. As a demonstration of feasibility, an array of piezoelectric film vibration sensors is placed on the free surface of a urethane mold that contains a surgical tube. Inside the surgical tube is a nylon constriction that inhibits the water flowing through the tube. A turbulent field develops in and downstream from the blockage, creating a randomly fluctuating pressure on the inner wall of the tube. This force produces shear and compressional wave energy in the urethane. After the array is used to sample the dominant shear wave space-time energy field at low frequencies, a nearfield (i.e., focused) beamforming process then images the energy distribution in the three-dimensional solid. Experiments and numerical simulations are included to demonstrate the potential of this noninvasive procedure for the early identification of vascular blockages-the typical precursor of serious arterial disease in the human heart.
75 FR 13433 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
...-AA00 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX AGENCY: Coast Guard... safety zone for a partial blockage of the Victoria Barge Canal when the Invista Inc facility is... channel will be substantially reduced. The safety zone is necessary to help ensure the safety of the...
Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Haiyan; Tang, Lei
2018-01-01
A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.
Chen, B; Teng, Jiawen; Liu, Hongwei; Pan, X; Zhou, Y; Huang, Shu; Lai, Mowen; Bian, Guohui; Mao, Bin; Sun, Wencui; Zhou, Qiongxiu; Yang, Shengyong; Nakahata, Tatsutoshi; Ma, Feng
2017-08-01
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
An alternative model for a partially coherent elliptical dark hollow beam
NASA Astrophysics Data System (ADS)
Li, Xu; Wang, Fei; Cai, Yangjian
2011-04-01
An alternative theoretical model named partially coherent hollow elliptical Gaussian beam (HEGB) is proposed to describe a partially coherent beam with an elliptical dark hollow profile. Explicit expression for the propagation factors of a partially coherent HEGB is derived. Based on the generalized Collins formula, analytical formulae for the cross-spectral density and mean-squared beam width of a partially coherent HEGB, propagating through a paraxial ABCD optical system, are derived. Propagation properties of a partially coherent HEGB in free space are studied as a numerical example.
Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.
Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan
2017-11-01
The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.
Viral Oncolytic Therapeutics for Neoplastic Meningitis
2013-07-01
infusion method, we worked with our animal vendor, Charles River Laboratories (CRL), to adopt their intrathecal catheterization service for our...traslocation of the injected material in CSF, we attempted to correlate the parameters of lumbar bolus in intrathecally catheterized rats with those in non...explained by either partial blockage of the spinal CSF compartment in catheterized animals or by variable posterior hydrodynamic compliance (or both) and
Investigation on partially coherent vector beams and their propagation and focusing properties.
Hu, Kelei; Chen, Ziyang; Pu, Jixiong
2012-11-01
The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Zhao, Chengliang; Cai, Yangjian
2011-05-01
Based on the generalized Huygens-Fresnel integral, propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz-Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz-Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz-Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorov, A A
2010-10-15
The problem of steady-state generation of a Gaussian partially coherent beam in a stable-cavity laser is considered within the framework of the method of expansion of the radiation coherence function in partially coherent modes. We discuss the conditions whose fulfilment makes it possible to neglect the intermode beatings of the radiation field and the effect of the gain dispersion on the steady-state generation of multimode partially coherent radiation. Based on the simplified model, we solve the self-consistent problem of generation of a Gaussian partially coherent beam for the given laser pump conditions and the resonator parameters. The dependence of themore » beam characteristics (power, radius, etc.) on the active medium properties and the resonator parameters is obtained. (laser beams)« less
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer
2008-02-01
We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan
2018-01-01
Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.
Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials
NASA Astrophysics Data System (ADS)
Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang
2016-05-01
The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Li, Xiangyin
2010-01-01
Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Gao, Duorui; Liu, Zhi; Chen, Chunyi; Lou, Yan; Jiang, Huilin
2014-11-01
Based on partially coherent polarized light transmission characteristics of the atmosphere, an intensity expression of completely coherent flashing light is derived from Andrews scale modulation method. According to the generalized Huygens-Fresnel principle and Rytov theory, the phase fluctuation structure function is obtained on condition that the refractive index profile in the atmosphere meet Von Karman spectrum, then get the arrival Angle fluctuation variance. Through the RMS beam width of gaussian beams in turbulent atmosphere, deviation angle formula of fully coherent gaussian beams in turbulence atmosphere is attained, then get the RMS beam width of partially coherent and derivation angle expression of GSM beam in turbulent atmosphere. Combined with transmission properties of radial polarized laser beam, cross spectral density matrix of partially coherent radially polarized light can be gained by using generalized huygens-fresnel principle. And light intensity and polarization after transmission can be known according to the unity of coherence and polarization theory. On the basis of the analysis model and numerical simulation, the simulation results show that: the light spot caused by atmospheric turbulence of partially coherent polarization will be superior to completely polarized light.Taking advantage of this feature, designed a new wireless suppression technology of atmospheric turbulence, that is the optimization criterion of initial degree of coherent light beam. The optimal initial degree of coherent light beam will change along with the change of atmospheric turbulence conditions,make control the beam's initial degree of coherence to realize the initial degree of coherence of light beam in real time and dynamic control. A spatial phase screen before emission aperture of fully coherent light is to generate the partially coherent light, liquid crystal spatial light modulator is is a preferable way to realize the dynamic random phase. Finally look future of the application research of partially coherent light.
Shaping the beam profile of a partially coherent beam by a phase aperture
NASA Astrophysics Data System (ADS)
Wu, Gaofeng; Cai, Yangjian; Chen, Jun
2011-08-01
By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.
NASA Astrophysics Data System (ADS)
Yuan, Yangsheng; Chen, Yahong; Liang, Chunhao; Cai, Yangjian; Baykal, Yahya
2013-03-01
With the help of a tensor method, we derive an explicit expression for the on-axis scintillation index of a circular partially coherent dark hollow (DH) beam in weakly turbulent atmosphere. The derived formula can be applied to study the scintillation properties of a partially coherent Gaussian beam and a partially coherent flat-topped (FT) beam. The effect of spatial coherence on the scintillation properties of DH beam, FT beam and Gaussian beam is studied numerically and comparatively. Our results show that the advantage of a DH beam over a FT beam and a Gaussian beam for reducing turbulence-induced scintillation increases particularly at long propagation distances with the decrease of spatial coherence or the increase of the atmospheric turbulence, which will be useful for long-distance free-space optical communications.
Detection and display of acoustic window for guiding and training cardiac ultrasound users
NASA Astrophysics Data System (ADS)
Huang, Sheng-Wen; Radulescu, Emil; Wang, Shougang; Thiele, Karl; Prater, David; Maxwell, Douglas; Rafter, Patrick; Dupuy, Clement; Drysdale, Jeremy; Erkamp, Ramon
2014-03-01
Successful ultrasound data collection strongly relies on the skills of the operator. Among different scans, echocardiography is especially challenging as the heart is surrounded by ribs and lung tissue. Less experienced users might acquire compromised images because of suboptimal hand-eye coordination and less awareness of artifacts. Clearly, there is a need for a tool that can guide and train less experienced users to position the probe optimally. We propose to help users with hand-eye coordination by displaying lines overlaid on B-mode images. The lines indicate the edges of blockages (e.g., ribs) and are updated in real time according to movement of the probe relative to the blockages. They provide information about how probe positioning can be improved. To distinguish between blockage and acoustic window, we use coherence, an indicator of channel data similarity after applying focusing delays. Specialized beamforming was developed to estimate coherence. Image processing is applied to coherence maps to detect unblocked beams and the angle of the lines for display. We built a demonstrator based on a Philips iE33 scanner, from which beamsummed RF data and video output are transferred to a workstation for processing. The detected lines are overlaid on B-mode images and fed back to the scanner display to provide users real-time guidance. Using such information in addition to B-mode images, users will be able to quickly find a suitable acoustic window for optimal image quality, and improve their skill.
NASA Astrophysics Data System (ADS)
Tan, Zhenkun; Ke, Xizheng
2017-10-01
The variance of angle-of-arrival fluctuation of the partially coherent Gaussian-Schell Model (GSM) beam propagations in the slant path, based on the extended Huygens-Fresnel principle and the model of atmospheric refraction index structural constant proposed by the international telecommunication union-radio (ITU-R), has been investigated under the modified Hill turbulence model. The expression of that has been obtained. Firstly, the effects of optical wavelength, the inner-and-outer scale of the turbulence and turbulence intensity on the variance of angle-of-arrival fluctuation have been analyzed by comparing with the partially coherent GSM beam and the completely coherent Gaussian beam. Secondly, the variance of angle-of-arrival fluctuation has been compared with the von Karman spectrum and the modified Hill spectrum under the partially coherent GSM beam. Finally, the effects of beam waist radius and partial coherence length on the variance of angle-of-arrival of the collimated (focused) beam have been analyzed under the modified Hill turbulence model. The results show that the influence of the variance of angle-of-arrival fluctuation for the inner scale effect is larger than that of the outer scale effect. The variance of angle-of-arrival fluctuation under the modified Hill spectrum is larger than that of the von Karman spectrum. The influence of the waist radius on the variance of angle-of-arrival for the collimated beam is less than focused the beam. This study will provide a necessary theoretical basis for the experiments of partially coherent GSM beam propagation through atmosphere turbulence.
Analysis of continuous beams with joint slip
L. A. Soltis
1981-01-01
A computer analysis with user guidelines to analyze partially continuous multi-span beams is presented. Partial continuity is due to rotational slip which occurs at spliced joints at the supports of continuous beams such as floor joists. Beam properties, loads, and joint slip are input; internal forces, reactions, and deflections are output.
Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes
NASA Astrophysics Data System (ADS)
Meniconi, S.; Brunone, B.; Ferrante, M.
2012-08-01
In view of scarcity of both experimental data and numerical models concerning transient behavior of cross-section area changes in pressurized liquid flow, the paper presents laboratory data and numerical simulation of the interaction of a surge wave with a partial blockage by a valve, a single pipe contraction or expansion and a series of pipe contraction/expansion in close proximity.With regard to a single change of cross-section area, laboratory data point out the completely different behavior with respect to one of the partially closed in-line valves with the same area ratio. In fact, for the former the pressure wave interaction is not regulated by the steady-state local head loss. With regard to partial blockages, transient tests have shown that the smaller the length, the more intense the overlapping of pressure waves due to the expansion and contraction in series.Numerically, the need for taking into account both the viscoelasticity and unsteady friction is demonstrated, since the classical water-hammer theory does not simulate the relevant damping of pressure peaks and gives rise to a time shifting between numerical and laboratory data. The transient behavior of a single local head loss has been checked by considering tests carried out in a system with a partially closed in-line valve. As a result, the reliability of the quasi steady-state approach for local head loss simulation has been demonstrated in viscoelastic pipes. The model parameters obtained on the basis of transients carried out in single pipe systems have then been used to simulate transients in the more complex pipe systems. These numerical experiments show the great importance of the length of the small-bore pipe with respect to one of the large-bore pipes. Precisely, until a gradually flow establishes in the small-bore pipe, the smaller such a length, the better the quality of the numerical simulation.
NASA Technical Reports Server (NTRS)
1977-01-01
The Microwave Fower Beam Ionosphere effects and critical interfaces between th Microwave Power Transmission System (MPTS) and the Satellite were studied as part of the NASA/MSFC continuing research on the feasibility of power transmission from geosynchronous orbit. Theoretical predications of ionospheric modifications produced by the direct interaction of the MPTS on the earth's upper atmosphere are used to determine their impact on the performance of the Microwave Power Beam and Pilot Beam System as well as on other RF systems effected by the ionosphere. A technology program to quantitatively define these interactions is developed. Critical interface areas between the MPTS and the satellite which could have a major impact on cost and performance of the power system are idenfified and analyzed. The areas selected include: use of either a 20 kV versus 40 kV Amplitron, thermal blockage effects of Amplitron heat radiation by the satellite structure, effect of dielectric carry-through structure on power beam, and effect of material sublimation on performance of the Amplitron in Geosynchronous Orbit.
Experimental generation of partially coherent beams with different complex degrees of coherence.
Wang, Fei; Liu, Xianlong; Yuan, Yangsheng; Cai, Yangjian
2013-06-01
We established an experimental setup for generating partially coherent beams with different complex degrees of coherence, and we report experimental generation of an elliptical Gaussian Schell-model (GSM) beam and a Laguerre-GSM beam for the first time. It has been demonstrated experimentally that an elliptical GSM beam and a Laguerre-GSM beam produce an elliptical beam spot and a dark hollow beam spot in the focal plane (or in the far field), respectively, which agrees with theoretical predictions. Our results are useful for beam shaping and particle trapping.
NASA Astrophysics Data System (ADS)
Avramov-Zamurovic, S.; Nelson, C.
2018-10-01
We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.
Correlation singularities in partially coherent electromagnetic beams.
Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D
2012-10-15
We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.
Preliminary results of a prototype C-shaped PET designed for an in-beam PET system
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun
2016-06-01
Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, Gabriela; Pribanic, Tomas
2013-07-01
There are approximately 56 million gallons (212 km{sup 3}) of high level waste (HLW) at the U.S. Department of Energy (DOE) Hanford Site. It is scheduled that by the year 2040, the HLW is to be completely transferred to secure double-shell tanks (DST) from the leaking single-tanks (SST) via transfer pipeline system. Blockages have formed inside the pipes during transport because of the variety in composition and characteristics of the waste. These full and partial plugs delay waste transfers and require manual intervention to repair, therefore are extremely expensive, consuming millions of dollars and further threatening the environment. To successfullymore » continue the transfer of waste through the pipelines, DOE site engineers are in need of a technology that can accurately locate the blockages and unplug the pipelines. In this study, the proposed solution to remediate blockages formed in pipelines is the use of a peristaltic crawler: a pneumatically/hydraulically operated device that propels itself in a worm-like motion through sequential fluctuations of pressure in its air cavities. The crawler is also equipped with a high-pressure water nozzle used to clear blockages inside the pipelines. The crawler is now in its third generation. Previous generations showed limitations in its durability, speed, and maneuverability. Latest improvements include an automation of sequence that prevents kickback, a front-mounted inspection camera for visual feedback, and a thinner wall outer bellow for improved maneuverability. Different experimental tests were conducted to evaluate the improvements of crawler relative to its predecessors using a pipeline test-bed assembly. Anchor force tests, unplugging tests, and fatigue testing for both the bellow and rubber rims have yet to be conducted and thus results are not presented in this research. Experiments tested bellow force and response, cornering maneuverability, and straight line navigational speed. The design concept and experimental test results are reported. (authors)« less
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2015-03-01
Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.
NASA Astrophysics Data System (ADS)
Peng, Juan; Zhang, Li; Zhang, Kecheng; Ma, Junxian
2018-07-01
Based on the Rytov approximation theory, the transmission model of an orbital angular momentum (OAM)-carrying partially coherent Bessel-Gaussian (BG) beams propagating in weak anisotropic turbulence is established. The corresponding analytical expression of channel capacity is presented. Influences of anisotropic turbulence parameters and beam parameters on channel capacity of OAM-based free-space optical (FSO) communication systems are discussed in detail. The results indicate channel capacity increases with increasing of almost all of the parameters except for transmission distance. Raising the values of some parameters such as wavelength, propagation altitude and non-Kolmogorov power spectrum index, would markedly improve the channel capacity. In addition, we evaluate the channel capacity of Laguerre-Gaussian (LG) beams and partially coherent BG beams in anisotropic turbulence. It indicates that partially coherent BG beams are better light sources candidates for mitigating the influences of anisotropic turbulence on channel capacity of OAM-based FSO communication systems.
Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian
2015-05-04
We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Zhang, Lei
2006-07-01
A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.
Belotserkovskii, Boris P.; Neil, Alexander J.; Saleh, Syed Shayon; Shin, Jane Hae Soo; Mirkin, Sergei M.; Hanawalt, Philip C.
2013-01-01
The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816–12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation. PMID:23275544
Scanning electron microscopic study of a Ciloxan bottle blocked by ciprofloxacin crystals.
John, T
2001-12-01
To report blockage of a commercially available ciprofloxacin bottle by white crystalline deposits. This study evaluated the ultrastructural features of the ciprofloxacin crystals. A patient underwent intensive topical treatment of an infectious corneal ulcer with commercially available ciprofloxacin 0.3% ophthalmic solution. During treatment, the patient was unable to obtain medication from the ciprofloxacin bottle and required a new prescription. Examination of the bottle revealed that about 50% of the medication remained, but compression of the bottle with any amount of force failed to deliver any medication. On closer examination, a white material partially filled the nozzle track of the bottle and was on the outer bottle near the nozzle and the inner surface of the bottle cap. These white crystalline deposits were evaluated by scanning electron microscopy. Plate-like, needle, cable and spaghetti-like crystals were found. The needle crystals formed multiple petaloid patterns. This is the first report of blockage of a commercially available ciprofloxacin 0.3% bottle by ciprofloxacin crystals and the inability to deliver medication from the bottle. Ultrastructural study of the white crystalline deposits revealed four types of ciprofloxacin crystals.
An alternative theoretical model for an anomalous hollow beam.
Cai, Yangjian; Wang, Zhaoying; Lin, Qiang
2008-09-15
An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.
Relations of Early Goal-Blockage Response and Gender to Subsequent Tantrum Behavior
ERIC Educational Resources Information Center
Sullivan, Margaret W.; Lewis, Michael
2012-01-01
Infants and their mothers participated in a longitudinal study of the sequelae of infant goal-blockage responses. Four-month-old infants participated in a standard contingency learning and goal-blockage procedure during which anger and sad facial expressions to the blockage were coded. When infants were 12 and 20 months old, mothers completed a…
Dynamic adsorption of CO2/N2 on cation-exchanged chabazite SSZ-13: A breakthrough analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Jamey K.; Barpaga, Dushyant; Prodinger, Sebastian
2018-04-17
Alkali exchanged SSZ-13 adsorbents were investigated for their applicability in separating N2 from CO2 in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K+ exchanged SSZ-13 was found to yield the best N2 productivity under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the CHA cavities enhancing the separation potential in a 15/85 CO2/N2 binary gas mixture.
Dynamic Adsorption of CO 2 /N 2 on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Jamey K.; Barpaga, Dushyant; Prodinger, Sebastian
2018-03-30
Alkali exchanged SSZ-13 adsorbents were investigated for their applicability in separating N2 from CO 2 in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K+ exchanged SSZ-13 was found to yield the best N2 productivity under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the CHA cavities enhancing the separation potential in a 15/85 CO2/N2 binary gas mixture.
FFM water mockup studies of the near-wake region of permeable flow blockages. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, J. D.
1976-10-01
An experimental study of transport in the near-wake region of permeable, planar flow blockages was conducted in a vertical-flow channel with a hexagonal cross section. Experiments included measurements of axial pressure distributions along channel walls exposed to the free stream and wake region and pressure differences between the free stream and wake regions at fixed axial positions. Further, time constants for scalar decay in the near-wake region were determined by salt conductivity tests. A single blockage geometry was used in all tests; the blockage, which was attached to the channel wall, obstructed 58 percent of the cross section when themore » blockage was solid. For one series of tests, discrete jets were machined into the blockage and water was metered into the recirculation zone at velocities of the order of the mean channel velocity. Increased jet velocity reduced the resistence time of salt in the recirculation zone, and when the jet velocity was as high as the accelerated free stream flow at the vena contracta, counterrotating cells were introduced in the recirculating zone. In a second series of tests, uniformly spaced holes were drilled in the blockages to give blockage porosities of 11 and 24 percent. The residence time of salt in the near wake decreased significantly as the blockage porosity was increased to 24 percent.« less
Active Beam Shaping System and Method Using Sequential Deformable Mirrors
NASA Technical Reports Server (NTRS)
Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)
2015-01-01
An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.
Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D
2018-05-01
An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.
Average characteristics of partially coherent electromagnetic beams.
Seshadri, S R
2000-04-01
Average characteristics of partially coherent electromagnetic beams are treated with the paraxial approximation. Azimuthally or radially polarized, azimuthally symmetric beams and linearly polarized dipolar beams are used as examples. The change in the mean squared width of the beam from its value at the location of the beam waist is found to be proportional to the square of the distance in the propagation direction. The proportionality constant is obtained in terms of the cross-spectral density as well as its spatial spectrum. The use of the cross-spectral density has advantages over the use of its spatial spectrum.
NASA Astrophysics Data System (ADS)
Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas
2015-10-01
The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.
Evolution of singularities in a partially coherent vortex beam.
van Dijk, Thomas; Visser, Taco D
2009-04-01
We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.
NASA Astrophysics Data System (ADS)
Ziauddin; Lee, Ray-Kuang; Qamar, Sajid
2016-09-01
We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.
Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.
Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C
2013-02-28
This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Gyu, E-mail: igkim@kaeri.re.kr; Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology; Kim, Seo Yoen
2014-01-03
Highlights: •DKK1 was expressed differently among non-small-cell lung cancer cell lines. •DKK1 negatively regulated ROMO1 gene expression. •Disturbance of DKK1 level induced the imbalance of cellular ROS. •DKK1/ROMO1-induced ROS imbalance is involved in cell survival in NSCLC. -- Abstract: Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cellsmore » than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.« less
NASA Astrophysics Data System (ADS)
Suo, Qiangbo; Han, Yiping; Cui, Zhiwei
2017-09-01
Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr
Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in amore » circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the proposed scanning method and image reconstruction algorithm can effectively estimate the scatter in cone-beam projections and produce tomographic images of nearly scatter-free quality. The authors believe that the proposed method would provide a fast and efficient CBCT scanning option to various applications particularly including head-and-neck scan.« less
Propagation properties of a partially coherent radially polarized beam in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Zheng, Guo; Wang, Lin; Wang, Jue; Zhou, Muchun; Song, Minmin
2018-07-01
Based on the extended Huygens-Fresnel integral, second-order moments of the Wigner distribution function of a partially coherent radially polarized beam propagating through atmospheric turbulence are derived. Besides, propagation properties such as the mean-squared beam width, angular width, effective radius of curvature, beam propagation factor and Rayleigh range can also be obtained and calculated numerically. It is shown that the propagation properties are dependent on the spatial correlation length, refraction index structure constant and propagation distance.
Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio
2009-01-01
Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate. EPR allowed identifying the relation between attitude to block and pipe's attributes in order to understand what affects the possibility to have a blockage in the pipe. EPR provides formulae to compute the accumulated number of blockages for a pipe class at the end of a given period of time. Those formulae do not represent simply regression models but highlight those variables which affect the physical phenomenon in question.
Role of blockages in particle transport through homogeneous granular assemblies
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Sibille, L.; Chareyre, B.
2016-09-01
This letter deals with the transport of particles through granular assemblies and, specifically, with the intermittent formation of blockages originated from collective and purely mechanical clogging of constrictions. We perform numerical experiments with a micro-hydromechanical model that is able to reproduce the complex interplay between the carrier fluid, the transported particles and the granular assembly. The probability distribution functions (PDFs) of the duration of blockages and displacements give the time scale on which the effect of blockages is erased and the advection-dispersion paradigm is valid. Our experiments show that these PDFs fit exponential laws, reinforcing the idea that the formation and destruction of blockages are homogeneous Poisson processes.
Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy
NASA Astrophysics Data System (ADS)
Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.
2014-05-01
PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.
Efficacy of Yavakshara Taila Uttarabasti in the management of fallopian tube blockage.
Baria, Hetal P; Donga, Shilpa B; Dei, Laxmipriya
2015-01-01
Tubal blockage is one of the most common causative factors for female barrenness. It accounts for about 25-35% of female infertility. It is very difficult to manage, as the treatment choices for it are only tubal re-constructive surgery and in vitro fertilization (IVF). On the other hand, there is not established any reliable Ayurvedic treatment for the tubal blockage. It is the need of the time to establish an efficient and cost-effective therapy for this problem. To evaluate the efficacy of Yavakshara Taila Uttarabasti in fallopian tubal blockage. Patients of childbearing age with active marital life of 1 year or more, having complaint of failure to conceive with at least one fallopian tube blockage were selected. Total 19 patients were registered with 42.11% unilateral and 57.89% bilateral tubal blockage. Yavakshara Taila (5 ml) Intrauterine Uttarabasti was given for 6 days (with interval of 3 days in between), after completion of menstrual cycle for two consecutive cycles. The tubal patency was found in 68.75% of patients and conception was achieved in 6.25% of patients. Yavakshara Taila Uttarabasti an effective procedure for treating tubal blockage with no apparent evidence of complication.
De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi
2017-01-01
Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition. PMID:28569789
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Tian, Huanhuan; Dan, Youquan; Feng, Hao; Wang, Shijian
2017-04-01
Propagation formulae for M2-factor and beam wander of partially coherent electromagnetic hollow Gaussian (PCEHG) beam in non-Kolmogorov turbulence are derived based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Our results indicate that the normalized M2-factors of PCEHG beam with larger beam order, waist width, inner scale of turbulence, the generalized exponent parameter, and smaller transverse coherent widths, outer scale of turbulence, the generalized structure parameter are less affected by the turbulence. The root mean square beam wander and relative beam wander are more obvious for PCEHG beam with smaller beam order, larger inner and outer scales of turbulence, exponent parameter, transverse coherent widths, and the generalized structure parameter. What is more, the beam wander properties of PCEHG beam in non-Kolmogorov turbulence are very different from M2-factor and spreading properties of beam in turbulence.
MODEL-BASED HYDROACOUSTIC BLOCKAGE ASSESSMENT AND DEVELOPMENT OF AN EXPLOSIVE SOURCE DATABASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, E; Ramirez, A; Harben, P
2005-07-11
We are continuing the development of the Hydroacoustic Blockage Assessment Tool (HABAT) which is designed for use by analysts to predict which hydroacoustic monitoring stations can be used in discrimination analysis for any particular event. The research involves two approaches (1) model-based assessment of blockage, and (2) ground-truth data-based assessment of blockage. The tool presents the analyst with a map of the world, and plots raypath blockages from stations to sources. The analyst inputs source locations and blockage criteria, and the tool returns a list of blockage status from all source locations to all hydroacoustic stations. We are currently usingmore » the tool in an assessment of blockage criteria for simple direct-path arrivals. Hydroacoustic data, predominantly from earthquake sources, are read in and assessed for blockage at all available stations. Several measures are taken. First, can the event be observed at a station above background noise? Second, can we establish backazimuth from the station to the source. Third, how large is the decibel drop at one station relative to other stations. These observational results are then compared with model estimates to identify the best set of blockage criteria and used to create a set of blockage maps for each station. The model-based estimates are currently limited by the coarse bathymetry of existing databases and by the limitations inherent in the raytrace method. In collaboration with BBN Inc., the Hydroacoustic Coverage Assessment Model (HydroCAM) that generates the blockage files that serve as input to HABAT, is being extended to include high-resolution bathymetry databases in key areas that increase model-based blockage assessment reliability. An important aspect of this capability is to eventually include reflected T-phases where they reliably occur and to identify the associated reflectors. To assess how well any given hydroacoustic discriminant works in separating earthquake and in-water explosion populations it is necessary to have both a database of reference earthquake events and of reference in-water explosive events. Although reference earthquake events are readily available, explosive reference events are not. Consequently, building an in-water explosion reference database requires the compilation of events from many sources spanning a long period of time. We have developed a database of small implosive and explosive reference events from the 2003 Indian Ocean Cruise data. These events were recorded at some or all of the IMS Indian Ocean hydroacoustic stations: Diego Garcia, Cape Leeuwin, and Crozet Island. We have also reviewed many historical large in-water explosions and identified five that have adequate source information and can be positively associated to the hydrophone recordings. The five events are: Cannekin, Longshot, CHASE-3, CHASE-5, and IITRI-1. Of these, the first two are nuclear tests on land but near water. The latter three are in-water conventional explosive events with yields from ten to hundreds of tons TNT equivalent. The objective of this research is to enhance discrimination capabilities for events located in the world's oceans. Two research and development efforts are needed to achieve this: (1) improvement in discrimination algorithms and their joint statistical application to events, and (2) development of an automated and accurate blockage prediction capability that will identify all stations and phases (direct and reflected) from a given event that will have adequate signal to be used in a discrimination analysis. The strategy for improving blockage prediction in the world's oceans is to improve model-based prediction of blockage and to develop a ground-truth database of reference events to assess blockage. Currently, research is focused on the development of a blockage assessment software tool. The tool is envisioned to develop into a sophisticated and unifying package that optimally and automatically assesses both model and data based blockage predictions in all ocean basins, for all NDC stations, and accounting for reflected phases (Pulli et al., 2000). Currently, we have focused our efforts on the Diego Garcia, Cape Leeuwin and Crozet Island hydroacoustic stations in the Indian Ocean.« less
On the extensible viscoelastic beam
NASA Astrophysics Data System (ADS)
Giorgi, Claudio; Pata, Vittorino; Vuk, Elena
2008-04-01
This work is focused on the equation \\[ \\begin{eqnarray*}\\fl {\\partial_{tt}} u+\\partial_{xxxx}u +\\int_0^\\infty \\mu(s) \\partial_{xxxx}[u(t)-u(t-s)]\\,\\rmd s\\\\ - \\big(\\beta+\\|\\partial_x u\\|_{L^2(0,1)}^2\\big)\\partial_{xx}u= f\\end{eqnarray*} \\] describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.
NASA Astrophysics Data System (ADS)
Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.
2017-09-01
This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali
2013-02-01
Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.
The influence of atmospheric turbulence on partially coherent two-photon entangled field
NASA Astrophysics Data System (ADS)
Qiu, Y.; She, W.
2012-09-01
The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.
{omega} meson production in pp collisions with a polarized beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramanyam, J.; Venkataraya,; Ramachandran, G.
2008-07-15
Model independent formulas are derived for the beam analyzing power A{sub y} and beam to meson spin transfers in pp{yields}pp{omega}, taking into consideration all six threshold partial wave amplitudes f{sub 1},...,f{sub 6} covering the Ss, Sp, and Ps channels. It is shown that the lowest three partial wave amplitudes f{sub 1},f{sub 2},f{sub 3} can be determined empirically without any discrete ambiguities. Partial information with regard to the amplitudes f{sub 4},f{sub 5},f{sub 6} covering the Ps channel may be extracted, if the measurements are carried through at the double differential level.
78 FR 17285 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... inspections for dirt, loose particles, or blockage of the flanged tube and drain hole for the pressure seals... aft pressure seals; doing repetitive inspections for dirt, loose particles, or blockage of the flanged... AD, do a general visual inspection for dirt, loose particles, and blockage of the flanged tube and...
Efficacy of Yavakshara Taila Uttarabasti in the management of fallopian tube blockage
Baria, Hetal P.; Donga, Shilpa B.; Dei, Laxmipriya
2015-01-01
Introduction: Tubal blockage is one of the most common causative factors for female barrenness. It accounts for about 25-35% of female infertility. It is very difficult to manage, as the treatment choices for it are only tubal re-constructive surgery and in vitro fertilization (IVF). On the other hand, there is not established any reliable Ayurvedic treatment for the tubal blockage. It is the need of the time to establish an efficient and cost-effective therapy for this problem. Aim: To evaluate the efficacy of Yavakshara Taila Uttarabasti in fallopian tubal blockage. Materials and Methods: Patients of childbearing age with active marital life of 1 year or more, having complaint of failure to conceive with at least one fallopian tube blockage were selected. Total 19 patients were registered with 42.11% unilateral and 57.89% bilateral tubal blockage. Yavakshara Taila (5 ml) Intrauterine Uttarabasti was given for 6 days (with interval of 3 days in between), after completion of menstrual cycle for two consecutive cycles. Results: The tubal patency was found in 68.75% of patients and conception was achieved in 6.25% of patients. Conclusion: Yavakshara Taila Uttarabasti an effective procedure for treating tubal blockage with no apparent evidence of complication. PMID:26730135
Wilde, Mary H; McMahon, James M; Crean, Hugh F; Brasch, Judith
2017-09-01
To describe and explore relationships among catheter problems in long-term indwelling urinary catheter users, including excess healthcare use for treating catheter problems. Long-term urinary catheter users experience repeated problems with catheter-related urinary tract infection and blockage of the device, yet little has been reported of the patterns and relationships among relevant catheter variables. Secondary data analysis was conducted from a sample in a randomised clinical trial, using data from the entire sample of 202 persons over 12 months' participation. Descriptive statistics were used to characterise the sample over time. Zero-inflated negative binomial models were employed for logistic regressions to evaluate predictor variables of the presence/absence and frequencies of catheter-related urinary tract infection and blockage. Catheter-related urinary tract infection was marginally associated with catheter blockage. Problems reported at least once per person in the 12 months were as follows: catheter-related urinary tract infection 57%, blockage 34%, accidental dislodgment 28%, sediment 87%, leakage (bypassing) 67%, bladder spasms 59%, kinks/twists 42% and catheter pain 49%. Regression analysis demonstrated that bladder spasms were significantly related to catheter-related urinary tract infection and sediment amount, and catheter leakages were marginally significantly and positively related to catheter-related urinary tract infection. Frequencies of higher levels of sediment and catheter leakage were significantly associated with higher levels of blockage, and being female was associated with fewer blockages. Persons who need help with eating (more disabled) were also more likely to have blockages. Catheter-related urinary tract infection and blockage appear to be related and both are associated with additional healthcare expenditures. More research is needed to better understand how to prevent adverse catheter outcomes and patterns of problems in subgroups. Nurses can develop care management strategies to identify catheter blockage prior to its occurrence by tracking the amount of sediment and frequency of leakage. Bladder spasms could be an early warning of catheter-related urinary tract infection. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
1996-01-01
A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the suction surface boundary layer, the profile loss is comparable to the shock loss and can exceed the shock loss.
Low cost satellite land mobile service for nationwide applications
NASA Technical Reports Server (NTRS)
Weiss, J. A.
1978-01-01
A satellite land mobile system using mobile radios in the UHF band, and Ku-band Communications Routing Terminals (earth stations) for a nationwide connection from any mobile location to any fixed or mobile location, and from any fixed location to any mobile location is proposed. The proposed nationwide satellite land mobile service provides: telephone network quality (1 out of 100 blockage) service, complete privacy for all the users, operation similar to the telephone network, alternatives for data services up to 32 Kbps data rates, and a cost effective and practical mobile radio compatible with system sizes ranging from 10,000 to 1,000,000 users. Seven satellite alternatives (ranging from 30 ft diameter dual beam antenna to 210 ft diameter 77 beam antenna) along with mobile radios having a sensitivity figure of merit (G/T) of -15 dB/deg K are considered. Optimized mobile radio user costs are presented as a function of the number of users with the satellite and mobile radio alternatives as system parameters.
Hfq Regulates Biofilm Gut Blockage That Facilitates Flea-Borne Transmission of Yersinia pestis
Rempe, Katherine A.; Hinz, Angela K.
2012-01-01
The plague bacillus Yersinia pestis can achieve transmission by biofilm blockage of the foregut proventriculus of its flea vector. Hfq is revealed to be essential for biofilm blockage formation and acquisition and fitness of Y. pestis during flea gut infection, consistent with posttranscriptional regulatory mechanisms in plague transmission. PMID:22328669
NASA Astrophysics Data System (ADS)
Golmohammady, Sh; Ghafary, B.
2016-06-01
In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2 × 2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.
Coherence of beam arrays propagating in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2010-04-01
We analyze some recent publications addressing propagation of the partially coherent polarized beams and beam arrays in the turbulent atmosphere. We show that the published results are limited to the scalar propagation model, and are not particular to the beam polarization. Therefore these results are equally relevant for the scalar beam pairs and arrays discriminated by some parameters such as small frequency shift, time delay or geometry, but not necessary the polarization. We use the virtual incoherent source model to derive the general form of the mutual coherence function of the two Schell-type beams. We discuss some physical stochastic models that result in the creation of the Schell-type beams and beam arrays. New classes of the uniformly, nonuniformly and nonlocally coherent beam pairs emerge naturally from this analysis. Rigorous, Markov approximation-based, propagation model provides relatively simple analytic results for the second-order moments of the optical field of the partially-coherent individual beams and beam pairs. We examine the changes of the beam mutual coherence in the process of the free-space propagation and propagation through the turbulent atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hae-Yong; Ha, Kwi-Seok; Chang, Won-Pyo
The local blockage in a subassembly of a liquid metal-cooled reactor (LMR) is of importance to the plant safety because of the compact design and the high power density of the core. To analyze the thermal-hydraulic parameters in a subassembly of a liquid metal-cooled reactor with a flow blockage, the Korea Atomic Energy Research Institute has developed the MATRA-LMR-FB code. This code uses the distributed resistance model to describe the sweeping flow formed by the wire wrap around the fuel rods and to model the recirculation flow after a blockage. The hybrid difference scheme is also adopted for the descriptionmore » of the convective terms in the recirculating wake region of low velocity. Some state-of-the-art turbulent mixing models were implemented in the code, and the models suggested by Rehme and by Zhukov are analyzed and found to be appropriate for the description of the flow blockage in an LMR subassembly. The MATRA-LMR-FB code predicts accurately the experimental data of the Oak Ridge National Laboratory 19-pin bundle with a blockage for both the high-flow and low-flow conditions. The influences of the distributed resistance model, the hybrid difference method, and the turbulent mixing models are evaluated step by step with the experimental data. The appropriateness of the models also has been evaluated through a comparison with the results from the COMMIX code calculation. The flow blockage for the KALIMER design has been analyzed with the MATRA-LMR-FB code and is compared with the SABRE code to guarantee the design safety for the flow blockage.« less
Compact representations of partially coherent undulator radiation suitable for wave propagation
Lindberg, Ryan R.; Kim, Kwang -Je
2015-09-28
Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending on the ratio of the electron beam phase space area (emittance) to the characteristic radiation wavelength λ. Numerical codes used to predict x-ray beam line performance can typically only propagate coherent fields from the source to the image plane. We investigate methods for representing partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of coherence. In the limit when the electron beam emittance alongmore » at least one direction is much larger than λ the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes we discuss an economical method of defining the relevant coherent fields that samples the electron beam phase space using low-discrepancy sequences.« less
Acoustic propagation in rigid ducts with blockage
NASA Technical Reports Server (NTRS)
El-Raheb, M.; Wagner, P.
1982-01-01
Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.
Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian
2016-06-27
Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.
Sub-100-nm trackwidth development by e-beam lithography for advanced magnetic recording heads
NASA Astrophysics Data System (ADS)
Chang, Jei-Wei; Chen, Chao-Peng
2006-03-01
Although semiconductor industry ramps the products with 90 nm much quicker than anticipated [1], magnetic recording head manufacturers still have difficulties in producing sub-100 nm read/write trackwidth. Patterning for high-aspectratio writer requires much higher depth of focus (DOF) than most advanced optical lithography, including immersion technique developed recently [2]. Self-aligning reader with its stabilized bias requires a bi-layer lift-off structure where the underlayer is narrower than the top image layer. As the reader's trackwidth is below 100nm, the underlayer becomes very difficult to control. Among available approaches, e-beam lithography remains the most promising one to overcome the challenge of progressive miniaturization. In this communication, the authors discussed several approaches using ebeam lithography to achieve sub-100 nm read/write trackwidth. Our studies indicated the suspended resist bridge design can not only widen the process window for lift-off process but also makes 65 nm trackwidth feasible to manufacture. Necked dog-bone structure seems to be the best design in this application due to less proximity effects from adjacent structures and minimum blockages for ion beam etching. The trackwidth smaller than 65 nm can be fabricated via the combination of e-beam lithography with auxiliary slimming and/or trimming. However, deposit overspray through undercut becomes dominated in such a small dimension. To minimize the overspray, the effects of underlayer thickness need to be further studied.
Effect of polarization on the evolution of electromagnetic hollow Gaussian Schell-model beam
NASA Astrophysics Data System (ADS)
Long, Xuewen; Lu, Keqing; Zhang, Yuhong; Guo, Jianbang; Li, Kehao
2011-02-01
Based on the theory of coherence, an analytical propagation formula for partially polarized and partially coherent hollow Gaussian Schell-model beams (HGSMBs) passing through a paraxial optical system is derived. Furthermore, we show that the degree of polarization of source may affect the evolution of HGSMBs and a tunable dark region may exist. For two special cases of fully coherent and partially coherent δxx = δyy, normalized intensity distributions are independent of the polarization of source.
Blockage-induced condensation controlled by a local reaction
NASA Astrophysics Data System (ADS)
Cirillo, Emilio N. M.; Colangeli, Matteo; Muntean, Adrian
2016-10-01
We consider the setup of stationary zero range models and discuss the onset of condensation induced by a local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage parameter curve characterized by two nonanalyticity points.
Topology Design for Directional Range Extension Networks with Antenna Blockage
2017-03-19
introduced by pod-based antenna blockages. Using certain modeling approximations, the paper presents a quantitative analysis showing design trade-offs...parameters. Sec- tion IV develops quantitative relationships among key design elements and performance metrics. Section V considers some implications of the...Topology Design for Directional Range Extension Networks with Antenna Blockage Thomas Shake MIT Lincoln Laboratory shake@ll.mit.edu Abstract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftus, M J; Hochreiter, L E; McGuire, M F
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian; Wright, Ian
Boiler tubes in steam power plants experience exfoliation of oxide grown on the inner side of the tubes. In extreme cases, the exfoliation cause significant tube blockages that lead to forced power plant outages. It is thus desired to predict through modeling the propensity of exfoliation events in order to inform power plant operators of possible tube blockages. SpallMap solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages at one-location along a boiler tube and compares it with scale damage criteria represented by Armitt diagram. The SPALLMAP code contains modules developedmore » for oxide growth, stress analysis, and classical fracture mechanics correlations by taking into account the following phenomena and features, (a) Non-uniform thermal expansion coefficient of oxides and metal substrates, (b) Plant operation schedule with periodic alternate full-load and partial-load regimes, (c) axisymmetric formulation for cylindrical tubes, (d) Multiple oxide layers, (e) oxide-growth induced stresses, and (f) damage criteria from classical fracture mechanics. The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less
McPhail, Ian V; Hermann, Chantal A; Fernandez, Yolanda M
2014-02-01
Emotional congruence with children is a psychological construct theoretically involved in the etiology and maintenance of sexual offending against children. Research conducted to date has not examined the relationship between emotional congruence with children and other psychological meaningful risk factors for sexual offending against children. The current study derived potential correlates of emotional congruence with children from the published literature and proposed three models of emotional congruence with children that contain relatively unique sets of correlates: the blockage, sexual deviance, and psychological immaturity models. Using Area under the Curve analysis, we assessed the relationship between emotional congruence with children and offense characteristics, victim demographics, and psychologically meaningful risk factors in a sample of incarcerated sexual offenders against children (n=221). The sexual deviance model received the most support: emotional congruence with children was significantly associated with deviant sexual interests, sexual self-regulation problems, and cognition that condones and supports child molestation. The blockage model received partial support, and the immaturity model received the least support. Based on the results, we propose a set of further predictions regarding the relationships between emotional congruence with children and other psychologically meaningful risk factors to be examined in future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Milo, Scarlet; Acosta, Florianne B; Hathaway, Hollie J; Wallace, Laura A; Thet, Naing T; Jenkins, A Toby A
2018-03-23
Formation of crystalline biofilms following infection by Proteus mirabilis can lead to encrustation and blockage of long-term indwelling catheters, with serious clinical consequences. We describe a simple sensor, placed within the catheter drainage bag, to alert of impending blockage via a urinary color change. The pH-responsive sensor is a dual-layered polymeric "lozenge", able to release the self-quenching dye 5(6)-carboxyfluorescein in response to the alkaline urine generated by the expression of bacterial urease. Sensor performance was evaluated within a laboratory model of the catheterized urinary tract, infected with both urease positive and negative bacterial strains under conditions of established infection, achieving an average "early warning" of catheter blockage of 14.5 h. Signaling only occurred following infection with urease positive bacteria. Translation of these sensors into a clinical environment would allow appropriate intervention before the occurrence of catheter blockage, a problem for which there is currently no effective control method.
Geometrical and wave optics of paraxial beams.
Meron, M; Viccaro, P J; Lin, B
1999-06-01
Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.
Development of polyvinylether refrigeration oil for hydrofluorocarbon air-conditioning systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tozaki, Toshinori; Konishi, Tsuneo; Nagamatsu, Noritoshi
1998-10-01
Polyolestor (POE) poses capillary tube blockage problems when it is used as an air-conditioner refrigeration oil. A polyvinylether (PVE) oil has been developed to settle such problems. The causes of blockage were determined by analyzing capillary tubes after testing them with PVE and POE in the laboratory and in actual equipment. PVE was confirmed to have superior performance over POE with respect to resistance of capillary tube blockage.
An experimental investigation of wall-interference effects for parachutes in closed wind tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.
1989-09-01
A set of 6-ft-diameter ribbon parachutes (geometric porosities of 7%, 15%, and 30%) was tested in various subsonic wind tunnels covering a range of geometric blockages from 2% to 35%. Drag, base pressure, and inflated geometry were measured under full-open, steady-flow conditions. The result drag areas and pressure coefficients were correlated with the bluff-body blockage parameter (i.e., drag area divided by tunnel cross-sectional area) according to the blockage theory of Maskell. The data show that the Maskell theory provides a simple, accurate correction for the effective increase in dynamic pressure caused by wall constraint for both single parachutes and clusters.more » For single parachutes, the empirically derived blockage factor K{sub M} has the value of 1.85, independent of canopy porosity. Derived values of K{sub M} for two- and three-parachute clusters are 1.35 and 1.59, respectively. Based on the photometric data, there was no deformation of the inflated shape of the single parachutes up to a geometric blockage of 22%. In the case of the three-parachute cluster, decreases in both the inflated diameter and the spacing among member parachutes were observed at a geometric blockage of 35%. 11 refs., 9 figs., 3 tabs.« less
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.
Dan, Youquan; Zhang, Bin
2008-09-29
The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.
Intuitive model for the scintillations of a partially coherent beam
Efimov, Anatoly
2014-12-23
We developed an intuitive model for the scintillation index of a partially coherent beam in which essentially the only critical parameter is the properly defined Fresnel number equal to the ratio of the “working” aperture area to the area of the Fresnel zone. The model transpired from and is supported by numerical simulations using Rytov method for weak fluctuations regime and Tatarskii turbulence spectrum with inner scale. The ratio of the scintillation index of a partially coherent beam to that of a plane wave displays a characteristic minimum, the magnitude of which and its distance from the transmitter are easilymore » explained using the intuitive model. Furthermore, a theoretical asymptotic is found for the scintillation index of a source with decreasing coherence at this minimum.« less
Epizoic zoanthids reduce pumping in two Caribbean vase sponges
NASA Astrophysics Data System (ADS)
Lewis, T. B.; Finelli, C. M.
2015-03-01
Sponges are common sessile benthic suspension feeders that play a critical role in carbon and nitrogen cycling within reef ecosystems via their filtration capabilities. Due to the contribution of sponges in benthic-pelagic coupling, it is critical to assess factors that may affect their role in the healthy function of coral reefs. Several factors can influence the rate at which an individual sponge pumps water, including body size, environmental conditions, mechanical blockage, and reduction of inhalant pores (ostia). Symbiotic zoanthid colonization is a common occurrence on Caribbean sponges, and the presence of zoanthids on the surface of a sponge may occlude or displace the inhalant ostia. We quantified pumping rates of the giant barrel sponge, Xestospongia muta ( N = 22 uncolonized, 37 colonized) and the common vase sponge, Niphates digitalis ( N = 21 uncolonized, 17 colonized), with and without zoanthid symbionts, Parazoanthus catenularis and Parazoanthus parasiticus, respectively. For X. muta, biovolume-normalized pumping rates of individuals colonized by zoanthids were approximately 75 % lower than those of uncolonized sponges. Moreover, colonization with zoanthids was related to a difference in morphology relative to uncolonized individuals: Colonized sponges exhibited an osculum area to biovolume ratio that was nearly 65 % less than uncolonized sponges. In contrast, the presence of zoanthids on N. digitalis resulted in only a marginal decrease in pumping rates and no detectable difference in morphology. The difference in zoanthid effects between X. muta and N. digitalis is likely due to the differences in wall thickness and architecture between the two species. The probable cause of reduced pumping in affected sponges is occupation of the sponge surface that leads to blockage or displacement of inhalant ostia. To partially test this hypothesis, zoanthid colonization on specimens of X. muta was simulated by wrapping sponges with plastic mesh of varying porosity. Mechanical blockage of ostia resulted in a 20-50 % reduction in pumping rates compared with controls.
El-Ocla, Hosam
2006-08-01
The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.
Estimation of tunnel blockage from wall pressure signatures: A review and data correlation
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Wilsden, D. J.; Lilley, D. E.
1979-01-01
A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined.
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.
Yuan, Tian-Yi; Niu, Zi-Ran; Chen, Di; Chen, Yu-Cai; Zhang, Hui-Fang; Fang, Lian-Hua; Du, Guan-Hua
2018-04-25
The aim of this study is to investigate the vasorelaxant effect of quercetin on cerebral basilar artery in vitro and provide a preliminary discussion concerning the underlying mechanisms. Using a DMT-isolated micro vessel system, quercetin was found to exhibit a vasodilatory effect on basilar arteries contracted by potassium chloride (KCl), endothelin-1 (ET-1), and 5-hydroxytryptamine (5-HT). The vasorelaxant effect of quercetin was partially attenuated when endothelium cells were removed. L-NAME, indomethacin, and ODQ treatment also decreased the potency of quercetin. In endothelium-denuded rings, the vasorelaxant effect of quercetin was not influenced by K + channel inhibitors. However, quercetin inhibited KCl induced extracellular calcium influx and ET-1 induced transient intracellular calcium release in a Ca 2+ -free solution. In conclusion, quercetin induced relaxation of the basilar artery in vitro is partially dependent on endothelium, which is mainly related to NO and COX pathways. It also induces relaxation through blockage of calcium channels.
Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong
2012-10-20
The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.
Backstepping boundary control: an application to the suppression of flexible beam vibration
NASA Astrophysics Data System (ADS)
Boonkumkrong, Nipon; Asadamongkon, Pichai; Chinvorarat, Sinchai
2018-01-01
This paper presents a backstepping boundary control for vibration suppression of flexible beam. The applications are such as industrial robotic arms, space structures, etc. Most slender beams can be modelled using a shear beam. The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation is additionally taken into account. At present, the application of this method in industry is rather limited, because the application of controllers to the beam is difficult. In this research, we use the shear beam with moving base as a model. The beam is cantilever type. This design method allows us to deal directly with the beam’s partial differential equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections along the beam. Gain kernel of the system is calculated and then used in the control law design. The control setup is anti-collocation, i.e. a sensor is placed at the beam tip and an actuator is placed at the beam moving base. Finite difference equations are used to solve the PDEs and the partial integro-differential equations (PIDEs). Control parameters are varied to see their influences that affect the control performance. The results of the control are presented via computer simulation to verify that the control scheme is effective.
Optic nerve head axonal transport in rabbits with hereditary glaucoma.
Bunt-Milam, A H; Dennis, M B; Bensinger, R E
1987-04-01
Rabbits with hereditary glaucoma develop ocular changes that resemble human congenital glaucoma and buphthalmia. The inheritance is autosomal recessive (bu). Previous research was performed primarily on albino bu/bu rabbits that were unhealthy and bred poorly. We have bred pigmented bu/bu rabbits to determine if this would improve hardiness and provide a better model for the disease in humans. First-generation offspring from matings of bu/bu albino with bu/bu pigmented rabbits were all affected, indicating that the bu gene is found at the same locus in both strains. The pigmented bu/bu offspring had a high degree of mortality, as reported previously for albino bu/bu rabbits. Newborn bu/bu rabbits initially had normal intraocular pressure (IOP; 15-23 mmHg); after 1- to 3 months, the IOP increased to 26-48 mmHg. The eyes became buphthalmic and the IOP returned to normal or sub-normal levels after 6-10 months. Since the lamina cribrosa is absent or poorly formed in the rabbit optic nerve head (ONH), this model was used to test the role of mechanical factors in the etiology of ONH pathology caused by increased IOP. Orthograde axonal transport was evaluated in both eyes from eight normal and 24 bu/bu rabbits of different ages, using intravitreal injections of [3H]leucine to mark orthograde axonal transport, followed by light- and electron-microscopic radioautography of the ONHs and superior colliculi. Normal rabbits of all ages showed no blockage of axonal transport in the ONH. All optic axons from young bu/bu rabbits with normal IOP and most axons from older buphthalmic rabbits that previously had elevated IOP were normal morphologically. Small zones of transport blockage occurred in bu/bu eyes while IOP was elevated; most affected axons lay immediately adjacent to ONH connective tissue beams that radiate outward from the central retinal vessels to the optic-nerve sheath. Thus, the rabbit, which lacks a true lamina cribrosa, does not show marked blockage of axonal transport as occurs in the LS of the monkey and cat ONH when IOP is elevated acutely. This anatomic difference appears to be protective against axonal damage, since bu/bu rabbits with chronic IOP elevation did not show significant loss of optic axons. These results are consistent with the proposed 'mechanical' theory of ONH damage resulting from increased IOP. Electron-microscopic radioautography revealed that chronically elevated IOP in bu/bu rabbits, which caused small foci of blocked ONH axonal transport against ONH beams, also caused degeneration of a few optic nerve terminals in the superior colliculi as the disease progressed.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Dan, Youquan; Xu, Yonggen
2018-04-01
The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.
An Experimental Evaluation of Blockage Corrections for Current Turbines
NASA Astrophysics Data System (ADS)
Ross, Hannah; Polagye, Brian
2017-11-01
Flow confinement has been shown to significantly alter the performance of turbines that extract power from water currents. These performance effects are related to the degree of constraint, defined by the ratio of turbine projected area to channel cross-sectional area. This quantity is referred to as the blockage ratio. Because it is often desirable to adjust experimental observations in water channels to unconfined conditions, analytical corrections for both wind and current turbines have been derived. These are generally based on linear momentum actuator disk theory but have been applied to turbines without experimental validation. This work tests multiple blockage corrections on performance and thrust data from a cross-flow turbine and porous plates (experimental analogues to actuator disks) collected in laboratory flumes at blockage ratios ranging between 10 and 35%. To isolate the effects of blockage, the Reynolds number, Froude number, and submergence depth were held constant while the channel width was varied. Corrected performance data are compared to performance in a towing tank at a blockage ratio of less than 5%. In addition to examining the accuracy of each correction, underlying assumptions are assessed to determine why some corrections perform better than others. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256082 and the Naval Facilities Engineering Command (NAVFAC).
Analysis of a generalized dual reflector antenna system using physical optics
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Lagin, Alan R.
1992-01-01
Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.
... function. A blockage inside of the appendix causes appendicitis. The blockage leads to increased pressure, problems with ... to pass gas Low fever Not everyone with appendicitis has all these symptoms. Appendicitis is a medical ...
Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C
2017-02-01
Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features
NASA Technical Reports Server (NTRS)
Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua
2003-01-01
A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.
NASA Technical Reports Server (NTRS)
Fernandez, M. A. B.
1983-01-01
Lean combustion limits were determined for a premixed prevaporized propane air mixture with flat plate flame stabilizers. Experiments were conducted in a constant area flame tube combustor utilizing flameholders of varying percentages of blockage and downstream counterbores. Combustor inlet air velocity at ambient conditions was varied from 4 to 9 meters per second. Flameholders with a center hole and four half holes surrounding it were tested with 63, 73, and 85 percent blockage and counterbore diameters of 112 and 125 percent of the thru hole diameter, in addition to the no counterbore configuration. Improved stability was obtained by using counterbore flameholders and higher percentages of blockage. Increases in mixture velocity caused the equivalence ratio at blowout to increase in all cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.
2016-07-27
We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Yan, Y; Ramirez, E
2015-06-15
Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less
Menezes, Fábio Hüsemann; Pagliuso, Natália Ponzio; Molinari, Giovani José Dal Poggetto
2018-03-01
Carotid endarterectomy is one of the most performed vascular procedures. Since the first reports in the late 1950s, the conventional open and the eversion techniques are the popularized ones. A short extraction or partial eversion technique has been previously described and recently has been subjected to case series reports. The aim of the study was to present the experience of a teaching hospital with modified or partial eversion endarterectomy compared with the experience with conventional open procedure performed exclusively by training vascular surgeons. A retrospective review of a consecutive series of cases from January 2002 to June 2016 was performed. There were 355 operations. The mean age was 70 years (range, 41-90), 72.39% were males, and 53.5% were symptomatic. There were 7.3% of contralateral occlusions and 12.1% of contralateral stenosis greater than 70%. General anesthesia was employed in 56% of cases and regional blockage in the remaining cases. A selective shunt was used in 10 patients among those operated with regional blockage (6.9%; 3.1% of the total group of patients) and 1 patient (0.5%) operated with general anesthesia. There were 73 open procedures with primary closure, 23 patch closures, and 259 partial eversion procedures. The mean operation time for the primary closure, patch closure, and eversion techniques were 129.9 min (range, 75-220), 137.5 min (range, 120-160), and 109.7 min (range, 45-230), respectively, with a significant difference (P < 0.0001, Kruskal-Wallis test). The mean clamping time for the same techniques was 23.5 min (range, 13-50), 42 min (range, 20-60), and 17.1 min (range, 9-41), respectively, with a significant difference (P < 0.0001, Kruskal-Wallis test). There were 2.25% of transient ischemic events, 2.54% of cerebrovascular accidents, 1.97% of death, and a combined death/cerebrovascular accidents rate of 3.94%, with no statistical difference between the surgical techniques. The incidence of neck hematoma was 5.63% and that of cranial nerve injury was 2.54%. There were 3.66% of patients submitted to late reoperation for restenosis. When results were analyzed according to the academic period of the last year of training, there was no difference regarding time and complications. Modified or partial eversion endarterectomy seems to be safely performed and applicable for the teaching of new vascular surgeons. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Minghao; Yuan, Xiuhua; Ma, Donglin
2017-04-01
Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.
Slotted-wall research with disk and parachute models in a low-speed wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.; Henfling, J.L.
1990-01-01
An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.
Design, fabrication and testing of a thermal diode
NASA Technical Reports Server (NTRS)
Swerdling, B.; Kosson, R.
1972-01-01
Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.
Partially coherent isodiffracting pulsed beams
NASA Astrophysics Data System (ADS)
Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan
2018-02-01
We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.
Element free Galerkin formulation of composite beam with longitudinal slip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal
2015-05-15
Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less
Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei
2013-03-01
Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcona, Juan Diego; Li Ruijiang; Mok, Edward
2013-03-15
Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image,more » with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. Results: The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. Conclusions: An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.« less
Incorporating partial shining effects in proton pencil-beam dose calculation
NASA Astrophysics Data System (ADS)
Li, Yupeng; Zhang, Xiaodong; Fwu Lii, Ming; Sahoo, Narayan; Zhu, Ron X.; Gillin, Michael; Mohan, Radhe
2008-02-01
A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J.F.
The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less
Experimental observation of the effect of generic singularities in polychromatic dark hollow beams.
Yadav, Bharat Kumar; Joshi, Stuti; Kandpal, Hem Chandra
2014-08-15
This Letter presents the essence of our recent experimental study on generic singularities carrying spatially partially coherent, polychromatic dark hollow beams (PDHBs). To the best of our knowledge, this is the first experimental demonstration of generic singularities-induced wavefront tearing in focused polychromatic beams.
NASA Astrophysics Data System (ADS)
Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.
2014-03-01
Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point ofmore » the solid fragment is located within a cavity at least partially enclosed by the array of bars.« less
Scleredema adultorum of Buschke presenting as periorbital edema: a diagnostic challenge.
Ioannidou, Despina I; Krasagakis, Konstantin; Stefanidou, Maria P; Karampekios, Spyros; Panayiotidis, John; Tosca, Androniki D
2005-02-01
Scleredema adultorum is a rare sclerotic disorder characterized by diffuse swelling and nonpitting induration of the skin. Its occurrence has been documented in association with infections, diabetes mellitus, paraproteinemia, multiple myeloma, and monoclonal gammopathy. We report an unusual case of a 48-year-old man with an asymptomatic bilateral eyelid edema of sudden onset. During a period of 6 months, the condition slowly progressed to extensive nonpitting edematous swelling restricted to the periorbital sites. The presumptive diagnosis of scleredema adultorum was confirmed by the presence of typical histologic findings. This case is unique in that the periorbital swelling remained as the sole clinical manifestation of scleredema during the 5-year follow-up and was complicated with partial vision blockage.
Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo
2016-07-01
The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the fluka code [A. Ferrari et al., "fluka: A multi-particle transport code," in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., "The fluka Code: Developments and challenges for high energy and medical applications," Nucl. Data Sheets 120, 211-214 (2014)], to partial fluence corrections measured experimentally. A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary particle fluence. A correction factor, F(d), has been established to relate fluence corrections defined theoretically to partial fluence corrections derived experimentally. The findings presented here are also relevant to water and tissue-equivalent-plastic materials given their carbon content.
LANDSLIDE DAMMED LAKES AT MOUNT ST. HELENS, WASHINGTON.
Meyer, William; Sabol, Martha A.; Schuster, Robert; ,
1986-01-01
The collapse of the north face of Mount St. Helens on May 18, 1980, and the debris avalanche that resulted blocked outflow from Spirit Lake and Coldwater and South Fork Castle Creeks. Spirit Lake began to increase in size and lakes began to form in the canyons of Coldwater and South Fork Castle Creeks. Coldwater and Castle Lakes would have overtopped their respective blockages in late 1981 or early 1982. Catastrophic flooding would have occurred from the breakout of Coldwater Lake while serious flooding probably would have resulted from the breakout of Castle Lake. As a result, the level of both lakes was stabilized with spillways in 1981. The three blockages are stable against liquefaction and gravitationally induced slope failure. The existence of groundwater in the blockages was observed in piezometers installed between 1981 and 1983. Groundwater mounds with water levels above lake level exist under the crest of all of the blockages.
NASA Astrophysics Data System (ADS)
Astawa, M. D.; Kartini, W.; Lie, F. X. E.
2018-01-01
Floor Building that requires a large space such as for the meeting room, so it must remove the column in the middle of the room, then the span beam above the room will be long. If the beam of structural element with a span length reaches 15.00 m, then it is less effective and efficient using a regular Reinforced Concrete Beam because it requires a large section dimension, and will reduce the beauty of the view in terms of aesthetics of Architecture. In order to meet these criteria, in this design will use partial prestressing method with 400/600 mm section dimension, assuming the partial Prestressed Beam structure is still able to resist the lateral force of the earthquake. The design of the reinforcement has taken into account to resist the moment due to the gravitational load and lateral forces. The earthquake occurring on the frame structure of the building. In accordance with the provisions, the flexural moment capacity of the tendon is permitted only by 25% of the total bending moment on support of the beam, while the 75% will be charged to the reinforcing steel. Based on the analysis result, bring ini 1 (one) tendon contains 6 strand with diameter 15,2 mm. On the beam pedestal, requires 5D25 tensile reinforcement and 3D25 for the compression reinforcement, for shear reinforcement on the pedestal using Ø10-100 mm. Dimensional column section are 600/600 mm with longitudinal main reinforcement of 12D25, and transverse reinforcement Ø10-150. At the core of the beam-column joint, use the transversal reinforcement Ø10-100 mm. The moment of Column versus Beam Moment ∑Me > 1.2 Mg, with a value of 906.99 kNm > 832.25 kNm, qualify for ductility and Strong Columns-weak beam. Capacity of contribution bending moment of Strand Tendon’s is 23.95% from the total bending moment capacity of the beam, meaning in accordance with the provisions. Thus, the stability and ductility structure of Beam-Column joint is satisfy the requirements of SNI 2847: 2013 and ACI 318-11.
Wilde, Mary H.; Crean, Hugh F.; McMahon, James M.; McDonald, Margaret V.; Tang, Wan; Brasch, Judith; Fairbanks, Eileen; Shah, Shivani; Zhang, Feng
2015-01-01
Background Urinary tract infection and blockage are serious and recurrent challenges for people with long-term indwelling catheters, and these catheter problems cause worry and anxiety when they disrupt normal daily activities. Objectives The goal was to determine whether urinary catheter-related self-management behaviors focusing on fluid intake would mediate fluid intake related self-efficacy toward decreasing catheter-associated urinary tract infection (CAUTI) and/or catheter blockage. Method The sample involved data collected from 180 adult community-living, long-term indwelling urinary catheter users. The authors tested a model of fluid intake self-management (F-SMG) related to fluid intake self-efficacy (F-SE) for key outcomes of CAUTI and blockage. To account for the large number of zeros in both outcomes, a zero inflated negative binomial (ZINB) structural equation model was tested. Results Structurally, F-SE was positively associated with F-SMG, suggesting that higher F-SE predicts more (higher) F-SMG; however, F-SMG was not associated with either the frequency of CAUTI’s or the presence or absence of CAUTI. F-SE was positively related to F-SMG and F-SMG predicted less frequency of catheter blockage, but neither F-SE nor F-SMG predicted the presence or absence of blockage. Discussion Further research is needed to better understand determinants of CAUTI in long-term catheter users and factors which might influence or prevent its occurrence. Increased confidence (self-efficacy) and self-management behaviors to promote fluid intake could be of value in long-term urinary catheter users to decrease catheter blockage. PMID:26938358
Bacteriophage Can Prevent Encrustation and Blockage of Urinary Catheters by Proteus mirabilis
Nzakizwanayo, Jonathan; Hanin, Aurélie; Alves, Diana R.; McCutcheon, Benjamin; Dedi, Cinzia; Salvage, Jonathan; Knox, Karen; Stewart, Bruce; Metcalfe, Anthony; Clark, Jason; Gilmore, Brendan F.; Gahan, Cormac G. M.; Jenkins, A. Toby A.
2015-01-01
Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem. PMID:26711744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruifeng; Wang, Feiran; Chen, Dongxu
2016-02-01
It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, andmore » it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuancheng; Ren Zhongmin; Ning Zhifeng
1997-06-20
Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C{sub 60} films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C{sub 60} films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C{sub 60} soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV)more » nitrogen ion beams have been used to bombard C{sub 60} films to synthesize the carbon nitride films.« less
Handling target obscuration through Markov chain observations
NASA Astrophysics Data System (ADS)
Kouritzin, Michael A.; Wu, Biao
2008-04-01
Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.
Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations
NASA Technical Reports Server (NTRS)
Gouesbet, Gerard; Lock, James A.; Grehan, Gerard
1995-01-01
In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.
Vibration analysis of beams traversed by uniform partially distributed moving masses
NASA Astrophysics Data System (ADS)
Esmailzadeh, E.; Ghorashi, M.
1995-07-01
An investigation into the dynamic behavior of beams with simply supported boundary conditions, carrying either uniform partially distributed moving masses or forces, has been carried out. The present analysis in its general form may well be applied to beams with various boundary conditions. However, the results from the computer simulation model given in this paper are for beams with simply supported end conditions. Results from the numerical solutions of the differential equations of motion are shown graphically and their close agreement, in some extreme cases, with those published previously by the authors is demonstrated. It is shown that the inertial effect of the moving mass is of importance in the dynamic behavior of such structures. Moreover, when considering the maximum deflection for the mid-span of the beam, the critical speeds of the moving load have been evaluated. It is also verified that the length of the distributed moving mass affects the dynamic response considerably. These effects are shown to be of significant practical importance when designing beam-type structures such as long suspension and railway bridges.
Optical power splitter for splitting high power light
English, Jr., Ronald E.; Christensen, John J.
1995-01-01
An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.
Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal; Muhrer, Guenter; Daemen, Luke L
We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.
M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere.
Yuan, Yangsheng; Cai, Yangjian; Qu, Jun; Eyyuboğlu, Halil T; Baykal, Yahya; Korotkova, Olga
2009-09-28
Analytical formula is derived for the M(2)-factor of coherent and partially coherent dark hollow beams (DHB) in turbulent atmosphere based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. Our numerical results show that the M(2)- factor of a DHB in turbulent atmosphere increases on propagation, which is much different from its invariant properties in free-space, and is mainly determined by the parameters of the beam and the atmosphere. The relative M(2)-factor of a DHB increases slower than that of Gaussian and flat-topped beams on propagation, which means a DHB is less affected by the atmospheric turbulence than Gaussian and flat-topped beams. Furthermore, the relative M(2)-factor of a DHB with lower coherence, longer wavelength and larger dark size is less affected by the atmospheric turbulence. Our results will be useful in long-distance free-space optical communications.
Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Hermann; Denkmayr, Tobias; Sponar, Stephan; Lemmel, Hartmut; Jenke, Tobias; Hasegawa, Yuji
2018-05-01
A neutron optical experiment is presented to investigate the paths taken by neutrons in a three-beam interferometer. In various beam paths of the interferometer, the energy of the neutrons is partially shifted so that the faint traces are left along the beam path. By ascertaining an operational meaning to "the particle's path," which-path information is extracted from these faint traces with minimal perturbations. Theory is derived by simply following the time evolution of the wave function of the neutrons, which clarifies the observation in the framework of standard quantum mechanics. Which-way information is derived from the intensity, sinusoidally oscillating in time at different frequencies, which is considered to result from the interfering cross terms between stationary main component and the energy-shifted which-way signals. Final results give experimental evidence that the (partial) wave functions of the neutrons in each beam path are superimposed and present in multiple locations in the interferometer.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel
NASA Technical Reports Server (NTRS)
Coder, D. W.
1984-01-01
Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.
Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage
NASA Technical Reports Server (NTRS)
Salazar, Denise; Yuricich, Jillian
2014-01-01
In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.
NASA Technical Reports Server (NTRS)
Allmaras, S. R.
1986-01-01
The Wall-Pressure Signature Method for correcting low-speed wind tunnel data to free-air conditions has been revised and improved for two-dimensional tests of bluff bodies. The method uses experimentally measured tunnel wall pressures to approximately reconstruct the flow field about the body with potential sources and sinks. With the use of these sources and sinks, the measured drag and tunnel dynamic pressure are corrected for blockage effects. Good agreement is obtained with simpler methods for cases in which the blockage corrections were about 10% of the nominal drag values.
An in-situ infection detection sensor coating for urinary catheters
Milo, Scarlet; Thet, Naing Tun; Liu, Dan; Nzakizwanayo, Jonathan; Jones, Brian V.; Jenkins, A. Toby A.
2016-01-01
We describe a novel infection-responsive coating for urinary catheters that provides a clear visual early warning of Proteus mirabilis infection and subsequent blockage. The crystalline biofilms of P. mirabilis can cause serious complications for patients undergoing long-term bladder catheterisation. Healthy urine is around pH 6, bacterial urease increases urine pH leading to the precipitation of calcium and magnesium deposits from the urine, resulting in dense crystalline biofilms on the catheter surface that blocks urine flow. The coating is a dual layered system in which the lower poly(vinyl alcohol) layer contains the self-quenching dye carboxyfluorescein. This is capped by an upper layer of the pH responsive polymer poly(methyl methacrylate-co-methacrylic acid) (Eudragit S100®). Elevation of urinary pH (>pH 7) dissolves the Eudragit layer, releasing the dye to provide a clear visual warning of impending blockage. Evaluation of prototype coatings using a clinically relevant in vitro bladder model system demonstrated that coatings provide up to 12 h advanced warning of blockage, and are stable both in the absence of infection, and in the presence of species that do not cause catheter blockage. At the present time, there are no effective methods to control these infections or provide warning of impending catheter blockage. PMID:26945183
The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig Bookwalter
2011-12-01
The {pi}{sub 1}(1600), a J{sup PC} = 1{sup {-+}} exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the {pi}{sub 1}(1600) is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n events selected from the g12 dataset has been performed, and preliminary fit resultsmore » show strong evidence for well-known states such as the a{sub 1}(1260), a{sub 2}(1320), and {pi}{sub 2}(1670). However, we observe no evidence for the production of the {pi}{sub 1}(1600) in either the partial-wave intensities or the relative complex phase between the 1{sup {-+}} and the 2{sup {-+}} (corresponding to the {pi}{sub 2}) partial waves.« less
Decker, Derek E.; Toeppen, John S.
1994-01-01
Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.
Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment.
Wang, Fei; Liang, Chunhao; Yuan, Yangsheng; Cai, Yangjian
2014-09-22
A new kind of partially coherent beam with non-conventional correlation function named generalized multi-Gaussian correlated Schell-model (GMGCSM) beam is proposed. The GMGCSM beam of the first or second kind is capable of producing dark hollow or flat-topped beam profile in the focal plane (or in the far field). Furthermore, we carry out experimental generation of a GMGCSM beam of the first or second kind, and measure its focused intensity. Our experimental results verify theoretical predictions. The GMGCSM beam will be useful for free-space optical communications, material thermal processing, particle or atom trapping.
Detecting the Length of Double-stranded DNA with Solid State Nanopores
NASA Astrophysics Data System (ADS)
Li, Jiali; Gershow, Marc; Stein, Derek; Qun, Cai; Brandin, Eric; Wang, Hui; Huang, Albert; Branton, Dan; Golovchenko, Jene
2003-03-01
We report on the use of nanometer scale diameter, solid-state nanopores as single molecule detectors of double stranded DNA molecules. These solid-state nanopores are fabricated in thin membranes of silicon nitride, by ion beam sculpting 1. They produce discrete electronic signals: current blockages, when an electrically biased nanopore is exposed to DNA molecules in aqueous salt solutions. We demonstrate examples of such electronic signals for 3k base pairs (bp) and 10k bp double stranded DNA molecules, which suggest that these molecules are individually translocating through the nanopore during the detection process. The translocating time for the 10k bp double stranded DNA is about 3 times longer than the 3k bp, demonstrating that a solid-state nanopore device can be used to detect the lengths of double stranded DNA molecules. Similarities and differences with signals obtained from single stranded DNA in a biological nanopores are discussed 2. 1. Li, J., Stein, D., McMullan, C., Branton, D. Aziz, M. J. and Golovchenko, J. Ion Beam Sculpting at nanometer length scales. Nature 412, 166-169 (2001). 2. Meller, A., L. Nivon, E. Brandin, Golovchenko, J. & Branton, D. Proc. Natl. Acad. Sci. USA 97, 1079-1084 (2000).
A new encoding scheme for visible light communications with applications to mobile connections
NASA Astrophysics Data System (ADS)
Benton, David M.; St. John Brittan, Paul
2017-10-01
A new, novel and unconventional encoding scheme called concurrent coding, has recently been demonstrated and shown to offer interesting features and benefits in comparison to conventional techniques, such as robustness against burst errors and improved efficiency of transmitted power. Free space optical communications can suffer particularly from issues of alignment which requires stable, fixed links to be established and beam wander which can interrupt communications. Concurrent coding has the potential to help ease these difficulties and enable mobile, flexible optical communications to be implemented through the use of a source encoding technique. This concept has been applied for the first time to optical communications where standard light emitting diodes (LEDs) have been used to transmit information encoded with concurrent coding. The technique successfully transmits and decodes data despite unpredictable interruptions to the transmission causing significant drop-outs to the detected signal. The technique also shows how it is possible to send a single block of data in isolation with no pre-synchronisation required between transmitter and receiver, and no specific synchronisation sequence appended to the transmission. Such systems are robust against interference - intentional or otherwise - as well as intermittent beam blockage.
Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, G. L.
1982-01-01
A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.
Conditions Leading to Sudden Release of Magma Pressure
NASA Astrophysics Data System (ADS)
Damjanac, B.; Gaffney, E. S.
2005-12-01
Buildup of magmatic pressures in a volcanic system can arise from a variety of mechanisms. Numerical models of the response of volcanic structures to buildup of pressures in magma in dikes and conduits provide estimates of the pressures needed to reopen blocked volcanic vents. They also can bound the magnitude of sudden pressure drops in a dike or conduit due to such reopening. Three scenarios are considered: a dike that is sheared off by covolcanic normal faulting, a scoria cone over a conduit that is blocked by in-falling scoria and some length of solidified magma, and a lava flow whose feed has partially solidified due to an interruption of magma supply from below. For faulting, it is found that magma would be able to follow the fault to a new surface eruption. A small increase in magma pressure over that needed to maintain flow prior to faulting is required to open the new path, and the magma pressure needed to maintain flow is lower but still greater than for the original dike. The magma pressure needed to overcome the other types of blockages depends on the details of the blockage. For example, for a scoria cone, it depends on the depth of the slumped scoria and on the depth to which the magma has solidified in the conduit. In general, failure of the blockage is expected to occur by radial hydrofracture just below the blocked length of conduit at magma pressures of 10 MPa or less, resulting in radial dikes. However, this conclusion is based on the assumption that the fluid magma has direct access to the rock surrounding the conduit. If, on the other hand, there is a zone of solidified basalt, still hot enough to deform plastically, surrounding the molten magma in the conduit, this could prevent breakout of a hydrofracture and allow higher pressures to build up. In such cases, pressures could build high enough to deform the overlying strata (scoria cone or lava flow). Models of such deformations suggest the possibility of more violent eruptions resulting from sudden shear failure of a scoria cone with material accelerations near 100 m/s2.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.
2011-01-01
The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.
Ohnishi, S; Odano, N; Nariyama, N; Saito, K
2004-01-01
In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1977-01-01
Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.
NASA Astrophysics Data System (ADS)
Fields, Renny; Lunde, Carl; Wong, Robert; Wicker, Josef; Kozlowski, David; Jordan, John; Hansen, Brian; Muehlnikel, Gerd; Scheel, Wayne; Sterr, Uwe; Kahle, Ralph; Meyer, Rolf
2009-05-01
Starting in late 2007 and continuing through the present, NFIRE (Near-Field Infrared Experiment), a Missile Defense Agency (MDA) experimental satellite and TerraSAR-X, a German commercial SAR satellite have been conducting mutual crosslink experiments utilizing a secondary laser communication payload built by Tesat-Spacecom. The narrow laser beam-widths and high relative inter-spacecraft velocities for the two low-earth-orbiting satellites imply strict pointing control and dynamics aboard both vehicles. The satellites have achieved rapid communication acquisition times and maintained communication for hundreds of seconds before losing line of sight to the counter satellite due to earth blockage. Through post-mission analysis and other related telemetry we will show results for pointing accuracy, disturbance environments and pre-engagement prediction requirements that support successful and reliable operations.
NACA Transonic Wind-tunnel Test Sections
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ward, Vernon G
1955-01-01
Report presents an approximate subsonic theory for the solid-blockage interference in circular wind tunnels with walls slotted in the direction of flow. This theory indicated the possibility of obtaining zero blockage interference. Tests in a circular slotted tunnel based on the theory confirmed the theoretical predictions.
Beam imaging sensor and method for using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAninch, Michael D.; Root, Jeffrey J.
The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature. In another embodiment, the beam imaging sensor of the present invention comprises, among other things, a discontinuous partially circumferential slit. Also disclosed is amore » method for using the various beams sensor embodiments of the present invention.« less
Effect of H-wave polarization on laser radar detection of partially convex targets in random media.
El-Ocla, Hosam
2010-07-01
A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.
Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter
2007-01-01
The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.
Measurement of the Beam Asymmetry Σ in π0- and η-photoproduction off the proton
NASA Astrophysics Data System (ADS)
Afzal, Farah Noreen
The beam asymmetry Σ was measured for a beam energy range of 1100 to 1820 MeV with the CBELSA/TAPS experiment at the electron stretcher accelerator ELSA using a linearly polarized photon beam and a liquid hydrogen target. The data were analyzed for single π0- and η-photoproduction, respectively. Preliminary results are presented and compared to existing data and different partial wave analysis solutions.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei
2016-01-01
Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.
Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Kuhl, David D.; Walker, Eric L.
2004-01-01
This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.
Blocked urinary catheters: solutions are not the only solution.
Williams, Cath; Tonkin, Sharon
2003-07-01
The use of catheter maintenance solutions to manage clients whose catheters block has long been a subject for debate. An understanding of the causes of blockage, and awareness of appropriate management may reduce frequency of blockage and reduce unnecessary interruptions to a closed urinary drainage system.
NASA Astrophysics Data System (ADS)
Latif, M. Z. A. Abd; Ahmad, M. A.; Nasir, R. E. Mohd; Wisnoe, W.; Saad, M. R.
2017-12-01
This paper presents the analysis of a model from UiTM Blended Wing Body (BWB) UAV, Baseline V that has been tested at UPNM high speed wind tunnel. Baseline V has a unique design due to different NACA sections used for its fuselage, body, wing root, midwing, wingtip, tail root, tail tip and the tail is swept 45° backward. The purpose of this experiment is to study the aerodynamic characteristics when the tail sweeps 45° backward. The experiments are conducted several times using 71.5% scaled down model at about 49.58 m/s airspeed or 25 Hz. The tail angle deflection is fixed and set at zero angle. All the data obtained is analyzed and presented in terms of coefficient of lift, coefficient of drag and also lift-to-drag ratio, and is plotted against various angles of attack. The angles of attack used for this experiments are between -10° to +30°. The blockage correction such as solid blockage, wake blockage and streamline curvature blockage are calculated in order to obtain true performance of the aircraft. From the observation, Baseline V shows that the aircraft tends to stall at around +15°. The maximum L/D ratio achieved for Baseline V is 20.8, however it decreases slightly to 20.7 after blockage corrections.
Soo Shin, Jane Hae
2017-01-01
Abstract Guanine-rich (G-rich) homopurine–homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA–DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA–DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription ‘bursting’) and may also have practical implications for the design of expression vectors. PMID:28498974
Belotserkovskii, Boris P; Soo Shin, Jane Hae; Hanawalt, Philip C
2017-06-20
Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
An in-situ infection detection sensor coating for urinary catheters.
Milo, Scarlet; Thet, Naing Tun; Liu, Dan; Nzakizwanayo, Jonathan; Jones, Brian V; Jenkins, A Toby A
2016-07-15
We describe a novel infection-responsive coating for urinary catheters that provides a clear visual early warning of Proteus mirabilis infection and subsequent blockage. The crystalline biofilms of P. mirabilis can cause serious complications for patients undergoing long-term bladder catheterisation. Healthy urine is around pH 6, bacterial urease increases urine pH leading to the precipitation of calcium and magnesium deposits from the urine, resulting in dense crystalline biofilms on the catheter surface that blocks urine flow. The coating is a dual layered system in which the lower poly(vinyl alcohol) layer contains the self-quenching dye carboxyfluorescein. This is capped by an upper layer of the pH responsive polymer poly(methyl methacrylate-co-methacrylic acid) (Eudragit S100®). Elevation of urinary pH (>pH 7) dissolves the Eudragit layer, releasing the dye to provide a clear visual warning of impending blockage. Evaluation of prototype coatings using a clinically relevant in vitro bladder model system demonstrated that coatings provide up to 12h advanced warning of blockage, and are stable both in the absence of infection, and in the presence of species that do not cause catheter blockage. At the present time, there are no effective methods to control these infections or provide warning of impending catheter blockage. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Anderson localization of partially incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capeta, D.; Radic, J.; Buljan, H.
We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior ofmore » the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.« less
Optical power splitter for splitting high power light
English, R.E. Jr.; Christensen, J.J.
1995-04-18
An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.
Hollow Gaussian Schell-model beam and its propagation
NASA Astrophysics Data System (ADS)
Wang, Li-Gang; Wang, Li-Qin
2008-03-01
In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.
Measurements of high-current electron beams from X pinches and wire array Z pinches.
Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R
2008-10-01
Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.
NASA Astrophysics Data System (ADS)
Cao, Pengfei; Fu, Wenyu
2017-10-01
Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.
Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls
NASA Astrophysics Data System (ADS)
Sivaneshan, P.; Harishankar, S.
2017-07-01
The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.
ERIC Educational Resources Information Center
Olivier, A.
The paper examines the nature of creativity and blockages to its expression especially in home and school settings in South Africa. A definition of creativity is offered which stresses the production of an original outcome or achievement. The creative process is broken down into the steps of preparation, incubation, illumination, and verification.…
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.
Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh
2015-11-01
In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.
Laser beam pulse formatting method
Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.
1994-08-09
A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.
GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles
NASA Astrophysics Data System (ADS)
Khanafseh, Samer Mahmoud
Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted measurements as an additional inter-vehicle ranging measurement were also introduced. The algorithms and methods developed in this work are generally applicable to realize high-performance GPS-based navigation in partially obstructed environments. Navigation performance for AAR was quantified through covariance analysis, and it was shown that the stringent navigation requirements for this application are achievable. Finally, a real-time implementation of the algorithms was developed and successfully validated in autopiloted flight tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, E.B.
The kinds and quality of blockages to creativity are studied for two groups of employees, a group of peer-identified creative individuals and a group attending a career/life planning workshop. The employees from both groups represent a cross section of scientists/engineers, administrators, and technical support personnel and administrative support personnel. The design and results of the study are discussed, and some recommendations are made. It was found that the blockages of creative employees, as a group, were different from those of the self-selected, workshop group. Blockages reported by the peer-identified group were lack of time, office disharmony, and personal limitations, whilemore » those reported by the self-selected group were lack of time and fear of risk. (RWR)« less
NASA Technical Reports Server (NTRS)
Braun, H.
1981-01-01
The failure of all engines on the Symphonie MV2 satellite is attributed to blockage of the oxidizer branch caused by metal salts precipitating and forming a gel which constricts the narrow passage. Laboratory tests and other simulations conducted to observe the behavior of artificially produced jellies on a vacuum show that a removal or at least a reduction of the blockage in the oxidizer branch is possible by evacuation. The greatest blockage appears to occur in the filter. This fact restricts the capability to perform repairs in orbit because the filter installed ahead of the valve cannot by subjected to a vacuum.
Neutral particle beam intensity controller
Dagenhart, W.K.
1984-05-29
The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.
Self-imaging of partially coherent light in graded-index media.
Ponomarenko, Sergey A
2015-02-15
We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.
Kim, Tae-Seong; Kim, Jinchoon; In, Sang Ryul; Jeong, Seung Ho
2008-02-01
Prototype long pulse ion sources are being developed and tested toward the goal of a deuterium beam extraction of 120 keV/65 A. The latest prototype source consists of a magnetic bucket plasma generator and a four-grid copper accelerator system with multicircular apertures of 568 holes. To measure the angular divergence and the ion species of the ion beam, an optical multichannel analyzer (OMA) system for a Doppler-shifted H-alpha lights was set up at the end of a gas-cell neutralizer. But the OMA data are very difficult to analyze due to a large background level on the top of the three energy peaks (coming from H(+), H(2) (+), and H(3) (+)). These background spectra in the OMA signals seem to result from partially accelerated ion beams in the accelerator. Extracted ions could undergo a premature charge exchange as the accelerator column tends to have a high hydrogen partial pressure from the unused gas from the plasma generator, resulting in a continuous background of partially accelerated beam particles at the accelerator exit. This effect is calculated by accounting for all the possible atomic collision processes and numerically summing up three ion species across the accelerator column. The collection of all the atomic reaction cross sections and the numerical summing up will be presented. The result considerably depends on the background pressure and the ion beam species ratio (H(+), H(2) (+), and H(3) (+)). This effect constitutes more than 20% of the whole particle distribution. And the energy distribution of those suffering from collisions is broad and shows a broad maximum in the vicinity of the half and the third energy region.
NASA Astrophysics Data System (ADS)
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
Synthesis of generalized surface plasmon beams
NASA Astrophysics Data System (ADS)
Martinez-Niconoff, G.; Munoz-Lopez, J.; Martinez-Vara, P.
2009-08-01
Surface plasmon modes can be considered as the analogous to plane waves for homogeneous media. The extension to partially coherent surface plasmon beams is obtained by means of the incoherent superposition of the interference between surface plasmon modes whose profile is controlled associating a probability density function to the structural parameters implicit in their representation. We show computational simulations for cosine, Bessel, gaussian and dark hollow surface plasmon beams.
ERIC Educational Resources Information Center
Delacroix, Jacques; Ragin, Charles C.
1981-01-01
Presents a statistical analysis of dependency of developing nations on more highly developed and industrialized nations and relates this dependency to various degrees of economic development. The analysis is based on the structural blockage argument (one of several dependency arguments contained in many versions of dependency theory). Emphasizes…
Propeller Analysis Using RANS/BEM Coupling Accounting for Blade Blockage
2015-07-04
described. Estimates of the importance of the blade blockage effect are obtained by analyzing the propeller of the well-known KRISO container ship (KCS...2 and 3 were applied to the KRISO Container Ship (KCS), a test case that has often been reported in the scientific literature, in particular the
Dasgupta, Sugata; Singh, Shipti Shradha; Chaudhuri, Arunima; Bhattacharya, Dipasri; Choudhury, Sourav Das
2016-01-01
Background: Although tracheal tubes are essential devices to control and protect airway in a critical care unit (CCU), they are not free from complications. Aims: To document the incidence and nature of airway accidents in the CCU of a government teaching hospital in Eastern India. Methods: Retrospective analysis of all airway accidents in a 5-bedded (medical and surgical) CCU. The number, types, timing, and severity of airway accidents were analyzed. Results: The total accident rate was 19 in 233 intubated and/or tracheostomized patients over 1657 tube days (TDs) during 3 years. Fourteen occurred in 232 endotracheally intubated patients over 1075 endotracheal tube (ETT) days, and five occurred in 44 tracheostomized patients over 580 tracheostomy TDs. Fifteen accidents were due to blocked tubes. Rest four were unplanned extubations (UEs), all being accidental extubations. All blockages occurred during night shifts and all UEs during day shifts. Five accidents were mild, the rest moderate. No major accident led to cardiorespiratory arrest or death. All blockages occurred after 7th day of intubation. The outcome of accidents were more favorable in tracheostomy group compared to ETT group (P = 0.001). Conclusions: The prevalence of airway accidents was 8.2 accidents per 100 patients. Blockages were the most common accidents followed by UEs. Ten out of the 15 blockages and all 4 UEs were in endotracheally intubated patients. Tracheostomized patients had 5 blockages and no UEs. PMID:27076709
Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S
2014-08-19
The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cai, Yangjian; Lin, Qiang; Eyyuboğlu, Halil T; Baykal, Yahya
2008-05-26
Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence.
NASA Astrophysics Data System (ADS)
Altıok, Hüsne; Aslan, Aslı; Övez, Süleyman; Demirel, Nazlı; Yüksek, Ahsen; Kıratlı, Nur; Taş, Seyfettin; Müftüoğlu, Ahmet Edip; Sur, Halil Ibrahim; Okuş, Erdoğan
2014-11-01
This study focuses on the influence of extreme hydrological events on the water quality of the Strait of Istanbul (Bosphorus), a stratified waterway, polluted by sewage outfalls and non-point sources. Monthly collected water quality parameters (nitrate + nitrite, ortho-phosphate, silicate, dissolved oxygen, total suspended solids, chlorophyll-a and fecal indicator bacteria (fecal coliform and enterococci)) were evaluated together with the hydrological data (salinity, temperature and current flow) for 1 year. Two blockage events, identified as extreme conditions, were detected during the study: a lower layer blockage in February 2003 and an upper layer blockage in October 2003. During the lower layer blockage, the volume fluxes of the upper layer significantly increased to 28,140 m3 s- 1 and the lower layer almost stopped flowing (19 m3 s- 1). The dissolved oxidative nitrogen, ortho-phosphate and silicate inputs outflowing from the Black Sea were 117, 17.6, and 309 tons which were 3, 2, and 4 times the average daily fluxes respectively, in addition to enhancement of fecal indicator bacteria contamination in the sea surface flow. During the upper layer blockage, the volume flux of the upper layer was 3837 m3 s- 1 and the counter flow reached 24,985 m3 s- 1 at the northern exit of the Strait of Istanbul resulting in 2.7 fold increase in the mean bottom flow. The daily exports of nutrients, total suspended solid and dissolved oxygen by the lower layer flow increased by at least 2 fold compared to the mass fluxes estimated from the seasonal/annual means of volume flux and concentrations. On the other hand, fecal indicator bacteria flux by the lower layer inflow to the Black Sea decreased by at least 2 fold compared to the mean daily flux. These results show that the material exchange between the Marmara and the Black seas becomes more important during blockage events.
NASA Astrophysics Data System (ADS)
Sahin, Serkan
With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity (named pair-structure function) describing correlations among particles, the knowledge of which is necessary for the rigorous predictions of scattered radiation's statistics. Also, by introducing the multi-Gaussian family of functions for scattering potentials, we demonstrate a realistic model for semi-hard edges of particles and bubblelike particles.
Laenen, Antonius; Orzol, L.L.
1987-01-01
A recent evaluation of groundwater and material in the blockage impounding Castle Lake shows that the blockage is potentially unstable against failure from piping due to heave and internal erosion when groundwater levels are seasonally high. There is also a remote possibility that a 6.8 or greater magnitude earthquake could occur in the Castle Lake area when groundwater levels are critically high. If this situation occurs, the debris blockage that confines Castle Lake could breach from successive slope failure with liquefaction of a portion of the blockage. A dam-break computer model was used to simulate discharge through a hypothetical breach in the Castle Lake blockage that could be caused by failure by heave, internal erosion, or liquefaction. Approximately 18,500 acre-ft of stored water would be released from an assumed breach that fully developed to a 1,000-ft width over a 15-minute time period. The resulting flood, incorporating 3.4 x 10 to the 6th power cu yd of the debris blockage, would reach a peak magnitude of 1,500,000 cu ft/s (cubic feet per second). The flood is also assumed to incorporate an additional 137x10 to the 6th power cu yd of saturated debris material from downstream deposits. Flow is considered to be hyperconcentrated with sediment throughout the course of the flood. The hypothetical hyperconcentrated flow is routed downstream, superimposed on normal winter flood flows by use of a one-dimensional unsteady-state numerical streamflow simulation model. From a starting magnitude of 1,500,000 cu ft/s, the peak increases to 2,100,000 cu ft/s at N-1 Dam (12 mi downstream) and attenuates to 1,200,000 cu ft/s at Kid Valley (25 mi downstream) , to 100,000 cu ft/s at Longview and the confluence of the Columbia River (65 mi downstream). From time of breach, the flood peak would take 2.2 hr to reach Toutle, 3.8 hr to reach Castle Rock, and 8.5 hr to reach Longview. Communities of Toutle , Castle Rock, Kelso, and Longview would experience extreme to moderate flooding for this scenario. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1978-01-01
Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.
Design optimization of continuous partially prestressed concrete beams
NASA Astrophysics Data System (ADS)
Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.
1995-04-01
An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.
Optics measurement and correction during acceleration with beta-squeeze in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Marusic, A.; Minty, M.
2015-05-03
In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
Detection and modulation of capsaicin perception in the human oral cavity.
Smutzer, Gregory; Jacob, Jeswin C; Tran, Joseph T; Shah, Darshan I; Gambhir, Shilpa; Devassy, Roni K; Tran, Eric B; Hoang, Brian T; McCune, Joseph F
2018-05-09
Capsaicin causes a burning or spicy sensation when this vanilloid compound comes in contact with trigeminal neurons of the tongue. This compound has low solubility in water, which presents difficulties in examining the psychophysical properties of capsaicin by standard aqueous chemosensory tests. This report describes a new approach that utilizes edible strips for delivering precise amounts of capsaicin to the human oral cavity for examining threshold and suprathreshold amounts of this irritant. When incorporated into pullulan-based edible strips, recognition thresholds for capsaicin occurred over a narrow range, with a mean value near 1 nmol. When incorporated into edible strips at suprathreshold amounts, capsaicin yielded robust intensity values that were readily measured in our subject population. Maximal capsaicin intensity was observed 20 s after strips dissolved on the tongue surface, and then decreased in intensity. Suprathreshold studies showed that complete blockage of nasal airflow diminished capsaicin perception in the oral cavity. Oral rinses with vanillin-linoleic acid emulsions decreased mean intensity values for capsaicin by approximately 75%, but only modestly affected recognition threshold values. Also, oral rinses with isointense amounts of aqueous sucrose and sucralose solutions decreased mean intensity values for capsaicin by approximately 50%. In addition, this decrease in capsaicin intensity following an oral rinse with sucrose was partially reversed by the sweet taste inhibitor lactisole. These results suggest that blockage of nasal airflow, vanillin, sucrose, and sucralose modulate capsaicin perception in the human oral cavity. The results further suggest a chemosensory link between receptor cells that detect sweet taste stimuli and trigeminal neurons that detect capsaicin. Copyright © 2018 Elsevier Inc. All rights reserved.
Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation
2013-01-01
We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal–semiconductor systems. PMID:24163715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, K.; MacNeil, C.; Odar, S.
1997-02-01
This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pittingmore » and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Wang, Y; Ding, X
Purpose: To optimize VMAT beam parameters in PPBI to minimize treatment time. We investigate the coverage and organs at risk (OR) avoidance capability of shorter arcs with shorter treatment times. Methods: We evaluated the treatment plans for eleven previously treated PPBI patients. Each patient received 46Gy (2Gy×23) to the initial target and an additional 14Gy (2Gy×7) as a sequential boost. Each daily 2-Gy fraction was delivered as ten 0.2-Gy pulses separated by 3-minute intervals using VMAT. Each pulse was delivered using the same arc and covered at least 95% of the PTV with at least 95% of the prescription dose.more » To optimize the VMAT beam angle, an initial 360° full-arc VMAT plan was implemented. Beam control points and their corresponding dose rates were exported. A curve of the product of control point and dose rate was plotted against treatment beam angle. The optimum angle range was determined from this relationship. We chose the minimum continuous angle range that covered 85% of the area under the curve. Planning parameters, including treatment time for each pulse (T-pulse), PTV coverage, maximum dose (Dmax), homogeneity index (HI=D5/D95), R50 (50%IDL/PTV), and Dmax to ORs, were compared. Results: Mean PTV volume was 364.1±181.5cc. Mean T-pulse of partial-arc beams was 34.3±10.6s, vs. 63.0±1.7s (p<0.001) for that of full-arc beams. No significant differences were found for PTV V95, Dmax and R50, 99.4%±1.2% vs. 99.7%±0.5% (p=0.066), 108.0%±1.2% vs. 107.5%±1.1% (p=0.107), 2.95±0.38 vs. 2.87±0.35 (p=0.165), for the plans with partial-arc and full-arc beams, respectively. However, plans using full-arc do provide better PTV V100 and HI, 96.0%±3.0% vs. 97.2%±2.0% (p=0.025) and 1.06±0.03 vs. 1.04±0.01 (p=0.009). No significant difference was found on Dmax to ORs. Conclusion: PPBI with optimized partial-arc plans are clinically comparable to full-arc plans, while treatment time be significantly reduced, average saving of 287s for a 10-pulse treatment.« less
Flow interference in a variable porosity trisonic wind tunnel.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Graham, R. F.
1972-01-01
Pressure data from a 20-degree cone-cylinder in a variable porosity wind tunnel for the Mach range 0.2 to 5.0 are compared to an interference free standard in order to determine wall interference effects. Four 20-degree cone-cylinder models representing an approximate range of percent blockage from one to six were compared to curve-fits of the interference free standard at each Mach number and errors determined at each pressure tap location. The average of the absolute values of the percent error over the length of the model was determined and used as the criterion for evaluating model blockage interference effects. The results are presented in the form of the percent error as a function of model blockage and Mach number.
Infertility caused by tubal blockage: An ayurvedic appraisal
Shukla (Upadhyaya), Kamayani; Karunagoda, Kaumadi; Dei, L. P.
2010-01-01
Tubal blockage is one of the most important factors for female infertility. This condition is not described in Ayurvedic classics, as the fallopian tube itself is not mentioned directly there. The present study is an effort to understand the disease according to Ayurvedic principles. Correlating fallopian tubes with the Artavavaha (Artava-bija-vaha) Srotas, its block is compared with the Sanga Srotodushti of this Srotas. Charak's opinion that the diseases are innumerable and newly discovered ones should be understood in terms of Prakriti, Adhishthana, Linga, and Aayatana, is followed, to describe this disease. An effort has been made to evaluate the role of all the three Doshas in producing blockage, with classification of the disease done as per the Dasha Roganika. PMID:22131704
2010-11-30
16 Figure 10. Top and Bottom Connections ...Masonry Beams ...............................66 Figure 61. Resistance-displacement Idealization for Reinforced Masonry Beams .......................66...patterns on exterior walls. Masonry can form structural elements (bearing walls, columns , or pilasters) and/or finished cladding systems. Masonry
Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad
2017-12-01
In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.
1993-03-01
During the last two decades, there have been dramatic improvements in the development of optical sources. Examples of this development range from semiconductor laser diodes to free electron beam lasers and synchrotron radiation. Before these developments, standards for the measurement of basic optical parameters (quantities) were less demanding. Now, however, there is a fundamental need for new, reliable methods for providing fast quantitative results for a very broad variety of optical systems and sources. This is particularly true for partially coherent optical beams, since all optical sources are either fully or partially spatially coherent (including Lambertian sources). Until now, theremore » has been no satisfactory solution to this problem. During the last two decades, however, the foundations of physical radiometry have been developed by Walther, Wolf and co-workers. By integrating physical optics, statistical optics and conventional radiometry, this body of work provides necessary tools for the evaluation of radiometric quantities for partially coherent optical beams propagating through optical systems. In this program, Physical Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the specific case of generalized energy concentrators called Liouville transformers. We believe that this radiometric approach is necessary to fully characterize any type of optical system since it takes into account the partial coherence of radiation. 90 refs., 57 figs., 4 tabs.« less
Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence
NASA Astrophysics Data System (ADS)
Eyyuboğlu, H. T.; Baykal, Y. K.; Ji, X. L.
2010-06-01
For propagation in turbulent atmosphere, the radius of curvature variations for annular, dark hollow and flat topped beams are examined under a single formulation. Our results show that for collimated beams, when examined against propagation length, the dark hollow, flat topped and annular Gaussian beams behave nearly the same as the Gaussian beam, but have larger radius of curvature values. Increased partial coherence and turbulence levels tend to lower the radius of curvature. Bigger source sizes on the other hand give rise to larger radius of curvature. Dark hollow and flat topped beams have reduced radius of curvature at longer wavelengths, whereas the annular Gaussian beam seems to be unaffected by wavelength changes; the radius of curvature of the Gaussian beam meanwhile rises with increasing wavelength.
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1994-01-01
The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.
Energy harvesting from torsions of patterned piezoelectrics
NASA Astrophysics Data System (ADS)
Cha, Youngsu; You, Hangil
2018-03-01
In this paper, we investigate the feasibility of energy harvesting from the torsions using a piezoelectric beam. The piezoelectric beam is partially patterned and is tested in an experimental setup to force pure torsional deformation. In particular, the beam consists of two identical piezoelectric parts attached on one side of a supporting substrate. We propose a model for the energy harvesting system through the equations for a slender composite beam with the physical properties and the electromechanical coupling equations of the piezoelectric material. The theoretical predictions are validated by the comparison with the experimental results.
Laser beam pulse formatting method
Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.
1994-01-01
A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.
NASA Technical Reports Server (NTRS)
Couch, L. M.; Brooks, C. W., Jr.
1973-01-01
Experimental data were obtained in two wind tunnels for 13 models over a Mach number range from 0.70 to 1.02. Effects of increasing test-section blockage ratio in the transonic region near a Mach number of 1.0 included change in the shape of the drag curves, premature drag creep, delayed drag divergence, and a positive increment of pressures on the model afterbodies. Effects of wall interference were apparent in the data even for a change in blockage ratio from a very low 0.000343 to an even lower 0.000170. Therefore, models having values of blockage ratio of 0.0003 - an order of magnitude below the previously considered safe value of 0.0050 - had significant errors in the drag-coefficient values obtained at speeds near a Mach number of 1.0. Furthermore, the flow relief afforded by slots or perforations in test-section walls - designed according to previously accepted criteria for interference-free subsonic flow - does not appear to be sufficient to avoid significant interference of the walls with the model flow field for Mach numbers very close to 1.0.
NASA Technical Reports Server (NTRS)
Burley, Richard R.; Harrington, Douglas E.
1987-01-01
An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.
NASA Astrophysics Data System (ADS)
Waghole, D. R.
2018-06-01
Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.
Impact on the Columbia River of an outburst of Spirit Lake
Sikonia, W.G.
1985-01-01
A one-dimensional sediment-transport computer model was used to study the effects of an outburst of Spirit Lake on the Columbia River. According to the model, flood sediment discharge to the Columbia from the Cowlitz would form a blockage to a height of 44 feet above the current streambed of the Columbia River, corresponding to a new streambed elevation of -3 feet, that would impound the waters of the Columbia River. For an average flow of 233,000 cubic feet in that river, water surface elevations would continue to increase for 16 days after the blockage had been formed. The river elevation at the Trojan nuclear power plant, 5 miles upstream of the Cowlitz River, would rise to 32 feet, compared to a critical elevation of 45 feet, above which the plant would be flooded. For comparison, the Columbia River at average flow without the blockage has an elevation at this location of 6 feet. Correspondingly high water surface elevations would occur along the river to Bonneville Dam , with that at Portland, Oregon, for example, rising also to 32 feet, compared to 10 feet without the blockage. (USGS)
A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.
Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji
2017-05-19
Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interferometric Quasi-Autocollimator
NASA Technical Reports Server (NTRS)
Turner, Matthew D. (Inventor); Gundlach, Jens H. (Inventor); Schlamminger, Stephan (Inventor); Hagedorn, Charles A. (Inventor)
2014-01-01
Systems and method are disclosed for measuring small angular deflections of a target using weak value amplification. A system includes a beam source, a beam splitter, a target reflecting surface, a photodetector, and a processor. The beam source generates an input beam that is split into first and second beams by the beam splitter. The first and second beams are propagated to the target reflecting surface, at least partially superimposed at the target reflecting surface, and incident to the target reflecting surface normal to the target reflecting surface. The first beam is reflected an additional even number of times during propagation to the photodetector. The second beam is reflected an additional odd number of times during propagation to the photodetector. The first and second beams interfere at the photodetector so as to produce interference patterns. The interference patterns are interpreted to measure angular deflections of the target reflecting surface.
An experimental study of wall adaptation and interference assessment using Cauchy integral formula
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1991-01-01
This paper summarizes the results of an experimental study of combined wall adaptation and residual interference assessment using the Cauchy integral formula. The experiments were conducted on a supercritical airfoil model in the Langley 0.3-m Transonic Cryogenic Tunnel solid flexible wall test section. The ratio of model chord to test section height was about 0.7. The method worked satisfactorily in reducing the blockage interference and demonstrated the primary requirement for correcting for the blockage effects at high model incidences to correctly determine high lift characteristics. The studies show that the method has potential for reducing the residual interference to considerably low levels. However, corrections to blockage and upwash velocities gradients may still be required for the final adapted wall shapes.
Evolution of coherence singularities of Schell-model beams.
Rodrigo, José A; Alieva, Tatiana
2015-08-01
We show that the propagation of the widely used Schell-model partially coherent light can be easily understood using the ambiguity function. This approach is especially beneficial for the analysis of the mutual intensity of Schell-model beams (SMBs), which are associated with stable coherent beams such as Laguerre-, Hermite-, and Ince-Gaussian. We study the evolution of the coherence singularities during the SMB propagation. It is demonstrated that the distance of singularity formation depends on the coherence degree of the input beam. Moreover, it is proved that the shape, position, and number of singularity curves in far field are defined by the associated coherent beam.
Photon beam asymmetry Σ in the reaction γ → p → pω for Eγ = 1.152 to 1.876 GeV
NASA Astrophysics Data System (ADS)
Collins, P.; Ritchie, B. G.; Dugger, M.; Klein, F. J.; Anisovich, A. V.; Klempt, E.; Nikonov, V. A.; Sarantsev, A.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Cao, T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.
2017-10-01
Photon beam asymmetry Σ measurements for ω photoproduction in the reaction γ → p → ωp are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between t-channel meson exchange and s- and u-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the Σ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the JP = 3 /2+ partial wave), as well as the resonant portions of the smaller partial waves with JP = 1 /2-, 3 /2-, and 5 /2+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Anand Kumar; Boyd, Robert W.
2010-01-15
We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less
NASA Astrophysics Data System (ADS)
Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.
2017-08-01
High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.
ERIC Educational Resources Information Center
Lewis, Michael; Sullivan, Margaret W.; Kim, Hillary Mi-Sung
2015-01-01
In 2 separate longitudinal studies, infants and their mothers were seen in 3 longitudinal visits. At 2 months, they were observed in free play where mothers' contingency toward their infants was obtained. At 5 months, a goal blockage response was produced when a previously learned contingent response became ineffective in producing an interesting…
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2018-05-01
We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.
Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.
Dark and bright blocker soliton interaction in defocusing waveguide arrays.
Smirnov, Eugene; Rüter, Christian E; Stepić, Milutin; Shandarov, Vladimir; Kip, Detlef
2006-11-13
We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations.
Coherent Optical Adaptive Techniques (COAT)
1973-02-01
quarter wave plate and frequency shifter twice. The polarization-rotated wave is then partially reflected by the beam - splitters B,, B2 , B to provide a...between the beam splitters B, and Bp. This causes a change in the relative phase of the local oscillator to the detectors and, consequently, a change in...trackinr. The basic method is illustrated in Figure T-l. There, an array of laser beams , derived from a single laser source, is shown with provision
Theoretical investigations on plasma processes in the Kaufman thruster
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1973-01-01
The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.
BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees.
Fleischauer, Markus; Böcker, Sebastian
2018-01-01
Supertree methods enable the reconstruction of large phylogenies. The supertree problem can be formalized in different ways in order to cope with contradictory information in the input. Some supertree methods are based on encoding the input trees in a matrix; other methods try to find minimum cuts in some graph. Recently, we introduced Bad Clade Deletion (BCD) supertrees which combines the graph-based computation of minimum cuts with optimizing a global objective function on the matrix representation of the input trees. The BCD supertree method has guaranteed polynomial running time and is very swift in practice. The quality of reconstructed supertrees was superior to matrix representation with parsimony (MRP) and usually on par with SuperFine for simulated data; but particularly for biological data, quality of BCD supertrees could not keep up with SuperFine supertrees. Here, we present a beam search extension for the BCD algorithm that keeps alive a constant number of partial solutions in each top-down iteration phase. The guaranteed worst-case running time of the new algorithm is still polynomial in the size of the input. We present an exact and a randomized subroutine to generate suboptimal partial solutions. Both beam search approaches consistently improve supertree quality on all evaluated datasets when keeping 25 suboptimal solutions alive. Supertree quality of the BCD Beam Search algorithm is on par with MRP and SuperFine even for biological data. This is the best performance of a polynomial-time supertree algorithm reported so far.
Dorozhkin, Sergey V.
2011-01-01
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744
Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus
Park, Raehee; Moon, Uk Yeol; Park, Jun Young; Hughes, Lucinda J.; Johnson, Randy L.; Cho, Seo-Hee; Kim, Seonhee
2016-01-01
Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury. PMID:26754915
A direct broadcast satellite-audio experiment
NASA Technical Reports Server (NTRS)
Vaisnys, Arvydas; Abbe, Brian; Motamedi, Masoud
1992-01-01
System studies have been carried out over the past three years at the Jet Propulsion Laboratory (JPL) on digital audio broadcasting (DAB) via satellite. The thrust of the work to date has been on designing power and bandwidth efficient systems capable of providing reliable service to fixed, mobile, and portable radios. It is very difficult to predict performance in an environment which produces random periods of signal blockage, such as encountered in mobile reception where a vehicle can quickly move from one type of terrain to another. For this reason, some signal blockage mitigation techniques were built into an experimental DAB system and a satellite experiment was conducted to obtain both qualitative and quantitative measures of performance in a range of reception environments. This paper presents results from the experiment and some conclusions on the effectiveness of these blockage mitigation techniques.
High responsivity secondary ion energy analyzer
NASA Astrophysics Data System (ADS)
Belov, A. S.; Chermoshentsev, D. A.; Gavrilov, S. A.; Frolov, O. T.; Netchaeva, L. P.; Nikulin, E. S.; Zubets, V. N.
2018-05-01
The degree of space charge compensation of a 70 mA, 400 keV pulsed hydrogen ion beam has been measured with the use of an electrostatic energy analyzer of secondary ions. The large azimuthal angle of the analyzer enables a high responsivity, defined as the ratio of the slow secondary ion current emerging from the partially-compensated ion beam to the fast ion beam current. We measured 84% space charge compensation of the ion beam. The current from the slow ions and the rise time from the degree of space charge compensation were measured and compared with expected values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Barbee, D; Jozsef, G
2016-06-15
Purpose: Prone accelerated partial breast irradiation (APBI) results in dose reduction to the heart and lung. Flattening filter free beams (FFF) reduce out of field dose due to the reduced scatter from the removal of the flattening filter and reduce the buildup region. The aim of this work is to evaluate the dosimetric advantages of FFF beams to prone APBI target coverage and reduction in dose to organs at risk. Methods: Fifteen clinical prone APBI cases using flattened photon beams were retrospectively re-planned in Eclipse-TPS using FFF beams. FFF plans were designed to provide equivalent target coverage with similar hotspotsmore » using the same field arrangements, resulting in comparable target DVHs. Both plans were transferred to a prone breast phantom and delivered on Varian-Edge-Linac. GafChromic-film was placed in the coronal plane of the phantom, partially overlapping the treatment field and extending into OARs to compare dose profiles from both plans. Results: FFF plans were comparable to the clinical plans with maximum doses of (108.3±2.3)% and (109.2±2.4)% and mean doses of (104.5±1.0)% and (104.6±1.2)%, respectively. Similar mean dose doses to the heart and contralateral lungs were observed from both plans, whereas the mean dose to the contra-lateral breast was (2.79±1.18) cGy and (2.86±1.40) cGy for FFF and clinical plans respectively. However for both plans the error between calculated and measured doses at 4 cm from the field edge was 10%. Conclusion: The results showed that FFF beams in prone APBI provide dosimetrically equivalent target coverage and improved coverage in superficial target due to softer energy spectra. Film analysis showed that the TPS underestimates dose outside field edges for both cases. The FFF measured plans showed less dose outside the beam that might reduce the probability of secondary cancers in the contralateral breast.« less
Transcription blockage by stable H-DNA analogs in vitro
Pandey, Shristi; Ogloblina, Anna M.; Belotserkovskii, Boris P.; Dolinnaya, Nina G.; Yakubovskaya, Marianna G.; Mirkin, Sergei M.; Hanawalt, Philip C.
2015-01-01
DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn2+ or by increased concentrations of K+ and Li+. Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. PMID:26101261
Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J
2005-01-01
Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746
Styer, S C; Griffiths, T D
1992-04-01
After exposure to 10 or 20 J/m2 UVC light, cells of the UMN-PIE-1181 line, an embryonic cell line derived from the Indian meal moth, Plodia interpunctella, exhibited a rapid and prolonged depression in the rate of incorporation of [3H]thymidine, whereas cells of the TN-368 line, an ovarian cell line derived from Trichoplusia ni, the cabbage looper, showed only a slight drop in incorporation and a rapid recovery after exposure to 10 or 40 J/m2 UVC light. The extent of this depression was not correlated to the amount of cell killing by UVC light in these cell lines or in IAL-PID2 cells. Blockage of fork progression was correlated to the depression in thymidine incorporation. TN-368 cells exhibited little blockage after exposure to 10 or 20 J/m2 UVC light, whereas UMN-PIE-1181 cells exhibited significant blockage at these fluences. Photoreactivation did not entirely relieve blockage, depression in thymidine incorporation, or cell killing, indicating that, although the (5-6) dimer appears to be the major lesion responsible for these effects, other lesions such as the (6-4) photoproduct may play a role.
Mizutani, Nobuaki; Nabe, Takeshi; Shimazu, Masaji; Yoshino, Shin; Kohno, Shigekatsu
2012-03-01
Ganoderma lucidum (GL), an oriental medical mushroom, has been used in Asia for the prevention and treatment of a variety of diseases. However, the effect of GL on allergic rhinitis has not been well defined. The current study describes the inhibitory effect of GL on the biphasic nasal blockage and nasal hyperresponsiveness induced by repeated antigen challenge in a guinea pig model of allergic rhinitis. Intranasally sensitized guinea pigs were repeatedly challenged by inhalation of Japanese cedar pollen once every week. Ganoderma lucidum was orally administered once daily for 8 weeks from the time before the first challenge. The treatment with GL dose-dependently inhibited the early and late phase nasal blockage at the fifth to ninth antigen challenges. Furthermore, nasal hyperresponsiveness to intranasally applied leukotriene D₄ on 2 days after the eighth antigen challenge was also inhibited by the treatment with GL. However, Cry j 1-specific IgE antibody production was not affected by the treatment. In conclusion, we demonstrated that the pollen-induced biphasic nasal blockage and nasal hyperresponsiveness were suppressed by the daily treatment with GL in the guinea pig model of allergic rhinitis. These results suggest that GL may be a useful therapeutic drug for treating patients with allergic rhinitis. Copyright © 2011 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T.A.; Short, R.J.; Gribble, N.R.
2013-07-01
The Waste Vitrification Plant (WVP) converts Highly Active Liquor (HAL) from spent nuclear fuel reprocessing into a stable vitrified product. Recently WVP have been experiencing accumulation of solids in their primary off gas (POG) system leading to potential blockages. Chemical analysis of the blockage material via Laser Induced Breakdown Spectroscopy (LIBS) has shown it to exclusively consist of caesium, technetium and oxygen. The solids are understood to be caesium pertechnetate (CsTcO{sub 4}), resulting from the volatilisation of caesium and technetium from the high level waste glass melt. Using rhenium as a chemical surrogate for technetium, a series of full scalemore » experiments have been performed in order to understand the mechanism of rhenium volatilisation as caesium perrhenate (CsReO{sub 4}), and therefore technetium volatilisation as CsTcO{sub 4}. These experiments explored the factors governing volatilisation rates from the melt, potential methods of minimising the amount of volatilisation, and various strategies for mitigating the deleterious effects of the volatile material on the POG. This paper presents the results from those experiments, and discusses potential methods to minimise blockages that can be implemented on WVP, so that the frequency of the CsTcO{sub 4} blockages can be reduced or even eradicated altogether. (authors)« less
Electron beam enhanced surface modification for making highly resolved structures
Pitts, John R.
1986-01-01
A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.
Electron beam enhanced surface modification for making highly resolved structures
Pitts, J.R.
1984-10-10
A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.
[Glaucoma and retinal surgery].
Müller, M; Geerling, G; Zierhut, M; Klink, T
2010-05-01
In the therapeutic approach to complex glaucomas different initial situations were considered: pre-existing glaucoma, induction of glaucoma after vitreoretinal surgery and antiglaucomatous procedures. In pre-existing glaucoma and after filtering surgery maintenance of the filtering bleb requires a vitreoretinal approach for conjunctiva preservation with techniques such as pneumatic retinopexy or small gauge vitrectomy. After vitreoretinal surgery an increase in intraocular pressure (IOP) is common. Secondary glaucoma may occur after scleral buckling and after vitrectomy with or without gas or silicone oil tamponade as well as after application of steroids. Angle closure glaucoma after scleral buckling develops because of congestion and anterior rotation of the ciliary body. Vitreous tamponades with expansive or saturated gases may cause angle-closure glaucoma with or without pupillary blockage and may critically shorten ocular perfusion. Postoperative checks, immediate action and a ban on boarding aircraft over the period of intraocular gas tamponade prevent permanent damage to the eye. The majority of secondary glaucomas can effectively be controlled by topical medication and adequate postoperative posture of the patient. Besides the temporary use of systemic antiglaucomatous medication or laser therapy, very rarely in cases of massive swelling or overfill, a direct intervention, such as partial gas or silicone oil removal is required. A prophylactic inferior peripheral iridectomy prevents pupillary blockage in aphakic eyes with intraocular tamponade. In cases of heavy silicone oil use, the peripheral iridectomy is placed in the superior position. Nd:YAG laser application will regulate IOP in cases of occlusion. Secondary glaucoma due to silicone oil emulsification overload is treated by trabecular meshwork aspiration and lavage. In refractory glaucoma repetitive cyclophotocoagulation and drainage implants represent an approved method for long-term IOP regulation. The underlying cause of secondary glaucoma after vitreoretinal surgery is often multifactorial in nature and may benefit from an exact analysis for an adequate and successful treatment regimen.
Control of vibrations of a moving beam
NASA Astrophysics Data System (ADS)
Banichuk, N. V.; Ivanova, S. Yu; Makeev, E. V.; Sinitsyn, A. V.
2018-04-01
The translational motion of a thermoelastic beam under transverse vibrations caused by initial perturbations is considered. It is assumed that a beam moving at a constant translational speed is described by a model of a thermoelastic panel supported at the edges of the considered span. The problem of optimal suppression of vibrations is formulated when applying active transverse influences to the panel. To solve the optimization problem, modern methods developed in the theory of control of systems with distributed parameters described by partial differential equations are used.
Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation
NASA Astrophysics Data System (ADS)
Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.
2004-05-01
Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.
General interference law for nonstationary, separable optical fields.
Manea, Vladimir
2009-09-01
An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.
Lorenz curve of a light beam: evaluating beam quality from a majorization perspective.
Porras, Miguel A; Gonzalo, Isabel; Ahmir Malik, M
2017-08-01
We introduce a novel approach for the characterization of the quality of a laser beam that is not based on particular criteria for beam width definition. The Lorenz curve of a light beam is a sophisticated version of the so-called power-in-the-bucket curve, formed by the partial sums of discretized joint intensity distribution in the near and far fields, sorted in decreasing order. According to majorization theory, a higher Lorenz curve implies that all measures of spreading in phase space, and, in particular, all Rényi (and Shannon) entropy-based measures of the beam width products in near and far fields, are unanimously smaller, providing a strong assessment of a better beam quality. Two beams whose Lorenz curves intersect can be considered of relatively better or lower quality only according to specific criteria, which can be inferred from the plot of the respective Lorenz curves.
Laser systems configured to output a spectrally-consolidated laser beam and related methods
Koplow, Jeffrey P [San Ramon, CA
2012-01-10
A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.
NASA Astrophysics Data System (ADS)
McTavish, Sean
The current thesis investigates the development of guidelines for testing small-scale wind turbines and identifies a method that can be used to increase the performance of wind farms. The research was conducted using two scaled wind turbine designs. The first design was a three-bladed wind turbine designed in the Department of Mechanical and Aerospace Engineering (MAAE) to operate in a low Reynolds number regime and to generate a thrust coefficient representative of commercial-scale wind turbines. An Eppler E387 airfoil was selected for the wind turbine due to its behaviour at low Reynolds numbers and the chord of the turbine was increased relative to full-scale designs in order to increase the range of Reynolds numbers that could be attained. The second design was a geometrically-scaled version of an existing two-bladed wind turbine with a NACA 0012 airfoil that was originally designed at the Delft University of Technology. Experiments were conducted in a 0.61 m x 0.81 m water channel in order to independently evaluate the effects of increasing blockage and Reynolds number on the development of the wind turbine wake. Quantitative dye visualisation was used to identify the position of tip vortex cores relative to the blade tip in order to assess how blockage and Reynolds number effects modified the initial expansion in the near wake. Blockage effects on the wake development were assessed using five wind turbines with diameters ranging from 20 cm to 40 cm, corresponding to blockage of 6.3% to 25.4%. The rotors were all operated at a similar tip speed ratio of 6 and a Reynolds number of 23,000 based on the blade tip speed and tip chord. One Outcome of the research was the identification of a limit beyond which blockage narrowed the expansion in the near wake of a wind turbine. It was observed that blockage should be maintained at less than 10% in order to prevent the wake from narrowing artificially due to the flow acceleration around the turbine caused by excessive blockage. The experimental results were compared to a freestream computational simulation of the same turbine using the vortex particle method code GENUVP. The magnitude of the wake expansion in the freestream computation was similar to the experimental wake expansion observed with 6.3% and 9.9% blockage. Following the identification of testing practices related to blockage, the effect of the Reynolds number on the development of the initial wake expansion was investigated using two different rotors. The wake expansion downstream of a 25 cm diameter, three-bladed MAAE wind turbine became less sensitive to the Reynolds number above a Reynolds number of 20,000. This behaviour may be related to the laminar-to-turbulent transition behaviour of the E387 airfoil on the rotor blades. The wake downstream of the geometrically-scaled rotor was found to be 40% to 60% narrower than the initial wake expansion downstream of the corresponding medium-scale rotor. The work identified the need to develop a wind turbine design for a particular Reynolds number regime as opposed to merely geometrically-scaling a turbine. The performance of scaled wind farm configurations was then evaluated using 20 cm diameter MAAE wind turbines installed in the 1.68 m x 1.12 m atmospheric boundary layer wind tunnel at Carleton University. A scaled boundary layer was generated using triangular boundary layer spires and roughness elements installed along the upstream fetch of the tunnel. Each wind turbine was outfitted with a DC generator and the power output generated by the scaled turbines was used to characterise their performance. A single-normal hot-wire probe was used to determine the mean speed profiles in the fiowfield. Two laterally-aligned wind turbines were separated by a gap and it was observed that when the gap was less than 3 diameters (D), the speed of the flow between the rotors was increased from the rotor plane to approximately 2.5D downstream. This behaviour was identified as an in-field blockage effect and is analogous to the increase in wind speed caused by blockage in a closed test section. The increased flow speed was associated with a narrowing of the wake between the closely-spaced rotors and the concept of capitalising on this in-field blockage effect using a third, offset rotor was investigated. Performance measurements were conducted using 3 gap widths between the outer two turbines and a third, central turbine was placed at 9 different downstream positions. The middle turbine experienced an increase in power when placed within 2.5D of the upstream rotor plane due to the increase in speed in this region. This approach to planning wind farms will help to limit power losses due to downstream wake effects while providing an increase in power output at mean annual wind speeds.
Photon beam asymmetry Σ in the reaction γ → p → p ω for E γ = 1.152 to 1.876 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.; Ritchie, B. G.; Dugger, M.
Photon beam asymmetrymore » $$\\Sigma$$ measurements for $$\\omega$$ photoproduction in the reaction $$\\vec{\\gamma} p \\to \\omega p$$ are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements we obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between $t$-channel meson exchange and $s$- and $u$-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the $$\\Sigma$$ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the $J^P=3/2^+$ partial wave), as well as the resonant portions of the smaller partial waves with $J^P$= $1/2^-$, $3/2^-$, and $5/2^+$.« less
Photon beam asymmetry Σ in the reaction γ → p → p ω for E γ = 1.152 to 1.876 GeV
Collins, P.; Ritchie, B. G.; Dugger, M.; ...
2017-08-18
Photon beam asymmetrymore » $$\\Sigma$$ measurements for $$\\omega$$ photoproduction in the reaction $$\\vec{\\gamma} p \\to \\omega p$$ are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements we obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between $t$-channel meson exchange and $s$- and $u$-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the $$\\Sigma$$ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the $J^P=3/2^+$ partial wave), as well as the resonant portions of the smaller partial waves with $J^P$= $1/2^-$, $3/2^-$, and $5/2^+$.« less
Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R
2006-01-01
Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.
NASA Astrophysics Data System (ADS)
Patel, V. K.; Singh, S. N.; Seshadri, V.
2013-06-01
A study is conducted to evolve an effective design concept to improve mixing in a combustor chamber to reduce the amount of intake air. The geometry used is that of a gas turbine combustor model. For simplicity, both the jets have been considered as air jets and effect of heat release and chemical reaction has not been modeled. Various contraction shapes and blockage have been investigated by placing them downstream at different locations with respect to inlet to obtain better mixing. A commercial CFD code `Fluent 6.3' which is based on finite volume method has been used to solve the flow in the combustor model. Validation is done with the experimental data available in literature using standard k-ω turbulence model. The study has shown that contraction and blockage at optimum location enhances the mixing process. Further, the effect of swirl in the jets has also investigated.
Huston, P.
1998-01-01
PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467
Zerrad, M; Soriano, G; Ghabbach, A; Amra, C
2013-02-11
We show how disordered media allow to increase the local degree of polarization (DOP) of an arbitrary (partial) polarized incident beam. The role of cross-scattering coefficients is emphasized, together with the probability density functions (PDF) of the scattering DOP. The average DOP of scattering is calculated versus the incident illumination DOP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained bymore » using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.« less
Change in spatial coherence of light on refraction and on reflection.
Lahiri, Mayukh; Wolf, Emil
2013-06-01
A theory of refraction and reflection of partially coherent electromagnetic beams has been recently developed. In this paper, we apply it to study the change in spatial coherence caused by refraction and by reflection more fully. By considering a Gaussian Schell-model beam, we show that the change is, in general, dependent on the angle of incidence.
NASA Astrophysics Data System (ADS)
Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko
2018-04-01
We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.
Dose distribution for dental cone beam CT and its implication for defining a dose index
Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R
2012-01-01
Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320
Design of a radiation facility for very small specimens used in radiobiology studies
NASA Astrophysics Data System (ADS)
Rodriguez, Manuel; Jeraj, Robert
2008-06-01
A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.
Beam halo collimation in heavy ion synchrotrons
NASA Astrophysics Data System (ADS)
Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.
2015-08-01
This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.
A comparison of reflector antenna designs for wide-angle scanning
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmatsamii, Y.; Acosta, R. J.
1989-01-01
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.
Wu, Gaofeng; Cai, Yangjian
2011-04-25
Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
Torsion sensing based on patterned piezoelectric beams
NASA Astrophysics Data System (ADS)
Cha, Youngsu; You, Hangil
2018-03-01
In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.
Transcription blockage by stable H-DNA analogs in vitro.
Pandey, Shristi; Ogloblina, Anna M; Belotserkovskii, Boris P; Dolinnaya, Nina G; Yakubovskaya, Marianna G; Mirkin, Sergei M; Hanawalt, Philip C
2015-08-18
DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Differential quadrature method of nonlinear bending of functionally graded beam
NASA Astrophysics Data System (ADS)
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Resolving individual Shockley partials of a dissociated dislocation by STEM
NASA Astrophysics Data System (ADS)
Iwata, Hiroyuki; Saka, Hiroyasu
2017-02-01
A practical method was developed to image detailed features of defects in a crystal using STEM. This method is essentially a STEM version of the conventional CTEM g/3g weak beam dark field (WBDF) method. The method was successfully applied to resolving individual Shockley partials of a dissociated dislocation in a Cu-6.44at.%Al alloy.
Positron beam study of indium tin oxide films on GaN
NASA Astrophysics Data System (ADS)
Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.
2007-02-01
Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.
A Tool for Modelling the Probability of Landslides Impacting Road Networks
NASA Astrophysics Data System (ADS)
Taylor, Faith E.; Santangelo, Michele; Marchesini, Ivan; Malamud, Bruce D.; Guzzetti, Fausto
2014-05-01
Triggers such as earthquakes or heavy rainfall can result in hundreds to thousands of landslides occurring across a region within a short space of time. These landslides can in turn result in blockages across the road network, impacting how people move about a region. Here, we show the development and application of a semi-stochastic model to simulate how landslides intersect with road networks during a triggered landslide event. This was performed by creating 'synthetic' triggered landslide inventory maps and overlaying these with a road network map to identify where road blockages occur. Our landslide-road model has been applied to two regions: (i) the Collazzone basin (79 km2) in Central Italy where 422 landslides were triggered by rapid snowmelt in January 1997, (ii) the Oat Mountain quadrangle (155 km2) in California, USA, where 1,350 landslides were triggered by the Northridge Earthquake (M = 6.7) in January 1994. For both regions, detailed landslide inventory maps for the triggered events were available, in addition to maps of landslide susceptibility and road networks of primary, secondary and tertiary roads. To create 'synthetic' landslide inventory maps, landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL. The number of landslide areas selected was based on the observed density of landslides (number of landslides km-2) in the triggered event inventories. Landslide shapes were approximated as ellipses, where the ratio of the major and minor axes varies with AL. Landslides were then dropped over the region semi-stochastically, conditioned by a landslide susceptibility map, resulting in a synthetic landslide inventory map. The originally available landslide susceptibility maps did not take into account susceptibility changes in the immediate vicinity of roads, therefore our landslide susceptibility map was adjusted to further reduce the susceptibility near each road based on the road level (primary, secondary, tertiary). For each model run, we superimposed the spatial location of landslide drops with the road network, and recorded the number, size and location of road blockages recorded, along with landslides within 50 and 100 m of the different road levels. Network analysis tools available in GRASS GIS were also applied to measure the impact upon the road network in terms of connectivity. The model was performed 100 times in a Monte-Carlo simulation for each region. Initial results show reasonable agreement between model output and the observed landslide inventories in terms of the number of road blockages. In Collazzone (length of road network = 153 km, landslide density = 5.2 landslides km-2), the median number of modelled road blockages over 100 model runs was 5 (±2.5 standard deviation) compared to the mapped inventory observed number of 5 road blockages. In Northridge (length of road network = 780 km, landslide density = 8.7 landslides km-2), the median number of modelled road blockages over 100 model runs was 108 (±17.2 standard deviation) compared to the mapped inventory observed number of 48 road blockages. As we progress with model development, we believe this semi-stochastic modelling approach will potentially aid civil protection agencies to explore different scenarios of road network potential damage as the result of different magnitude landslide triggering event scenarios.
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
1993-08-29
4’- CH3 O--\\\\4 4N -2 nitrostilbene NO 2J (MMONS) 4’-dimethylamfino OCH3 -N-4-stylbazolium j, o3 - 200 3125 1000 tosylate (DAST)or 0 3 (CH3)2N CH3 Styrylpyridinium PH cyanine dye 400 1490 470 ( SPCD ) SO4 (CH3 ½2N lh3 20
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.
2010-07-15
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.
2015-12-15
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less
Ion-beam apparatus and method for analyzing and controlling integrated circuits
Campbell, A.N.; Soden, J.M.
1998-12-01
An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.
NASA Astrophysics Data System (ADS)
Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.
2015-12-01
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.
Ion-beam apparatus and method for analyzing and controlling integrated circuits
Campbell, Ann N.; Soden, Jerry M.
1998-01-01
An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.
ELECTRON BEAM SHAPING AND ITS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei
Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less
Complement Inhibition in the Immunotherapy of Breast Cancer
2013-03-01
cancer. In both models the therapeutic efficacy of C5aR inhibitor was comparable to the efficacy of Listeria monocytogenes-delivered Her2 vaccine (Lm...C5aR) blockage synergizes with Listeria monocytogenes-based Her2 vaccine (Lm-LLO-Her2) in reducing growth of primary tumors in FVB/N wild-type and...results pertain. Aim 1 (TASK 1: months 1-6 and TASK 3: months 6-12) (i) C5aR blockage synergizes with Listeria monocytogenes-based Her2 vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.
We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
NASA Astrophysics Data System (ADS)
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Predictive value of age of walking for later motor performance in children with mental retardation.
Kokubun, M; Haishi, K; Okuzumi, H; Hosobuchi, T; Koike, T
1996-12-01
The purpose of the present study was to clarify the predictive value of age of walking for later motor performance in children with mental retardation. While paying due attention to other factors, our investigation focused on the relationship between a subject's age of walking, and his or her subsequent beam-walking performance. The subjects were 85 children with mental retardation with an average age of 13 years and 3 months. Beam-walking performance was measured by a procedure developed by the authors. Five low beams (5 cm) which varied in width (12.5, 10, 7.5, 5 and 2.5 cm) were employed. The performance of subjects was scored from zero to five points according to the width of the beam that they were able to walk without falling off. From the results of multiple regression analysis, three independent variables were found to be significantly related to beam-walking performance. The age of walking was the most basic variable: partial correlation coefficient (PCC) = -45; standardized partial regression coefficient (SPRC) = -0.41. The next variable in importance was walking duration (PCC = 0.38; SPRC = 0.31). The autism variable also contributed significantly (PCC = 0.28; SPRC = 0.22). Therefore, within the age range used in the present study, the age of walking in children with mental retardation was thought to have sufficient predictive value, even when the variables which might have possibly affected their subsequent performance were taken into consideration; the earlier the age of walking, the better the beam-walking performance.
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-02
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts
Parker, Belinda S.; Cutts, Suzanne M.; Cullinane, Carleen; Phillips, Don R.
2000-01-01
Recently we have found that mitoxantrone, like Adriamycin, can be activated by formaldehyde and subsequently form adducts which stabilise double-stranded DNA in vitro. This activation by formaldehyde may be biologically relevant since formaldehyde levels are elevated in those tumours in which mitoxantrone is most cytotoxic. In vitro transcription analysis revealed that these adducts block the progression of RNA polymerase during transcription and cause truncated RNA transcripts. There was an absolute requirement for both mitoxantrone and formaldehyde in transcriptional blockage formation and the activated complex was found to exhibit site specificity, with blockage occurring prior to CpG and CpA sites in the DNA (non-template strand). The stability of the adduct at 37°C was site dependent. The half-lives ranged from 45 min to ~5 h and this was dependent on both the central 2 bp blockage site as well as flanking sequences. The CpG specificity of mitoxantrone adduct sites was also confirmed independently by a λ exonuclease digestion assay. PMID:10648792
Lewis, Michael; Sullivan, Margaret W.; Kim, Hillary Mi-Sung
2015-01-01
In two separate longitudinal studies, infants and their mothers were seen in three longitudinal visits. At two months, they were observed in free play where mothers’ contingency toward their infants was obtained. At five months, a goal blockage response was produced when a previously learned contingent response became ineffective in producing an interesting event. Infants’ emotional responses, in particular anger and sad facial expressions, were observed. At two years, toddlers’ persistence at play was assessed by measuring children’s responses to an interruption of their play. In both studies, the amount of toddlers’ persistence was positively related to their anger response to the blocked goal at five months. Maternal contingency was not related either to infants’ response to the blocked goal nor to their persistence at play. These findings provide evidence for the contribution to and the consequences of infants’ response to a goal blockage and the role of anger as an approach emotion. PMID:26389608
Storch, Tatiane Timm; Finatto, Taciane; Bruneau, Maryline; Orsel-Baldwin, Mathilde; Renou, Jean-Pierre; Rombaldi, Cesar Valmor; Quecini, Vera; Laurens, François; Girardi, César Luis
2017-09-06
Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.
A new method for the determination of very small Γγ partial widths
NASA Astrophysics Data System (ADS)
Cardella, Giuseppe; Acosta, Luis; Auditore, Lucrezia; Camaiani, Alberto; Filippo, Enrico De; Luca, Saverio De; Gelli, Nicla; Gnoffo, Brunilde; Favela, Francisco; Fornal, Bogdan; Lanzalone, Gaetano; Leoni, Silvia; Maiolino, Concetta; Martorana, Nunzia Simona; Nannini, Adriana; Norella, Sebastianella; Pagano, Angelo; Pagano, Emanuele Vincenzo; Papa, Massimo; Pirrone, Sara; Politi, Giuseppe; Porto, Francesco; Quattrocchi, Lucia; Rizzo, Francesca; Russotto, Paolo; Santonocito, Domenico; Trifirò, Antonio; Trimarchì, Marina
2018-01-01
We present a new method for the measurement of very small Γγ partial width that is important for the synthesis of elements in astrophysics. The method is based on the simultaneous detection of scattered beam, residual nucleus and decay γ rays. This method is optimized for the use of the CHIMERA detector at LNS. Experimental details are described.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Electron beam pumped semiconductor laser
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.
A new paradigm for the reversible blockage of whisker sensory transmission.
Gener, Thomas; Reig, Ramon; Sanchez-Vives, Maria V
2009-01-30
The objective of this study was to explore a paradigm that would allow a temporary deprivation of whisker information lasting for a few hours. An additional requirement was to be non-invasive in order to be usable in awake chronically implanted rats without inducing stress. With that aim, electrophysiological recordings from the barrel cortex of anesthetized rats were obtained. The pressure of an air-puff (5-10 ms) delivered to the whiskers was adjusted to evoke a consistent response of around 100 microV (extracellular) or approximately 5 mV (intracellular) in the contralateral cortex. Lidocaine was then locally applied in different forms (cream, local injection, aerosol, drops) and concentrations (2-10%) to the base of the whiskers. The stimulus-induced response was monitored once every 5s for several hours (3-6h) in order to characterize its course of action. Local injection of lidocaine induced the fastest and most complete blockage, but was ruled out for being invasive. Out of the remaining forms of application, a lidocaine drop (0.4 ml, 10%) to the base of the whiskers was found to induce a reliable blockage (to an average 9% the original response). The maximum effect was reached after 150-200 min, and the response was totally recovered approximately 300 min after lidocaine application. This characterization should be useful to induce an efficient, short term and reversible blockage of whisker sensory transmission in both anesthetized and awake preparations, while not causing stress in an awake animal.
Assessment of Levels of Ultraviolet A Light Protection in Automobile Windshields and Side Windows.
Boxer Wachler, Brian S
2016-07-01
Ultraviolet A (UV-A) light is associated with the risks of cataract and skin cancer. To assess the level of UV-A light protection in the front windshields and side windows of automobiles. In this cross-sectional study, 29 automobiles from 15 automobile manufacturers were analyzed. The outside ambient UV-A radiation, along with UV-A radiation behind the front windshield and behind the driver's side window of all automobiles, was measured. The years of the automobiles ranged from 1990 to 2014, with an average year of 2010. The automobile dealerships were located in Los Angeles, California. Amount of UV-A blockage from windshields and side windows. The average percentage of front-windshield UV-A blockage was 96% (range, 95%-98% [95% CI, 95.7%-96.3%]) and was higher than the average percentage of side-window blockage, which was 71% (range, 44%-96% [95% CI, 66.4%-75.6%]). The difference between these average percentages is 25% (95% CI, 21%-30% [P < .001]). A high level of side-window UV-A blockage (>90%) was found in 4 of 29 automobiles (13.8%). The level of front-windshield UV-A protection was consistently high among automobiles. The level of side-window UV-A protection was lower and highly variable. These results may in part explain the reported increased rates of cataract in left eyes and left-sided facial skin cancer. Automakers may wish to consider increasing the degree of UV-A protection in the side windows of automobiles.
Stagnation of Saturn's auroral emission at noon
NASA Astrophysics Data System (ADS)
Radioti, A.; Grodent, D.; Gérard, J.-C.; Southwood, D. J.; Chané, E.; Bonfond, B.; Pryor, W.
2017-06-01
Auroral emissions serve as a powerful tool to investigate the magnetospheric processes at Saturn. Solar wind and internally driven processes largely control Saturn's auroral morphology. The main auroral emission at Saturn is suggested to be connected with the magnetosphere-solar wind interaction, through the flow shear related to rotational dynamics. Dawn auroral enhancements are associated with intense field-aligned currents generated by hot tenuous plasma carried toward the planet in fast moving flux tubes as they return from tail reconnection site to the dayside. In this work we demonstrate, based on Cassini auroral observations, that the main auroral emission at Saturn, as it rotates from midnight to dusk via noon, occasionally stagnates near noon over a couple of hours. In half of the sequences examined, the auroral emission is blocked close to noon, while in three out of four cases, the blockage of the auroral emission is accompanied with signatures of dayside reconnection. We discuss some possible interpretations of the auroral "blockage" near noon. According to the first one, it could be related to local time variations of the flow shear close to noon. Auroral local time variations are also suggested to be initiated by radial transport process. Alternatively, the auroral blockage at noon could be associated with a plasma circulation theory, according to which tenuously populated closed flux tubes as they return from the nightside to the morning sector experience a blockage in the equatorial plane and they cannot rotate beyond noon.
A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems
NASA Technical Reports Server (NTRS)
Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter
1989-01-01
An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.
A Clinical Evaluation Of Cone Beam Computed Tomography
2016-06-01
A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis...submitted to the Faculty of the Endodontic Graduate Program Naval Postgraduate Dental School Uniformed Services University of the Health Sciences in...partial fulfillment of the requirements for the degree of Master of Science in Oral Biology June 2016 Naval Postgraduate Dental School Unif01med
Replogle, William C.; Sweatt, William C.
2001-01-01
A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.
Ripple structure of crystalline layers in ion-beam-induced Si wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, S.; Chini, T.K.; Sanyal, M.K.
Ion-beam-induced ripple formation in Si wafers was studied by two complementary surface sensitive techniques, namely atomic force microscopy (AFM) and depth-resolved x-ray grazing incidence diffraction (GID). The formation of ripple structure at high doses ({approx}7x10{sup 17} ions/cm{sup 2}), starting from initiation at low doses ({approx}1x10{sup 17} ions/cm{sup 2}) of ion beam, is evident from AFM, while that in the buried crystalline region below a partially crystalline top layer is evident from GID study. Such ripple structure of crystalline layers in a large area formed in the subsurface region of Si wafers is probed through a nondestructive technique. The GID techniquemore » reveals that these periodically modulated wavelike buried crystalline features become highly regular and strongly correlated as one increases the Ar ion-beam energy from 60 to 100 keV. The vertical density profile obtained from the analysis of a Vineyard profile shows that the density in the upper top part of ripples is decreased to about 15% of the crystalline density. The partially crystalline top layer at low dose transforms to a completely amorphous layer for high doses, and the top morphology was found to be conformal with the underlying crystalline ripple.« less
A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy
NASA Astrophysics Data System (ADS)
Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong
2013-01-01
The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.
Coherent Spin Amplification Using a Beam Splitter
NASA Astrophysics Data System (ADS)
Yan, Chengyu; Kumar, Sanjeev; Thomas, Kalarikad; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael
2018-03-01
We report spin amplification using a capacitive beam splitter in n -type GaAs where the spin polarization is monitored via a transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled, and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin-polarization amplification can be achieved in materials without strong spin-orbit interaction.
Non-deterministic quantum CNOT gate with double encoding
NASA Astrophysics Data System (ADS)
Gueddana, Amor; Attia, Moez; Chatta, Rihab
2013-09-01
We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.
Generation and dynamics of optical beams with polarization singularities.
Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico
2013-04-08
We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
Beam-based measurement of the center of the new STAR pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert-Demolaize, G.
During the RHIC Shutdown preceding Run13 for polarized protons, various upgrades were brought to the STAR detector, one of which being the partial installation of the Forward GEM Tracker (FGT). This installation includes a new beam pipe at the center of the detector with an internal radius half the size of what the replaced pipe was, from 40 mm to 20 mm. The following reviews the results of a vertical aperture scans in the STAR interaction region performed at injection energy with both beams, and gives an estimate of the measured transverse offset of the new STAR pipe.
Foil cooling for rep-rated electron beam pumped KrF lasers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.
2006-06-01
In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elementsmore » require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.« less
Planar dynamics of a uniform beam with rigid bodies affixed to the ends
NASA Technical Reports Server (NTRS)
Storch, J.; Gates, S.
1983-01-01
The planar dynamics of a uniform elastic beam subject to a variety of geometric and natural boundary conditions and external excitations were analyzed. The beams are inextensible and capable of small transverse bending deformations only. Classical beam vibration eigenvalue problems for a cantilever with tip mass, a cantilever with tip body and an unconstrained beam with rigid bodies at each are examined. The characteristic equations, eigenfunctions and orthogonality relations for each are derived. The forced vibration of a cantilever with tip body subject to base acceleration is analyzed. The exact solution of the governing nonhomogeneous partial differential equation with time dependent boundary conditions is presented and compared with a Rayleigh-Ritz approximate solution. The arbitrary planar motion of an elastic beam with rigid bodies at the ends is addressed. Equations of motion are derived for two modal expansions of the beam deflection. The motion equations are cast in a first order form suitable for numerical integration. Selected FORTRAN programs are provided.
Langmuir instability in partially spin polarized bounded degenerate plasma
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Jamil, M.; Murtaza, G.
2018-04-01
Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.
Dorozhkin, Sergey V
2011-01-01
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Fundamental ignition study for material fire safety improvement, part 2
NASA Technical Reports Server (NTRS)
Paciorek, K. L.; Kratzer, R. H.; Kaufman, J.
1971-01-01
The autoignition behavior of polymeric compositions in oxidizing media was investigated as well as the nature and relative concentration of the volatiles produced during oxidative decomposition culminating in combustion. The materials investigated were Teflon, Fluorel KF-2140 raw gum and its compounded versions Refset and Ladicote, 45B3 intumenscent paint, and Ames isocyanurate foam. The majority of the tests were conducted using a stagnation burner arrangement which provided a laminar gas flow and allowed the sample block and gas temperatures to be varied independently. The oxidizing atmospheres were essentially air and oxygen, although in the case of the Fluorel family of materials, due to partial blockage of the gas inlet system, some tests were performed unintentionally in enriched air (not oxygen). The 45B3 paint was not amenable to sampling in a dynamic system, due to its highly intumescent nature. Consequently, selected experiments were conducted using a sealed tube technique both in air and oxygen media.
Accounting for partiality in serial crystallography using ray-tracing principles.
Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet
2015-09-01
Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.
Joining and reinforcing a composite bumper beam and a composite crush can for a vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Elisabeth; Decker, Leland; Armstrong, Dale
A front bumper beam and crush can (FBCC) system is provided for a vehicle. A bumper beam has an interior surface with a plurality of ribs extending therefrom. The ribs and the interior surface are made of a chopped fiber composite and cooperate to engage a crush can. The chopped fiber composite reinforces the engaging surfaces of the crush can and the interior surface of the bumper beam. The crush can has a tubular body made of a continuous fiber composite. The crush can has outwardly-extending flanges at an end spaced away from the bumper beam. The flanges are atmore » least partially provided with a layer of chopped fiber composite to reinforce a joint between the outwardly-extending flange and the vehicle frame.« less
Method and apparatus for making absolute range measurements
Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN
2002-09-24
This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.
Early, James W.
1990-01-01
A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.
Spatial-heterodyne interferometry for transmission (SHIFT) measurements
Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.
2006-10-10
Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn
Ion sheaths formed in the up- and downstream sides of a negatively biased metal plate/mesh in an ion-beam-background-plasma system were experimentally investigated in a double plasma device. Measured potential profiles near the plate exhibit asymmetric structure, showing thicker sheath in the downstream side. The presence of the ion beam causes the shrink of the sheaths on both sides. The sheath thickness decreases with the increase of beam energy and density. Furthermore, the sheaths near the mesh are substantially thinner than that near the plate because of the partial transmission of the mesh to the ions. In addition, the increase ofmore » neutral gas pressure leads to the reduction of the beam energy and density, resulting in the increase of the sheath thickness.« less
Chang, Lynn
2014-01-01
Purpose To report outcomes on 5 patients treated with salvage partial low-dose-rate (LDR) 125-iodine (125I) permanent prostate seed brachytherapy (BT) for biopsy-proven locally persistent prostate cancer, following failure of dose-escalated external beam radiotherapy (EBRT). Material and methods A retrospective review of the Fox Chase Cancer Center prostate cancer database identified five patients treated with salvage partial LDR 125I seed implant for locally persistent disease following dose-escalated EBRT to 76-84 Gy in 2 Gy per fraction equivalent. All patients had post-EBRT biopsies confirming unilateral locally persistent prostate cancer. Pre-treatment, EBRT and BT details, as well as post-treatment characteristics were documented and assessed. Results The median follow-up post-implant was 41 months. All five patients exhibited low acute genitourinary and gastrointestinal toxicities. Increased erectile dysfunction was noted in three patients. There were no biochemical failures following salvage LDR 125I seed BT to date, with a median post-salvage PSA of 0.4 ng/mL. Conclusions In carefully selected patients with local persistence of disease, partial LDR 125I permanent prostate seed implant appears to be a feasible option for salvage local therapy with an acceptable toxicity profile. Further study is needed to determine long-term results of this approach. PMID:25337135
NASA Astrophysics Data System (ADS)
Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.
2018-04-01
Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.
Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)
NASA Astrophysics Data System (ADS)
Karthik, S.; Sundaravadivelu, Karthik
2017-07-01
Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.
Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-03-21
To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.
Real-Time Fourier Transformed Holographic Associative Memory With Photorefractive Material
NASA Astrophysics Data System (ADS)
Changsuk, Oh; Hankyu, Park
1989-02-01
We describe a volume holographic associative memory using photorefractive material and conventional planar mirror. Multiple hologram is generated with two angular multiplexed writing beams and Fourier transformed object beam in BaTiO3 crystal at 0.6328 μm. Complete image can be recalled successfully by partial input of original stored image. It is proved that our system is useful for optical implementation of real-time associative memory and location addressable memory.
Design study of an in situ PET scanner for use in proton beam therapy
NASA Astrophysics Data System (ADS)
Surti, S.; Zou, W.; Daube-Witherspoon, M. E.; McDonough, J.; Karp, J. S.
2011-05-01
Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr3) and our results indicate that 4 mm wide LYSO or LaBr3 crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the estimated range relative to the simulated positron distribution. We then varied the angular acceptance of the scanner ranging from 1/2 to 2/3 of 2π a partial ring TOF imaging with good timing resolution (<=600 ps) is necessary to produce accurate tomographic images. A two-third ring scanner with 300 ps timing resolution leads to a bias of 1.0 mm and a precision of 1.4 mm in the range estimate. With a timing resolution of 600 ps, the bias increases to 2.0 mm while the precision in the range estimate is similar. For a half-ring scanner design, more distortions are present in the image, which is characterized by the increased error in the profile difference estimate. We varied the number of positron decays imaged by the PET scanner by an order of magnitude and we observe some decrease in the precision of the range estimate for lower number of decays, but all partial ring scanner designs studied have a precision <=1.5 mm. The largest number tested, 150 M total positron decays, is considered realistic for a clinical fraction of delivered dose, while the range of positron decays investigated in this work covers a variable number of situations corresponding to delays in scan start time and the total scan time. Thus, we conclude that for partial ring systems, an angular acceptance of at least 1/2 (of 2π) together with timing resolution of 300 ps is needed to achieve accurate and precise range estimates. With 600 ps timing resolution an angular acceptance of 2/3 (of 2π) is required to achieve satisfactory range estimates. These results indicate that it would be feasible to develop a partial-ring dedicated PET scanner based on either LaBr3 or LYSO to accurately characterize the proton dose for therapy planning.
NASA Astrophysics Data System (ADS)
SUN, D.; TONG, L.
2002-05-01
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2014-01-01
Introduction This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Methods Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Results Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Conclusion Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources. PMID:26229643
A novel probabilistic approach to generating PTV with partial voxel contributions
NASA Astrophysics Data System (ADS)
Tsang, H. S.; Kamerling, C. P.; Ziegenhein, P.; Nill, S.; Oelfke, U.
2017-06-01
Radiotherapy treatment planning for use with high-energy photon beams currently employs a binary approach in defining the planning target volume (PTV). We propose a margin concept that takes the beam directions into account, generating beam-dependent PTVs (bdPTVs) on a beam-by-beam basis. The resulting degree of overlaps between the bdPTVs are used within the optimisation process; the optimiser effectively considers the same voxel to be both target and organ at risk (OAR) with fractional contributions. We investigate the impact of this novel approach when applied to prostate radiotherapy treatments, and compare treatment plans generated using beam dependent margins to conventional margins. Five prostate patients were used in this planning study, and plans using beam dependent margins improved the sparing of high doses to target-surrounding OARs, though a trade-off in delivering additional low dose to the OARs can be observed. Plans using beam dependent margins are observed to have a slightly reduced target coverage. Nevertheless, all plans are able to satisfy 90% population coverage with the target receiving at least 95% of the prescribed dose to D98% .
The Modelling of Axially Translating Flexible Beams
NASA Astrophysics Data System (ADS)
Theodore, R. J.; Arakeri, J. H.; Ghosal, A.
1996-04-01
The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.
Radiation torque on an absorptive spherical drop centered on an acoustic helicoidal Bessel beam
NASA Astrophysics Data System (ADS)
Zhang, Likun; Marston, Philip L.
2009-11-01
Circularly polarized electromagnetic waves carry axial angular momentum and analysis shows that the axial radiation torque on an illuminated sphere is proportional to the power absorbed by the sphere [1]. Helicoidal acoustic beams also carry axial angular momentum and absorption of such a beam should also produce an axial radiation torque [2]. In the present work the acoustic radiation torque on solid spheres and spherical drops centered on acoustic helicoidal Bessel beams is examined. The torque is predicted to be proportional to the ratio of the absorbed power to the acoustic frequency. Depending on the beam helicity, the torque is parallel or anti-parallel to the beam axis. The analysis uses a relation between the scattering and the partial wave coefficients for a sphere in a helicoidal Bessel beam. Calculations suggest that beams with a low topological charge are more efficient for generating torques on solid spheres.[4pt] [1] P. L. Marston and J. H. Crichton, Phys. Rev. A. 30, 2508-2516 (1984).[0pt] [2] B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313-3316 (1999).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S; Roa, D; Hanna, N
2015-06-15
Purpose: Flattening Filter Free (FFF) beams offer the potential for higher dose rates, short treatment time, and lower out of field dose. Therefore, the aim of this study was to investigate the dosimetric effects and out of field dose of Volumetric Modulated Arc Therapy (VMAT) plans using FFF vs Flattening Filtering (FF) beams for partial brain irradiation. Methods: Ten brain patients treated with a 6FF beam from a Truebeam STX were analyzed retrospectively for this study. These plans (46Gy at 2 Gy per fraction) were re-optimized for 6FFF beams using the same dose constraints as the original plans. PTV coverage,more » PTV Dmax, total MUs, and mean dose to organs-at-risk (OAR) were evaluated. In addition, the out-of-field dose for 6FF and 6FFF plans for one patient was measured on an anthropomorphic phantom. TLDs were placed inside (central axis) and outside (surface) the phantom at distances ranging from 0.5 cm to 17 cm from the field edge. Paired T-test was used for statistical analysis. Results: PTV coverage and PTV Dmax were comparable for the FF and FFF plans with 95.9% versus 95.6% and 111.2% versus 111.9%, respectively. Mean dose to the OARs were 3.7% less for FFF than FF plans (p<0.0001). Total MUs were, on average, 12.5% greater for FFF than FF plans with 481±55 MU (FFF) versus 429±50 MU (FF), p=0.0003. On average, the measured out of field dose was 24% less for FFF compared to FF, p<0.0001. A similar beam-on time was observed for the FFF and FF treatment. Conclusion: It is beneficial to use 6FFF beams for regular fractionated brain VMAT treatments. VMAT treatment plans using FFF beams can achieve comparable PTV coverage but with more OAR sparing. The out of field dose is significant less with mean reduction of 24%.« less
Ertikin, Aysun; Argun, Güldeniz; Mısırlıoğlu, Mesut; Aydın, Murat; Arıkan, Murat; Kadıoğulları, Nihal
2017-10-01
In this study, we aimed to compare axillary brachial plexus block using the two-injection and four-injection techniques assisted with ultrasonography (USG) and nerve stimulator in patients operated for carpal tunnel syndrome with articaine. To evaluate which technique is more effective, we compared the onset time, effectiveness, and duration of block procedures, patient satisfaction, adverse effect of the drug, and complication rates of the motor and sensory blocks. Sixty patients were randomly divided into two groups. A mixture of physiologic serum added to articain with NaHCO 3 (30 mL) was injected into the patients' axilla in both the groups. After the blockage of the musculocutaneous nerve in both the groups, the median nerve in the two-injection group and the median nerve, ulnar nerve, and radial nerve in the four-injection group were blocked. In brachial plexus nerves, sensorial blockage was evaluated with pinprick test, and motor block was evaluated by contraction of the muscles innervated by each nerve. The adverse effects and complications, visual analog scale (VAS) values during the operation, and post-operative patient satisfaction were recorded. Sufficient analgesia and anaesthesia were achieved with no need for an additional local anaesthetics in both the groups. Furthermore, additional sedation requirements were found to be similar in both the groups. A faster rate and a more effective complete block were achieved in more patients from the four-injection group. In the two-injection group, the block could not be achieved for N. radialis in one patient. All other nerves were successfully blocked. Whereas the blockage procedure lasted longer in the four-injection group, the VAS values recorded during the blockage procedure were higher in the four-injection group. No statistical difference was found with regard to patient satisfaction, and no adverse effects and complications were observed in any group. Although the multi-injection method takes more time, it provides faster anaesthesia and more complete blockage than the two-injection method used with articain. The two-injection method can also be used in specific surgery such as for carpal tunnel syndrome, as an alternative to multi-injection method.
Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen
2010-02-01
Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.
Influence of strong perturbations on wall-bounded flows
NASA Astrophysics Data System (ADS)
Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.
2018-01-01
Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is found to modify the nature of the inner-wall peak of turbulent kinetic energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar O.; Berman, L; Chu, Y.S.
2012-04-04
Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less
Partial breast radiation therapy - external beam
APBI is used to prevent breast cancer from coming back. When radiation therapy is given after breast- ... breast conservation therapy reduces the risk of cancer coming back, and possibly even death from breast cancer.
Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa.
Ewers, Frank W; Lopez-Portillo, Jórge; Angeles, Guillermo; Fisher, Jack B
2004-09-01
We measured xylem pressure potentials, soil osmotic potentials, hydraulic conductivity and percent loss of conductivity (PLC) due to embolism, and made microscopic observations of perfused dye in the white mangrove tree, Laguncularia racemosa (L.) Gaertn. f., (1) to determine its vulnerability to air embolism compared with published results for the highly salt-tolerant red mangrove tree, Rhizophora mangle L., and (2) to identify possible relationships between air embolism, permanent blockage of vessels and stem diameter. Laguncularia racemosa was more vulnerable to embolism than reported for R. mangle, with 50 PLC at -3.4 MPa. Narrow stems (5-mm diameter) had higher PLC than larger stems (8.4- or 14-mm diameter) of the same plants. Basic fuchsin dye indicated that up to 89% of the vessels, especially in the narrow stems, had permanent blockage that could not be reversed by high pressure perfusion. Air embolism could lead to permanent vessel blockage and eventual stem mortality. Such vulnerability to embolism may restrict the growth of L. racemosa and limit its distribution to less salty areas of mangrove communities.
Numerical simulation of compressor endwall and casing treatment flow phenomena
NASA Technical Reports Server (NTRS)
Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.
1992-01-01
A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.
The efficiency of asset management strategies to reduce urban flood risk.
ten Veldhuis, J A E; Clemens, F H L R
2011-01-01
In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.
End-wall boundary layer measurements in a two-stage fan
NASA Technical Reports Server (NTRS)
Ball, C. L.; Reid, L.; Schmidt, J. F.
1983-01-01
Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.
Final report of fuel dynamics Test E7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Murphy, W.F.; Stanford, G.S.
1977-04-01
Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4)more » less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.« less
High-order nonuniformly correlated beams
NASA Astrophysics Data System (ADS)
Wu, Dan; Wang, Fei; Cai, Yangjian
2018-02-01
We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.
Enhancement of Buckling Load with the Use of Active Materials
NASA Technical Reports Server (NTRS)
Yuan, F. G.
2002-01-01
In this paper, active buckling control of a beam using piezoelectric materials is investigated. Under small deformation, mathematical models are developed to describe the behavior of the beams subjected to an axial compressive load with geometric imperfections and load eccentricities under piezoelectric force. Two types of supports, simply supported and clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the concept. For the beam with load eccentricities and initial geometric imperfections, the load- carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric actuators are derived based on linearized buckling analysis.
Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang
2016-04-10
Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.
NASA Astrophysics Data System (ADS)
Lin, Jingsu
In this thesis we present results of experimental methods for studying surface structures of ultra-thin films and describe a new apparatus to study the recombination of atomic hydrogen on well characterized low temperature surface using atomic and molecular beam methods. We have used atomic beam scattering (ABS) to characterize the growth of mercury and lead overlayers on Cu(001) surface. The structures of ordered phases have been identified using ABS and low-energy electron diffraction (LEED). A model to analyze diffraction data from these phases is presented. The new apparatus we are going to describe includes a high performance atomic hydrogen source using radio-frequency (RF) dissociation. The dissociation efficiency can be as high as 90% in the optimized pressure range. An atomic hydrogen beam line has been added to our ultra-high vacuum (UHV) scattering apparatus. We have also designed and constructed a low temperature sample manipulator for experiments at liquid helium temperatures. The manipulator has one degree of freedom of rotation and the capability of heating the sample to 700K and cooling down to 12K. The first sample studied was a single graphite surface. We have used a He beam to characterize the sample surface and to monitor deposition of H on the sample surface in real time. A series of "adsorption curves" have been obtained at different temperature and doses. We found that at temperatures below 16K, both H and H_2 have formed a partial layer on the surface. From adsorption curve, we deduce that the initial sticking coefficient for H is about 0.06 when surface at 16K. When the H beam is interrupted, the He specularly reflected beam recovers partially, indicating that hydrogen atoms desorb, while others remain on the surface. The residual coverage of H is estimated to be about 2% of a monolayer.
A High Performance Biofilter for VOC Emission Control.
Wu, G; Conti, B; Leroux, A; Brzezinski, R; Viel, G; Heitz, M
1999-02-01
Biofiltration is a cleaning technique for waste air contaminated with some organic compounds. The advantages of the conventional biofilter over other biological systems are a high-superficial area best suited for the treatment of some compounds with poor water solubility, ease of operation, and low operating costs. It has crucial disadvantages, however; for example, it is not suitable to treat waste gases with high VOC concentrations and it has poor control of reaction conditions. To improve on these problems and to build a high-performance biofilter, three structured peat media and two trickling systems have been introduced in this study. The influences of media size and composition have been investigated experimentally. Peat bead blended with 30% (w/w) certain mineral material with a good binding capacity has advantages over other packing materials, for example, suitable size to prevent blockage due to microbial growth, strong buffering capacity to neutralize acidic substances in the system, and a pH range of 7.0-7.2 suitable for the growth of bacteria. Dropwise trickling system offers an effective measure to easily control the moisture content of the bed and the reaction conditions (pH, nutrient) and to partially remove excess biomass produced during the metabolic processes of microorganisms. The influence of nutrient supplementation has also been investigated in this study, which has revealed that the biological system was in a condition of nutrient limitation instead of carbon limitation. The biofilters built in our laboratory were used to treat waste gas contaminated with toluene in a concentration range of 1 to 3.2 g/m 3 and at the specific gas flow rate of 24 to120 m 3 /m 2 .hr. Under the conditions employed, a high elimination capacity (135 g/m 3 .hr) was obtained in the biofilter packed with peat beads (blended with 30% of the mineral material), and no blockage problem was observed in an experimental period of 2-3 months.
An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
Dutta, Debashis
2015-07-24
The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of inhaled nitric oxide on pulmonary hemodynamics after acute lung injury in dogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romand, J.A.; Pinsky, M.R.; Firestone, L.
Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. The authors studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-minmore » exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial [beta]-adrenergic blockage (propanolol, 0.15 mg/kg iv) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa and calculated PVR, both of which decreased with 17 ppm NO. ALI decreased arterial Po[sub 2] and increased airway pressure, shunt, and dead space ventilation. Ppa and PVR were greater during ALI than during hyperoxia. NO inhalation had no measurable effect during ALI before or after [beta]-adrenergic blockage. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 [mu]g) induced an immediate decrease in Ppa and PVR during ALI. Short-term NO inhalation does not affect PVR or gas exchange in dogs with oleic acid-induced ALI, nor does it increase NO-Hb or MetHb. In contrast, NO can diminish hypoxia-induced elevations in pulmonary vascular tone. These data suggest that NO inhalation selectively dilates the pulmonary circulation and specifically reduces HPV but not oleic acid-induced increases in pulmonary vasomotor tone. 28 refs., 3 figs., 2 tabs.« less
Mechanics of cantilever beam: Implementation and comparison of FEM and MLPG approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trobec, Roman
2016-06-08
Two weak form solution approaches for partial differential equations, the well known meshbased finite element method and the newer meshless local Petrov Galerkin method are described and compared on a standard test case - mechanics of cantilever beam. The implementation, solution accuracy and calculation complexity are addressed for both approaches. We found out that FEM is superior in most standard criteria, but MLPG has some advantages because of its flexibility that results from its general formulation.
Iodine Plasma Species Measurements in a Hall Effect Thruster Plume
2013-04-01
direction f = species fraction 0g = gravitational constant at Earth’s surface, 9.81 m/s 2 I = current, subscripts b for beam, c for cathode, d for...Hall effect thruster uses crossed electric and magnetic fields to generate and accelerate ions. The gas in the discharge is partially ionized, although...early 1960s.10 Ions are weakly magnetized and most are accelerated directly out of the channel, forming the ion beam. The bulk of the cathode
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
Combined reflection and transmission microscope for telemedicine applications in field settings.
Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan
2011-08-21
We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011
Industrial ion source technology
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
In reactive ion etching of Si, varying amounts of O2 were added to the CF4 background. The experimental results indicated an etch rate less than that for Ar up to an O2 partial pressure of about .00006 Torr. Above this O2 pressure, the etch rate with CF4 exceeded that with Ar alone. For comparison the random arrival rate of O2 was approximately equal to the ion arrival rate at a partial pressure of about .00002 Torr. There were also ion source and ion pressure gauge maintenance problems as a result of the use of CF4. Large scale (4 sq cm) texturing of Si was accomplished using both Cu and stainless steel seed. The most effective seeding method for this texturing was to surround the sample with large inclined planes. Designing, fabricating, and testing a 200 sq cm rectangular beam ion source was emphasized. The design current density was 6 mA/sq cm with 500 eV argon ions, although power supply limitations permitted operation to only 2 mA/sq cm. The use of multiple rectangular beam ion sources for continuous processing of wider areas than would be possible with a single source was also studied. In all cases investigated, the most uniform coverage was obtained with 0 to 2 cm beam overlay. The maximum departure from uniform processing at optimum beam overlap was found to be +15%.
Partial Breast Radiation Therapy With Proton Beam: 5-Year Results With Cosmetic Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, David A., E-mail: dbush@llu.edu; Do, Sharon; Lum, Sharon
2014-11-01
Purpose: We updated our previous report of a phase 2 trial using proton beam radiation therapy to deliver partial breast irradiation (PBI) in patients with early stage breast cancer. Methods and Materials: Eligible subjects had invasive nonlobular carcinoma with a maximal dimension of 3 cm. Patients underwent partial mastectomy with negative margins; axillary lymph nodes were negative on sampling. Subjects received postoperative proton beam radiation therapy to the surgical bed. The dose delivered was 40 Gy in 10 fractions, once daily over 2 weeks. Multiple fields were treated daily, and skin-sparing techniques were used. Following treatment, patients were evaluated with clinical assessments andmore » annual mammograms to monitor toxicity, tumor recurrence, and cosmesis. Results: One hundred subjects were enrolled and treated. All patients completed the assigned treatment and were available for post-treatment analysis. The median follow-up was 60 months. Patients had a mean age of 63 years; 90% had ductal histology; the average tumor size was 1.3 cm. Actuarial data at 5 years included ipsilateral breast tumor recurrence-free survival of 97% (95% confidence interval: 100%-93%); disease-free survival of 94%; and overall survival of 95%. There were no cases of grade 3 or higher acute skin reactions, and late skin reactions included 7 cases of grade 1 telangiectasia. Patient- and physician-reported cosmesis was good to excellent in 90% of responses, was not changed from baseline measurements, and was well maintained throughout the entire 5-year follow-up period. Conclusions: Proton beam radiation therapy for PBI produced excellent ipsilateral breast recurrence-free survival with minimal toxicity. The treatment proved to be adaptable to all breast sizes and lumpectomy cavity configurations. Cosmetic results appear to be excellent and unchanged from baseline out to 5 years following treatment. Cosmetic results may be improved over those reported with photon-based techniques due to reduced breast tissue exposure with proton beam, skin-sparing techniques, and the dose fractionation schedule used in this trial.« less
SU-G-JeP3-03: Effect of Robot Pose On Beam Blocking for Ultrasound Guided SBRT of the Prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, S; Schlaefer, A; Kuhlemann, I
Purpose: Ultrasound presents a fast, volumetric image modality for real-time tracking of abdominal organ motion. How-ever, ultrasound transducer placement during radiation therapy is challenging. Recently, approaches using robotic arms for intra-treatment ultrasound imaging have been proposed. Good and reliable imaging requires placing the transducer close to the PTV. We studied the effect of a seven degrees of freedom robot on the fea-sible beam directions. Methods: For five CyberKnife prostate treatment plans we established viewports for the transducer, i.e., points on the patient surface with a soft tissue view towards the PTV. Choosing a feasible transducer pose and using the kinematicmore » redundancy of the KUKA LBR iiwa robot, we considered three robot poses. Poses 1 to 3 had the elbow point anterior, superior, and inferior, respectively. For each pose and each beam starting point, the pro-jections of robot and PTV were computed. We added a 20 mm margin accounting for organ / beam motion. The number of nodes for which the PTV was partially of fully blocked were established. Moreover, the cumula-tive overlap for each of the poses and the minimum overlap over all poses were computed. Results: The fully and partially blocked nodes ranged from 12% to 20% and 13% to 27%, respectively. Typically, pose 3 caused the fewest blocked nodes. The cumulative overlap ranged from 19% to 29%. Taking the minimum overlap, i.e., considering moving the robot’s elbow while maintaining the transducer pose, the cumulative over-lap was reduced to 16% to 18% and was 3% to 6% lower than for the best individual pose. Conclusion: Our results indicate that it is possible to identify feasible ultrasound transducer poses and to use the kinematic redundancy of a 7 DOF robot to minimize the impact of the imaging subsystem on the feasible beam directions for ultrasound guided and motion compensated SBRT. Research partially funded by DFG grants ER 817/1-1 and SCHL 1844/3-1.« less
Low-Pressure Gas Effects on the Potency of an Electron Beam Against Ceramic Cloth
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C. K.; Zimmerman, F. R.; Fragomeni, J. M.
1999-01-01
An 8-kv electron beam with a current in the neighborhood of 100 mA from the Ukrainian space welding "Universal Hand Tool" (UHT) burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1,427 C. The burnthrough time was on the order of 8 scc at standoff distances between UHT and cloth ranging from 6-24 in. At both closer (2 in.) and farther (48 in.) standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high-voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.
Marin, E.; Raubenhaimer, T.; Welch, J.; ...
2017-06-13
In this study we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e¯ -beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e +, e¯ and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulatormore » section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.« less
NASA Astrophysics Data System (ADS)
Marin, E.; Raubenhaimer, T.; Welch, J.; White, G.
2017-09-01
In this paper we investigate the power deposition along the undulator section of the SLAC Linac Coherent Light Source (LCLS) due to the primary e--beam but also due to potential secondary particles. The expected beam distribution after the LCLS injector is deliberately broadened as an approximated representation of the beam halo. Secondary particles, as e+, e- and photons, are generated as a result of tracking the intercepted beam through a dense material. This process is carried out by means of GEANT-4, which has been convoluted into our main tracking engine, LUCRETIA. Simulations show no losses along the undulator section when assuming the nominal primary beam and collimator gaps. However when opening the gaps of collimators located at the first collimator section, by 25%, the fattened beam is partially intercepted by the second collimator section, which is aligned to the undulators. Secondary particles, mostly photons generated at the second collimator section, deposit their energy along the undulator section, at a rate of the order of a milliwatt.
Method for removing tilt control in adaptive optics systems
Salmon, Joseph Thaddeus
1998-01-01
A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)
Wall-interference corrections for parachutes in a closed wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Buffington, R.J.
1989-01-01
An extensive test program was conducted to gather information on wall-interference effects for parachutes in closed wind tunnels. Drag area and base pressure measurements were made for a set of ribbon parachutes of 7%, 15% and 30% geometric porosity in six different wind tunnels, covering a range of geometric blockages from two to thirty-five percent. The resulting data have been used to formulate and validate approximate blockage correction equations based on the theory of Maskell. The corrections are applicable to single parachutes and clusters of two and three parachutes. 8 refs., 7 figs., 1 tab.
Cryogenic thermal diode heat pipes
NASA Technical Reports Server (NTRS)
Alario, J.
1979-01-01
The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.
Accounting for partiality in serial crystallography using ray-tracing principles
Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet
2015-01-01
Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography. PMID:26327370
The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions
NASA Technical Reports Server (NTRS)
Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.
1989-01-01
The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.
Ion related problems for the XLS ring
NASA Astrophysics Data System (ADS)
Bozoki, Eva S.; Halama, Henry
1991-10-01
The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.
Second Harmonic Generation of Unpolarized Light
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.
2017-11-01
A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.
Effect of ion compensation of the beam space charge on gyrotron operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.
In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less
Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies
NASA Astrophysics Data System (ADS)
Chang, Jing; Gao, Yixian; Li, Yong
2015-05-01
Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.
2011-04-01
some similarities to the far- field (i.e. atmospheric ) propagation, but due to the interactions between turbulence length scales, beam wavelengths...equivalently, phase differences, have been used to characterize the beam distortion caused by the unsteady turbulent flow field. A Partially-Averaged Navier...A., Wang, M., and Moin, P., “Computational Study of Aero-Optical Distortion by Turbulent Wake,” AIAA Paper 2005-4655. [11] Mani, A., Wang, M., and
Leijte, Joost A P; van der Ploeg, Iris M C; Valdés Olmos, Renato A; Nieweg, Omgo E; Horenblas, Simon
2009-03-01
The reliability of sentinel node biopsy is dependent on the accurate visualization and identification of the sentinel node(s). It has been suggested that extensive metastatic involvement of a sentinel node can lead to blocked inflow and rerouting of lymph fluid to a "neo-sentinel node" that may not yet contain tumor cells, causing a false-negative result. However, there is little evidence to support this hypothesis. Recently introduced hybrid SPECT/CT scanners provide both tomographic lymphoscintigraphy and anatomic detail. Such a scanner enabled the present study of the concept of tumor blockage and rerouting of lymphatic drainage in patients with palpable groin metastases. Seventeen patients with unilateral palpable and cytologically proven metastases in the groin underwent bilateral conventional lymphoscintigraphy and SPECT/CT before sentinel node biopsy of the contralateral groin. The pattern of lymphatic drainage in the 17 palpable groin metastases was evaluated for signs of tumor blockage or rerouting. On the CT images, the palpable node metastases could be identified in all 17 groins. Four of the 17 palpable node metastases (24%) showed uptake of radioactivity on the SPECT/CT images. In 10 groins, rerouting of lymphatic drainage to a neo-sentinel node was seen; one neo-sentinel node was located in the contralateral groin. A complete absence of lymphatic drainage was seen in the remaining 3 groins. The concept of tumor blockage and rerouting was visualized in 76% of the groins with palpable metastases. Precise physical examination and preoperative ultrasound with fine-needle aspiration cytology may identify nodes with considerable tumor invasion at an earlier stage and thereby reduce the incidence of false-negative results.
NASA Astrophysics Data System (ADS)
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Development and Applications of a Stage Stacking Procedure
NASA Technical Reports Server (NTRS)
Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.
2012-01-01
The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.
Kir Channel Blockages by Proflavine Derivatives via Multiple Modes of Interaction.
Inanobe, Atsushi; Itamochi, Hideaki; Kurachi, Yoshihisa
2018-06-01
Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K + (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors. Copyright © 2018 by The Author(s).
Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan
2016-11-01
We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.
NASA Astrophysics Data System (ADS)
Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek
2018-02-01
A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
Bland, David M.; Bosio, Christopher F.; Jarrett, Clayton O.
2017-01-01
Background Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next time they feed. This early-phase transmission resembles mechanical transmission in some respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia pestis forms a biofilm in the proventricular valve in the flea foregut. The biofilm can impede and sometimes completely block the ingestion of blood, resulting in regurgitative transmission of bacteria into the bite site. In this study, we compared the relative efficiency of the two modes of transmission for Xenopsylla cheopis, a flea known to become completely blocked at a high rate, and Oropsylla montana, a flea that has been considered to rarely develop proventricular blockage. Methodology/Principal findings Fleas that took an infectious blood meal containing Y. pestis were maintained and monitored for four weeks for infection and proventricular blockage. The number of Y. pestis transmitted by groups of fleas by the two modes of transmission was also determined. O. montana readily developed complete proventricular blockage, and large numbers of Y. pestis were transmitted by that mechanism both by it and by X. cheopis, a flea known to block at a high rate. In contrast, few bacteria were transmitted in the early phase by either species. Conclusions A model system incorporating standardized experimental conditions and viability controls was developed to more reliably compare the infection, proventricular blockage and transmission dynamics of different flea vectors, and was used to resolve a long-standing uncertainty concerning the vector competence of O. montana. Both X. cheopis and O. montana are fully capable of transmitting Y. pestis by the proventricular biofilm-dependent mechanism. PMID:28081130
NASA Astrophysics Data System (ADS)
Cifelli, R.; Chen, H.; Chandrasekar, V.
2017-12-01
A recent study by the State of California's Department of Water Resources has emphasized that the San Francisco Bay Area is at risk of catastrophic flooding. Therefore, accurate quantitative precipitation estimation (QPE) and forecast (QPF) are critical for protecting life and property in this region. Compared to rain gauge and meteorological satellite, ground based radar has shown great advantages for high-resolution precipitation observations in both space and time domain. In addition, the polarization diversity shows great potential to characterize precipitation microphysics through identification of different hydrometeor types and their size and shape information. Currently, all the radars comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) network are operating in dual-polarization mode. Enhancement of QPE is one of the main considerations of the dual-polarization upgrade. The San Francisco Bay Area is covered by two S-band WSR-88D radars, namely, KMUX and KDAX. However, in complex terrain like the Bay Area, it is still challenging to obtain an optimal rainfall algorithm for a given set of dual-polarization measurements. In addition, the accuracy of rain rate estimates is contingent on additional factors such as bright band contamination, vertical profile of reflectivity (VPR) correction, and partial beam blockages. This presentation aims to improve radar QPE for the Bay area using advanced dual-polarization rainfall methodologies. The benefit brought by the dual-polarization upgrade of operational radar network is assessed. In addition, a pilot study of gap fill X-band radar performance is conducted in support of regional QPE system development. This paper also presents a detailed comparison between the dual-polarization radar-derived rainfall products with various operational products including the NSSL's Multi-Radar/Multi-Sensor (MRMS) system. Quantitative evaluation of various rainfall products is achieved using rainfall measurements from a validation gauge network, which shows that new dual-polarization methods can produce better QPE, and the X-band radar has excellent potential to augment WSR-88D for rainfall monitoring in this region.
An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang
2015-11-15
The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% aremore » obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.« less
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters
Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu
2017-01-01
Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624
Method for Fabricating Composite Structures Using Continuous Press Forming
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.
NASA Astrophysics Data System (ADS)
Xu, Min; Bian, Po; Wu, Yuejin; Yu, Zengliang
2008-04-01
A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations. tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility. a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis. b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later). c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.
Accounting for partiality in serial crystallography using ray-tracing principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.
Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialitiesmore » based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Miaw-Sheue; Shamon-Taylor, Lisa A.; Mehmi, Inderjit
The growth factor Heregulin (HRG) is expressed in 30% of breast cancer tumors. HRG induces tumorigenicity and metastasis of breast cancer cells. Our investigation into whether blockage of HRG reduces the aggressiveness of breast cancer cells demonstrated that transfection of MDA-MB-231 with an HRG antisense cDNA suppressed proliferation, tumorigenicity, and metastasis. Blockage of the aggressive phenotype is mediated possibly through inactivation of the erbB signaling pathways and a decrease in MMP-9 activity. Our study is the first to report that HRG is a key promoter of breast cancer progression and should be deemed as a potential target in developing therapiesmore » for the treatment of breast carcinomas.« less
NASA Technical Reports Server (NTRS)
Herriot, John G
1947-01-01
Theoretical blockage corrections are presented for a body of revolution and for a three-dimensional unswept wing in a circular or rectangular wind tunnel. The theory takes account of the effects of the wake and of the compressibility of the fluid, and is based on the assumption that the dimensions of the model are small in comparison with those of the tunnel throat. Formulas are given for correcting a number of the quantities, such as dynamic pressure and Mach number, measured in wind-tunnel tests. The report presents a summary and unification of the existing literature on the subject.
Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing
NASA Astrophysics Data System (ADS)
Rasuo, Bosko
The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.
NASA Technical Reports Server (NTRS)
Carson, G. T., Jr.; Midden, R. E.
1976-01-01
Tests of a full scale hypersonic research engine (HRE) were conducted in the hypersonic tunnel facility at Mach numbers of 5, 6, and 7. Since the HRE would cause a rather high blockage (48.83 percent of the nozzle area), subscale tests were conducted in various available small wind tunnels prior to the full scale tests to study the effects of model blockage on tunnel starting. The results of the Mach 4 subscale tests which utilized a model system at 0.0952 scale which simulated the HRE in the test section of the tunnel are presented. A satisfactory tunnel starting could not be achieved by varying the free jet length or diffuser size nor by inserting the model into the test stream after tunnel starting. However, the installation of a shroud around the HRE model allowed the tunnel to start with the model preset in the tunnel at a tunnel stagnation pressure to atmospheric exit pressure ratio of 13.4. The simulation of the discharge of instrumentation cooling water and the addition of test hardware at the aft end of the HRE model did not have a significant effect on the tunnel starting.
A study of the complications of small bore 'Seldinger' intercostal chest drains.
Davies, Helen E; Merchant, Shairoz; McGown, Anne
2008-06-01
Use of small bore chest drains (<14F), inserted via the Seldinger technique, has increased globally over the last few years. They are now used as first line interventions in most acute medical situations when thoracostomy is required. Limited data are available on the associated complications. In this study, the frequency of complications associated with 12F chest drains, inserted using the Seldinger technique, was quantified. A retrospective case note audit was performed of consecutive patients requiring pleural drainage over a 12-month period. One hundred consecutive small bore Seldinger (12F) chest drain insertions were evaluated. Few serious complications occurred. However, 21% of the chest drains were displaced ('fell out') and 9% of the drains became blocked. This contributed to high morbidity rates, with 13% of patients requiring repeat pleural procedures. The frequency of drain blockage in pleural effusion was reduced by administration of regular normal saline drain flushes (odds ratio for blockage in flushed drains compared with non-flushed drains 0.04, 95% CI: 0.01-0.37, P < 0.001). Regular chest drain flushes are advocated in order to reduce rates of drain blockage, and further studies are needed to determine optimal fixation strategies that may reduce associated patient morbidity.
Zhang, L; Wei, Z; Liu, P
1998-12-01
To analyze the various factors in an in vitro fertilization and embryo transfer (IVF-ET) program which may affect the clinical pregnacy rate. A retrospective study was done on 559 IVF-ET cycles from 1992-Nov. 1995. The indication for treatment was bilateral tubal blockage. The chi 2 analysis of single factor variants with SPSS-PC + V3.0 was used for statistics. The overall clinical pregnancy rate in 559 cycles was 21.6%. The cause of tubal blockage due to tuberculoses consisted of 28.4%, and 34.9% of secondary sterility had the history of artificial abortion. The changes of environment, the different causes of tubal blockage, the history of previous intrauterine pregnancy did not affect the clinical pregnancy rate. When the number of embryos transferred increased to 5, the clinical pregnancy rate was highest 32.5%. The cumulative embryo score or embryo quality was related significantly with clinical pregnancy rate. The number and quality of embryos transferred are important factors affecting the clinical pregnancy rate. However, measures to prevent high-order multiple pregnancy and studies on the survival potential of embryos besides their morphology should be emphasized.
Monte Carlo simulation of the mixed alkali effect with cooperative jumps
NASA Astrophysics Data System (ADS)
Habasaki, Junko; Hiwatari, Yasuaki
2000-12-01
In our previous works on molecular dynamics (MD) simulations of lithium metasilicate (Li2SiO3), it has been shown that the long time behavior of the lithium ions in Li2SiO3 has been characterized by the component showing the enhanced diffusion (Lévy flight) due to cooperative jumps. It has also been confirmed that the contribution of such component decreases by interception of the paths in the mixed alkali silicate (LiKSiO3). Namely, cooperative jumps of like ions are much decreased in number owing to the interception of the path for unlike alkali-metal ions. In the present work, we have performed a Monte Carlo simulation using a cubic lattice in order to establish the role of the cooperative jumps in the transport properties in a mixed alkali glass. Fixed particles (blockage) were introduced instead of the interception of the jump paths for unlike alkali-metal ions. Two types of cooperative motions (a pull type and a push type) were taken into account. Low-dimensionality of the jump path caused by blockage resulted in a decrease of a diffusion coefficient of the particles. The effect of blockage is enhanced when the cooperative motions were introduced.
Clinical application of hysteroscopic hydrotubation for unexplained infertility in the mare.
Inoue, Y; Sekiguchi, M
2017-11-07
Therapeutic techniques for oviductal obstruction in the mare are limited. Nonsurgical and retrograde flushing may be an attractive alternative to current treatment methods for oviductal blockage. To evaluate hysteroscopic selective hydrotubation as a treatment option for presumptive equine oviductal blockage. Retrospective case series. A quantity of 10 mL of saline was flushed through the oviducts in 28 standing sedated mares, which had reproductive histories of unexplained subfertility, by inserting a catheter into the uterotubal junction under endoscopic guidance. All mares in the study had been mated through several cycles (2-20 oestrous cycles) by known fertile stallions prior to treatment, with no evidence of conception. The average number of cycles for each mare prior to treatment was 6.5 ± 4.5. Saline was successfully infused into a total of 50 oviducts. Of 28 mares, 26 conceived after the treatment. The average number of cycles for each mare to become pregnant after treatment was 1.8 ± 0.8. Diagnosis of blocked oviducts was presumptive, and pretreatment infertility was used as the control. This study revealed that hysteroscopic hydrotubation using saline improved pregnancy rates in mares in which oviductal blockage was suspected as a cause of unexplained subfertility. © 2017 EVJ Ltd.
Cholesterol blocks spontaneous insertion of membrane proteins into liposomes of phosphatidylcholine.
Nakamura, Shota; Suzuki, Sonomi; Saito, Hiroaki; Nishiyama, Ken-Ichi
2018-04-01
Spontaneous insertion of membrane proteins into liposomes formed from Escherichia coli polar phospholipids is blocked by diacylglycerol (DAG) at a physiological level. We found that cholesterol also blocks this spontaneous insertion, although a much larger amount is necessary for sufficient blockage. Reversely, sphingomyelin enhanced the spontaneous insertion. DAG at a physiological level was found not to block spontaneous insertion into liposomes formed from phosphatidylcholine (PC), while non-physiologically high concentrations of DAG reduced it. On the other hand, cholesterol blocked the spontaneous insertion into PC liposomes at a physiological level, explaining that both PC and cholesterol are absent in E. coli. While sphingomyelin did not enhance spontaneous insertion into PC liposomes, the effect of cholesterol on blockage of spontaneous insertion was dominant over that of sphingomyelin, suggesting that cholesterol functions as a blocker of disordered spontaneous insertion in eukaryotic cells. Lower amount of cholesterol was necessary to block spontaneous insertion into ER-mimic liposomes, explaining that ER membranes contain less amount of cholesterol. These results also explain that cholesterol, but not DAG, is involved in blockage of spontaneous insertion in eukaryotic cells, since DAG plays an important role as a second messenger in signal transduction.
Local blockage of EMMPRIN impedes pressure ulcers healing in a rat model.
Zhao, Xi-Lan; Luo, Xiao; Wang, Ze-Xin; Yang, Guo-Li; Liu, Ji-Zhong; Liu, Ya-Qiong; Li, Ming; Chen, Min; Xia, Yong-Mei; Liu, Jun-Jie; Qiu, Shu-Ping; Gong, Xiao-Qing
2015-01-01
Excessive extracellular matrix degradation caused by the hyperfunction of matrix metalloproteinases (MMPs) has been implicated in the failure of pressure ulcers healing. EMMPRIN, as a widely expressed protein, has emerged as an important regulator of MMP activity. We hypothesize that EMMPRIN affects the process of pressure ulcer healing by modulating MMP activity. In the rat pressure ulcer model, the expression of EMMPRIN in ulcers detected by Western blot was elevated compared with that observed in normal tissue. To investigate the role of EMMPRIN in regulating ulcer healing, specific antibodies against EMMPRIN were used via direct administration on the pressure ulcer. Local blockage of EMMPRIN resulted in a poor ulcer healing process compared with control ulcers, which was the opposite of our expectation. Furthermore, inhibiting EMMPRIN minimally impacted MMP activity. However, the collagen content in the pressure ulcer was reduced in the EMMPRIN treated group. Angiogenesis and the expression of angiogenic factors in pressure ulcers were also reduced by EMMPRIN local blockage. The results in the present study indicate a novel effect of EMMPRIN in the regulation of pressure ulcer healing by controlling the collagen contents and angiogenesis rather than MMPs activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG,H.; AHRENS, L.; BAI, M.
Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.
DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.
Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji
2016-03-01
Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.
A new solution procedure for a nonlinear infinite beam equation of motion
NASA Astrophysics Data System (ADS)
Jang, T. S.
2016-10-01
Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.
Quantitative precipitation estimation for an X-band weather radar network
NASA Astrophysics Data System (ADS)
Chen, Haonan
Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz) radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, the National Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after five years operation have demonstrated the success of CASA program. Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting, the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-resolution radar QPE is one of the major research activities conducted by the CASA community. A radar specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity (Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam blockage and hail contamination. The performance of the CASA QPE system is validated and evaluated by using rain gauges. In CASA's Integrated Project 1 (IP1) test bed in Southwestern Oklahoma, a network of 20 rainfall gauges is used for cross-comparison. 40 rainfall cases, including severe, multicellular thunderstorms, squall lines and widespread stratiform rain, that happened during years 2007 - 2011, are used for validation and evaluation purpose. The performance scores illustrate that the CASA QPE system is a great improvement compared to the current state-of-the-art. In addition, the high-resolution CASA QPE products such as instantaneous rainfall rate map and hourly rainfall amount measurements can serve as a reliable input for various distributed hydrological models. The CASA QPE system can save lived and properties from hazardous flash floods by incorporating hydraulic and hydrologic models for flood monitoring and warning.
Method for removing tilt control in adaptive optics systems
Salmon, J.T.
1998-04-28
A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.
NASA Astrophysics Data System (ADS)
Bilanych, V.; Komanicky, V.; Lacková, M.; Feher, A.; Kuzma, V.; Rizak, V.
2015-10-01
We observe the change of surface relief on amorphous Ge-As-Se thin films after irradiation with an electron beam. The beam softens the glass and induces various topological surface changes in the irradiated area. The film relief change depends on the film thickness, deposited charge, and film composition. Various structures are formed: Gausian-like cones, extremely sharp Taylor cones, deep craters, and craters with large spires grown on the side. Our investigation shows that these effects can be at least partially a result of electro-hydrodynamic material flow, but the observed phenomena are likely more complex. When we irradiated structural patterns formed by the electron beam with a red laser beam, we could not only fully relax the produced patterns, but also form very complex and intricate superstructures. These organized meso- and nano-scale structures are formed by a combination of photo-induced structural relaxation, light interference on structures fabricated by the e-beam, and photo-induced material flow.
Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate
NASA Astrophysics Data System (ADS)
Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.
2017-09-01
Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.
NASA Astrophysics Data System (ADS)
Devyatkov, V. N.; Koval, N. N.
2018-01-01
The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.
Conduit Processes Driving Pre-explosive Harmonic Tremor in the 2009 Redoubt Volcano Eruption
NASA Astrophysics Data System (ADS)
Summers, P.; Dunham, E. M.
2013-12-01
During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor was observed before many vulcanian explosions. Though harmonic tremor is relatively common at volcanoes, the high fundamental frequency of these tremors (up to 30 Hz) is unique and of particular interest. Hotovec et al. (JVGR, 2013) linked this tremor to rapidly repeating magnitude ~1 earthquakes located a few kilometers beneath the vent. These events might be occurring as brittle failure of the magma or as slip along the margins of an obstruction within the conduit. Using a frictional faulting model, Dmitrieva et al. (Nature Geoscience, 2013) converted the seismicity and tremor signals into an estimate of the history of shear stresses acting on the fault surface and causing slip. Stressing rates increased, in a nonlinear manner, from less than 1 MPa/s to about 20 MPa/s over the final ten minutes before the explosions. Here we investigate what conduit processes could plausibly be responsible for such high stressing rates. One possibility is that a blockage develops in the conduit prior to each explosion, perhaps from a crystal-rich magma plug or collapse of the conduit walls. This obstacle temporarily prevents upward flow of magma, while deeper influx from below thus compresses and pressurizes magma in the conduit beneath the blockage. This compression largely occurs between the base of the obstruction and the H2O exsolution depth, which petrologic estimates of volatile content and standard solubility laws suggest is nominally located about a kilometer or two deeper than the blockage. We solve the unsteady conduit flow equations (mass and momentum balance for a compressible, viscous mixture of gas and liquid). Gas exsolution is treated with Henry's law, and in our present models exsolution begins abruptly below a critical pressure. No flow is permitted past the blockage and the system is driven by steady influx at depth. We find that as magma accumulates within the conduit beneath the blockage, pressure on the base of the obstruction (which, through force balance, is proportional to shear stress on its margins) rises in a nonlinear manner. This is because the effective compressibility of the system decreases as the exsolution depth rises in response to increasing pressure. Preliminarily results suggest that this model can reproduce the nonlinear increase toward the very high stressing rates inferred from the seismicity and tremor data, without requiring additional temporal variations in magma influx rate. In the coming months, we plan to compare predicted volumes of magma accumulated in the pre-explosive period with estimates of erupted volume in each explosion. Additional constraints might also be placed on our model using geodetic deformation observations. We also plan to extend our modeling into the explosion phase itself, by rapidly removing the blockage to allow explosive depressurization of the magma column. That will provide predictions of exit velocities at the vent that could be compared with estimates from plume heights and related observations.
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman
2013-01-01
Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.
Peach leaf responses to soil and cement dust pollution.
Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G
2015-10-01
Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.
Chen, Yu; Nie, Huang; Tian, Li; Tong, Li; Yang, Lujia; Lao, Ning; Dong, Hailong; Sang, Hanfei; Xiong, Lize
2013-02-01
Nicotine has been reported to exert certain protective effect in the Parkinson's and Alzheimer's diseases. Whether it has a similar action in focal cerebral ischemia was unclear. In the present study, rats received either an injection of (-)-nicotine hydrogen tartrate salt (1.2 mg/kg, i.p.) or the vehicle 2 h before the 120 min middle cerebral artery occlusion. Neurological deficits and histological injury were assessed at 24 h after reperfusion. The content of endocannabinoids and the expression of cannabinoid receptor CB1 in brain tissues were determined at different time points after nicotine administration. Results showed that nicotine administration ameliorated neurological deficits and reduced infarct volume induced by cerebral ischemia in the rats. The neuroprotective effect was partially reversed by CB1 blockage. The content of the endocannabinoids N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as the expression of cannabinoid receptor CB1 were up-regulated in brain tissues after nicotine delivery. These results suggest that endogenous cannabinoid system is involved in the nicotine-induced neuroprotection against transient focal cerebral ischemia.
The measurement of the stacking fault energy in copper, nickel and copper-nickel alloys
NASA Technical Reports Server (NTRS)
Leighly, H. P., Jr.
1982-01-01
The relationship of hydrogen solubility and the hydrogen embrittlement of high strength, high performance face centered cubic alloys to the stacking fault energy of the alloys was investigated. The stacking fault energy is inversely related to the distance between the two partial dislocations which are formed by the dissociation of a perfect dislocation. The two partial dislocations define a stacking fault in the crystal which offers a region for hydrogen segregation. The distance between the partial dislocations is measured by weak beam, dark field transmission electron microscopy. The stacking fault energy is calculated. Pure copper, pure nickel and copper-nickel single crystals are used to determine the stacking fault energy.
Characteristics of steady vibration in a rotating hub-beam system
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M
2013-10-01
The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. Copyright © 2013. Published by Elsevier SAS.
Li, Y; Zhong, R; Wang, X; Ai, P; Henderson, F; Chen, N; Luo, F
2017-04-01
To test if active breath control during cone-beam computed tomography (CBCT) could improve planning target volume during accelerated partial breast radiotherapy for breast cancer. Patients who were more than 40 years old, underwent breast-conserving dissection and planned for accelerated partial breast irradiation, and with postoperative staging limited to T1-2 N0 M0, or postoperative staging T2 lesion no larger than 3cm with a negative surgical margin greater than 2mm were enrolled. Patients with lobular carcinoma or extensive ductal carcinoma in situ were excluded. CBCT images were obtained pre-correction, post-correction and post-treatment. Set-up errors were recorded at left-right, anterior-posterior and superior-inferior directions. The differences between these CBCT images, as well as calculated radiation doses, were compared between patients with active breath control or free breathing. Forty patients were enrolled, among them 25 had active breath control. A total of 836 CBCT images were obtained for analysis. CBCT significantly reduced planning target volume. However, active breath control did not show significant benefit in decreasing planning target volume margin and the doses of organ-at-risk when compared to free breathing. CBCT, but not active breath control, could reduce planning target volume during accelerated partial breast irradiation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam
NASA Astrophysics Data System (ADS)
Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa
2017-08-01
In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.
Discovering New Light States at Neutrino Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Rouven; /SLAC; Harnik, Roni
2011-08-11
Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less
Photon mirror acceleration in the quantum regime
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Fedele, R.
2014-12-01
Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numericallymore » using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.« less
Minimization of vibration in elastic beams with time-variant boundary conditions
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, Mingjun
1992-01-01
This paper presents an innovative method for minimizing the vibration of structures with time-variant boundary conditions (supports). The elastic body is modeled in two ways: (1) the first model is a letter seven type beam with a movable mass not to exceed the lower tip; (2) the second model has an arm that is a hollow beam with an inside mass with adjustable position. The complete solutions to both problems are carried out where the body is undergoing large rotation. The quasi-static procedure is used for the time-variant boundary conditions. The method developed employs partial differential equations governing the motion of the beam, including the effects of rigid-body motion, time-variant boundary conditions, and calculus of variations. The analytical solution is developed using Laplace and Fourier transforms. Examples of elastic robotic arms are given to illustrate the effectiveness of the methods developed.
Kinetic description of electron beams in the solar chromosphere
NASA Technical Reports Server (NTRS)
Gomez, Daniel O.; Mauas, Pablo J.
1992-01-01
We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-10-01
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Loffroy, Romaric; Lin, MingDe; Yenokyan, Gayane; Rao, Pramod P.; Bhagat, Nikhil; Noordhoek, Niels; Radaelli, Alessandro; Blijd, Järl; Liapi, Eleni
2013-01-01
Purpose: To investigate whether C-arm dual-phase cone-beam computed tomography (CT) performed during transcatheter arterial chemoembolization (TACE) with doxorubicin-eluting beads can help predict tumor response at 1-month follow-up in patients with hepatocellular carcinoma (HCC). Materials and Methods: This prospective study was compliant with HIPAA and approved by the institutional review board and animal care and use committee. Analysis was performed retrospectively on 50 targeted HCC lesions in 29 patients (16 men, 13 women; mean age, 61.9 years ± 10.7) treated with TACE with drug-eluting beads. Magnetic resonance (MR) imaging was performed at baseline and 1 month after TACE. Dual-phase cone-beam CT was performed before and after TACE. Tumor enhancement at dual-phase cone-beam CT in early arterial and delayed venous phases was assessed retrospectively with blinding to MR findings. Tumor response at MR imaging was assessed according to European Association for the Study of the Liver (EASL) guidelines. Two patients were excluded from analysis because dual-phase cone-beam CT scans were not interpretable. Logistic regression models for correlated data were used to compare changes in tumor enhancement between modalities. The radiation dose with dual-phase cone-beam CT was measured in one pig. Results: At 1-month MR imaging follow-up, complete and/or partial tumor response was seen in 74% and 76% of lesions in the arterial and venous phases, respectively. Paired t tests used to compare images obtained before and after TACE showed a significant reduction in tumor enhancement with both modalities (P < .0001). The decrease in tumor enhancement seen with dual-phase cone-beam CT after TACE showed a linear correlation with MR findings. Estimated correlation coefficients were excellent for first (R = 0.89) and second (R = 0.82) phases. A significant relationship between tumor enhancement at cone-beam CT after TACE and complete and/or partial tumor response at MR imaging was found for arterial (odds ratio, 0.95; 95% confidence interval [CI]: 0.91, 0.99; P = .023) and venous (odds ratio, 0.96; 95% CI: 0.93, 0.99; P = .035) phases with the multivariate logistic regression model. Radiation dose for two dual-phase cone-beam CT scans was 3.08 mSv. Conclusion: Intraprocedural C-arm dual-phase cone-beam CT can be used immediately after TACE with doxorubicin-eluting beads to predict HCC tumor response at 1-month MR imaging follow-up. © RSNA, 2012 PMID:23143027
... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive ...
Numerical scheme approximating solution and parameters in a beam equation
NASA Astrophysics Data System (ADS)
Ferdinand, Robert R.
2003-12-01
We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.
Cosine-Gaussian Schell-model sources.
Mei, Zhangrong; Korotkova, Olga
2013-07-15
We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.
Tunable cavity resonator including a plurality of MEMS beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah
A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.
Interaction of waves under diffraction on coupling of two Bragg grating with close characteristics
NASA Astrophysics Data System (ADS)
Bodyanchuk, I.; Galushko, Yu.; Galushko, Ye.; Glebov, L.; Mokhun, I.; Mokhun, O.; Turubarova-Leunova, N.; Smirnov, V.; Viktorovskaya, Yu.
2018-01-01
The possibility of formation of the beam with edge dislocation, which is similar to the TE01(10) beam is considered. It is shown that such mode may be obtained due to the diffraction of plane wave on the complex Bragg hologram, constructed as composition of two grating recorded on the same place of registration media. These partial holograms are implemented as the gratings with constant period and close characteristics. The conditions of such operation are formulated. The experimental results are presented.
2015-10-01
stiffness, or a partial snap with lower yield force and stiffness (Figure 4). Three dimensional micro CT analysis around fracture Figure 3. (a-b... fractures with plate fixation on both sides and irradiation on the left while the contralateral limb serves as a non-radiated internal control. The...AWARD NUMBER: W81XWH-13-1-0430 TITLE: Optimal Treatment of Malignant Long Bone Fracture : Influence of Method of Repair and External Beam
Focused Ion Beam Microscopy of ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.
2005-01-01
Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].
77 FR 24178 - Information Systems Technical Advisory Committee; Notice of Partially Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... and Introductions 2. Working Group Reports 3. Industry Presentation: E-beam Lithography 4. Industry Presentation: ENC Threshold for Satellite Modem 5. Industry Presentation: Semiconductor Manufacturing Equipment... DEPARTMENT OF COMMERCE Bureau of Industry and Security Information Systems Technical Advisory...
Generation of a spin-polarized electron beam by multipole magnetic fields.
Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico
2014-03-01
The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. Copyright © 2013 Elsevier B.V. All rights reserved.
Slot-grating flat lens for telecom wavelengths.
Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J
2014-07-01
We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.
Control of flexible beams using a free-free active truss
NASA Technical Reports Server (NTRS)
Clark, W. W.; Kimiavi, B.; Robertshaw, H. H.
1989-01-01
An analytical and experimental study involving controlling flexible beams using a free-free active truss is presented. This work extends previous work in controlling flexible continua with active trusses which were configured with fixed-free boundary conditions. The following describes the Lagrangian approach used to derive the equations of motion for the active truss and the beams attached to it. A partial-state feedback control law is derived for this system based on a full-state feedback Linear Quadratic Regulator method. The analytical model is examined via numerical simulations and the results are compared to a similar experimental apparatus described herein. The results show that control of a flexible continua is possible with a free-free active truss.
Mahrous, Ahmed I; Aldawash, Hussien A; Soliman, Tarek A; Banasr, Fahad H; Abdelwahed, Ahmed
2015-01-01
Background: This study was conducted to compare and evaluate the effect of two different attachments (locator attachment and ball and socket [B&S] attachment) on implants and natural abutments supporting structures, in cases of limited inter-arch spaces in mandibular Kennedy Class I implant supported removable partial over dentures by measuring the bone height changes through the cone beam radiographic technology. Materials and Methods: Two implants were positioned in the first or second molar area following the two-stage surgical protocol. Two equal groups were divided ten for each: Group I: Sides were the placed implants restored by the locator attachment. Group II: The other sides, implants were restored by B&S attachment. Evaluation of the implants and main abutments supporting structures of each group was done at the time of removable partial over denture insertion, 6, 12 and 18 months by measuring the bone height changes using cone beam computed tomography. Results: Implants with locator attachment showed marginal bone height better effects on implants and main abutments supporting structures. Conclusion: Implants restored by locator attachment shows better effects on bone of both main natural abutments and implant than those restored with ball and socket. PMID:26028894
Phase holograms in PMMA with proximity effect correction
NASA Technical Reports Server (NTRS)
Maker, Paul D.; Muller, R. E.
1993-01-01
Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.
Familial combined hyperlipidemia
... as smoking. Alternative Names Multiple lipoprotein-type hyperlipidemia Images Coronary artery blockage Healthy diet References Genest J, Libby P. Lipoprotein disorders and cardiovascular disease. In: ...
Investigation of very low blockage ratio boattail models in the Langley 16-foot transonic tunnel
NASA Technical Reports Server (NTRS)
Reubush, D. E.
1976-01-01
An investigation at an angle of attack of 0 deg was conducted in a 16 foot transonic tunnel at Mach numbers from 0.4 to 1.05 to determine the limits in Mach number at which valid boattail pressure drag data may be obtained with very low blockage ratio bodies. Extreme care was exercised when examining any data taken at subsonic Mach numbers very near 1.0 and lower than the supersonic Mach number at which shock reflections miss the model. Boattail pressure coefficient distributions did not indicate any error, but when integrated boattail pressure drag data was plotted as a function of Mach number, data which were in error were identified.
Pressure recovery performance of conical diffusers at high subsonic Mach numbers
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Runstadler, P. W., Jr.
1973-01-01
The pressure recovery performance of conical diffusers has been measured for a wide range of geometries and inlet flow conditions. The approximate level and location (in terms of diffuser geometry of optimum performance were determined. Throat Mach numbers from low subsonic (m sub t equals 0.2) through choking (m sub t equals 1.0) were investigated in combination with throat blockage from 0.03 to 0.12. For fixed Mach number, performance was measured over a fourfold range of inlet Reynolds number. Maps of pressure recovery are presented as a function of diffuser geometry for fixed sets of inlet conditions. The influence of inlet blockage, throat Mach number, and inlet Reynolds number is discussed.
Microscale Waste Heat Driven Cooling System
2012-05-02
Concept Slow, expensive, one‐at‐a‐time process Nickel Brazing Lower Cost Method Can braze 50 – 200 in single furnace run (vs 1 – 2 using Diffusion Bonding...Potential Use of Continuous Belt‐Type Furnace Nickel Brazing Technical Issues Micro channel size reduction and/or blockage Amount of Alloy...Pressure Tightness vs. Channel Blockage Alloy Application: Spray, Plating, Foil Furnace Temperature and Heat/Cool Rates Sustainable Products for a
2015-01-01
Background. The aims of this study were to investigate the ridge contour anterior to the nasopalatine canal, and the difference between the incidences of the nasopalatine canal perforation in dentate and partially edentulous patients by cone-beam computed tomography. Methods. Cone-beam computed tomography scan images from 72 patients were selected from database and divided into dentate and partially edentulous groups. The configuration of the ridge anterior to the canal including palatal concavity depth, palatal concavity height, palatal concavity angle, bone height coronal to the incisive foramen, and bone width anterior to the canal was measured. A virtual implant placement procedure was used, and the incidences of perforation were evaluated after implant placement in the cingulum position with the long axis along with the designed crown. Results. Comparing with variable values from dentate patients, the palatal concavity depth and angle were greater by 0.9 mm and 4°, and bone height was shorter by 1.1 mm in partially edentulous patients, respectively. Bone width in edentulous patients was narrower than in dentate patients by 1.2 mm at incisive foramen level and 0.9 mm at 8 mm subcrestal level, respectively. After 72 virtual cylindrical implants (4.1 × 12 mm) were placed, a total of 12 sites (16.7%) showed a perforation and three-fourths occurred in partially edentulous patients. After replacing with 72 tapered implants (4.3 × 13 mm), only 6 implants (8.3%) broke into the canal in the partially edentulous patient group. Conclusions. The nasopalatine canal may get close to the implant site and the bone width anterior to the canal decreases after the central incisor extraction. The incidence of nasopalatine canal perforation may occur more commonly during delayed implant placement in central incisor missing patients. PMID:26557434
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Kolosov, Valerii V.
2003-04-01
The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Nanopore sensing of individual transcription factors bound to DNA
Squires, Allison; Atas, Evrim; Meller, Amit
2015-01-01
Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509
Wu, Qin; Sun, Jin-Xia; Song, Xiang-He; Wang, Jing; Xiong, Cun-Quan; Teng, Fei-Xiang; Gao, Cui-Xiang
2017-09-01
Dendrite ramification affects synaptic strength and plays a crucial role in memory. Previous studies revealed a correlation between beta 2-adrenergic receptor dysfunction and Alzheimer's disease (AD), although the mechanism involved is still poorly understood. The current study investigated the potential effect of the selective β 2 -adrenergic receptor antagonist, ICI 118551 (ICI), on Aβ deposits and AD-related cognitive impairment. Morris water maze test results demonstrated that the performance of AD-transgenic (TG) mice treated with ICI (AD-TG/ICI) was significantly poorer compared with NaCl-treated AD-TG mice (AD-TG/NaCl), suggesting that β 2 -adrenergic receptor blockage by ICI might reduce the learning and memory abilities of mice. Golgi staining and immunohistochemical staining revealed that blockage of the β 2 -adrenergic receptor by ICI treatment decreased the number of dendritic branches, and ICI treatment in AD-TG mice decreased the expression of hippocampal synaptophysin and synapsin 1. Western blot assay results showed that the blockage of β 2 -adrenergic receptor increased amyloid-β accumulation by downregulating hippocampal α-secretase activity and increasing the phosphorylation of amyloid precursor protein. These findings suggest that blocking the β 2 -adrenergic receptor inhibits dendrite ramification of hippocampal neurons in a mouse model of AD.
Nanopore sensing of individual transcription factors bound to DNA
NASA Astrophysics Data System (ADS)
Squires, Allison; Atas, Evrim; Meller, Amit
2015-06-01
Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.
Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism
Moreno-Fernandez, Maria E.; Rueda, Cesar Mauricio; Rusie, Laura K.
2011-01-01
We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte–associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome. PMID:21436067
Wu, Qin; Sun, Jin-xia; Song, Xiang-he; Wang, Jing; Xiong, Cun-quan; Teng, Fei-xiang; Gao, Cui-xiang
2017-01-01
Dendrite ramification affects synaptic strength and plays a crucial role in memory. Previous studies revealed a correlation between beta 2-adrenergic receptor dysfunction and Alzheimer's disease (AD), although the mechanism involved is still poorly understood. The current study investigated the potential effect of the selective β2-adrenergic receptor antagonist, ICI 118551 (ICI), on Aβ deposits and AD-related cognitive impairment. Morris water maze test results demonstrated that the performance of AD-transgenic (TG) mice treated with ICI (AD-TG/ICI) was significantly poorer compared with NaCl-treated AD-TG mice (AD-TG/NaCl), suggesting that β2-adrenergic receptor blockage by ICI might reduce the learning and memory abilities of mice. Golgi staining and immunohistochemical staining revealed that blockage of the β2-adrenergic receptor by ICI treatment decreased the number of dendritic branches, and ICI treatment in AD-TG mice decreased the expression of hippocampal synaptophysin and synapsin 1. Western blot assay results showed that the blockage of β2-adrenergic receptor increased amyloid-β accumulation by downregulating hippocampal α-secretase activity and increasing the phosphorylation of amyloid precursor protein. These findings suggest that blocking the β2-adrenergic receptor inhibits dendrite ramification of hippocampal neurons in a mouse model of AD. PMID:29089997
Hu, Di; Zou, Hui; Han, Tao; Xie, Junze; Dai, Nannan; Zhuo, Liling; Gu, Jianhong; Bian, Jianchun; Yuan, Yan; Liu, Xuezhong; Liu, Zongping
2016-03-01
Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca(2+) concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18β-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells.
NASA Astrophysics Data System (ADS)
Prasanna Kumar, S. S.; Patnaik, B. S. V.; Ramamurthi, K.
2018-04-01
The mitigation of blast waves propagating in air and interacting with rigid barriers and obstacles is numerically investigated using the mesh-free smoothed particle hydrodynamics method. A novel virtual boundary particle procedure with a skewed gradient wall boundary treatment is applied at the interfaces between air and rigid bodies. This procedure is validated with closed-form solutions for strong and weak shock reflection from rigid surfaces, supersonic flows over a wedge, formation of reflected, transverse, and Mach stem shocks, and also earlier experiments on interaction of a blast wave with concrete blocks. The mitigation of the overpressure and impulse transmitted to the protected structure due to an array of rigid obstacles of different shapes placed in the path of the blast wave is thereafter determined and discussed in the context of the existing experimental and numerical studies. It is shown that blockages having the shape of a right facing triangle or square placed in tandem or staggered provide better mitigation. The influence of the distance between the blockage array and protected structure is assessed, and the incorporation of a gap in the blockages is shown to improve the mitigation. The mechanisms responsible for the attenuation of air blast are identified through the simulations.
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Kolekar, Nitin
2015-11-01
The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.
Design and dosimetry of small animal radiation facilities
NASA Astrophysics Data System (ADS)
Rodriguez, Manuel R.
The aim of this work was to develop an irradiation system for radiobiology studies. We designed a novel image-guided micro-irradiator capable of partial-body zebrafish embryo irradiation. The radiation source is a 50 kV photon beam from a miniature x-ray source (Xoft Inc., CA). The source is inserted in a cylindrical brass collimator, 3 cm in diameter and 3 cm in length. The collimator has a 1 mm-diameter pinhole along the longitudinal axis, which provides a well-focused beam with a sharp penumbra. A photodiode is installed at one exit of the pinhole collimator to monitor the photon dose rate. The source with the collimator is attached under a movable table. A video camera, connected to the computer, is placed above the movable table to record position of the specimens in relation to the pinhole collimator. The captured images are analyzed, and the relative distances between the specimens and the pinhole are calculated. The coordinates are sent to the computer-controlled movable table to accurately position the specimens in the beam. Monte Carlo simulations were performed to characterize dosimetric properties of the system, to determine dosimetric sensitivity, and to help in the design. The image-guidance and high precision of the movable table enable very accurate specimen position. The beam monitoring system provides accurate, fast and easy dose determination. Portability and self-shielding make this system suitable for any radiobiology laboratory. This novel micro-irradiator is appropriate for partial irradiation of zebrafish embryos; however its potential use is much wider like irradiation of cell cultures or other small specimens.
Zhang, Dong; Ma, Qingyong; Wang, Zheng; Zhang, Min; Guo, Kun; Wang, Fengfei; Wu, Erxi
2011-11-26
Smoking and stress, pancreatic cancer (PanCa) risk factors, stimulate nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.
Draganic, I N
2016-02-01
Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H(-) Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H(-) ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H(-) beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H(-) ions on molecular hydrogen (H2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H(-) ion beam in the ISTS beam transport line.
Tellez, Jason A; Schmidt, Jason D
2011-08-20
The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying. © 2011 Optical Society of America
Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J
2015-11-06
The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Dipanjan; Rankin, Joanna M., E-mail: dmitra@ncra.tifr.res.in, E-mail: Joanna.Rankin@uvm.edu
2011-02-01
Lyne and Manchester identified a group of some 50 pulsars they called 'partial cones' which they found difficult to classify and interpret. They were notable for their asymmetric average profiles and asymmetric polarization position angle (PPA) traverses, wherein the steepest gradient (SG) point fell toward one edge of the total intensity profile. Over the last two decades, this population of pulsars has raised cautions regarding the core/cone model of the radio pulsar emission beam which implies a high degree of order, symmetry, and geometric regularity. In this paper, we reinvestigate this population 'partial cone' pulsars on the basis of newmore » single pulse polarimetric observations of 39 of them, observed with the Giant Meterwave Radio Telescope in India and the Arecibo Observatory in Puerto Rico. These highly sensitive observations help us to establish that most of these 'partial cones' exhibit a core/cone structure just as did the 'normal' pulsars studied in the earlier papers of this series. In short, we find that many of these 'partial cones' are partial in the sense that the emission above different areas of their polar caps can be (highly) asymmetric. However, when studied closely we find that their emission geometries are overall identical to a core/double cone structure encountered earlier-that is, with specific conal dimensions scaling as the polar cap size. Further, the 'partial cone' population includes a number of stars with conal single profiles that are asymmetric at meter wavelengths for unknown reasons (e.g., like those of B0809+74 or B0943+10). We find that aberration-retardation appears to play a role in distorting the core/cone emission-beam structure in rapidly rotating pulsars. We also find several additional examples of highly polarized pre- and postcursor features that do not appear to be generated at low altitude but rather at high altitude, far from the usual polar flux tube emission sites of the core and conal radiation.« less
... or fidgeting Bluish color to the skin ( cyanosis ) Changes in consciousness Choking Confusion Difficulty breathing , gasping for air, leading to panic Unconsciousness Wheezing , crowing, whistling, or other ...
Nonlinear model of a rotating hub-beams structure: Equations of motion
NASA Astrophysics Data System (ADS)
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
Ma, Mingying; Wang, Xiangzhao; Wang, Fan
2006-11-10
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.
Rega, Giuseppe
2016-01-01
The nonlinear free oscillations of a straight planar Timoshenko beam are investigated analytically by means of the asymptotic development method. Attention is focused for the first time, to the best of our knowledge, on the nonlinear coupling between the axial and the transversal oscillations of the beam, which are decoupled in the linear regime. The existence of coupled and uncoupled motion is discussed. Furthermore, the softening versus hardening nature of the backbone curves is investigated in depth. The results are summarized by means of behaviour charts that illustrate the different possible classes of motion in the parameter space. New, and partially unexpected, phenomena, such as the changing of the nonlinear behaviour from softening to hardening by adding/removing the axial vibrations, are highlighted. PMID:27436974
Observation of an optical spring with a beam splitter.
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beam splitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beam splitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Parametric study of beam refraction problems across laser anemometer windows
NASA Technical Reports Server (NTRS)
Owen, A. K.
1986-01-01
The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cyclinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the R-theta plane of the lens. A number of empirical correlations were deduced to aid the interested reader in determining the movement, uncrossing, and change in crossing angle for a particular situation.
A parametric study of the beam refraction problems across laser anemometer windows
NASA Technical Reports Server (NTRS)
Owen, Albert K.
1986-01-01
The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cylinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the r-theta plane of the lens. A number of empirical correlations were deduced to aid the reader in determining the movement, uncrossing, and change in crossing angle for a particular situations.
Two-photon absorption induced stimulated Rayleigh-Bragg scattering
NASA Astrophysics Data System (ADS)
He, Guang S.; Prasad, Paras N.
2005-01-01
A frequency-unshifted and backward stimulated scattering can be efficiently generated in one-photon-absorption free but two-photon absorbing materials. Using a number of novel two-photon absorbing dye solutions as the scattering media and nanosecond pulsed laser as the pump beams, a highly directional backward stimulated scattering at the exact pump wavelength can be readily observed once the pump intensity is higher than a certain threshold level. The spectral and spatial structures as well as the temporal behavior and optical phase-conjugation property of this new type of backward stimulated scattering have been experimentally studied. This stimulated scattering phenomenon can be explained by using a model of two-photon-excitation enhanced standing-wave Bragg grating initially formed by the strong forward pump beam and much weaker backward Rayleigh scattering beam; the partial reflection of the pump beam from this grating provides an positive feedback to the initial backward Rayleigh scattering beam without suffering linear attenuation influence. Comparing to other known stimulated (Raman, Brillouin, Rayleigh-wing, and Kerr) scattering effects, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no frequency-shift, low pump threshold, and low spectral linewidth requirement.
NASA Astrophysics Data System (ADS)
Tang, Miaomiao; Zhao, Daomu; Li, Xinzhong; Wang, Jingge
2018-01-01
Recently, we introduced a new class of radially polarized beams with multi-cosine Gaussian Schell-model(MCGSM) correlation function based on the partially coherent theory (Tang et al., 2017). In this manuscript, we extend the work to study the statistical properties such as the spectral density, the degree of coherence, the degree of polarization, and the state of polarization of the beam propagating in isotropic turbulence with a non-Kolmogorov power spectrum. Analytical formulas for the cross-spectral density matrix elements of a radially polarized MCGSM beam in non-Kolmogorov turbulence are derived. Numerical results show that lattice-like intensity pattern of the beam, which keeps propagation-invariant in free space, is destroyed by the turbulence when it passes at sufficiently large distances from the source. It is also shown that the polarization properties are mainly affected by the source correlation functions, and change in the turbulent statistics plays a relatively small effect. In addition, the polarization state exhibits self-splitting property and each beamlet evolves into radially polarized structure upon propagation.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F.G., E-mail: mitri@chevron.com
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to anmore » equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.« less
Lower gastrointestinal series; Lower GI series; Colorectal cancer - lower GI series; Colorectal cancer - barium enema; Crohn disease - lower GI series; Crohn disease - barium enema; Intestinal blockage - lower GI series; Intestinal ...
... Policy Notice of Privacy Practices Notice of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not ...
Effects of fuel-injector design on ultra-lean combustion performance
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1981-01-01
Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.
An Optimized Online Verification Imaging Procedure for External Beam Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, David J., E-mail: David.Willis@petermac.or; Royal Melbourne Institute of Technology University, Melbourne, Victoria; Kron, Tomas
2011-07-01
The purpose of this study was to evaluate the capabilities of a kilovoltage (kV) on-board imager (OBI)-equipped linear accelerator in the setting of on-line verification imaging for external-beam partial breast irradiation. Available imaging techniques were optimized and assessed for image quality using a modified anthropomorphic phantom. Imaging dose was also assessed. Imaging techniques were assessed for physical clearance between patient and treatment machine using a volunteer. Nonorthogonal kV image pairs were identified as optimal in terms of image quality, clearance, and dose. After institutional review board approval, this approach was used for 17 patients receiving accelerated partial breast irradiation. Imagingmore » was performed before every fraction verification with online correction of setup deviations >5 mm (total image sessions = 170). Treatment staff rated risk of collision and visibility of tumor bed surgical clips where present. Image session duration and detected setup deviations were recorded. For all cases, both image projections (n = 34) had low collision risk. Surgical clips were rated as well as visualized in all cases where they were present (n = 5). The average imaging session time was 6 min, 16 sec, and a reduction in duration was observed as staff became familiar with the technique. Setup deviations of up to 1.3 cm were detected before treatment and subsequently confirmed offline. Nonorthogonal kV image pairs allowed effective and efficient online verification for partial breast irradiation. It has yet to be tested in a multicenter study to determine whether it is dependent on skilled treatment staff.« less
Ion related problems for the XLS ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozoki, E.; Halama, H.
1989-07-11
The electron beam in the XLS will collide with the residual gas in the vacuum chamber. The positive ions will be trapped in the potential well of the electron beam. They will perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions will lead to partial or total neutralization of the beam, causing both, a decrease of life-time and a change in the vertical tunes as well as an increase in the tune-spread. They can also cause coherent transverse instabilities. The degree of neutralization {theta} that one canmore » tolerate, is primarily determined by the allowable tune shift, which of the XLS is between 1 and 5 10{sup {minus}3}. Electrostatic clearing electrodes will be used to keep the neutralization below the desired limit. In order to determine their location and the necessary clearing-rate and voltage, we examine the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles to see what distance the ions can travel without clearing before the neutralization of the beam reaches the prescribed limit, beam potential to see the locations of the potential wells, voltage requirements for ion clearing, critical mass for ion capture in the bunched beam, tune shift caused by neutralization of the beam, pressure rise due to the trapped ions and power dissipation due to beam image current. 13 refs., 3 figs., 4 tabs.« less
... most often found when a person has an upper gastrointestinal (GI) endoscopy or colonoscopy for another reason. Rarely, these tumors can cause bleeding, blockage or rupture of the intestines If this ...
Preoperative single fraction partial breast radiotherapy for early-stage breast cancer.
Palta, Manisha; Yoo, Sua; Adamson, Justus D; Prosnitz, Leonard R; Horton, Janet K
2012-01-01
Several recent series evaluating external beam accelerated partial breast irradiation (PBI) have reported adverse cosmetic outcomes, possibly related to large volumes of normal tissue receiving near-prescription doses. We hypothesized that delivery of external beam PBI in a single fraction to the preoperative tumor volume would be feasible and result in a decreased dose to the uninvolved breast compared with institutional postoperative PBI historical controls. A total of 17 patients with unifocal Stage T1 breast cancer were identified. Contrast-enhanced subtraction magnetic resonance images were loaded into an Eclipse treatment planning system and used to define the target volumes. A "virtual plan" was created using four photon beams in a noncoplanar beam arrangement and optimized to deliver 15 Gy to the planning target volume. The median breast volume was 1,713 cm(3) (range: 1,014-2,140), and the median clinical target volume was 44 cm(3) (range: 26-73). In all cases, 100% of the prescription dose covered 95% of the clinical target volume. The median conformity index was 0.86 (range: 0.70-1.12). The median percentage of the ipsilateral breast volume receiving 100% and 50% of the prescribed dose was 3.8% (range: 2.2-6.9) and 13.3% (range: 7.5-20.8) compared with 18% (range: 3-42) and 53% (range: 24-65) in the institutional historical controls treated with postoperative external beam PBI (p = .002). The median maximum skin dose was 9 Gy. The median dose to 1 and 10 cm(3) of skin was 6.7 and 4.9 Gy. The doses to the heart and ipsilateral lung were negligible. Preoperative PBI resulted in a substantial reduction in ipsilateral breast tissue dose compared with postoperative PBI. The skin dose appeared reasonable, given the small volumes. A prospective Phase I trial evaluating this technique is ongoing. Copyright © 2012 Elsevier Inc. All rights reserved.
Kashani, Fatemeh Dabbagh; Yousefi, Masoud
2016-08-10
In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
NASA Astrophysics Data System (ADS)
Lu, Yuan; Katz, Joseph; Prosperetti, Andrea
2013-07-01
In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line holography. Variations in the water density and refractive index are used for determining the spatial distribution of the acoustic pressure nonintrusively. Several cavitation phenomena occur within the acoustic partially standing wave caused by the reflection of sound from the walls of the test chamber. At all sound levels, bubbly layers form in the periphery of the focal zone in the pressure nodes of the partial standing wave. At high sound levels, clouds of vapor microbubbles are generated and migrate in the direction of the acoustic beam. Both the cloud size and velocity vary periodically, with the diameter peaking at the pressure nodes and velocity at the antinodes. A simple model involving linearized bubble dynamics, Bjerknes forces, sound attenuation by the cloud, added mass, and drag is used to predict the periodic velocity of the bubble cloud, as well as qualitatively explain the causes for the variations in the cloud size. The analysis shows that the primary Bjerknes force and drag dominate the cloud motion, and suggests that the secondary Bjerknes force causes the oscillations in the cloud size.
NASA Astrophysics Data System (ADS)
Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI
2017-05-01
Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η →2 γ and η →3 π0→6 γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1 /2). It is absent for reactions with parallel spin orientation (σ3 /2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them withLegendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P11 and S11 partial waves to explain the narrow structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Joo; Park, So-Hyun; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul
2013-10-01
The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dosemore » homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue.« less
NASA Astrophysics Data System (ADS)
McDaniel, S.; Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; Grinyer, G. F.; Ratkiewicz, A.; Weisshaar, D.
2012-01-01
Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: Our purpose is to add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of γ-ray-tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to fp-shell nuclei. Methods: Inclusive and partial cross sections were measured for the 12C(48Cr,49Mn+γ)X and 12C(50Fe,51Co+γ)X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-γ spectroscopy at the National Superconducting Cyclotron Laboratory. The results are compared to reaction theory calculations using fp-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on 9Be targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-ℓ orbitals being strongly favored, driven by linear and angular momentum matching. Conclusion: Carbon-target-induced pickup reactions are well suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.
First neutral beam injection experiments on KSTAR tokamak.
Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M
2012-02-01
The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.
So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim
2016-08-01
The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.
Collimation testing using slit Fresnel diffraction
NASA Astrophysics Data System (ADS)
Luo, Xiaohe; Hui, Mei; Wang, Shanshan; Hou, Yinlong; Zhou, Siyu; Zhu, Qiudong
2018-03-01
A simple collimation testing method based on slit Fresnel diffraction is proposed. The method needs only a CMOS and a slit with no requirement in dimensional accuracy. The light beam to be tested diffracts across the slit and forms a Fresnel diffraction pattern received by CMOS. After analysis, the defocusing amount and the distance between the primary peak point and secondary peak point of diffraction pattern fulfill an expression relationship and then the defocusing amount can be deduced from the expression. The method is applied to both the coherent beam and partially coherent beam, and these two beams are emitted from a laser and light-emitting diode (LED) with a spectrum width of about 50 nm in this paper. Simulations show that the wide spectrum of LED has the effect of smooth filtering to provide higher accuracy. Experiments show that the LED with a spectrum width of about 50 nm has a lower limitation error than the laser and can achieve up to 58.1601 μm with focal length 200 mm and slit width 15 mm.
Thermoelectric phonon-glass electron-crystal via ion beam patterning of silicon
NASA Astrophysics Data System (ADS)
Zhu, Taishan; Swaminathan-Gopalan, Krishnan; Stephani, Kelly; Ertekin, Elif
2018-05-01
Ion beam irradiation has recently emerged as a versatile approach to functional materials design. We show in this work that patterned defective regions generated by ion beam irradiation of silicon can create a phonon-glass electron-crystal (PGEC), a long-standing goal of thermoelectrics. By controlling the effective diameter of and spacing between the defective regions, molecular dynamics simulations suggest a reduction of the thermal conductivity by a factor of ˜20 is achievable. Boltzmann theory shows that the thermoelectric power factor remains largely intact in the damaged material. To facilitate the Boltzmann theory, we derive an analytical model for electron scattering with cylindrical defective regions based on partial-wave analysis. Together we predict a figure of merit of Z T ≈0.5 or more at room temperature for optimally patterned geometries of these silicon metamaterials. These findings indicate that nanostructuring of patterned defective regions in crystalline materials is a viable approach to realize a PGEC, and ion beam irradiation could be a promising fabrication strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim-Reinders, S; University of Toronto, Department of Physics; Keller, B
Purpose: Hypofractionated partial breast irradiation (HPBI) is being used at our clinic to treat inoperable breast cancer patients who have advanced disease. We are investigating how these patients could benefit from being treated in an MRI-linac, where real-time daily MRI tumor imaging and plan adaptation would be possible. As a first step, this study evaluates the dosimetric impact of the magnetic field for different radiation beam geometries on relevant OARs. Methods: Five patients previously treated using HPBI were selected. Six treatment plans were generated for each patient, evaluating three beam geometries (VMAT, IMRT, 3DCRT) with and without B{sub 0}=1.5 T.more » The Monaco TPS was used with the Elekta MRI-Linac beam model, where the magnetic field is orthogonal to the radiation beam. All plans were re-scaled to the same isocoverage with a prescription of 40Gy/5 to the PTV. Plans were evaluated for the effect of the magnetic field and beam modality on skin V{sub 3} {sub 0}, lung V{sub 2} {sub 0} and mean heart dose. Results: Averaged over all patients, skin V{sub 3} {sub 0}for 3DCRT was higher than VMAT and IMRT (by +22% and +21%, with B{sub 0}-ON). The magnetic field caused larger increases in skin V{sub 3} {sub 0}for 3DCRT (+8%) than VMAT (+3%) and IMRT (+4%) compared with B{sub 0}-OFF. With B{sub 0}-ON, 3DCRT had a markedly lower mean heart dose than VMAT (by 538cGy) and IMRT (by 562cGy); for lung V{sub 2} {sub 0}, 3DCRT had a marginally lower dose than VMAT (by −2.2%) and IMRT (also −2.2%). The magnetic field had minimal effect on the mean heart dose and lung V{sub 2} {sub 0} for all geometries. Conclusion: The decreased skin dose in VMAT and IMRT can potentially mitigate the effects of skin reactions for HPBI in an MRI-linac. This study illustrated that more beam angles may result in lower skin toxicity and better tumor conformality, with the trade-off of elevated heart and lung doses. We are receiving funding support from Elekta.« less
Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice
NASA Astrophysics Data System (ADS)
Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas
2017-01-01
Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.
Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David; Schoenenberger, Mark
2017-01-01
A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.
Hemangiopericytoma arising from the wall of the urinary bladder.
Kibar, Y; Uzar, A I; Erdemir, F; Ozcan, A; Coban, H; Seckin, B
2006-01-01
Hemangiopericytoma (HPC) arising from within the urinary bladder is exceptionally rare. A 45-year-old man having the symptoms of left groin pain, vague suprapubic discomfort and frequency was admitted to our clinic. Pelvic tomography revealed a tumor in the bladder wall measuring 4 x 3 cm and was not clearly distinct from the lower abdominal wall. Partial cystectomy was performed and the histopathological examination confirmed the hemangiopericytoma. Three thousand rad exterior beam irradiation was performed after operation. Partial cystectomy and adjuvant radiotherapy may be a simple and effective alternative operation for the patient with HPC.
Ott, Oliver J; Strnad, Vratislav; Stillkrieg, Wilhelm; Uter, Wolfgang; Beckmann, Matthias W; Fietkau, Rainer
2017-01-01
To evaluate the feasibility and efficacy of external beam three-dimensional (3D) conformal accelerated partial breast irradiation (APBI) for selected patients with early breast cancer. Between 2011 and 2016, 72 patients were recruited for this prospective phase 2 trial. Patients were eligible for APBI if they had histologically confirmed breast cancer or pure ductal carcinoma in situ (DCIS), a tumor diameter ≤3 cm, clear resection margins ≥2 mm, no axillary lymph node involvement, no distant metastases, tumor bed clips, and were aged ≥50 years. Patients were excluded if mammography showed a multicentric invasive growth pattern, or if they had residual diffuse microcalcifications postoperatively, an extensive intraductal component, or vessel invasion. Patients received 3D conformal external beam APBI with a total dose of 38 Gy in 10 fractions in 1-2 weeks. The trial had been registered at the German Clinical Trials Register, DRKS-ID: DRKS00004417. Median follow-up was 25.5 months (range 1-61 months). Local control was maintained in 71 of 72 patients. The 3‑year local recurrence rate was 2.1% (95% confidence interval, CI: 0-6.1%). Early toxicity (grade 1 radiodermatitis) was seen in 34.7% (25/72). Late side effects ≥ grade 3 did not occur. Cosmetic results were rated as excellent/good in 96.7% (59/61). APBI with external beam radiotherapy techniques is feasible with low toxicity and, according to the results of the present and other studies, on the way to becoming a standard treatment option for a selected subgroup of patients.
... injuries Infections Tumors EEG is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain ... Tissue death due to a blockage in blood flow (cerebral infarction) Drug or alcohol abuse Head injury ...
Analysis of the interaction of an electron beam with a solar cell. I. II
NASA Technical Reports Server (NTRS)
Von Roos, O.
1978-01-01
The short-circuit current generated by the electron beam of a scanning electron microscope when it impinges on the N-P junction of a solar cell is known to be dependent on the configuration used to investigate the cell's response, and the situation for one specific configuration is analyzed. This configuration is the case in which the highly collimated electron beam strikes the edge of a planar junction a variable distance away from the edge of the depletion layer. An earlier treatment is generalized to encompass the ohmic contact at the back surface. The analysis employing Fourier and Wiener-Hopf techniques shows that it is impractical to determine the bulk diffusion length of a solar cell by a SEM used in the studied configuration unless the ohmic contact is partially removed.
Vertical dynamic deflection measurement in concrete beams with the Microsoft Kinect.
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-02-19
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.
Vertical Dynamic Deflection Measurement in Concrete Beams with the Microsoft Kinect
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-01-01
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively. PMID:24556668
Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams
NASA Astrophysics Data System (ADS)
Xiang, S.; Kang, G. W.
2018-03-01
For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.
Perez, Liliana I; Echarri, Rodolfo M; Garea, María T; Santiago, Guillermo D
2011-03-01
This work shows that all first- and second-order nongeometric effects on propagation, total or partial reflection, and transmission can be understood and evaluated considering the superposition of two plane waves. It also shows that this description yields results that are qualitatively and quantitatively compatible with those obtained by Fourier analysis of beams with Gaussian intensity distribution in any type of interface. In order to show this equivalence, we start by describing the first- and second-order nongeometric effects, and we calculate them analytically by superposing two plane waves. Finally, these results are compared with those obtained for the nongeometric effects of Gaussian beams in isotropic interfaces and are applied to different types of interfaces. A simple analytical expression for the angular shift is obtained considering the transmission of an extraordinary beam in a uniaxial-isotropic interface.
... Prostate Enlargement (Benign Prostatic Hyperplasia) Urinary Diversion Urinary Retention Urine Blockage in Newborns Vesicoureteral Reflux (VUR) The ... Coordinating Committees Strategic Plans & Reports Research Areas FAQs Jobs at NIDDK Visit Us Contact Us News News ...
... Prostate Enlargement (Benign Prostatic Hyperplasia) Urinary Diversion Urinary Retention Urine Blockage in Newborns Vesicoureteral Reflux (VUR) The ... Coordinating Committees Strategic Plans & Reports Research Areas FAQs Jobs at NIDDK Visit Us Contact Us News News ...
... Prostate Enlargement (Benign Prostatic Hyperplasia) Urinary Diversion Urinary Retention Urine Blockage in Newborns Vesicoureteral Reflux (VUR) The ... Coordinating Committees Strategic Plans & Reports Research Areas FAQs Jobs at NIDDK Visit Us Contact Us News News ...
Ureteral retrograde brush biopsy
Biopsy - brush - urinary tract; Retrograde ureteral brush biopsy cytology; Cytology - ureteral retrograde brush biopsy ... should not be performed in people with a: Urinary tract infection Blockage at or below the biopsy site ...