Science.gov

Sample records for partial body ionizing

  1. Detection of partial-body exposure to ionizing radiation by the automatic detection of dicentrics.

    PubMed

    Vaurijoux, Aurelie; Gregoire, Eric; Roch-Lefevre, Sandrine; Voisin, Pascale; Martin, Cecile; Voisin, Philippe; Roy, Laurence; Gruel, Gaetan

    2012-10-01

    In accidental exposure to ionizing radiation, it is essential to estimate the dose received by the victims. Currently dicentric scoring is the best biological indicator of exposure. The standard biological dosimetry procedure (500 metaphases scored manually) is suitable for a few dose estimations, but the time needed for analysis can be problematic in the case of a large-scale accident. Recently, a new methodology using automatic detection of dicentrics has greatly decreased the time needed for dose estimation and preserves the accuracy of the estimation. However, the capability to detect nonhomogeneous partial-body exposures is an important advantage of dicentric scoring-based biodosimetry, and this remains to be tested with automatic scoring. Thus we analyzed the results obtained with in vitro blood dilutions and in real cases of accidental exposure (partial- or whole-body exposure) using manual scoring and automatic detection of dicentrics. We confirmed that automatic detection allows threefold quicker dicentric scoring than the manual procedure with similar dose estimations and uncertainty intervals. The results concerning partial-body exposures were particularly promising, and homogeneously exposed samples were correctly distinguished from heterogeneously exposed samples containing 5% to 75% of blood irradiated with 2 Gy. In addition, the results obtained for real accident cases were similar whatever the methodology used. This study demonstrates that automatic detection of dicentrics is a credible alternative for recent and acute cases of whole- and partial-body accidental exposures to ionizing radiation.

  2. Effects of dose and of partial body ionizing radiation on taste aversion learning in rats with lesions of the area postrema

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Lee, J. )

    1984-01-01

    The effect of area postrema lesions on the acquisition of a conditioned taste aversion following partial body exposure to ionizing radiation was investigated in rats exposed to head-only irradiation at 100, 200 and 300 rad or to body-only irradiation at 100 and 200 rad. Following head-only irradiation area postrema lesions produced a significant attenuation of the radiation-induced taste aversion at all dose levels, although the rats still showed a significant reduction in sucrose preference. Following body-only exposure, area postrema lesions completely disrupted the acquisition of the conditioned taste aversion. The results are interpreted as indicating that: (a) the acquisition of a conditioned taste aversion following body-only exposure is mediated by the area postrema; and (b) taste aversion learning following radiation exposure to the head-only is mediated by both the area postrema and a mechanism which is independent of the area postrema.

  3. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  4. Partially ionized plasmas, including the Third Symposium on Uranium Plasmas

    NASA Technical Reports Server (NTRS)

    Krishnan, M.

    1976-01-01

    Fundamentals of both electrically and fission generated plasmas are discussed. Research in gaseous fuel reactors using uranium hexafluoride is described and other partially ionized plasma applications are discussed.

  5. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  6. Equation of state for a partially ionized gas. II.

    PubMed

    Baker, George A

    2003-11-01

    The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. A spherical cellular model is deduced for the hot curve limit (or ideal Fermi gas). Next the Coulomb interactions are added to the spherical cellular model for general ionic charge Z. Then an independent electron model within a Z electron cell plus several many-body effects are employed. Numerical examples of the theory for several elements (H, Li, N, Na, K, Ni, Rb, Pd, Cs, and Er) are reported. These results reduce in various limits of temperature and density to the expected behavior. They display electron, localization-delocalization phase transitions of liquid-gas character. In the higher Z elements, a second possible critical point has been found. The critical pressure, electron density and temperature for the lower-density critical points seem to obey power laws as a function of Z.

  7. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  8. ONSET OF FAST MAGNETIC RECONNECTION IN PARTIALLY IONIZED GASES

    SciTech Connect

    Malyshkin, Leonid M.; Zweibel, Ellen G. E-mail: zweibel@astro.wisc.edu

    2011-10-01

    We consider quasi-stationary two-dimensional magnetic reconnection in a partially ionized incompressible plasma. We find that when the plasma is weakly ionized and the collisions between the ions and the neutral particles are significant, the transition to fast collisionless reconnection due to the Hall effect in the generalized Ohm's law is expected to occur at much lower values of the Lundquist number, as compared to a fully ionized plasma case. We estimate that these conditions for fast reconnection are satisfied in molecular clouds and in protostellar disks.

  9. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc E-mail: joseluis.ballester@uib.es

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  10. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  11. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  12. The role of partial ionization effects in the chromosphere

    PubMed Central

    Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    2015-01-01

    The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion–neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled

  13. The role of partial ionization effects in the chromosphere.

    PubMed

    Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    2015-05-28

    The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres

  14. Equation of state of partially ionized argon plasma

    SciTech Connect

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.

    2011-11-15

    The ionization degree, Hugoniots, and equation of state of partially ionized argon plasma were calculated by using self-consistent fluid variational theory for temperature of 6-50 kK and density of 0.05-4.0 g/cm{sup 3}. The corrections of lowering of ionization energy of fluid argon caused by the interactions among all particles of Ar, Ar{sup +}, Ar{sup 2+}, and e have been taken into consideration in terms of the correlation contributions to the chemical potential which is determined self-consistently by the free energy function. The initial density effects of gas argon under shock compression have been discussed. Comparison is performed with available shock-wave experiments and other theoretical calculations.

  15. RAYLEIGH-TAYLOR INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS

    SciTech Connect

    Diaz, A. J.; Ballester, J. L. E-mail: roberto.soler@wis.kuleuven.be

    2012-07-20

    We study the modification of the classical criterion for the linear onset and growing rate of the Rayleigh-Taylor instability (RTI) in a partially ionized plasma in the two-fluid description. The plasma is composed of a neutral fluid and an electron-ion fluid, coupled by means of particle collisions. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The limits of collisionless, no gravity, and incompressible fluids are checked before addressing the general case. We find that both compressibility and ion-neutral collisions lower the linear growth rate, but do not affect the critical threshold of the onset of the RTI. The configuration is always unstable when a lighter plasma is below a heavier plasma regardless the value of the magnetic field strength, the ionization degree, and the ion-neutral collision frequency. However, ion-neutral collisions have a strong impact on the RTI growth rate, which can be decreased by an order of magnitude compared to the value in the collisionless case. Ion-neutral collisions are necessary to accurately describe the evolution of the RTI in partially ionized plasmas such as prominences. The timescale for the development of the instability is much longer than in the classical incompressible fully ionized case. This result may explain the existence of prominence fine structures with life times of the order of 30 minutes. The timescales derived from the classical theory are about one order of magnitude shorter and incompatible with the observed life times.

  16. Alfvénic localized structures in partially ionized plasmas

    NASA Astrophysics Data System (ADS)

    Borhanian, Jafar; Rezaei, Arash

    2017-02-01

    The existence and dynamics of Alfvénic localized structures are investigated in partially ionized plasmas. We have employed the Hall magnetohydrodynamics model for partially ionized plasmas and shown that the evolution of a weakly nonlinear and weakly dispersive Alfvén wave is governed by a derivative nonlinear Schrödinger (DNLS) type equation. In the Hall effect domination limit, this equation reduces to a standard DNLS equation that possesses localized solutions in the form of solitons and rogue waves. The dependence of the profile of these structures on the Hall parameter is addressed. When the ohmic and ambipolar effects are small but finite in comparison to the Hall effect, the evolution equation takes the form of a perturbed DNLS equation. In this limit, the dynamics of envelope soliton solution is examined by means of the soliton perturbation method, the moment method, to be precise.

  17. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.es

    2009-07-10

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10{sup 4} K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  18. Equation of state of partially-ionized dense plasmas

    SciTech Connect

    Rogers, F.J.

    1989-09-28

    This paper describes methods for calculating the equation of state of partially-ionized dense plasmas. The term dense plasma is used rather than strongly coupled plasma, since it is possible that at plasma conditions such that only a few levels can be observed spectroscopically the plasma coupling parameters are not large. Due mainly to their importance in theoretical astrophysics, the properties of partially ionized plasmas have been of interest for a long while. More recently, this interest has intensified due to the development of methods for producing partially ionized plasmas in the laboratory. This has opened up large programs of experimental investigation and of practical application. In this paper we consider detailed statistical mechanical methods that explicitly treat the distribution over ionic species and their energy level structure. These detailed approaches are generally characterized as being in the chemical picture'' when a free energy expression is minimized or in the physical picture'' when the starting point is the grand canonical ensemble. 52 refs., 2 tabs.

  19. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  20. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.

    2011-01-15

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  1. Fluid description of multi-component solar partially ionized plasma

    SciTech Connect

    Khomenko, E. Collados, M.; Vitas, N.; Díaz, A.

    2014-09-15

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation.

  2. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  3. Runaway electrons in a fully and partially ionized nonideal plasma

    SciTech Connect

    Ramazanov, T.S.; Turekhanova, K.M.

    2005-10-01

    This paper reports on a study of electron runaway for a nonideal plasma in an external electric field. Based on pseudopotential models of nonideal fully and partially ionized plasmas, the friction force was derived as a function of electron velocities. Dependences of the electron free path on plasma density and nonideality parameters were obtained. The impact of the relative number of runaway electrons on their velocity and temperature was considered for classical and semiclassical models of a nonideal plasma. It has been shown that for the defined intervals of the coupled plasma parameter, the difference between the relative numbers of runaway electron values is essential for various plasma models.

  4. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  5. KELVIN-HELMHOLTZ INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS

    SciTech Connect

    Soler, R.; Goossens, M.; Diaz, A. J.; Ballester, J. L.

    2012-04-20

    The Kelvin-Helmholtz instability (KHI) has been observed in the solar atmosphere. Ion-neutral collisions may play a relevant role for the growth rate and evolution of the KHI in solar partially ionized plasmas such as in, e.g., solar prominences. Here, we investigate the linear phase of the KHI at an interface between two partially ionized magnetized plasmas in the presence of a shear flow. The effects of ion-neutral collisions and compressibility are included in the analysis. We obtain the dispersion relation of the linear modes and perform parametric studies of the unstable solutions. We find that, in the incompressible case, the KHI is present for any velocity shear regardless of the value of the collision frequency. In the compressible case, the domain of instability depends strongly on the plasma parameters, especially the collision frequency and the density contrast. For high collision frequencies and low density contrasts the KHI is present for super-Alfvenic velocity shear only. For high density contrasts the threshold velocity shear can be reduced to sub-Alfvenic values. For the particular case of turbulent plumes in prominences, we conclude that sub-Alfvenic flow velocities can trigger the KHI thanks to the ion-neutral coupling.

  6. The Effects of Partial Ionization on Prominence Mass Formation

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.; Olson, K.; DeVore, C. R.; Martinez Gomez, D.; Sokolov, I.

    2015-12-01

    The origin of the prominence mass has been an open question since this cool plasma suspended in the hot corona was first discovered. We have known for a long time that the mass must come from the chromosphere, but it is unclear whether this mass is lifted bodily through magnetic levitation, injected by reconnection-driven upflows, or driven from the chromosphere by evaporation and then condensed. One evaporation-condensation scenario, the thermal nonequilibrium (TNE) model, is the most fully developed, quantitative model for the prominence plasma to date. In the TNE scenario, localized heating concentrated at the coronal loop footpoints produces chromospheric evaporation, filling the flux tube with hot, dense plasma that subsequently collapses radiatively to form cool condensations. Thus far this model has been successful in explaining the key properties of the long, persistent threads and small, highly dynamic, transient blobs in prominences, the damping of large-amplitude field-aligned prominence oscillations, the appearance of horn-shaped features above the cool prominence in EUV images of coronal cavities, and coronal rain in the ambient corona. To date, all studies of TNE have assumed that the plasma is fully ionized, which is appropriate for the hot coronal gas but unrealistic for the cool plasma below ~30,000 K. The energetics, dynamics, and evolutionary time scales of the TNE process are expected to be altered when the effects of ionization and recombination are considered. We have modified ARGOS, our 1D hydrodynamic code with adaptive mesh refinement, to include an equation of state that accounts for the effects of partial ionization of the plasma over a wide range of temperatures and densities. We will discuss the results of these simulations and their comparison with our previous studies of TNE in typical filament-supporting flux tubes. This work was partially supported by NASA's LWS Strategic Capability program.

  7. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  8. Investigation of Partially Ionized Plasma Chemistry of Hydroxylammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Kidd, Forrest; Lemmer, Kristina

    2016-10-01

    Future space missions require an efficient and versatile method of propulsion. One possibility is the use of dual-mode-propulsion. Dual-mode-propulsion combines the high specific impulse of electric propulsion with the high thrust of chemical propulsion. However, to effectively implement dual-mode-propulsion a propellant that can be used in both electric and chemical propulsion is required. Ionic liquids are one class of propellants currently being investigated for their use in dual-mode-propulsion systems. Hydroxylammonium Nitrate (HAN) is the ionic liquid of interest in this study. HAN's chemistry and decomposition have been thoroughly investigated at pressures above atmospheric pressure; however, the chemistry of partially ionized HAN is not well understood. Ab-initio modelling is used to determine the chemistry of key ion-neutral reactions and to develop a reaction network for HAN plasma. Calculations using Density Functional Theory and Coupled Cluster Singles Doubles with approximate Triples corrections are performed. This will allow for accurate modelling of HAN's interaction with thruster components and prevent premature failure.

  9. Simulation of the Partially Ionized Negative Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey; Gatsonis, Nikolaos; Olson, Lynn

    2012-10-01

    A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. Neutral--neutral, ion-neutral, Coulomb collisions and charge-neutralizing collisions are implemented in U3DSMC using the no time counter method, electron-molecule collisions are treated by the constant timestep method. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.

  10. Transport properties of partially ionized and unmagnetized plasmas

    SciTech Connect

    Magin, Thierry E.; Degrez, Gerard

    2004-10-01

    This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are

  11. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  12. Kinetic theory of partially ionized complex (dusty) plasmas

    SciTech Connect

    Tsytovich, V.N.; De Angelis, U.; Ivlev, A.V.; Morfill, G.E.

    2005-08-15

    The general approach to the kinetic theory of complex (dusty) plasmas [Tsytovich and de Angelis, Phys. Plasmas 6, 1093 (1999)], which was formulated with the assumption of a regular (nonfluctuating) source of plasma particles, is reformulated to include ionization by electron impact on neutrals as the plasma source and the effects of collisions of ions and dust particles with neutrals.

  13. [Radon and ionizing radiation in the human body].

    PubMed

    Zdrojewicz, Zygmunt; Belowska-Bień, Kinga

    2004-03-08

    Spa health care became a medical discipline just as the development of other sciences created sufficient grounds for it. The basic and oldest method of spa treatment is balneotherapy. Among the medicinal waters, those with radon arouse the most controversy, these being the source of ionizing radiation. Radon is the one of the most important natural sources of radiation on earth. The exact mechanism of radon's effect on the human body is not completely understood. The hormesis theory is the best explanation of the advantageous biological effect of ionizing radiation in low doses. Radon significantly influences free oxygen radical transformations, nucleic acid repair, immunological processes, etc. It is a rare gas and does not react chemically with any compound in the body. It is known that radon is effective in treating chronic pain syndromes, endocrine disorders, and diseases of the circulatory and respiratory systems.

  14. HEATING OF THE MAGNETIZED SOLAR CHROMOSPHERE BY PARTIAL IONIZATION EFFECTS

    SciTech Connect

    Khomenko, E.; Collados, M.

    2012-03-10

    In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to deviations from the classical magnetohydrodynamic behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced by orders of magnitude due to the action of ambipolar diffusion, as compared with the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10-40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this idea.

  15. Application of the partial-Fourier-transform approach for tunnel ionization of molecules

    NASA Astrophysics Data System (ADS)

    Liu, Mingming; Liu, Yunquan

    2016-04-01

    Combining the partial-Fourier-transform approach with Wenzel-Kramers-Brillouin approximation, we theoretically study the strong-field tunneling ionization of diatomic and polyatomic molecules. First we obtain the analytical expression of momentum distribution at the tunnel exit of diatomic molecules, and then we calculate the alignment-dependent ionization rate at different laser intensities and internuclear distances. We show that the internuclear distance has a significant effect on the alignment dependence of the ionization rate. Using this approach, we can also separate the contributions of each atomic center and show the interference effect between them. Finally, we extend this method to a polyatomic molecule, benzene, as an example.

  16. TRIAGE DOSE ASSESSMENT FOR PARTIAL-BODY EXPOSURE: DICENTRIC ANALYSIS

    PubMed Central

    Moroni, Maria; Pellmar, Terry C.

    2009-01-01

    Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, physical signals in teeth and nails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the “Gold standard” of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited but improvements are in development. Our efforts bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties, based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2-Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. We tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Our preliminary results support the notion that this approach will

  17. nMHDust: A 4-Fluid Partially Ionized Dusty Plasma Code

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel

    2008-11-01

    nMHDust is a next generation 4-fluid partially ionized magnetized dusty plasma code, treating the inertial dynamics of dust, ion and neutral components. Coded in ANSI C, the numerical method is based on the MHDust 3-fluid fully ionized dusty plasma code. This code expands the features of the MHDust code to include ionization/recombination effects and the netCDF data format. Tests of this code include: ionization instabilities, wave mode propagation (electromagnetic and acoustic), shear-flow instabilities, and magnetic reconnection. Relevant parameters for the space environment are considered, allowing a comparison to be made with previous dusty plasma codes (MHDust and DENISIS). The utility of the code is expanded through the possibility of a small dust mass. This allows nMHDust to be used as a 2-ion plasma code. nMHDust completes the array of fluid dusty plasma codes available for numerical investigations into nonlinear phenomena in the field of astrophysical dusty plasmas.

  18. Equation of state for partially ionized carbon and oxygen mixtures at high temperatures

    SciTech Connect

    Massacrier, Gerard; Potekhin, Alexander Y.; Chabrier, Gilles

    2011-11-15

    The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3x10{sup 5} K < or approx. T < or approx. 3x10{sup 6} K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon [Potekhin, Massacrier, and Chabrier, Phys. Rev. E 72, 046402 (2005)]. The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.

  19. RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.e

    2009-12-10

    Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2-10 minutes) and being damped after a few periods. The observations are interpreted as kink magnetohydrodynamic (MHD) wave modes, whereas resonant absorption in the Alfven continuum and ion-neutral collisions are candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma.

  20. Taste aversions conditioned with partial body radiation exposures

    SciTech Connect

    Smith, J.C.; Hollander, G.R.; Spector, A.C. . Dept. of Psychology)

    1981-11-01

    Radiation-induced taste aversion was compared in rats which received partial body exposure to the head or abdomen with rats receiving whole body irradiation. Exposure levels ranged from 25 to 300 roentgens (R). In additional groups, saccharin aversion to partial body gamma ray exposures of the abdomen were conditioned in animals which had prior experience with the saccharin solution. Aversion was measured with a single-bottle short-term test, a 23-hour preference test and by the number of days taken to recover from the aversion. Whole-body exposure was most effective in conditioning the aversion, and exposure of the abdominal area was more effective than exposure to the head. Also, the higher the exposure, the stronger the aversion. Rats receiving prior experience with the saccharin did not condition as well as control rats with no prior saccharin experience. The possible role of radiation-induced taste aversion in human radiotherapy patients was discussed.

  1. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  2. The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.

  3. Spectral equation-of-state theory for dense, partially ionized matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Burke

    2005-07-01

    The Schrödinger equation is solved in time and space to implement a finite-temperature equation-of-state theory for dense, partially ionized matter. The time-dependent calculation generates a spectrum of quantum states. Eigenfunctions are calculated from a knowledge of the spectrum and used to calculate the electronic pressure and energy. Results are given for Be and LiD and compared with results from the INFERNO model [D. A. Liberman, Phys. Rev. B 20, 4981 (1979)].

  4. Basic results on the equations of magnetohydrodynamics of partially ionized inviscid plasmas

    SciTech Connect

    Nunez, Manuel

    2009-10-15

    The equations of evolution of partially ionized plasmas have been far more studied in one of their many simplifications than in its original form. They present a relation between the velocity of each species, plus the magnetic and electric fields, which yield as an analog of Ohm's law a certain elliptic equation. Therefore, the equations represent a functional evolution system, not a classical one. Nonetheless, a priori estimates and theorems of existence may be obtained in appropriate Sobolev spaces.

  5. Multifluid Modeling of the Partially Ionized Chromosphere with Effects of Impact Ionization, Radiative Recombination and Charge Exchange

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, D. S.; Alvarez Laguna, A.; Lani, A.

    2015-12-01

    driver to simulate the propagation of MHD waves in the partially ionized gravitationally stratified system.

  6. Hippocampal body changes in pure partial onset sleep and pure partial onset waking epileptic patients.

    PubMed

    Motamedi, Mahmood; Zandieh, Ali; Hajimirzabeigi, Alireza; Tahsini, Majid; Vakhshiteh, Fatemeh; Rahimian, Elham

    2013-09-01

    The aim of the current study was to evaluate for the first time the hippocampal changes in patients with pure sleep and pure waking epilepsy. A total of 35 patients with pure partial onset sleep epilepsy and 35 patients with pure partial onset waking epilepsy matched for age and sex ratio were enrolled. MR images were analyzed to determine hippocampal body changes. Rounding ratio of hippocampal body was defined as short axis divided by long axis and hippocampal bodies with ratios ≥ 0.70 were considered rounded. Hippocampal sclerosis and atrophy were found in nine (25.7 %) and seven (20.0 %) patients with pure sleep epilepsy, and in 12 (34.3 %) and 11 (31.4 %) patients with pure waking epilepsy, respectively (P > 0.05 for the comparison between sleep and waking epilepsy). However, proportion of subjects with rounded hippocampal bodies (15, 42.9 % vs. 3, 8.6 % for patients with sleep and waking epilepsy, respectively) and rounding ratios of both left and right hippocampal bodies (0.66 ± 0.13 and 0.61 ± 0.12, respectively for left and right hippocampal bodies in sleep epileptic patients vs. 0.57 ± 0.11 and 0.55 ± 0.11, respectively for left and right hippocampal bodies in waking epileptic patients) were increased in patients with sleep epilepsy (P < 0.05). Further, in sleep epileptic patients with left sided hippocampal body rounding, epileptiform discharges were more readily lateralized to the left temporal lobe (P < 0.05). In conclusion, hippocampal sclerosis and atrophy are not different between pure partial onset sleep and waking epileptic patients. However, rounding ratio and frequency of hippocampal body rounding are increased in sleep epileptic patients.

  7. Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis.

    PubMed

    Mizuno, Yuji; Fujita, Yukio; Takatama, Masamitsu; Okamoto, Koichi

    2011-03-15

    Peripherin is a type III intermediate filament protein expressed with low levels in spinal motor neurons. Amyotrophic lateral sclerosis (ALS) is characterized by the presence of Bunina bodies, skein-like inclusions, and Lewy body-like inclusions (LBLIs) in the remaining anterior horn cells, where the first and third structures are detected by Hematoxylin-Eosin (H & E) staining. We examined paraffin sections of lumbar spinal cords from six ALS patients, using H & E staining and immunostaining for human peripherin. The results demonstrated that there were a total of 73 anterior horn cells containing one or more Bunina bodies, and that twelve of these cells (approximately 16.4%) demonstrated peripherin-positive Bunina bodies. In fact, some part of chain-like Bunina bodies showed peripherin-positive reaction, although there were a much higher number of non-immunoreacitive Bunina bodies in each neuron. LBLIs were clearly immunostained for peripherin corresponding to the core, while some of them showed different types of immunoreactivities due to oblique cutting of inclusions. Our findings suggest that although the mechanisms underlying peripherin co-localization in Bunina bodies are unknown, peripherin could be involved in forming these inclusions. Furthermore, following cystatin C and transferrin, peripherin is the third most prevalent protein that partially localizes in Bunina bodies.

  8. Experimental investigation of the electromagnetic effect on a shock layer around a blunt body in a weakly ionized flow

    NASA Astrophysics Data System (ADS)

    Takizawa, Yuji; Matsuda, Atsushi; Sato, Shunichi; Abe, Takashi; Konigorski, Detlev

    2006-11-01

    A reentry vehicle is exposed to a partially ionized flow during the reentry flight. For such a flight, a strong magnet mounted on the vehicle, which generates the magnetic field around the vehicle, is suggested to affect a surrounding ionized flow and make it possible to control the flow. Such an electromagnetic effect on the flow is investigated experimentally by using a small arc-jet wind tunnel. In the experiment, the translational temperature distribution in the shock layer around a magnetized blunt body in a supersonic, weakly ionized, argon flow is determined by applying an absorption spectroscopic technique. For the absorption spectrum affected by the magnetic field, the temperature determination method was newly developed. The temperature distribution thus determined for the shock layer shows that the applied magnetic field significantly affects the shock layer or, specifically, the shock standoff distance and enhances it.

  9. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    SciTech Connect

    Oliver, R.; Soler, R.; Terradas, J.; Zaqarashvili, T. V.

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  10. The collisional drift mode in a partially ionized plasma. [in the F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.

  11. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  12. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Li, Z. G.

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  13. Controls of crystallinity and surface roughness of Cu film in partially ionized beam deposition

    SciTech Connect

    Koh, S.K.; Kim, K.H.; Choi, W.K.; Jang, H.G.; Yoon, Y.S.; Han, S.; Jung, H.J.

    1996-12-31

    Changes of crystallinity and surface roughness are discussed in terms of the average energy per deposited atom in the partially ionized beam (PIB) deposition. The average energy per deposited atom can be controlled by adjusting the ionization potential, Vi and acceleration potential Va. The ion beam consists of a Cu ion beam and residual gas ion beam and residual gases as well as Cu particles that were ionized and accelerated to provide the film with energy required for film-growth. The relative contribution of residual gas ions and Cu ions to total average energy per deposited atom was varied with the ionization potential. At fixed ionization potentials of Vi = 400 V and Vi = 450 V, the average energy per deposited atom was varied in the range of 0 to 120 eV with acceleration potential Va, of 0 to 4 kV. The relative intensity ratio, I(111)/I(200), of the Cu films increased from 6 to 37 and the root mean square (R{sub ms}) surface roughness decreased with an increase in acceleration potential at Vi = 400 V. The relative intensity ratio, I(111)/I(200), of Cu films increased up to Va = 2 kV at Vi = 2 kV, above which a decrease occurred, and the surface roughness of Cu films increased as a function of acceleration potential. The degree of preferred orientation was closely related with the average energy per deposited atom. The change of R{sub ms} roughness might be affected by ion flux, particle energy and preferred orientation.

  14. Extended bulk defects induced by low-energy ions during partially ionized beam deposition

    SciTech Connect

    Lee, W.I.; Wong, J.; Borrego, J.M.; Lu, T.

    1988-08-15

    The study of possible defects generated by low-energy ions during partially ionized beam (PIB) depositions was performed. No defects were observed when acceleration voltage was set lower than 1 kV. Surprisingly, several deep levels were detected up to the depth of 4000 A in the 3-kV sample. However, these levels can be annealed out at a relatively low temperature of 400 /sup 0/C. It is concluded in this study that, by properly choosing the ion energy range, PIB deposition will not cause severe damage to the substrate and can be a viable technique for growing heterostructures.

  15. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-08-15

    We present experimental results for proton ionization of nucleobases (adenine, cytosine, thymine, and uracil) based on an event-by-event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass-analyzed product ion signals in coincidence with the charge-analyzed projectile. In addition we are able to determine a complete set of cross sections for the ionization of these molecular targets by 20-150 keV protons including the total and partial cross sections and the direct-ionization and electron-capture cross sections.

  16. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

    PubMed Central

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme

    2011-01-01

    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a >  ∼ 20 μT field up to approximately 9—10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

  17. Cluster virial expansion for the equation of state of partially ionized hydrogen plasma

    SciTech Connect

    Omarbakiyeva, Y. A.; Fortmann, C.; Ramazanov, T. S.; Roepke, G.

    2010-08-15

    We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. We use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase shifts and binding energies. Experimental scattering cross-sections as well as phase shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semiempirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semiempirical approaches.

  18. Cluster virial expansion for the equation of state of partially ionized hydrogen plasma.

    PubMed

    Omarbakiyeva, Y A; Fortmann, C; Ramazanov, T S; Röpke, G

    2010-08-01

    We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. We use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase shifts and binding energies. Experimental scattering cross-sections as well as phase shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semiempirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semiempirical approaches.

  19. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-09-01

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  20. Effects of viscosity in a partially ionized channel flow with thermionic emission

    SciTech Connect

    Mikellides, Ioannis G.

    2009-01-15

    The flow of the partially ionized gas inside thermionic hollow cathodes spans a diverse range of theoretical disciplines in plasma physics and fluid mechanics. Understanding and predicting the evolution of such flows has many practical implications because hollow cathodes are critical components of electric propulsion systems used onboard scientific and commercial spacecraft presently in space or in the mission planning stages. As space missions become more demanding of the propulsion system in terms of throughput, understanding and predicting failure mechanisms of the system becomes imperative. Two-dimensional numerical simulations of the partially ionized gas generated by a thermionic hollow cathode have been performed to quantify the effects of viscosity inside the cylindrical channel of the device. A comparison of the inviscid and fully viscous flow fields shows that viscosity has a significant impact on the atomic species and a lesser effect on the ions. The internal pressure is determined to be more than 40% higher compared to the inviscid solution and the Reynolds number for the flow of atoms is found to be less than 20 inside the channel. Although the Mach number is computed to be <0.1 for approximately 95% of the channel, the solution for the velocity flow field begins to deviate from the Poiseuille (parabolic) solution at about 50% of the channel due mainly to collisional drag with ions.

  1. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    DOE PAGES

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; ...

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less

  2. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    SciTech Connect

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  3. State-specific transport properties of partially ionized flows of electronically excited atomic gases

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-03-01

    State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.

  4. Turbulent Dynamo in a Conducting Fluid and a Partially Ionized Gas

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, A.

    2016-12-01

    By following the Kazantsev theory and taking into account both microscopic and turbulent diffusion of magnetic fields, we develop a unified treatment of the kinematic and nonlinear stages of a turbulent dynamo process, and we study the dynamo process for a full range of magnetic Prandtl number P m and ionization fractions. We find a striking similarity between the dependence of dynamo behavior on P m in a conducting fluid and { R } (a function of ionization fraction) in a partially ionized gas. In a weakly ionized medium, the kinematic stage is largely extended, including not only exponential growth but a new regime of dynamo characterized by a linear-in-time growth of magnetic field strength, and the resulting magnetic energy is much higher than the kinetic energy carried by viscous-scale eddies. Unlike the kinematic stage, the subsequent nonlinear stage is unaffected by microscopic diffusion processes and has a universal linear-in-time growth of magnetic energy with the growth rate as a constant fraction 3/38 of the turbulent energy transfer rate, showing good agreement with earlier numerical results. Applying the analysis to the first stars and galaxies, we find that the kinematic stage is able to generate a field strength only an order of magnitude smaller than the final saturation value. But the generation of large-scale magnetic fields can only be accounted for by the relatively inefficient nonlinear stage and requires longer time than the free-fall time. It suggests that magnetic fields may not have played a dynamically important role during the formation of the first stars.

  5. Measurements of absolute total and partial cross sections for the electron ionization of tungsten hexafluoride (WF6)

    NASA Astrophysics Data System (ADS)

    Basner, R.; Schmidt, M.; Becker, K.

    2004-04-01

    We measured absolute partial cross sections for the formation of positive ions followed by electron impact on tungsten hexafluoride (WF6) from threshold to 900 eV using a time-of-flight mass spectrometer (TOF-MS). Dissociative ionization processes resulting in seven different singly charged ions (F+, W+, WFx+, x=1-5) and five doubly charged ions (W2+, WFx2+, x=1-4) were found to be the dominant ionization channels. The ion spectrum at all impact energies is dominated by WF5+ fragment ions. At 120 eV impact energy, the partial WF5+ ionization cross section has a maximum value of 3.92×10-16 cm2 that corresponds to 43% of the total ion yield. The cross section values of all the other singly charged fragment ions at 120 eV range between 0.39×10-16 and 0.73×10-16 cm2. The ionization cross sections of the doubly charged ions are more than one order of magnitude lower than the cross section of WF5+. Double ionization processes account for 21% of the total ion yield at 120 eV. The absolute total ionization cross section of WF6 was obtained as the sum of all measured partial ionization cross sections and is compared with available calculated cross sections.

  6. HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES

    SciTech Connect

    Shelyag, S.; Przybylski, D.; Khomenko, E.; Vicente, A. de

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  7. Shear flow instability in a partially-ionized plasma sheath around a fast-moving vehicle

    SciTech Connect

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T. C.; Rose, D. V.; Oliver, B. V.; Mehlhorn, T. A.

    2011-06-15

    The stability of ion acoustic waves in a sheared-flow, partially-ionized compressible plasma sheath around a fast-moving vehicle in the upper atmosphere, is described and evaluated for different flow profiles. In a compressible plasma with shear flow, instability occurs for any velocity profile, not just for profiles with an inflection point. A second-order differential equation for the electrostatic potential of excited ion acoustic waves in the presence of electron and ion collisions with neutrals is derived and solved numerically using a shooting method with boundary conditions appropriate for a finite thickness sheath in contact with the vehicle. We consider three different velocity flow profiles and find that in all cases that neutral collisions can completely suppress the instability.

  8. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  9. Jeans instability of self gravitating partially ionized Hall plasma with radiative heat loss functions and porosity

    NASA Astrophysics Data System (ADS)

    Kaothekar, Sachin; Chhajlani, R. K.

    2013-06-01

    The Jeans instability of partially ionized self gravitating plasma is discussed to investigate the effect of the Hall current, radiative heat-loss function, thermal conductivity, collision frequency of neutrals, porosity, finite electrical resistivity and viscosity for the formation of stars in HI and HII regions. The standard Magnetohydrodynamics (MHD) set of equations is used for the present configuration with radiative heat-loss function and thermal conductivity. A general dispersion relation is obtained from perturbation equations using the normal mode analysis method. We find that the Jeans condition of self-gravitational instability is modified due to the presence of neutral particle, radiative heat-loss functions and thermal conductivity. Presence of Hall current, porosity and collision frequency have no effect on Jeans criterion.

  10. Quantum diffraction effects on the atomic polarization collision in partially ionized dense plasmas

    SciTech Connect

    Jung, Young-Dae

    2014-04-15

    The influence of quantum diffraction on the electron-atom polarization collision process is investigated in partially ionized dense plasmas. The pseudopotential model and eikonal method are employed to obtain the eikonal phase shift and eikonal cross section as functions of the impact parameter, collision energy, Debye length, electron de Broglie wavelength, and atomic polarizability. The results show that the eikonal phase shift for the electron-hydrogen atom polarization collision decreases with an increase of the electron de Broglie wavelength. It is important to note that the influence of quantum diffraction produces the repulsive part in the electron-atom polarization interaction. It is also found that the quantum diffraction effect enhances the differential eikonal cross section. Additionally, the total eikonal cross section decreases with increasing electron de Broglie wavelength. The variations of the eikonal cross section due to the influence of finite size of the de Broglie wavelength and Debye radius are also discussed.

  11. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  12. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    PubMed

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  13. Injection to Rapid Diffusive Shock Acceleration at Perpendicular Shocks in Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka

    2016-08-01

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v sh ≈ 1333 km s-1 and f i ˜ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ˜ 100 v sh ˜ 0.3 c within ˜100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 1015.5 eV (the knee) during the Sedov phase.

  14. Partial ionization in dense plasmas: Comparisons among average-atom density functional models

    NASA Astrophysics Data System (ADS)

    Murillo, Michael S.; Weisheit, Jon; Hansen, Stephanie B.; Dharma-wardana, M. W. C.

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  15. Measuring partial body potassium in the arm versus total body potassium.

    PubMed

    Wielopolski, L; Ramirez, L M; Gallagher, D; Sarkar, S R; Zhu, F; Kaysen, G A; Levin, N W; Heymsfield, S B; Wang, Z M

    2006-09-01

    Skeletal muscle (SM), the body's main structural support, has been implicated in metabolic, physiological, and disease processes in humans. Despite being the largest tissue in the human body, its assessment remains difficult and indirect. However, being metabolically active it contains over 50% of the total body potassium (TBK) pool. We present our preliminary results from a new system for measuring partial body K (PBK) that presently are limited to the arm yet provide a direct and specific measure of the SM. This uniquely specific quantification of the SM mass in the arm, which is shielded from the body during measurement, allows us to simplify the assumptions used in deriving the total SM, thereby possibly improving the modeling of the human body compartments. Preliminary results show that PBK measurements are consistent with those from the TBK previously obtained from the same subjects, thus offering a simpler alternative to computed tomography and magnetic resonance imaging used for the same purposes. The PBK system, which can be set up in a physician's office or bedside in a hospital, is completely passive, safe, and inexpensive; it can be used on immobilized patients, children, pregnant women, or other at-risk populations.

  16. Partially Ionized Plasma Three-Fluid Modeling of Magnetic Reconnection in the Sun Chromosphere

    NASA Astrophysics Data System (ADS)

    Alvarez Laguna, A.; Lani, A.; Mansour, N. N.; Kosovichev, A. G.; Poedts, D. S.

    2015-12-01

    Magnetic reconnection is present in most of the unsteady and eruptive phenomena in the Sun atmosphere, including Coronal Mass Ejections (CMEs) and solar flares. Also, it occurs in the chromosphere, bringing about chromospheric jets and spicules and being considered a likely mechanism to play an important role in heating up the corona. In this work, we present a computational model that simulates magnetic reconnection in the Sun chromosphere using a three-fluid model (electrons + ions + neutrals). The model treats separately ions, electrons and neutrals, considering mass, momentum and energy conservation for each fluid. The fluids interact among each other by means of collisions and chemical reactions. The charged particles heat fluxes are anisotropic with the magnetic field, following Braginskii's description. This model also considers non-equilibrium partial ionization effects including electron impact ionization, radiative recombination reactions and charge exchange. The electromagnetic field evolution is represented by the full Maxwell's equations, allowing for high frequency waves disregarded by the MHD approximation. Previous two-fluid simulations showed that the dynamics of ions and neutrals are decoupled during the reconnection process when the width of the current sheet becomes comparable to the ion scales. Also, the effect of the chemical non-equilibrium in the reconnection region plays a crucial role, yielding faster reconnection rates. We extended these simulations with a three-fluid model that considers separately the dynamics of electrons. This new model provides a better description of the complex dynamics taking place during the reconnection, both in Sweet-Parker reconnections and during the tearing instability. The results are compared with the two-fluid simulations.

  17. Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2016-04-01

    We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media

  18. TWO-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF THE IMPORTANCE OF PARTIAL IONIZATION IN THE CHROMOSPHERE

    SciTech Connect

    Martinez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo

    2012-07-10

    The bulk of the solar chromosphere is weakly ionized and interactions between ionized particles and neutral particles likely have significant consequences for the thermodynamics of the chromospheric plasma. We investigate the importance of introducing neutral particles into the MHD equations using numerical 2.5D radiative MHD simulations obtained with the Bifrost code. The models span the solar atmosphere from the upper layers of the convection zone to the low corona, and solve the full MHD equations with non-gray and non-LTE radiative transfer, and thermal conduction along the magnetic field. The effects of partial ionization are implemented using the generalized Ohm's law, i.e., we consider the effects of the Hall term and ambipolar diffusion in the induction equation. The approximations required in going from three fluids to the generalized Ohm's law are tested in our simulations. The Ohmic diffusion, Hall term, and ambipolar diffusion show strong variations in the chromosphere. These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has been common for these types of studies, using the semi-empirical VAL-C model as a basis for estimates. In addition, we find that differences in estimating the magnitude of ambipolar diffusion arise depending on which method is used to calculate the ion-neutral collision frequency. These differences cause uncertainties in the different magnetic diffusivity terms. In the chromosphere, we find that the ambipolar diffusion is of the same order of magnitude or even larger than the numerical diffusion used to stabilize our code. As a consequence, ambipolar diffusion produces a strong impact on the modeled atmosphere. Perhaps more importantly, it suggests that at least in the chromospheric domain, self-consistent simulations of the solar atmosphere driven by magnetoconvection can accurately describe the impact of the dominant form of resistivity, i.e., ambipolar diffusion. This

  19. Simulation of the Partially Ionized Reacting Plasma Flow in a Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Gatsonis, Nikolaos; Averkin, Sergey; Olson, Lynn

    2012-10-01

    A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. The rotational and vibrational degrees of freedom in U3DSMC are implemented using the Larsen-Borgnakke model. Chemical reactions are implemented in U3DSMC using the Quantum-Kinetic model. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.

  20. Self-consistent Simulations of Plasma-Neutral in a Partially Ionized Astrophysical Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Shaikh, Dastgeer; Zank, G. P.

    2010-03-01

    A local turbulence model is developed to study energy cascades in the heliosheath and outer heliosphere (OH) based on self-consistent two-dimensional fluid simulations. The model describes a partially ionized magnetofluid OH that couples a neutral hydrogen fluid with a plasma primarily through charge-exchange interactions. Charge-exchange interactions are ubiquitous in warm heliospheric plasma, and the strength of the interaction depends largely on the relative speed between the plasma and the neutral fluid. Unlike small-length scale linear collisional dissipation in a single fluid, charge-exchange processes introduce channels that can be effective on a variety of length scales that depend on the neutral and plasma densities, temperature, relative velocities, charge-exchange cross section, and the characteristic length scales. We find, from scaling arguments and nonlinear coupled fluid simulations, that charge-exchange interactions modify spectral transfer associated with large-scale energy-containing eddies. Consequently, the turbulent cascade rate prolongs spectral transfer among inertial range turbulent modes. Turbulent spectra associated with the neutral and plasma fluids are therefore steeper than those predicted by Kolmogorov's phenomenology. Our work is important in the context of the global heliospheric interaction, the energization and transport of cosmic rays, gamma-ray bursts, interstellar density spectra, etc. Furthermore, the plasma-neutral coupling is crucial in understanding the energy dissipation mechanism in molecular clouds and star formation processes.

  1. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    SciTech Connect

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G. )

    1989-11-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing.

  2. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    NASA Astrophysics Data System (ADS)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to <3 × 1018 m-3, while an argon fill pressure was varied from ˜0.02 Pa to 0.75 Pa as well as the magnetic field mentioned above, with the fixed radio frequency (rf) and power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  3. Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere

    SciTech Connect

    Singh, K. A. P.; Shibata, K.; Nishizuka, N.; Isobe, H.

    2011-11-15

    The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. The velocity of chromospheric anemone jets is comparable to the local Alfven speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona ({lambda}{sub i} > {delta}{sub SP}), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.

  4. Light scattering study of partially ionized poly(acrylic acid) systems : comparison between gels and solutions

    NASA Astrophysics Data System (ADS)

    Moussaid, A.; Munch, J. P.; Schosseler, F.; Candau, S. J.

    1991-06-01

    Static and quasielastic light scattering experiments have been performed on the reaction bath of partially neutralized poly(acrylic acid) solutions and gels. The intensity scattered from gels is independent on the scattering wavevector, giving thus evidence that the gels are homogeneous at the scale of the wavelength of the light, contrary to what is generally observed in neutral gels. The comparison of the time and ensemble averages of the autocorrelation function of scattered light intensity shows that the gels behave with respect to that experiment as ergodic media. The variations of the intensity scattered from gels and solutions, with the ionization degree and the polymer concentration were found to be in good agreement with those predicted from simple theoretical arguments. The variations of the cooperative diffusion with these same parameters were found similar for gels and solutions. Des mesures de diffusion statique et quasiélastique de la lumière ont été effectuées sur des solutions et des gels d'acide poly(acrylique) partiellement ionisés. L'intensité diffusée par les gels est indépendante du vecteur d'onde de transfert, ce qui montre leur homogénéité, contrairement au cas des gels neutres. La comparaison des moyennes temporelle et spatiale de la fonction d'autocorrélation de l'intensité de la lumière diffusée montre que ces gels se comportent comme des milieux ergodiques. Les variations de l'intensité diffusée par les gels et les solutions en fonction de la concentration en polymère et du degré d'ionisation sont en bon accord avec les prédictions théoriques. Les variations du coefficient de diffusion avec ces mêmes paramètres sont identiques pour les gels et les solutions.

  5. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    NASA Astrophysics Data System (ADS)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  6. Feasibility study of in vivo partial body potassium determination in the human body using gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramirez, Lisa Marie

    This work investigates partial body potassium determination in the human body using gamma-ray spectroscopy. Potassium is an essential element in the human body that controls many of the enzyme systems and intra- and extra-cellular water flow. Potassium is symptomatic to several disease cases and has gender and ethnic variability. This work assesses the feasibility to measure partial body potassium in three specific regions: brain, arm, and leg, that are of interest to multiple sclerosis, chronic renal failure, and spinal cord injury, respectively. Three detector systems were constructed and their capabilities assessed. System characterization and analytical procedure for potassium evaluation and determination are presented together with experimental and initial clinical results. The results indicate that partial body potassium measurement is viable, statistically reproducible, and has potential clinical significance.

  7. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  8. Partially Ionized Beam-Deposited Aluminum on Silicon: Interface Reactions and Epitaxy.

    NASA Astrophysics Data System (ADS)

    Srinivasan, Radhika

    Aluminum, although a popular choice for metallization for Si based ICs, possesses a number of inherent problems when used as contact metal directly on Si, or as inter -connects. Two of the more critical ones are junction spiking and electromigration, both of which are diffusion related phenomena. The predominant mode of diffusion in thin films has long been established to be that due to grain boundaries. The polycrystalline nature of the deposited aluminum films is hence chiefly responsible for the above mentioned problems. If it were possible to reduce the number of grain boundaries and obtain epitaxial single crystal Al films on Si, the situation could be improved considerably. Epitaxial aluminum films on both Si(111) and (100) single crystal substrates can be deposited, using an ion assisted deposition method, referred to as the Partially Ionized Beam technique, where beam energy, current and direction can be controlled to optimize single crystallinity. This is inspite of the fact that the mismatch between Al and Si lattices is about 26%. In this research this technique is used to study the epitaxy of Al on Si. Electrical properties of such deposits were examined and defects present in these epitaxial deposits have been studied. Various x-ray and electron diffraction studies have been performed, including HRTEM to confirm the integrity of the interface and the 4 Al to 3 Si atom relationship. The orientation of the overlayers were found to be a strong function of beam energy and current. Use of high beam energies and currents while depositing ultra thin aluminum films were found to create donor like defects near the substrate surface, altering the electrical characteristics, especially of films on high resistivity p-silicon, where 'inverted' current-voltage characteristics were observed. These characteristics were also found to vary with thickness of deposited films. A MIS tunnel diode (with aluminum oxide as the insulator) model and an ion damage related defect

  9. The ionization potential of aqueous hydroxide computed using many-body perturbation theory

    SciTech Connect

    Opalka, Daniel Sprik, Michiel; Pham, Tuan Anh; Galli, Giulia

    2014-07-21

    The ionization potentials of electrolyte solutions provide important information about the electronic structure of liquids and solute-solvent interactions. We analyzed the positions of solute and solvent bands of aqueous hydroxide and the influence of the solvent environment on the ionization potential of hydroxide ions. We used the concept of a computational hydrogen electrode to define absolute band positions with respect to vacuum. We found that many-body perturbation theory in the G{sub 0} W{sub 0} approximation substantially improves the relative and absolute positions of the band edges of solute and solvent with respect to those obtained within Density Functional Theory, using semi-local functionals, yielding results in satisfactory agreement with recent experiments.

  10. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  11. Coulomb three-body effects in low-energy impact ionization of H(1{ital s})

    SciTech Connect

    Roeder, J.; Rasch, J.; Jung, K.; Whelan, C.T.; Ehrhardt, H.; Allan, R.J.; Walters, H.R. |||

    1996-01-01

    The different kinematical and geometrical arrangements that may be used in ({ital e},2{ital e}) studies are briefly reviewed. The ionization of H(1{ital s}) is considered, and within the confines of a relatively simple theoretical model, it is shown how to define experimental setups where one may extract information on the role of Coulomb three-body effects in the incident and final channels. Theoretical and experimental results are presented for coplanar constant geometry where the focus is primarily on incident channel effects. {copyright} {ital 1996 The American Physical Society.}

  12. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    PubMed Central

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  13. Gate direct-tunnelling and hot-carrier-induced hysteresis effect in partially depleted silicon-on-insulator floating-body MOSFETs

    NASA Astrophysics Data System (ADS)

    Zhou, Jianhua; Pang, Albert; Zou, Shichang

    2011-02-01

    The hysteresis effect in the output characteristics of partially depleted (PD) silicon-on-insulator (SOI) floating-body MOSFETs with an ultra-thin gate oxide is studied taking account of both gate direct-tunnelling and impact ionization-induced hot-carrier mechanisms. It is proposed that hole tunnelling from valence band (HVB) for floating-body PD SOI n-MOSFETs, electron tunnelling from conduction band (ECB) for floating-body PD SOI p-MOSFETs and impact-ionization-induced hot carriers are the main causes of the hysteresis effect. Meanwhile, body-contact structures of T-gate and H-gate PD SOI MOSFETs are also studied under floating-body configurations. It is found that the influence of the converse poly-gate on the body-contact side on gate direct-tunnelling cannot be neglected in view of floating-body potential variation. Based on the measurement results, the hysteresis can be suppressed using T-gate and H-gate PD SOI MOSFETs with floating-body configurations.

  14. Interactions between coilin and PIASy partially link Cajal bodies to PML bodies.

    PubMed

    Sun, Jun; Xu, Hongzhi; Subramony, S H; Hebert, Michael D

    2005-11-01

    The eukaryotic nucleus contains a variety of dynamic structures, yet studies into the functional relationship of one type of subnuclear domain to another have been limited. For example, PML bodies and Cajal bodies associate, but the functional consequence of this association and the mediating factors are unknown. Here we report that an associated PML body/Cajal body can co-localize to an snRNA gene locus, with the Cajal body invariably situated between the PML body and the snRNA locus. Binding studies demonstrate that coilin (a Cajal body protein) directly interacts with PIASy (a PML body protein). Cell biological experiments using coilin and PIASy knockout cell lines demonstrate that interactions between coilin and PIASy account in part for the observed association of Cajal bodies with PML bodies. When the PIASy interaction region on coilin is deleted, the frequency of the association between Cajal bodies and PML bodies is reduced. These studies provide another example of coilin's role in the functional organization of the nucleus.

  15. Absolute partial and total electron-impact-ionization cross sections for CF4 from threshold up to 500 eV

    NASA Astrophysics Data System (ADS)

    Ma, Ce; Bruce, M. R.; Bonham, R. A.

    1991-09-01

    Electron-impact dissociative ionization of tetrafluoromethane (CF4) was studied with the use of a pulsed electron beam time-of-flight apparatus. The absolute partial ionization cross sections of CF+3, CF+2, CF2+3, CF+, CF2+2, F+, and C+ were measured from threshold up to 500 eV. The total ionization cross section was obtained by charge weighted summing of all the observed partial ionization cross sections. A total cross section for dissociation into neutral fragments was inferred from our total ionization cross section and the total dissociation cross section of Winters and Inokuti [Phys. Rev. A 25, 1420 (1982)]. The present results for the partial ionization cross sections are as much as 9% (CF+3) to 81% (F+) higher than the previously published absolute measurements of Stephan, Deutsch, and Märk [J. Chem. Phys. 83, 5712 (1985)] at 80 eV, but are in agreement with their recently revised estimates for the singly charged ions. We also found that dissociative ionization was a dominant process for electron-impact energies above 30 eV, accounting for 85% of the total dissociation cross section at 80 eV.

  16. Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach.

    PubMed

    Champion, C

    2010-01-07

    In this work, we report a unified methodology to express the molecular wavefunctions of water in both vapor and liquid phases by means of a single-center approach. These latter are then used as input data in a theoretical treatment--previously published and successfully tested--for describing the water ionization process in the first Born approximation (Champion et al 2006 Phys. Rev. A 73 012717). The multi-differential and total cross sections also obtained are reported for the two thermodynamical phases investigated and compared to the rare existing experimental and theoretical data.

  17. Thermosolutal instability of a radiating partially-ionized plasma in a porous medium

    NASA Astrophysics Data System (ADS)

    Opara, F. E.

    1994-03-01

    The thermosolutal instability of a radiating two-component plasma, in a porous medium in the presence of a uniform vertical magnetic field, is examined with respect to the effects of collision frequency and radiative transfer. A combination of the Bestman and Chandrasekar methods is used to solve the eigenvalue problem with two-dimensional disturbances for the case of stationary convection. Radiation present on the onset of instability is found to have a destabilizing effect for even a very small radiation parameter, of the order alpha (0.1); concentration gradient on the other hand has a stabilizing effect on the system. The effect of collision on the onset of stationary cells diminished for the optical thin non-grey plasma-near equilibrium. This is of paramount importance in cosmic ray physics, as the interaction between the ionized and neutral gas components represents a state which often exists in the universe.

  18. Exploring point-cloud features from partial body views for gender classification

    NASA Astrophysics Data System (ADS)

    Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga

    2012-06-01

    In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further

  19. Utilizing a shallow trench isolation parasitic transistor to characterize the total ionizing dose effect of partially-depleted silicon-on-insulator input/output n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Hu, Zhi-Yuan; Ning, Bing-Xu; Huang, Hui-Xiang; Fan, Shuang; Zhang, Zheng-Xuan; Bi, Da-Wei; En, Yun-Fei

    2014-09-01

    We investigate the effects of 60Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsible for the observed hump in the back-gate transfer characteristic curve. The STI parasitic transistor, in which the trench oxide acts as the gate oxide, is sensitive to the radiation, and it introduces a new way to characterize the total ionizing dose (TID) responses in the STI oxide. A radiation enhanced drain induced barrier lower (DIBL) effect is observed in the STI parasitic transistor. It is manifested as the drain bias dependence of the radiation-induced off-state leakage and the increase of the DIBL parameter in the STI parasitic transistor after irradiation. Increasing the doping concentration in the whole body region or just near the STI sidewall can increase the threshold voltage of the STI parasitic transistor, and further reduce the radiation-induced off-state leakage. Moreover, we find that the radiation-induced trapped charge in the buried oxide leads to an obvious front-gate threshold voltage shift through the coupling effect. The high doping concentration in the body can effectively suppress the radiation-induced coupling effect.

  20. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, T. V.; Carbonell, M.; Ballester, J. L.; Khodachenko, M. L.

    2012-08-01

    Context. Alfvén wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfvén waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. Aims: The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Methods: Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description. We solved the dispersion relation of linear Alfvén waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. Results: We have found that neglecting inertial terms significantly reduces the real part of the Alfvén frequency although it never becomes zero. Therefore, the cut-off wavenumber does not exist at this stage. However, when the inertial terms together with the Hall term in the induction equation are neglected, the real part of the Alfvén frequency becomes zero. Conclusions: The appearance of a cut-off wavenumber, when Alfvén waves in partially ionized regions of the solar atmosphere are studied, is the result of neglecting inertial and Hall terms, therefore it has no physical origin.

  1. Three-body neutral dissociations of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kitajima, Masashi; Kouchi, Noriyuki

    2012-11-01

    The cross sections for emission of two fluorescence photons from a pair of excited fragments in photoexcitation of H2O have been measured as a function of the incident photon energy using the photon-photon coincidence technique. The cross section increased in the range 30-45 eV, i.e. in the vicinity of the double ionization potential of H2O. The increase of the cross section was attributed to three-body neutral dissociations of a water molecule via multiply excited states: H2O** → H(2p) + OH** → H(2p) + H(2p) + O(3P). Some multiply excited states of H2O were also found in the cross section curve around 65 eV.

  2. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  3. Desorption electrospray ionization-based imaging of interaction between vascular graft and human body.

    PubMed

    Bodzon-Kulakowska, Anna; Drabik, Anna; Mystkowska, Joanna; Chlabicz, Michal; Gacko, Marek; Dabrowski, Jan R; Mielczarek, Przemyslaw; Silberring, Jerzy; Suder, Piotr

    2016-01-01

    The desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) is known as a fast and convenient MS-based method for lipid imaging in various biological materials. Here, we applied this technique to visualize lipid distribution in a vascular graft removed from a patient's body. This is a good example of the DESI system capabilities toward imaging of interaction between artificial material and living tissues. Detailed analysis allowed for visualization of the spatial distribution of selected lipids in this implanted, artificial material. Not only DESI-MSI allowed visualization of lipid distribution in the investigated material but also enabled identification of the detected molecular species using MS/MS. Here, this technique was successfully used to evaluate the saturation and spatial distribution of endogenous lipids in the artificial vascular graft. Unambiguous identification of the lipids was done with the aid of fragmentation procedure. We also showed that various lipids localize preferably in graft material or internal plaque existing inside the graft.

  4. Steep subthreshold slope characteristics of body tied to gate NMOSFET in partially depleted SOI

    NASA Astrophysics Data System (ADS)

    Song, Lei; Hu, Zhiyuan; Liu, Zhangli; Xin, Haiwei; Zhang, Zhengxuan; Zou, Shichang

    2017-04-01

    A new body tied to gate (BTG) n-channel metal-oxide-semiconductor field-effect-transistor (NMOSFET) with a diode in partially depleted SOI (PD SOI) is proposed and investigated. We first compare the transfer and output characteristics between the regular and BTG NMOSFETs with grounded body and floating body. The steep subthreshold slope (<6 mV/dec) and low OFF current (∼0.01 pA/μm) of the BTG NMOSFET with floating body are observed at VD = 3.3 V. Mechanisms of the floating body effect (FBE) and the diode are analyzed to explain the outstanding performance. The hysteresis characteristics of BTG NMOSFETs are also presented in comparison to regular ones. Finally, the steep subthreshold characteristics of the BTG NMOSFET with floating body at low drain voltage are studied for ultralow power application.

  5. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  6. Treadmill Training with Partial Body-Weight Support in Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Mutlu, Akmer; Krosschell, Kristin; Spira, Deborah Gaebler

    2009-01-01

    OKAim: The aim of this systematic review was to examine the literature on the effects of partial body-weight support treadmill training (PBWSTT) in children with cerebral palsy (CP) on functional outcomes and attainment of ambulation. Method: We searched the relevant literature from 1950 to July 2007. We found eight studies on the use of PWSBTT on…

  7. A DRIFT ORDERED SHORT MEAN-FREE DESCRIPTION FOR PARTIALLY IONIZED MAGNETIZED PLASMA

    SciTech Connect

    SIMAKOV, ANDERI N.

    2007-02-08

    Effects of neutral particles, most prominently the associated heat flux and viscosity, can be very important or even dominant at the edge of a tokamak and so must be self-consistently accounted for in a description of magnetized tokamak edge plasma. To the best of our knowledge, this has only been done so far for short mean-free path plasma under MHD-like Braginskii's orderings i.e. assuming that species velocities are on the order of the ion thermal speed. Since plasma flows in modern tokamaks are usually slow compared with the ion thermal speed (at least in the absence of strong external momentum sources) it is more appropriate to use drift orderings in which the plasma flow velocity is instead comparable with the diamagnetic heat flow divided by pressure. Employing drift orderings and evaluating species distribution functions through second order in the small gyroradius and mean-free path expansion parameters allows accounting for the important effects of heat fluxes on species momentum transport (viscosities), which are missing from the large flow ordered treatments. In this work we consider short mean-free path plasma consisting of electrons and single species of singly-charged ions and neutrals. We neglect neutral-neutral and elastic electron-neutral collisions and approximate the neutral-ion charge-exchange cross-section with a constant. We employ drift orderings to evaluate ion, neutral, and electron heat fluxes, viscosity tensors, and momentum and energy exchange terms and formulate a self-consistent system of electron, ion, and neutral fluid equations, thereby generalizing the drift-ordered treatment of fully ionized plasma.

  8. Coulomb three-body effects in ([ital e],2[ital e]) collisions: The ionization of H in coplanar symmetric geometry

    SciTech Connect

    Whelan, C.T.; Allan, R.J.; Rasch, J.; Walters, H.R.J.; Zhang, X.; Roeder, J.; Jung, K.; Ehrhardt, H. Daresbury Laboratory, Warrington WA4 4AD Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, BT7 1NN Belfast, Northern Ireland Fachbereich Physik, Universitaet Kaiserslautern, Erwin Schroedinger Strasse, D6750, Kaiserslautern )

    1994-11-01

    The role of postcollisional and polarization-correlation effects in energy-sharing ([ital e],2[ital e]) collisions is considered. Theoretical and experimental results are presented for the ionization of hydrogen in a symmetric coplanar geometry. A kinematical regime is identified where the triple-differential cross section is sensitive to three-body effects in both the incident and final channels.

  9. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  10. Chromosome aberrations induced in human lymphocytes after partial-body irradiation

    SciTech Connect

    Fong, L.; Lai-Lei Ting; Po-Ming Wang

    1995-10-01

    Chromosomal aberrations in peripheral blood lymphocytes obtained from two patients before and after they received one fraction of partial-body irradiation for palliative treatment were analyzed. Blood samples were taken 30 min and 24 h after radiation treatment. The yield of dicentrics obtained from case A 30 min after a partial-body (about 21%) treatment with 8 Gy was 0.066/cell, while the yield obtained 24 h radiation treatment was 0.071/cell. The fraction of irradiated lymphocytes that reached metaphase at 52 h was 0.08 as evaluated by mixing cultures of in vitro irradiated and unirradiated blood. The yield of dicentrics for blood from case B 30 min after 6 Gy partial-body (about 24%) irradiation was 0.655/cell, while the yield 24 h after irradiation was 0.605/cell. The fraction of irradiated cells was 0.29. Estimation of doses and irradiated fractions for the two cases using the method proposed by Dolphin and the Qdr method is discussed. Although there was no significant difference between the mean yields of dicentrics per cell obtained 30 min and 24 h after radiation treatment, the data obtained at 24 h seemed more useful for the purpose of dose estimation. When a higher dose (8 Gy) was delivered to a smaller percentage of the body, underestimation of the dose was encountered. 18 refs., 4 tabs.

  11. Partial and full own-body illusions of epileptic origin in a child with right temporoparietal epilepsy.

    PubMed

    Heydrich, Lukas; Lopez, Christophe; Seeck, Margitta; Blanke, Olaf

    2011-03-01

    Partial and full own-body illusions of neurological origin have been claimed crucial to understand the contribution of bodily experience and perception to self-consciousness. Whereas partial body illusions are relatively common and well defined, much less is known about full own-body illusions, and even less is known about these illusions in children. Here we describe a 10-year-old patient with the association of partial and full own-body illusions (somatoparaphrenia and out-of-body experience) that occurred sequentially during an epileptic seizure caused by right temporoparietal epilepsy. This report shows that partial and full own-body illusions share functional and neuroanatomical properties and highlights the importance of the right temporoparietal junction for bodily self-consciousness. This is the first report of out-of-body experiences in a child with focal epilepsy.

  12. Effects of partial-body cryotherapy (- 110°C) on muscle recovery between high-intensity exercise bouts.

    PubMed

    Ferreira-Junior, J B; Bottaro, M; Vieira, C A; Soares, S R S; Vieira, A; Cleto, V A; Cadore, E L; Coelho, D B; Simoes, H G; Brown, L E

    2014-12-01

    The aim of this study was to evaluate the effects of a single partial-body cryotherapy bout between training sessions on strength recovery. 12 young men (23.9±5.9 years) were randomly exposed to 2 different conditions separated by 7 days: 1) Partial-body cryotherapy (subjects were exposed to 3 min of partial-body cryotherapy at - 110 °C between 2 high-intensity training sessions); 2) Control (subjects were not exposed to partial-body cryotherapy between 2 high-intensity training sessions). Subjects were exposed to partial-body cryotherapy after the first training session. The 2 knee extension high-intensity training sessions were separated by a 40-min rest interval. Knee extension training consisted of 6 sets of 10 repetitions at 60°.s(-1) for concentric actions and 6 sets of 10 at 180.s(-1) for eccentric actions. The decrease in eccentric peak torque and total work was significantly (p<0.05) less after partial-body cryotherapy (5.6 and 2%, respectively) when compared to control (16 and 11.6%, respectively). However, the decrease in concentric peak torque and total work was not different (p>0.05) between partial-body cryotherapy (9.4 and 6.5%, respectively) and control (7.5 and 5.2%, respectively). These results indicate that the use of partial-body cryotherapy between-training sessions can enhance eccentric muscle performance recovery.

  13. Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation

    PubMed Central

    Hausswirth, Christophe; Schaal, Karine; Le Meur, Yann; Bieuzen, François; Filliard, Jean-Robert; Volondat, Marielle; Louis, Julien

    2013-01-01

    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a

  14. Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications.

    PubMed

    Bouzigon, Romain; Grappe, Frederic; Ravier, Gilles; Dugue, Benoit

    2016-10-01

    Cold therapy is commonly used as a method to relieve pain and inflammation. This review focuses primarily on two methods of cold therapy that have received recent attention: whole-body cryotherapy and partial-body cryotherapy. These methods are used to induce physiological and psychological benefits in humans in the context of medicine, health and sports. The subjects experiencing cryotherapy are dressed in minimal clothing and are exposed to very cold air (at -110°C or less) for 1-4min. Despite the increasing scientific interest in these methods, there is a lack of information about the technologies used. Moreover, there is no existing reference concerning exposure protocols and the relationship between temperature, duration, number of repetitions and the treatments' desired effects. The aim of this review is to compare whole- and partial-body cryotherapy effects (especially on skin temperature) and to classify the protocols for exposure according to the desired effects. This review emphasises 1) the lack of information concerning the actual temperatures inside the cabin or chamber during exposure and 2) the heterogeneity among the exposure protocols that have been reported in the scientific literature. This review will be valuable and relevant to health professionals endeavouring to optimize the cold treatments offered to patients and producers of cryotherapy apparatus striving to create more efficient devices that meet market requirements.

  15. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    SciTech Connect

    Pogorelov, Nikolai; Zhang, Ming

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker--Planck equation

  16. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    SciTech Connect

    Pogorelov, Nikolai; Zhang, Ming; Borovikov, Sergey; Heerikhuisen, Jacob; Zank, Gary; Gamayunov, Konstantin; Colella, Phillip

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker–Planck equation, or

  17. Necessary conditions for accurate computations of three-body partial decay widths

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2008-09-01

    The partial width for decay of a resonance into three fragments is largely determined at distances where the energy is smaller than the effective potential producing the corresponding wave function. At short distances the many-body properties are accounted for by preformation or spectroscopic factors. We use the adiabatic expansion method combined with the WKB approximation to obtain the indispensable cluster model wave functions at intermediate and larger distances. We test the concept by deriving conditions for the minimal basis expressed in terms of partial waves and radial nodes. We compare results for different effective interactions and methods. Agreement is found with experimental values for a sufficiently large basis. We illustrate the ideas with realistic examples from α emission of C12 and two-proton emission of Ne17. Basis requirements for accurate momentum distributions are briefly discussed.

  18. Electron collisional detachment processes for a 250 keV D/sup -/ ion beam in a partially ionized hydrogen target

    SciTech Connect

    Savas, S.E.

    1980-09-01

    Neutral atom beams with energies above 200 keV may be required for various purposes in magnetic fusion devices following TFTR, JET and MFTF-B. These beams can be produced much more efficiently by electron detachment from negative ion beams than by electron capture by positive ions. We have investigated the efficiency with which such neutral atoms can be produced by electron detachment in partially ionized hydrogen plasma neutralizers.

  19. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-05

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  20. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

  1. Partial-ionization cross sections of a CO{sub 2} molecule due to impact of 10-26-keV electrons

    SciTech Connect

    Bhatt, Pragya; Singh, Raj; Yadav, Namita; Shanker, R.

    2010-10-15

    Experimental data on total- and partial-ionization cross sections of ionic fragments of CO{sub 2} molecule produced by impact of 10-26-keV electrons are obtained on a crossed-beam apparatus in our laboratory. An ejected electron-produced ion-coincidence technique is employed together with a time-of-flight mass spectrometer for analysis of the ions. The six ionic fragments, CO{sub 2}{sup +}, CO{sup +}, CO{sub 2}{sup 2+}, O{sup +}, C{sup +}, and C{sup 2+}, resulting from dissociative ionization of the CO{sub 2} molecule are observed and identified; their relative ionization cross sections and branching ratios are determined as a function of impact energy. The binary-encounter Bethe model is found to overestimate the experimental data for total-ionization cross sections of the observed ions. No other experimental or theoretical data exist in the investigated energy range to make a direct comparison with the present results.

  2. Assessment of total- and partial-body irradiation in a baboon model: preliminary results of a kinetic study including clinical, physical, and biological parameters.

    PubMed

    Hérodin, Francis; Richard, Sandrine; Grenier, Nancy; Arvers, Philippe; Gérome, Patrick; Baugé, Stéphane; Denis, Josiane; Chaussard, Hervé; Gouard, Stéphane; Mayol, Jean-François; Agay, Diane; Drouet, Michel

    2012-08-01

    This biodosimetry study used irradiated baboons to investigate the efficacy of a kinetic multiparameter (clinical, physical, and biological) approach for discriminating partial-body irradiation (PBI) and total-body irradiation (TBI). Animals were unilaterally (front) exposed to 60Co gamma rays (8 to 32 cGy min) using either TBI or vertical left hemi-body irradiation (HBI), as follows: 2.5 Gy TBI (n = 2), 5 Gy TBI (n = 2), 5 Gy HBI (n = 2), and 10 Gy HBI (n = 2). Midline tissue doses were measured at the anterior iliac crest level with an ionization chamber, and body dosimetry was performed using thermoluminescent dosimeters. Blood samples were collected before exposure and from 1 h until 200 d after irradiation. Clinical status, complete blood cell count, biochemical parameters, and cytogenetic analysis were evaluated. The partial least square discriminant analysis chosen for statistical analysis showed that the four groups of irradiated baboons were clearly separated. However, the dicentric chromosome assay may not distinguish HBI from TBI in confounding situations where equivalent whole-body doses are similar and the time of exposure is sufficient for peripheral blood lymphocyte homogenization. Interestingly, as bone marrow shielding in HBI animals prevented aplasia from happening, hematologic parameters such as the platelet count and Flt-3 ligand level helped to distinguish HBI and TBI. Moreover, the ratio of neutrophil to lymphocyte counts, creatine kinase, and citrulline levels may be discriminating biomarkers of dose or injury. Both early and delayed clinical signs and bioindicators appear to be useful for assessment of heterogeneous irradiation.

  3. [Granuloma by Foreign Body Reaction to the Stapler Used for Partial Resection of the Lung].

    PubMed

    Hashimoto, Shintaro; Yamasaki, Naoya; Doi, Ryoichiro; Hatachi, Go; Kamohara, Ryoutaro; Miyazaki, Takuro; Matsumoto, Keitaro; Tsuchiya, Tomoshi; Hashisako, Mikiko; Tabata, Kazuhiro; Nagayasu, Takeshi

    2017-03-01

    A 66-year-old woman underwent right lower lobectomy and partial resection of the middle lobe for Stage I A double lung cancer. Five years after the operation, a routine computed tomography (CT) scan showed a mass on the staple line at the middle lobe. The mass was enlarged on CT scan after 6 months. A definitive diagnosis could not be made by bronchoscopic examination and fluoro-2-deoxy-glucose(FDG)/positron emission tomography( PET)-CT showed FDG uptake in the mass( early phase:SUVmax=3.24, late phase:SUVmax=4.31). Local recurrence of lung cancer was not completely denied, and right middle lobectomy was performed. Histopathologically, the resected specimen revealed granuloma with foreign body reaction. We should keep in mind the possibility of granuloma as differential diagnosis of lung cancer when using stapler.

  4. Tracing Mercox Injected at Acupuncture Points Under the Protocol of Partial Body Macerations in Mice.

    PubMed

    Kim, Jungdae; Stefanov, Miroslav; Nam, Min-Ho; Kim, Sungchul

    2015-12-01

    We used for the first time a vascular casting material to take advantage of a simple tracing procedure and to isolate the peculiar features of acupuncture point injections. The polymer Mercox was injected into the skin of a dead mouse at acupuncture points along the bladder meridian lines. After a partial maceration of the whole body with a potassium-hydroperoxide solution, we anatomized it under a stereomicroscope to trace the injected Mercox. Many organs were checked to determine whether or not they contained some Mercox tracing. Connections between the injection sites along the acupuncture points were observed. Two to three layers of Mercox in a plate shape were found under the skin at the acupuncture points, and Mercox travelled throughout the adipose tissue, the fascia, and the parietal and visceral serous membranes inside the organ's parenchyma. The casting material Mercox used with a modified partial maceration procedure is a promising method for visualizing the routes of the meridian system and the primo vascular system. The routes for Mercox are different from those of the blood and lymphatic vessels.

  5. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  6. Partial loss of parvalbumin-containing hippocampal interneurons in dementia with Lewy bodies.

    PubMed

    Bernstein, Hans-Gert; Johnson, Mary; Perry, Robert H; LeBeau, Fiona E N; Dobrowolny, Henrik; Bogerts, Bernhard; Perry, Elaine K

    2011-02-01

    Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia. Among many other neuropathological changes in DLB, brain region-specific cellular deficits have been reported. They include decreases in motor neuron and pyramidal cell densities, while neocortical parvalbumin (parv)-containing neurons are thought to be free of Lewy bodies and spared in DLB. However, elevated parv levels are found in the cerebrospinal fluid of patients suffering from dementia with Lewy bodies. We performed an immunohistochemical analysis of hippocampal parv-immunoreactive neurons in well-characterised DLB cases and from controls using a specific antibody against the calcium binding protein. In addition, an analysis of the regional and cellular distribution of alpha-synuclein was carried out. Subfield and laminar distribution of parv-immunoreactive (ir) neurons on the hippocampus in subjects with DLB and controls were present exclusively as non-granule cells of the dentate gyrus (DG)/hilus and non-pyramidal cells of CA1, CA2, CA3 and CA4 areas of the hippocampus. The distribution patterns did not differ qualitatively between DLB and controls. Quantitative estimation of parv-ir neuron density revealed significant decreases in the dentate (DG)/hilus region as well as in the CA1 subfield. Double immunolabelling experiments showed that only 2% of parv expressing interneurons were laden with alpha-synuclein immunoreactive material. No significant changes were found for the total neuron densities in DLB cases. Our results show a partial loss of parv-expressing hippocampal interneurons in DLB, which might be the result of long-lasting calcium overload in combination with a proposed impaired mitochondrial function. It remains to be elucidated if the numerical decrease of this particular subset of hippocampal interneurons has consequences for the gamma (20-80 Hz) frequency activity in DLB patients.

  7. PIG (partially ionized globule) anatomy - Density and temperature structure of the bright-rimmed globule IC 1396E

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Guesten, R.; Mundy, L.

    1993-01-01

    The density and temperature structure of the bright-rimmed cometary globule IC 1396E is estimated, and the possibility that recent internal star formation was triggered by the ionization front in its southern surface is assessed. On the basis of NH3 data, gas temperatures in the globule are found to increase outward from the center, from a minimum of 17 K in its tail to a maximum of 26 K on the surface most directly facing the stars ionizing IC 1396. On the basis of a microturbulent radiative transfer code to model the radial dependence of the CS line intensities, and also the intensities of the optically thin 2-1 and 5-4 lines toward the cloud center, a radial density dependence of r exp -1.55 to r exp -1.75 is found.

  8. The aerodynamics of bodies in a rarefied ionized gas with applications to spacecraft environmental dynamics

    NASA Technical Reports Server (NTRS)

    Stone, N. H.

    1981-01-01

    The objectives are to provide a parametric description of the electrostatic interaction of a mesosonic, collisionless plasma with conducting bodies on the order of 1 to 10 Debye lengths in size, and to extend this description to the satellite-ionospheric interaction, where possible. Experimental findings include: the wake of the geometrically complex body appears to be a linear superposition of the wakes of its simple geometric components; and vector ion flux measurements show converging ion streams at the wake axis and direct evidence of ion streams deflected from the wake axis by the positive space charge potential associated with the axial ion peak. The extension to the satellite-ionospheric interaction utilizes qualitative scaling and indicates that similar, but smaller amplitude, wake structures may be expected for small or highly charged bodies. However, for large bodies at small potentials, the structure may be diffused by the thermal ion motion and the dispersion resulting for space charge potentials.

  9. One session of partial-body cryotherapy (-110 °C) improves muscle damage recovery.

    PubMed

    Ferreira-Junior, J B; Bottaro, M; Vieira, A; Siqueira, A F; Vieira, C A; Durigan, J L Q; Cadore, E L; Coelho, L G M; Simões, H G; Bemben, M G

    2015-10-01

    To evaluate the effects of a single session of partial-body cryotherapy (PBC) on muscle recovery, 26 young men performed a muscle-damaging protocol that consisted of five sets of 20 drop jumps with 2-min rest intervals between sets. After the exercise, the PBC group (n = 13) was exposed to 3 min of PBC at -110 °C, and the control group (n = 13) was exposed to 3 min at 21 °C. Anterior thigh muscle thickness, isometric peak torque, and muscle soreness of knee extensors were measured pre, post, 24, 48, 72, and 96 h following exercise. Peak torque did not return to baseline in control group (P < 0.05), whereas the PBC group recovered peak torques 96 h post exercise (P > 0.05). Peak torque was also higher after PBC at 72 and 96 h compared with control group (P < 0.05). Muscle thickness increased after 24 h in the control group (P < 0.05) and was significantly higher compared with the PBC group at 24 and 96 h (P < 0.05). Muscle soreness returned to baseline for the PBC group at 72 h compared with 96 h for controls. These results indicate that PBC after strenuous exercise may enhance recovery from muscle damage.

  10. Treadmill training with partial body weight support after stroke: a review.

    PubMed

    Hesse, Stefan

    2008-01-01

    Restoration and improvement of gait after stroke are major aspects of neurorehabilitation. Mobilization out of the bed into the wheelchair and verticalisation with the help of a standing frame are first steps. With the patient cardiovascular stable, gait restoration is put on the agenda. Instead of tone-inhibiting and gait preparatory maneuvers, patients should practice complex gait cycles repetitively. Treadmill training with partial body weight support enables the harness-secured patients to practice numerous steps assisted by two or three therapists. In controlled studies, it proved equally effective as walking on the floor. Gait machines, as the Lokomat or the Gait Trainer GTI, intend to relieve the strenuous effort for the therapists. For the GTI, several controlled trials showed a superior effect in acute stroke patients with respect to walking ability and velocity. For the ambulatory patient, aerobic treadmill training is effective to improve speed and endurance without worsening gait quality. Belt velocity and inclination are gradually increased so that the patients reach a predefined target heart rate. On the belt, patients walk more symmetrically, and higher velocities result in a facilitation of paretic muscles and render gait more efficient. In summary, gait rehabilitation has seen dramatic changes over the last years. More is to be expected.

  11. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation.

    PubMed

    De Nardi, M; Pizzigalli, L; Benis, R; Caffaro, F; Cremasco, M Micheletti

    2017-01-20

    The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 males and 50 females in each group). After the initial handgrip strength test (T0), the experimental group performed a 150 seconds session of PBC (temperature range between -130 and -160 °C), whilst the control group stayed in a thermo neutral room (22.0 ± 0.5 °C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0=39.48 kg, T1=40.01 kg; PBC: T0=39.61 kg, T1=41.34 kg). The analysis reported also a statistical effect related to gender (F=491.99, P<0.05), with females showing lower handgrip strength values compared with males (females=30.43 kg, males=52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study implies that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  12. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition

  13. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury

    PubMed Central

    Castillo, Gerardo M.; Nishimoto-Ashfield, Akiko; Jones, Cynthia C.; Kabirov, Kasim K.; Zakharov, Alexander; Lyubimov, Alexander V.

    2017-01-01

    We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized. PMID:28207794

  14. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury.

    PubMed

    Castillo, Gerardo M; Nishimoto-Ashfield, Akiko; Jones, Cynthia C; Kabirov, Kasim K; Zakharov, Alexander; Lyubimov, Alexander V

    2017-01-01

    We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.

  15. Negative Differential Resistance of CaF 2/CdF 2 Triple-Barrier Resonant-Tunneling Diode on Si(111) Grown by Partially Ionized Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Aoki, Yuichi; Saito, Wataru; Tsuganezawa, Mika

    1999-02-01

    Room-temperature negative differential resistance (NDR) of triple-barrier cadmium di-fluoride (CdF2)/calcium di-fluoride (CaF2) heterostructure resonant-tunneling diode (RTD) on a Si(111) substrate has been demonstrated. CdF2/CaF2 multilayered heterostructures were grown on a Si(111) substrate using partially ionized beam epitaxy to obtain atomically flat interfaces. The RTD structures, which consist of triple CaF2 energy barriers and double CdF2 quantum wells, were fabricated by electron beam (EB) lithography and dry etching to avoid thermal and chemical damage to the CdF2 layers. In the current-voltage characteristics of the RTD, NDR was clearly observed even at room temperature and the maximum peak-to-valley (P/V) ratio was about 6.

  16. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  17. Hypersonic ionizing air viscous shock-layer flows over nonanalytic blunt bodies

    NASA Technical Reports Server (NTRS)

    Miner, E. W.; Lewis, C. H.

    1975-01-01

    The equations which govern the viscous shock-layer flow are presented and the method by which the equations are solved is discussed. The predictions of the present finite-difference method are compared with other numerical predictions as well as with experimental data. The principal emphasis is placed on predictions of the viscous flowfield for the windward plane of symmetry of the space shuttle orbiter and other axisymmetric bodies which approximate the shuttle orbiter geometry. Experimental data on two slender sphere-cones at hypersonic conditions are also considered. The present predictions agreed well with experimental data and with the past predictions. Substantial differences were found between present predictions and more approximate methods.

  18. Multivariate Analysis of Radiation Responsive Proteins to Predict Radiation Exposure in Total-Body Irradiation and Partial-Body Irradiation Models.

    PubMed

    Sproull, Mary; Kramp, Tamalee; Tandle, Anita; Shankavaram, Uma; Camphausen, Kevin

    2017-02-01

    In the event of a radiological or nuclear attack, advanced clinical countermeasures are needed for screening and medical management of the exposed population. In such a scenario, minimally invasive biomarkers that can accurately quantify radiation exposure would be useful for triage management by first responders. In this murine study, we evaluated the efficacy of a novel combination of radiation responsive proteins, Flt3 ligand (FL), serum amyloid A (SAA), matrix metalloproteinase 9 (MMP9), fibrinogen beta (FGB) and pentraxin 3 (PTX3) to predict the received dose after whole- or partial-body irradiation. Ten-week-old female C57BL6 mice received a single whole-body or partial-body dose of 18 Gy from a Pantak X-ray source at a dose rate of 2.28 Gy/min. Plasma was collected by cardiac puncture at 24, 48, 72 h and 1 week postirradiation. Plasma protein levels were determined via commercially available ELISA assay. A multivariate discriminant analysis was utilized to generate best-fit dose prediction models for whole-body exposures using the selected biomarker panel and its potential application to partial-body exposures was examined. The combination of values from FL, SAA, MMP9, FGB and PTX3 between 24 h and 1 week postirradiation yielded novel dose-response relationships. For day 1 postirradiation, the best-fit model yielded a predictive accuracy of 81% utilizing FL alone. The use of additional proteins did not enhance the model accuracy whereas, at day 2 postirradiation, the addition of PTX3 and FGB to FL increased the accuracy to 100%. At day 3 the use of FL and PTX3 yielded a predictive accuracy of 93% and at day 7 use of FL and SAA had an accuracy of 90%. Dose prediction of partial-body exposures based on the TBI model had a higher predictive accuracy when the percentage of the body exposed to radiation increased. Our findings indicate that this novel combination of radiation responsive biomarker proteins are an efficient method for predicting radiation exposure

  19. Treadmill training with partial body-weight support after anterior cruciate ligament reconstruction: a randomized controlled trial

    PubMed Central

    luo, Yuan; Shen, Weizhong; Jiang, Zhong; Sha, Jiao

    2016-01-01

    [Purpose] To compare the effects of treadmill training with partial body weight support (TTPBWS) and conventional physical therapy (PT) on subjects with anterior cruciate ligament reconstructions. [Subjects and Methods] A total of 40 subjects were randomly allocated to either a treatment group or a control group. Subjects received either treadmill training with partial body weight support (treatment group) or conventional physical therapy (control group). The circumferences of the lower extremities, Holden classifications, 10-meter walking times and the International Knee Documentation Committee (IKDC) scores were compared at 12 and 24 weeks post-operation. The knee joint stability was tested at 24 weeks post-operation using a KT-1000. [Results] Significant differences were found between the two groups at the 12 weeks post-operation. For most of the measures, there was no significant difference between the groups at 24 weeks post-operation. Interestingly, for most of the measures, there was no significant difference between their values in the treatment group at 12 weeks and their values in the control group at 24 weeks post-operation. [Conclusion] The function of a subject’s lower extremities can be improved and the improvement was clearly accelerated by the intervention of treadmill training with partial body weight support, without compromising the stability of the knee joints in a given follow-up period. PMID:28174445

  20. Extraction and analysis of body-induced partials of guitar tones.

    PubMed

    Fréour, Vincent; Gautier, François; David, Bertrand; Curtit, Marthe

    2015-12-01

    Guitar plucked sounds arise from a rapid input of energy applied to the string coupled to the instrument body at the bridge. For the radiated pressure, this results in quasi-harmonic contributions, reflecting the string modes coupled to the body, as well as some transient and quickly decaying components reflecting the excitation of the body modes of the instrument. In order to evaluate the relevance of this transient body sound, a high resolution analysis-synthesis method is described for the extraction of the body-mode contribution from the radiated pressure measured in the near field of the guitar top plate. This analysis scheme is first tested on synthesized signals. Some body-sound emergence indicators are then proposed and computed over a pool of instruments. The influence of the conditions of excitation on the body-sound emergence is investigated, and the instruments categorized according to these objective descriptors. Results show a larger range of body-sound emergence with variations of the plucking position in hand-made guitars compared to industrial instruments. This suggests that these particular hand-made instruments are more sensitive to variations in the control from the player and hence allow a wider range of timbres with respect to the transient coloration of the body modes.

  1. Generation of Three Dimensional Body Fitted Coordinates Using Hyperbolic Partial Differential Equations.

    DTIC Science & Technology

    1984-03-01

    Phys., 12, Vol. 2 (1972), 182-195. 3) Thompson , J . F ., F. C. Thames, and C. M. Mastin, Automatic numerical gen- eration of body-fitted curvilinear...coordinate system for field containing any number of arbitrary two-dimensional bodies, 3. Comp. Phys., Vol. 15, (1974), 299-319. 4) Thompson , J . F ., Elliptic

  2. Thrombopoietin Receptor Agonist Mitigates Hematopoietic Radiation Syndrome and Improves Survival after Whole-Body Ionizing Irradiation Followed by Wound Trauma

    PubMed Central

    Zhai, Min; Liao, Pei-Jun; Elliott, Thomas B.

    2017-01-01

    Ionizing radiation combined with trauma tissue injury (combined injury, CI) results in greater mortality and H-ARS than radiation alone (radiation injury, RI), which includes thrombocytopenia. The aim of this study was to determine whether increases in numbers of thrombocytes would improve survival and mitigate H-ARS after CI. We observed in mice that WBC and platelets remained very low in surviving RI animals that were given 9.5 Gy 60Co-γ-photon radiation, whereas only lymphocytes and basophils remained low in surviving CI mice that were irradiated and then given skin wounds. Numbers of RBC and platelets, hemoglobin concentrations, and hematocrit values remained low in surviving RI and CI mice. CI induced 30-day mortality higher than RI. Radiation delayed wound healing by approximately 14 days. Treatment with a thrombopoietin receptor agonist, Alxn4100TPO, after CI improved survival, mitigated body-weight loss, and reduced water consumption. Though this therapy delayed wound-healing rate more than in vehicle groups, it greatly increased numbers of platelets in sham, wounded, RI, and CI mice; it significantly mitigated decreases in WBC, spleen weights, and splenocytes in CI mice and decreases in RBC, hemoglobin, hematocrit values, and splenocytes and splenomegaly in RI mice. The results suggest that Alxn4100TPO is effective in mitigating CI.

  3. Salicylate as a partial inhibitor of emotional fever and body weight set-point in rats: behavioral and neuroendocrine study.

    PubMed

    Michel, C; Frankham, P; Cabanac, M

    2003-03-01

    In this article, we report findings from behavioral and neuroendocrine experiments in rats under pharmacologically induced antipyretic conditions. Endpoints included emotional fever, body weight setpoint, and in situ corticotropin-releasing hormone mRNA (CRHmRNA) expression. Nine male Wistar rats were treated with acetylsalicylic acid (ASA) 0.04 g/kg ip in vehicle. On alternating days, all rats received saline (0.9% w/v) as a control. ASA was selected chiefly for its antipyretic and also for effects on metabolism. It has been demonstrated that gentle handling affects body weight and body temperature in rats. In Experiment 1, we investigated whether blocking emotional fever by ASA treatment would inhibit the lowering of the body weight setpoint induced by handling of the rats. Rats were exposed to a daily food-hoarding session under handling stress, and their body weight setpoints were calculated from the hoarding measurements. As rats received ASA and saline in an alternating manner, two setpoints were calculated. In Experiment 2, we performed neuroendocrine analyses of CRHmRNA expression in the same group of animals from Experiment 1. CRHmRNA was determined by in situ hybridization. Results indicated that ASA treatment in rats significantly decreased the body weight setpoint (P=.02) and significantly prevented increases in body temperature due to emotional fever (P=.03) when compared to their control values. Findings also revealed that hypothalamic CRH expression was increased when rats were treated with ASA. ASA did partially block fever induced by handling, but it is difficult to confirm whether emotion was also inhibited by treatment. Taken together, these results indicate that salicylates affect energy balance and might be a good inhibitor of body weight gain in rats.

  4. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    PubMed Central

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  5. Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma

    SciTech Connect

    Kaothekar, Sachin; Soni, Ghanshyam D.; Chhajlani, Rajendra K.

    2012-12-15

    The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

  6. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  7. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  8. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  9. Survival after total-body irradiation. I. Effects of partial small bowel shielding

    SciTech Connect

    Vigneulle, R.M.; Vriesendorp, H.M.; Taylor, P.; Burns, W.; Pelkey, T. )

    1989-08-01

    The small intestine of the rat was shielded during total-body irradiation (TBI) to evaluate the effects of radiation dose and length of intestine shielded on survival. Sprague-Dawley rats were anesthetized in groups of 10. Using aseptic surgical procedures 80, 40, 20, or 10 cm, or none of the proximal or distal small intestine were temporarily exteriorized and shielded during irradiation with photons from an 18 MeV linear accelerator. Less than 17% of the dose was delivered to the shielded intestines. In unshielded animals deaths occurred from Days 4 to 6 with 13, 15, or 17 Gy and from Days 8 to 30 with 9, 11, and 12 Gy. However, in all animals exposed to 15 Gy with all or part of the small intestine shielded, survival was increased to between 5 and 9 days. Shielding of the distal small intestine was more effective in prolonging survival than shielding of the proximal small intestine. The previously identified target of radiation damage in the small intestine is the crypt stem cell. In this study, the analysis of histological specimens of shielded and irradiated small intestine suggested that humoral factors also influence intestinal histology and survival after irradiation. These humoral factors are thought to originate from the irradiated body tissues, the shielded proximal intestine, and the shielded distal intestine. Further studies are required to identify these factors and to determine their mode of action and their therapeutic potential after radiation damage to the small intestine.

  10. Survival after total-body irradiation. 1. Effects of partial small bowel shielding

    SciTech Connect

    Vigneulle, R.M.; Vriesendorp, H.M.; Taylor, P.; Burns, W.; Pelkey, T.

    1989-01-01

    The small intestine of the rat was shielded during total-body irradiation (TBI) to evaluate the effects of radiation dose and length of intestine shielded on survival. Sprague-Dawley rats were anesthetized in groups of 10. Using aseptic surgical procedures 80, 40, 20, or 10 cm, or none of the proximal or distal small intestine were temporarily exteriorized and shielded during irradiation with photons from an 18-MeV linear accelerator. Less than 17% of the dose was delivered to the shielded intestines. In unshielded animals deaths occurred from Days 4 to 6 with 13, 15, or 17 Gy and from Days 8 to 30 with 9, 11, and 12 Gy. However, in all animals exposed to 15 Gy with all or part of the small intestine shielded, survival was increased to between 5 and 9 days. Shielding of the distal small intestine. The previously identified target of radiation damage in the small intestine is the crypt stem cell. In this study, the analysis of histological specimens of shielded and irradiated small intestine suggested that humoral factors also influence intestinal histology and survival after irradiation. These humoral factors are thought to originate from the irradiated body tissues, the shielded proximal intestine, and the shielded distal intestine. Further studies are required to identify these factors and to determine their mode of action and their therapeutic potential after radiation damage to the small intestine.

  11. Partial least squares analysis of rocket propulsion fuel data using diaphragm valve-based comprehensive two-dimensional gas chromatography coupled with flame ionization detection.

    PubMed

    Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E

    2016-06-01

    The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform.

  12. More evidence for a partially differentiated CV chondrite parent body from paleomagnetic studies of ALH 84028 and ALH 85006

    NASA Astrophysics Data System (ADS)

    Klein, B. Z.; Weiss, B. P.; Carporzen, L.

    2014-12-01

    Recent paleomagnetic studies of the CV carbonaceous chondrites Allende and Kaba and numerical modeling studies have suggested that the CV chondrite parent body may have been partially differentiated, with a molten metallic core, dynamo magnetic field, and an unmelted chondritic lid. To further evaluate this hypothesis, here we present new paleomagnetic analyses of two previously unstudied CV3 chondrites: the unshocked, Allende-type oxidized chondrite ALH 84028 and the weakly shocked, Bali-type oxidized chondrite ALH 85006. We preformed alternating field (AF) and thermal demagnetization experiments, AF-based paleointensity experiments, and rock magnetic experiments on mutually oriented subsamples of each meteorite. Both meteorites pass fusion crust baked contact tests, indicating that their interiors retain a magnetization predating atmospheric entry. In the interior of ALH 84028, we identified a unidirectional medium temperature (blocked to 300°C), high coercivity (blocked to >420 mT) component. In the interior of ALH 85006, we identified MT components blocked up to 400-475°C. The unblocking temperatures and unidirectional nature of the MT components in both meteorites indicates their origin as a partial thermoremanence or thermochemical remanence acquired during metamorphism following accretion of the CV chondrite parent body. Our paleointensity experiments indicate paleofield intensities of 32-73 μT for ALH 84028 and 14-45 μT for ALH 85006 . When combined with similar recent results for Allende and Kaba, there is now consistent evidence for dynamo fields from four CV chondrites with collectively diverse lithologies and shock states. Therefore, the magnetic field on the CV parent body was not a localized event like that expected for a field generated by meteoroid impact plasmas and instead likely had a wide spatial extent. Further, given the younger I-Xe ages for Kaba compared to Allende (9-10 Ma and 2-3 Ma after Stillwater respectively), CV parent body

  13. Food Reinforcement Partially Mediates the Effect of Socioeconomic Status on Body Mass Index

    PubMed Central

    Lin, Henry; Carr, Katelyn A.; Fletcher, Kelly D.; Epstein, Leonard H.

    2012-01-01

    Low socioeconomic status (low SES), as defined by income or educational attainment, has been associated with obesity in industrialized nations. Low SES persons have limited resources and may experience food insecurity that increases food reinforcement. Food reinforcement has been positively related to energy intake and weight status, and increased food reinforcement may explain the higher prevalence of obesity among low SES individuals who have restricted access to low-energy-dense foods and non-food reinforcers. We measured annual household income, highest education level completed and food reinforcement in 166 adults of varying body mass index (BMI, kg/m2). Multivariate linear regression analyses controlling for age, sex, minority status, session hunger and the reinforcing value of non-food alternatives showed that household income was related to food reinforcement (p = 0.048) and BMI (p = 0.019), and that food reinforcement was related to BMI (p = 0.0017). Path analyses revealed a significant indirect effect of household income on BMI through food reinforcement, suggesting that the relationship between lower household income and greater BMI was mediated in part by increased food reinforcement. A similar pattern of results was observed when education level was used as the proxy for SES. These findings support the hypothesis that deprivation and restricted food choice associated with low SES enhance food reinforcement, increasing the risk for obesity. PMID:23754824

  14. Kidney and lung injury in irradiated rats protected from acute death by partial-body shielding

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.; Michieli, B.M. )

    1990-04-01

    Ninety-six CD-1 male rats were exposed to gamma-ray doses (0-25 Gy) in increments of 5 Gy. One femur, the surgically exteriorized GI tract, and the oral cavity were shielded during irradiation to protect against acute mortality from injury to the hematopoietic system, small intestine, and oral cavity. In addition, the thoraxes of half of the animals from each dose group were shielded. At approximately monthly intervals from 2 to 10 months after irradiation the hematocrit, plasma urea nitrogen (PUN), and {sup 51}Cr-EDTA clearance were measured. During the study 20 thorax-shielded and 19 thorax-irradiated animals died. All rats whose thoraxes received 25 Gy irradiation and three out of seven rats whose thoraxes received 20 Gy died 1 to 3 months postirradiation with massive pleural fluid accumulation. Shielding the thoraxes prevented this mode of death at these doses. Kidney injury was judged to be the primary cause of death of all thorax-shielded animals and 15- and 20-Gy thorax-irradiated animals. Animals with kidney damage had elevated PUN and reduced {sup 51}Cr-EDTA clearance and hematocrits. The relative merits of each of these end points in assessing radiation-induced kidney injury after total-body exposure are discussed.

  15. Consequences of partial body warming and cooling for the drives to local sweat rates.

    PubMed

    Werner, J; Heising, M

    1990-01-01

    Climatic chamber experiments were carried out on young, healthy male students. The ambient temperature was 36 degrees C, while local warming of one extremity was compensated for by heatflow-equivalent cooling of the ipsilateral extremity by on-line calculation of the heat balance. When warming the arm and cooling the leg (type 1 experiments), a slight, but not statistically significant increase of local sweat rates at these extremities was recorded. However, when cooling the arm and warming the leg (type 2 experiments), both corresponding local sweat rates declined. The divergent results are interpreted in terms of previously reported different central weighting factors for skin temperatures as determined: (1) by the weighting for the area, or (2) by the weighting for the area and the sensitivity of the local sweat rate to warming and cooling. This means that the central processing of the mean skin temperature may be different for cooling and warming and that in both cases values can be different from recorded (area weighted) skin temperature. Calculating this modified mean skin temperature, we conclude that type 1 experiments may be interpreted by the hypothesis that the central regulator has a status very near an overall heat-balance, whereas type 2 experiments, although also carried out at heat-balance, may be centrally evaluated as predominant cooling. In these experiments again the central drives representing the whole body thermal state seem to override both the direct and centrally mediated local drives.

  16. Blowoff behavior of bluff body stabilized flames in vitiated and partially premixed flows

    NASA Astrophysics Data System (ADS)

    Tuttle, Steven G.

    Turbulent flame holding and blowoff characteristics of bluff body stabilized flames were measured in an enclosed rectangular duct with a triangular flame holder in vitiated, premixed and unvitiated, asymmetrically stratified flows. Blowoff stability margins were characterized, with chemiluminescence measurements performed by high-speed imaging to capture flame dynamics during blow off. As the equivalence ratio was decreased, local extinction along the shear layer flames occurred with greater frequency and proximity to the wake stagnation zone. Decreased equivalence ratio resulted in extinction events at the trailing edge of the stagnation zone, where reactants were convected into the recirculation zone and burned. Eventually, increasing reactant dilution of the recirculation zone either increased the ignition time scale or the lowered the strain tolerance of the propagating flames in the flame anchoring region, resulting in lift-off or extinction, and the near field shear layer flames convected to the wake stagnation zone, where they continued to propagate. From there, the flames were convected upstream into the recirculation zone, where they were eventually quenched. Simultaneous PIV and OH PLIF measurements captured the flame edge location and aerodynamic behavior as blowoff was approached. Two-dimensional hydrodynamic stretch alone the flame front and flow field vorticity maps were extracted from the combined PIV/OH PLIF data. The distribution of flame stretch shifted to greater values as the equivalence ratio decreased. Asymmetric fuel distributions, measured with acetone LW, were found to increase the equivalence ratio at blow off from that found with uniformly-fueled flows. This was attributed to the greater wake instability and extinction of the lean-side flames. The asymmetrically fueled flames were more susceptible to thermoacoustic instabilities when the shedding frequency was near an acoustic eigenmode of the exhaust duct, due to the decreased

  17. Aminophylline partially prevents the decrease of body temperature during laparoscopic abdominal surgery.

    PubMed

    Kim, Dae Woo; Lee, Jung Ah; Jung, Hong Soo; Joo, Jin Deok; In, Jang Hyeok; Jeon, Yeon Soo; Chun, Ga Young; Choi, Jin Woo

    2014-08-01

    Aminophylline can elicit thermogenesis in rats or increase metabolic rate during cold stress in lambs. We tested the hypothesis that aminophylline would reduce the change in core body temperature during laparoscopic abdominal surgery requiring pneumoperitoneum. Fifty patients were randomly divided into an aminophylline group (n=25) and a saline control group (n=25). Esophageal temperature, index finger temperature, and hemodynamic variables, such as mean blood pressure and heart rate, were measured every 15 min during sevoflurane anesthesia. In the aminophylline group, esophageal temperatures at T45 (36.1±0.38 vs. 35.7±0.29, P=0.024), T60 (36.0±0.39 vs. 35.6±0.28, P=0.053), T75 (35.9±0.34 vs. 35.5±0.28, P=0.025), T90 (35.8±0.35 vs. 35.3±0.33, P=0.011), and T105 (35.8±0.36 vs. 35.1±0.53, P=0.017) and index finger temperatures at T15 (35.8±0.46 vs. 34.9±0.33, P<0.001), T30 (35.7±0.36 vs. 35.0±0.58, P=0.029), T45 (35.8±0.34 vs. 35.2±0.42, P=0.020), T60 (35.7±0.33 vs. 34.9±0.47, P=0.010), T75 (35.6±0.36 vs. 34.8±0.67, P=0.028), T90 (35.4±0.55 vs. 34.4±0.89, P=0.042), and T105 (34.9±0.53 vs. 33.9±0.85, P=0.024) were significantly higher than in the saline control group. Aminophylline is effective in maintaining the core temperature through a thermogenic effect, despite reduced peripheral thermoregulatory vasoconstriction.

  18. Optimizing the Microscopy Time Schedule for Chromosomal Dosimetry of High-dose and Partial-body Irradiations

    PubMed Central

    Vinnikov, Volodymyr A.

    2017-01-01

    The methodology of cytogenetic triage can be improved by optimizing a schedule of microscopy for different exposure scenarios. Chromosome aberrations were quantified by microscopy in human blood lymphocytes irradiated in vitro to ~2, 4, and 12 Gy acute 60Co γ-rays mixed with the unirradiated blood simulating 10%, 50%, 90%, and 100% exposure and in along with a sample from a homogeneous exposure to ~20 Gy. Biodosimetry workload was statistically modeled assuming that 0.5, 1, 5, or 25 h was available for scoring one case or for analysis of up to 1000 cells or 100 dicentrics plus centric rings by one operator. A strong negative correlation was established between the rates of aberration acquisition and cell recording. Calculations showed that the workload of 1 case per operator per·day (5 h of scoring by microscopy) allows dose estimates with high accuracy for either 90%–100% irradiations of 2 Gy or 50%–90% irradiations of 4–12 Gy; lethal homogeneous (100%) exposures of 12 and 20 Gy can be evaluated with just 1 h of microscopy. Triage analysis of 0.5 h scoring per case results in the minimum tolerable accuracy only for partial- and total-body exposure of 4–20 Gy. Time-related efficacy of conventional biodosimetry depends primarily on the aberration yield in the sample, which is dependent on the radiation dose and its distribution in the patient's body. An optimized schedule of microscopy scoring should be developed for different exposure scenarios in each laboratory to increase their preparedness to radiological emergencies. PMID:28250910

  19. Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves

    NASA Astrophysics Data System (ADS)

    Askari, E.; Daneshmand, F.; Amabili, M.

    2011-10-01

    Internal bodies (baffles) are used as damping devices to suppress the fluid sloshing motion in fluid-structure interaction systems. An analytical method is developed in the present article to investigate the effects of a rigid internal body on bulging and sloshing frequencies and modes of a cylindrical container partially filled with a fluid. The internal body is a thin-walled and open-ended cylindrical shell that is coaxially and partially submerged inside the container. The interaction between the fluid and the structure is taken into account to calculate the sloshing and bulging frequencies and modes of the coupled system using the Rayleigh quotient, Ritz expansion and Galerkin method. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy. The effects of fluid level, number of nodal diameters, internal body radius and submergence ratio on the dynamic characteristics of the coupled system are also investigated.

  20. Ascaris lumbricoides pseudocoelomic body fluid induces a partially activated dendritic cell phenotype with Th2 promoting ability in vivo.

    PubMed

    Dowling, David J; Noone, Cariosa M; Adams, Paul N; Vukman, Krisztina V; Molloy, Sile F; Forde, Jessica; Asaolu, Samuel; O'Neill, Sandra M

    2011-02-01

    Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.

  1. Citrulline as a biomarker in the non-human primate total- and partial-body irradiation models: correlation of circulating citrulline to acute and prolonged gastrointestinal injury

    PubMed Central

    Jones, Jace W.; Bennett, Alexander; Carter, Claire L.; Tudor, Gregory; Hankey, Kim G.; Farese, Ann M.; Booth, Catherine; MacVittie, Thomas J.; Kane, Maureen A.

    2015-01-01

    The use of plasma citrulline as a biomarker for acute and prolonged gastrointestinal injury via exposure to total- and partial-body irradiation (6 MV LINAC-derived photons; 0.80 Gy min−1) in nonhuman primate models was investigated. The irradiation exposure covered gastrointestinal injuries spanning lethal, mid-lethal, and sub-lethal doses. The acute gastrointestinal injury was assessed via measurement of plasma citrulline and small intestinal histopathology over the first 15 days following radiation exposure and included total-body irradiation at 13.0 Gy, 10.5 Gy, and 7.5 Gy and partial-body irradiation at 11.0 Gy with 5% bone marrow sparing. The dosing schemes of 7.5 Gy total-body irradiation and 11.0 Gy partial-body irradiation included time points out to day 60 and day 180, respectively, which allowed for correlation of plasma citrulline to prolonged gastrointestinal injury and survival. Plasma citrulline values were radiation-dependent for all radiation doses under consideration with nadir values ranging from 63–80 % lower than radiation-naïve NHP plasma. The nadir values were observed at day 5 to 7 post irradiation. Longitudinal plasma citrulline profiles demonstrated prolonged gastrointestinal injury resulting from acute high-dose irradiation had long lasting effects on enterocyte function. Moreover, plasma citrulline did not discriminate between total-body or partial-body irradiation over the first 15 days following irradiation and was not predictive of survival based on the radiation models considered herein. PMID:26425904

  2. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  3. Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Enomoto, Hirofumi; Sugiura, Yuki; Setou, Mitsutoshi; Zaima, Nobuhiro

    2011-06-01

    The mammalian tongue is one of the most important organs during food uptake because it is helpful for mastication and swallowing. In addition, taste receptors are present on the surface of the tongue. Lipids are the second most abundant biomolecules after water in the tongue. Lipids such as phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) are considered to play fundamental roles in the mediation of cell signaling. Imaging mass spectrometry (IMS) is powerful tool for determining and visualizing the distribution of lipids across sections of dissected tissue. In this study, we identified and visualized the PC, LPC, and SM species in a mouse tongue body section with matrix-assisted laser desorption/ionization (MALDI)-IMS. The ion image constructed from the peaks revealed that docosahexaenoic acid (DHA)-containing PC, LPC, linoleic acid-containing PC and SM (d18:1/16:0), and oleic acid-containing PC were mainly distributed in muscle, connective tissue, stratified epithelium, and the peripheral nerve, respectively. Furthermore, the distribution of SM (d18:1/16:0) corresponded to the distribution of nerve tissue relating to taste in the stratified epithelium. This study represents the first visualization of PC, LPC and SM localization in the mouse tongue body.

  4. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    PubMed Central

    Kiang, Juliann G.; Zhai, Min; Liao, Pei-Jyun; Bolduc, David L.; Elliott, Thomas B.; Gorbunov, Nikolai V.

    2014-01-01

    Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia. PMID:24738019

  5. Ghrelin therapy improves survival after whole-body ionizing irradiation or combined with burn or wound: amelioration of leukocytopenia, thrombocytopenia, splenomegaly, and bone marrow injury.

    PubMed

    Kiang, Juliann G; Zhai, Min; Liao, Pei-Jyun; Elliott, Thomas B; Gorbunov, Nikolai V

    2014-01-01

    Exposure to ionizing radiation alone (RI) or combined with traumatic tissue injury (CI) is a crucial life-threatening factor in nuclear and radiological events. In our laboratory, mice exposed to (60)Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral) followed by 15% total-body-surface-area skin wounds (R-W CI) or burns (R-B CI) experienced an increment of ≥18% higher mortality over a 30-day observation period compared to RI alone. CI was accompanied by severe leukocytopenia, thrombocytopenia, erythropenia, and anemia. At the 30th day after injury, numbers of WBC and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were recovered towards preirradiation levels. Only RI induced splenomegaly. RI and CI resulted in bone-marrow cell depletion. In R-W CI mice, ghrelin (a hunger-stimulating peptide) therapy increased survival, mitigated body-weight loss, accelerated wound healing, and increased hematocrit. In R-B CI mice, ghrelin therapy increased survival and numbers of neutrophils, lymphocytes, and platelets and ameliorated bone-marrow cell depletion. In RI mice, this treatment increased survival, hemoglobin, and hematocrit and inhibited splenomegaly. Our novel results are the first to suggest that ghrelin therapy effectively improved survival by mitigating CI-induced leukocytopenia, thrombocytopenia, and bone-marrow injury or the RI-induced decreased hemoglobin and hematocrit.

  6. Ghrelin Therapy Improves Survival after Whole-Body Ionizing Irradiation or Combined with Burn or Wound: Amelioration of Leukocytopenia, Thrombocytopenia, Splenomegaly, and Bone Marrow Injury

    PubMed Central

    Kiang, Juliann G.; Zhai, Min; Liao, Pei-Jyun; Elliott, Thomas B.; Gorbunov, Nikolai V.

    2014-01-01

    Exposure to ionizing radiation alone (RI) or combined with traumatic tissue injury (CI) is a crucial life-threatening factor in nuclear and radiological events. In our laboratory, mice exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral) followed by 15% total-body-surface-area skin wounds (R-W CI) or burns (R-B CI) experienced an increment of ≥18% higher mortality over a 30-day observation period compared to RI alone. CI was accompanied by severe leukocytopenia, thrombocytopenia, erythropenia, and anemia. At the 30th day after injury, numbers of WBC and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were recovered towards preirradiation levels. Only RI induced splenomegaly. RI and CI resulted in bone-marrow cell depletion. In R-W CI mice, ghrelin (a hunger-stimulating peptide) therapy increased survival, mitigated body-weight loss, accelerated wound healing, and increased hematocrit. In R-B CI mice, ghrelin therapy increased survival and numbers of neutrophils, lymphocytes, and platelets and ameliorated bone-marrow cell depletion. In RI mice, this treatment increased survival, hemoglobin, and hematocrit and inhibited splenomegaly. Our novel results are the first to suggest that ghrelin therapy effectively improved survival by mitigating CI-induced leukocytopenia, thrombocytopenia, and bone-marrow injury or the RI-induced decreased hemoglobin and hematocrit. PMID:25374650

  7. Application of the Premature Chromosome Condensation Assay in Simulated Partial-Body Radiation Exposures: Evaluation of the Use of an Automated Metaphase-Finder

    DTIC Science & Technology

    1995-01-01

    DECLASSIFY ON: SECURITY CLASSIFICATION OF THIS PAGE 4 .ARMED FORCES RADIOSIOLOGY RESEARCH INSTITUTE SCIENTIFIC REPORT SR95-17 Application of the Premature ...Radiation Biophysics Department, Bethesda, Maryland, USA; bLoats Associates, Westminster, Maryland, USA Key Words. Premature chromosome condensation...assay • Lymphocytes • x-ray • Chromosome damage • Biodosimetry • Partial-body exposure • Metaphase-finder Abstract. The premature chromosome condensa

  8. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  9. The mobilization of hematopoietic progenitors to peripheral blood is predictive of the hematopoietic syndrome after total or partial body irradiation of mice

    SciTech Connect

    Grande, Teresa; Bueren, Juan A. . E-mail: juan.bueren@ciemat.es

    2006-02-01

    Purpose: In previous studies we showed that administration of mobilizing growth factors (MGFs) to mice previously exposed to total body irradiation mobilizes to peripheral blood (PB) a number of progenitors that correlates with the total reserve of progenitors surviving the exposure. Now we have tested whether this finding is independent of the radiosensitivity of the mice and of the homogeneity of the radiation exposure. Also we have investigated whether numbers of mobilized progenitors predict the hematopoietic syndrome after irradiation. Methods and Materials: Mice were subjected to partial or total body irradiation and treated with MGFs. Thereafter, the number of colony-forming units granulocyte-macrophage progenitors in PB was correlated with the total reserve of surviving progenitors and with the nadir of leukocytes after the irradiation. Results: The number of progenitors mobilized to PB after irradiation of normal and radiosensitive mice showed the same correlation with respect to the reserve of bone marrow progenitors surviving the exposure. Additionally, the number of mobilized progenitors correlated with the leukocytes' nadir after the irradiation, regardless of homogeneous or inhomogeneous exposures. Conclusions: In a mouse experimental model, the number of hematopoietic progenitors mobilized to PB by MGFs is a good predictor of the hematopoietic syndrome occurring after total or partial body irradiation.

  10. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  11. Captopril Increases Survival after Whole-Body Ionizing Irradiation but Decreases Survival when Combined with Skin-Burn Trauma in Mice.

    PubMed

    Islam, Aminul; Bolduc, David L; Zhai, Min; Kiang, Juliann G; Swift, Joshua M

    2015-09-01

    Past and recent radiation events have involved a high incidence of radiation combined injury where victims often succumb to serious infections as a consequence of bacterial translocation and subsequent sepsis. The risk of infection is exacerbated in radiation combined skin-burn injury (RCI), which increase vulnerability. Furthermore, no suitable countermeasures for radiation combined skin-burn injury have been established. In this study, we evaluated captopril as a potential countermeasure to radiation combined skin-burn injury. Captopril is an FDA-approved angiotensin-converting enzyme inhibitor that was previously reported to stimulate hematopoietic recovery after exposure to ionizing radiation. Female B6D2F1/J mice were whole-body bilateral (60)Co gamma-photon irradiated (dose rate of 0.4 Gy/min) with 9.5 Gy (LD70/30 for RCI), followed by nonlethal dorsal skin-burn injury under anesthesia (approximately 15% total-body surface-area burn). Mice were provided with acidified drinking water with or without dissolved captopril (0.55 g/l) for 30 days immediately after injury and were administered topical gentamicin (0.1% cream; day 1-10) and oral levofloxacin (90-100 mg/kg; day 3-16). Surviving mice were euthanized on day 30 after analyses of water consumption, body weight and survival. Our data demonstrate that, while treatment with captopril did mitigate mortality induced by radiation injury (RI) alone (55% captopril vs. 80% vehicle; n = 20, P < 0.05), it also resulted in decreased survival after radiation combined skin-burn injury (22% captopril vs. 41% vehicle; n = 22, P < 0.05). Moreover, captopril administration via drinking water produced an uneven dosage pattern among the different injury groups ranging from 74 ± 5.4 to 115 ± 2.2 mg/kg/day. Captopril treatment also did not counteract the negative alterations in hematology, splenocytes or bone marrow cellularity after either radiation injury or radiation combined skin-burn injury. These data suggest that

  12. Comparison of the effects of partial-or-whole-body exposures to 16O particles on cognitive performance in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies using a ground-based system (NASA Space Radiation Laboratory) to study the effects of exposure to particles of high energy and charge (HZE particles) on cognitive performance have interchangeably used whole-body exposures or exposures restricted to the head of the subject. It is possible th...

  13. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  14. Out-of-body-like experiences are more probable in people with elevated complex partial epileptic-like signs during periods of enhanced geomagnetic activity: a nonlinear effect.

    PubMed

    Persinger, M A

    1995-04-01

    The ratings of subjective experiences of the self "leaving" or of being detached from the body were obtained (over a 3-yr. period) for a total of 128 men and women who had been exposed only once to an experimental setting which enhances the awareness of cognitive processes. As hypothesized, the individuals who exhibited the greatest proportion of complex partial epileptic-like signs also reported the most intense experiences of detachment from the body; however, these occurred primarily when the geomagnetic activity on the day of the experiment exceeded about 15 nT but was less than about 45 nT. Geomagnetic activity for the day after or the three days before the experiment was not associated with these experiences. The effect was equivalent to a correlation coefficient (eta) of .38.

  15. Assembly of a homochiral, body-centered cubic network composed of vertex-shared Mg12 cages: use of electrospray ionization mass spectrometry to monitor metal carboxylate nucleation.

    PubMed

    Rood, Jeffrey A; Boggess, William C; Noll, Bruce C; Henderson, Kenneth W

    2007-11-07

    Reaction of Mg(NO3)2.6H2O with (+)-camphoric acid (H2cam) in acetonitrile results in the immediate formation of soluble, dimetallic [Mg2(Hcam)3]+ cations. The formation of these stable cations in solution was determined by electrospray ionization mass spectrometry (ESI-MS). These dimers are 3-fold paddle-wheels, which associate together through the neutral acid units to build the metal-organic framework [Mg2(Hcam)3.3H2O].NO3.MeCN, 1. The network consists of a series of fused Mg12 cages that have 12 water molecules at their centers, creating isolated 0D cavities within the structure. Overall, the extended structure of 1 is a body-centered cubic (bcu) lattice, with the Mg12 cages being utilized as eight-connected nodes. The framework of 1 is chiral and adopts the very unusual space group I23. Use of 1,3-propanediol as an additive results in the formation of the simple 1D polymer [Mg(cam){HO(CH2)3OH}2], 2. In 2, each carboxylate-bridged metal center is chelated by two diols. ESI-MS studies confirm the formation of new ions in these solutions. The identities of 1 and 2 were confirmed by a combination of single-crystal X-ray diffraction, elemental analyses, IR, NMR, themogravimetric analyses, and ESI-MS data. ESI-MS has proven to be a valuable technique in the identification of stable SBUs in solution prior to network formation.

  16. Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice

    PubMed Central

    van Dijk, Theo H.; Havinga, Rick; van der Zee, Eddy A.; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.; van Dijk, Gertjan

    2016-01-01

    At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV) training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry) and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry), the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance. PMID:26886917

  17. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol’s control of energy homeostasis

    PubMed Central

    Mamounis, Kyle J.; Yang, Jennifer A.; Yasrebi, Ali; Roepke, Troy A.

    2013-01-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition to wild type (WT) females, suggesting that non-Estrogen Response Element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. However, initial reports did not examine the effects of ovariectomy on energy homeostasis or E2’s attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females, would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2’s suppression of post-ovariectomy body weight gain and attenuation of decreases in metabolism and activity. PMID:24252383

  18. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis.

    PubMed

    Mamounis, Kyle J; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A

    2014-03-01

    The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition as to wild type (WT) females, suggesting that non-estrogen response element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. Initial reports did not examine the effects of ovariectomy on energy homeostasis or E2's attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2's suppression of post-ovariectomy body weight gain and its effects on metabolism and activity.

  19. Effects of Surface Recombination on Heat Transfer to Bodies in a High Enthalpy Stream of Partially Dissociated Nitrogen

    NASA Technical Reports Server (NTRS)

    Winkler, Ernest L..; Griffin, Roy N., Jr.

    1961-01-01

    Heat-transfer rates to two surfaces having widely different catalytic effectiveness are compared at a Mach number of 6 in a low-density stream of partially dissociated nitrogen. The heat-transfer rate to a polished copper cylinder is twice as great as the heat-transfer rate to a silicon-monoxide-coated cylinder when the stream total energy content is 9000 Btu/lb. Various methods for determining the stream energy content, the stream velocity, and the stream Mach number have been developed and compared. It is shown that methods for estimating the stream energy content by means of purely aerodynamic concepts may neglect the sizable fraction of the stream energy contained in molecular dissociation.

  20. Interlaboratory variation in scoring dicentric chromosomes in a case of partial-body x-ray exposure: implications for biodosimetry networking and cytogenetic "triage mode" scoring.

    PubMed

    Ainsbury, E A; Livingston, G K; Abbott, M G; Moquet, J E; Hone, P A; Jenkins, M S; Christensen, D M; Lloyd, D C; Rothkamm, K

    2009-12-01

    The international radiation biodosimetry community has recently been engaged in activities focused on establishing cooperative networks for biodosimetric triage for radiation emergency scenarios involving mass casualties. To this end, there have been several recent publications in the literature regarding the potential for shared scoring in such an accident or incident. We present details from a medical irradiation case where two independently validated laboratories found very different yields of dicentric chromosome aberrations. The potential reasons for this disparity are discussed, and the actual reason is identified as being the partial-body nature of the radiation exposure combined with differing criteria for metaphase selection. In the context of the recent networking activity, this report is intended to highlight the fact that shared scoring may produce inconsistencies and that further validation of the scoring protocols and experimental techniques may be required before the networks are prepared to deal satisfactorily with a radiological or nuclear emergency. Also, the findings presented here clearly demonstrate the limitations of the dicentric assay for estimating radiation doses after partial-body exposures and bring into question the usefulness of rapid "triage mode" scoring in such exposure scenarios.

  1. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  2. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation.

    PubMed

    MacVittie, Thomas J; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M

    2012-10-01

    The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min(-1) to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for

  3. Microscale Solubility Measurements of Matrix-Assisted Laser Desorption-Ionization (MALDI) Matrices Using Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FT-IR) Coupled with Partial Least Squares (PLS) Analysis.

    PubMed

    Gorre, Elsa; Owens, Kevin G

    2016-11-01

    In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system.

  4. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  5. Radiation Dose Associated with Renal Failure Mortality: A Potential Pathway to Partially Explain Increased Cardiovascular Disease Mortality Observed after Whole-Body Irradiation

    PubMed Central

    Adams, Michael Jacob; Grant, Eric J.; Kodama, Kazunori; Shimizu, Yukiko; Kasagi, Fumiyoshi; Suyama, Akihiko; Sakata, Ritsu; Akahoshi, Masazumi

    2012-01-01

    Whole-body and thoracic ionizing radiation exposure are associated with increased cardiovascular disease (CVD) risk. In atomic bomb survivors, radiation dose is also associated with increased hypertension incidence, suggesting that radiation dose may be associated with chronic renal failure (CRF), thus explaining part of the mechanism for increased CVD. Multivariate Poisson regression was used to evaluate the association of radiation dose with various definitions of chronic kidney disease (CKD) mortality in the Life Span Study (LSS) of atomic bomb survivors. A secondary analysis was performed using a subsample for whom self-reported information on hypertension and diabetes, the two biggest risk factors for CRF, had been collected. We found a significant association between radiation dose and only our broadest definition of CRF among the full cohort. A quadratic dose excess relative risk model [ERR/Gy2 = 0.091 (95% CI: 0.05, 0.198)] fit minimally better than a linear model. Within the subsample, association was also observed only with the broadest CRF definition [ERR/Gy2 = 0.15 (95% CI: 0.02, 0.32)]. Adjustment for hypertension and diabetes improved model fit but did not substantially change the ERR/Gy2 estimate, which was 0.17 (95% CI: 0.04, 0.35). We found a significant quadratic dose relationship between radiation dose and possible chronic renal disease mortality that is similar in shape to that observed between radiation and incidence of hypertension in this population. Our results suggest that renal dysfunction could be part of the mechanism causing increased CVD risk after whole-body irradiation, a hypothesis that deserves further study. PMID:22149958

  6. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    PubMed Central

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke. PMID:26157272

  7. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  8. CSU-FDA collaborative radiological health laboratory annual report, 1980: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Benjamin, S.A.

    1982-01-01

    A long-term study of the mortality, morbidity, and physiopathology of beagles exposed to a single dose of ionizing radiation during one of six stages of either prenatal or postnatal development. The results of this study will provide insight into the lifetime risks associated with prenatal and postnatal exposure to low levels of ionizing radiation. This annual report describes the long-term study and the short-term experiments being performed to evaluate spontaneous and radiation-induced problems, as well as the computer storage and retrieval system and its uses in the study.

  9. Fundamental Processes in Partially Ionized Plasmas

    DTIC Science & Technology

    1992-11-01

    moi* Natural broadening is due to the Heisenberg uncertainty principle applied to the energies of the initial and the final state of the transition...by ab initio calculations ( Werner et al, 1984, Rizzo et al, 1988, Langhoff et al, 1988a, 1988b, 1991, Bauschlicher and Langhoff, 1988). Since these...moments N2 First positive system B 3 rlg- A 3 yu+ The ETMF from Werner et al (1984) was preferred over the one from Rizzo et al (1988) since it yields

  10. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kouchi, Noriyuki

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H2O have been measured as a function of incident photon energy. The multiply excited states of H2O have been observed even above the adiabatic double ionization potential.

  11. Dietary Restraint Partially Mediates the Relationship between Impulsivity and Binge Eating Only in Lean Individuals: The Importance of Accounting for Body Mass in Studies of Restraint

    PubMed Central

    Coffino, Jaime A.; Orloff, Natalia C.; Hormes, Julia M.

    2016-01-01

    Binge eating is characteristic of eating and weight-related disorders such as binge eating disorder, bulimia nervosa, and obesity. In light of data suggest impulsivity is associated with overeating specifically in restrained eaters, this study sought to elucidate the exact nature of the associations between these variables, hypothesizing that the relationship between impulsivity and binge eating is mediated by restrained eating. We further hypothesized that the role of dietary restraint as a mediator would be moderated by body mass index (BMI). Study participants (n = 506, 50.6% female) were categorized based on self-reported BMI as under- and normal-weight (BMI < 25, 65.8%, n = 333) or overweight and obese (BMI ≥ 25, 34.2%, n = 173) and completed the “restrained eating” subscale of the Dutch Eating Behavior Questionnaire, the “impulse control difficulties” subscale of the Difficulties with Emotion Regulation Scale, and the Binge Eating Scale. Findings provide initial evidence for the hypothesized moderated mediation model, with dietary restraint partially mediating the relationship between impulsivity and binge eating severity only in lean respondents. In respondents with overweight or obesity, impulsivity was significantly correlated with binge eating severity, but not with dietary restraint. Findings inform our conceptualization of dietary restraint as a possible risk factor for binge eating and highlight the importance of accounting for body mass in research on the impact of dietary restraint on eating behaviors. PMID:27757092

  12. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  13. [The partial parenteral nutrition of preterm infants with a body weight < 1000 g: the effects of an infusion of human albumin on plasma amino acid concentration].

    PubMed

    Cassata, N; Didato, M; Faranda, C; Fazio, M; Giaccone, G; Gioeli, R; La Francesca, G; Sulliotti, G; Priolisi, A

    1993-01-01

    This paper concerns with the changes of plasma amino acid (AA) concentrations of N. 10 ELBW infants receiving a regimen of partial parenteral nutrition including human serum albumin (HSA) as a protein supply. The plasma AA concentration has been compared with VLBW infants orally fed with human milk (HM) or human milk supplemented with human milk protein (HMP). As for the essential AA: in comparison to VLBW infants fed HM, the plasma concentration of VAL, PHE and LYS is significantly higher, that of THR, MET, LEU and HIS is similar, whereas that of ILE is significantly lower; in comparison to VLBW infants fed HMP, with the exception of PHE whose plasma concentration is higher, concentration of essential AA significantly lower; the percentage ratio between plasma concentration and intake is in the range of 1,4 to 3,3, except for LYS (= 0.83), indicating a good efficacy of the i.v. administered HSA as AA source, or a slow plasma clearance or a sustained flux of AA from body protein catabolism. Further researches are needed to investigate these aspects and the intermediate steps between i.v. infusion of HSA and the utilization of the component AA for body protein synthesis.

  14. THE PROLONGED GASTROINTESTINAL SYNDROME IN RHESUS MACAQUES: THE RELATIONSHIP BETWEEN GASTROINTESTINAL, HEMATOPOIETIC, AND DELAYED MULTI-ORGAN SEQUELAE FOLLOWING ACUTE, POTENTIALLY LETHAL, PARTIAL-BODY IRRADIATION

    PubMed Central

    MacVittie, Thomas J.; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M.

    2014-01-01

    The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min−1 to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for

  15. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  16. Electron ionization of H2O

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2008-11-01

    Relative partial ionization cross-sections and precursor-specific relative partial ionization cross-sections for fragment ions formed by electron ionization of H2O have been measured using time-of-flight mass spectrometry coupled with a 2D ion coincidence technique. We report data for the formation of H+, H2+, O2+, O+ and OH+ relative to the formation of H2O+, as a function of ionizing electron energy from 30 to 200 eV. This data includes, for the first time, measurements on the formation all positive ion pairs and ion triples by dissociative multiple electron ionization of H2O. Through determinations of the kinetic energy release involved in ion pair formation we provide further evidence that indirect processes contribute significantly to the yield of H+ + OH+ ion pairs below the vertical double ionization threshold.

  17. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  18. Magnetic solid phase extraction coupled with desorption corona beam ionization-mass spectrometry for rapid analysis of antidepressants in human body fluids.

    PubMed

    Chen, Di; Zheng, Hao-Bo; Huang, Yun-Qing; Hu, Yu-Ning; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-08-21

    Ambient ionization techniques show good potential in rapid analysis of target compounds. However, a direct application of these ambient ionization techniques for the determination of analytes in a complex matrix is difficult due to the matrix interference and ion suppression. To resolve this problem, here we developed a strategy by coupling magnetic solid phase extraction (MSPE) with desorption corona beam ionization (DCBI)-mass spectrometry (MS). As a proof of concept, the pyrrole-coated Fe3O4 magnetic nanoparticles (Fe3O4@Ppy) were prepared and used for the extraction of antidepressants. After extraction, the Fe3O4@Ppy with trapped antidepressants was then directly subjected to DCBI-MS analysis with the aid of a homemade magnetic glass capillary. As the MSPE process is rapid and the direct DCBI-MS analysis does not need solvent desorption or chromatographic separation processes, the overall analysis can be completed within 3 min. The proposed MSPE-DCBI-MS method was then successfully used to determine antidepressants in human urine and plasma. The calibration curves were obtained in the range of 0.005-0.5 μg mL(-1) for urine and 0.02-1 μg mL(-1) for plasma with reasonable linearity (R(2) > 0.951). The limits of detection of three antidepressants were in the range of 0.2-1 ng mL(-1) for urine and 2-5 ng mL(-1) for plasma. Acceptable reproducibility for rapid analysis was achieved with relative standard deviations less than 19.1% and the relative recoveries were 85.2-118.7%. Taken together, the developed MSPE-DCBI-MS strategy offers a powerful capacity for rapid analysis of target compounds in a complex matrix, which would greatly expand the applications of ambient ionization techniques with plentiful magnetic sorbents.

  19. Dynamical orientation effects in atomic ionization by impact of protons and positrons

    NASA Astrophysics Data System (ADS)

    Fregenal, Daniel; Barrachina, Raúl; Bernardi, Guillermo; Suárez, Sergio; Fiol, Juan

    2011-10-01

    Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. This work was partially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Cuyo and Fundacion Balseiro.

  20. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  1. Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; Ash, Richard D.; Liu, Yang; Rumble, Douglas; Irving, Anthony J.; Goodrich, Cyrena A.; Tait, Kimberly; McDonough, William F.; Taylor, Lawrence A.

    2012-03-01

    New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Δ17O values (˜0‰ to -0.3‰) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major- and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide 26Al by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of

  2. Partial-Body Irradiation in Patients with Prostate Cancer Treated with IMRT Has Little Effect on the Composition of Serum Proteome

    PubMed Central

    Pietrowska, Monika; Jelonek, Karol; Polanska, Joanna; Wojakowska, Anna; Marczak, Lukasz; Chawinska, Ewa; Chmura, Aleksanda; Majewski, Wojciech; Miszczyk, Leszek; Widlak, Piotr

    2015-01-01

    Partial body irradiation during cancer radiotherapy (RT) induces a response of irradiated tissues that could be observed at the level of serum proteome. Here we aimed to characterize the response to RT in group of patients treated because of prostate cancer. Five consecutive blood samples were collected before, during, and after the end of RT in a group of 126 patients who received definitive treatment with a maximum dose of 76 Gy. Serum peptidome, which was profiled in the 2000–16,000 Da range using MALDI-MS. Serum proteins were identified and quantified using the shotgun LC-MS/MS approach. The majority of changes in serum peptidome were detected between pre-treatment samples and samples collected after 3–4 weeks of RT (~25% of registered peptides changed their abundances significantly), yet the intensity of observed changes was not correlated significantly with the degree of acute radiation toxicity or the volume of irradiated tissues. Furthermore, there were a few serum proteins identified, the abundances of which were different in pre-RT and post-RT samples, including immunity and inflammation-related factors. Observed effects were apparently weaker than in comparable groups of head and neck cancer patients in spite of similar radiation doses and volumes of irradiated tissues in both groups. We concluded that changes observed at the level of serum proteome were low for this cohort of prostate cancer patients, although the specific components involved are associated with immunity and inflammation, and reflect the characteristic acute response of the human body to radiation.

  3. Acute and long-term alterations in the granulocyte/macrophage progenitor cell (GM-CFC) compartment of dogs after partial-body irradiation: irradiation of the upper body with a single myeloablative dose

    SciTech Connect

    Nothdurft, W.; Calvo, W.; Klinnert, V.; Steinbach, K.H.; Werner, C.; Fliedner, T.M.

    1986-06-01

    The acute and long-term effects of a single dose of partial-body irradiation on the granulocyte/macrophage progenitor cell compartment were studied in dogs. A myeloablative dose of 11.7 Gy (dose rate 6.5 cGy/min) was given to the upper body which contains approximately 70% of the total bone marrow mass. The lower part of the body was shielded by a lead box. In the non-irradiated bone marrow, the concentration of the GM-CFC/10(5) mononuclear cells was slightly decreased within the first 7 days and showed some fluctuations around the normal value for several weeks thereafter. In the irradiated bone marrow, virtually no GM-CFC could be detected on day 1 after exposure. Beginning on day 7, a continuous increase took place up to day 21 when the GM-CFC concentration reached between 25% (sternum) and 43% (humerus) of the initial value. No further increase took place up to day 80. Between day 120 and 380 a secondary increase was observed which reached near-normal bone marrow GM-CFC concentrations. The blood GM-CFC concentration first showed a strong depression followed by a transient increase between day 10 and 30. This coincided with GM-CFC normalization in the protected bone marrow as well as with the initial phase of regeneration in the irradiated sites. A prolonged secondary long-lasting depression between day 33 and 120 amounted to 20 to 50% of normal values. This depression was closely related to the stagnation in the GM-CFC recovery in the irradiated bone marrow sites. The GM-CFC concentration in the blood was supranormal at day 380 when the bone marrow GM-CFC had recovered. The colony stimulating activity in the serum showed an increase within the first 20 days after exposure. Within the same interval the bone marrow GM-CFC concentration experienced the strongest alterations, and was inversely related to the changes in the blood granulocyte values.

  4. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    SciTech Connect

    Inoue, Minoru; Yoshimura, Michio Sato, Sayaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Hirata, Kimiko; Ogura, Masakazu; Hiraoka, Masahiro; Sasaki, Makoto; Fujimoto, Takahiro

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were compared between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.

  5. [The mechanism of the occurrence of vomiting during the primary reaction after exposure of the body to ionizing radiations at large doses].

    PubMed

    Martirosov, K S; Grigor'ev, Iu G; Zorin, V V; Norkin, I M

    1997-01-01

    In the experiments of dogs exposed to ionizing radiations at doses of 50 and 70 Gy, an essential role of the central mechanism in the origin of early postradiation vomiting has been confirmed. Insufficient efficiency of dimethpramide, a dophamynolytics, in this case may be connected either with initiation of other (non-dophamynosensitive) structures of the chemoreceptor trigger zone of with a growing role of the reflex way of vomiting arising due to a considerable intestinal injury that causes diarrhea. The inhibition of intestinal M-cholinoreceptors by methacine prevented diarrhea but didn't change the intensity of the vomiting reaction which, however, does not eliminate the possibility of afferentation from receptors that respond to others biologically active substances.

  6. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  7. Collaborative Radiological Health Laboratory annual report 1985: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Not Available

    1986-07-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the development period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. The annual report summarizes the current status of the study for the reporting period of November 21, 1984 through November 20, 1985.

  8. Collaborative Radiological Health Laboratory annual report, 1988: Health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Not Available

    1989-09-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining, in a carefully controlled animal experiment, the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (life span) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in February 1973. The annual report summarizes the current status of the study for the reporting period of November 21, 1987 through November 20, 1988.

  9. Collaborative Radiological Health Laboratory annual report 1987: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog. Annual report

    SciTech Connect

    Not Available

    1988-09-01

    The Collaborative Radiological Health Laboratory (CRHL) was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the lifetime hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. It is a long-term (life span) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under the contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. The annual report summarizes the current status of the study for the reporting period of November 21, 1986 through November 20, 1987.

  10. Collaborative Radiological Health Laboratory annual report 1986: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Not Available

    1987-08-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the development period. The basis experiment under this contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. The annual report summarizes the current status of the study for the reporting period of November 21, 1985 through November 20, 1986.

  11. Collaborative Radiological Health Laboratory annual report 1984: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Not Available

    1985-08-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experimentthe life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages-at-irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under this contract contains 1,680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. This annual report summarizes the current status of the study for the reporting period of November 21, 1983 through November 20, 1984.

  12. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  13. Hand and shoe monitor using air ionization probes

    SciTech Connect

    Fergus, R.W.

    1981-02-24

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  14. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry.

    PubMed

    Yen, H-C; Wei, H-J; Lin, C-L

    2015-01-01

    F2-isoprostanes (F2-IsoPs) generated from arachidonic acid (AA) have been recognized as the most reliable marker of nonenzymatic lipid peroxidation in vivo. F2-IsoPs are initially produced in esterified form on phospholipids, and then released into body fluids in free form. The same mechanism can lead to generation of F4-neuroprostanes (F4-NPs) and F2-dihomo-IsoPs from docosahexaenoic acid (DHA) and adrenic acid, respectively. In addition, isofurans (IsoFs) and neurofurans (NFs) may be preferentially produced from AA and DHA, respectively, under high oxygen tension. The detection of F2-IsoPs using gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) has been widely employed, which is important for human body fluids containing low quantity of free-form F2-IsoPs. F4-NPs have also been detected using GC/NICI-MS, but multiple peaks need to be quantified. In this paper, we summarize the basic workflow of the GC/NICI-MS method for analyzing F2-IsoPs and F4-NPs, and various formats of assays conducted by different groups. We then discuss the feasibility of simultaneous analysis of IsoFs, NFs, and F2-dihomo-IsoPs with F2-IsoPs or F4-NPs. Representative GC chromatograms for analyzing these markers in human body fluids and rat brain tissue are demonstrated. Furthermore, we discuss several factors that may affect the performance of the analysis, such as those related to the sample processing steps, interference from specimens, types of GC liners used, and the addition of electron multiplier voltage in the method setting for the MS detector. Finally, we question the appropriateness of measuring total (free plus esterified) levels of these markers in body fluids.

  15. Inhibition of gastric secretion in guinea pig by relatively low dose ionizing radiation

    SciTech Connect

    Batzri, S.; Catravas, G.

    1988-11-01

    We evaluated the effect of a single dose of ionizing radiation on gastric secretion in awake guinea pigs equipped with a permanent gastric cannula. Changes in gastric secretion were measured using a dye dilution technique. Infusion of histamine increased acid and fluid output and there was a positive correlation (r = 0.93) between the two. Total body irradiation with 400 cGy, like cimetidine, suppressed acid and fluid secretion under basal conditions and during histamine stimulation by 50-90%. Recovery from the radiation damage was only partial after one week. Irradiation inhibited the rise in gastric juice volume during histamine stimulation and also reduced the normal gain in body weight of the guinea pig. These results demonstrate that ionizing radiations have an immediate and long lasting effects on the gastric mucosal function of the guinea pig.

  16. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  17. Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5.

    PubMed

    Gedge, L J E; Morrison, E E; Blair, G E; Walker, J H

    2005-02-15

    Cajal bodies are intra-nuclear structures enriched in proteins involved in transcription and mRNA processing. In this study, immunofluorescence microscopy experiments using a highly specific antibody to actin revealed nuclear actin spots that colocalized in part with p80 coilin-positive Cajal bodies. Actin remained associated with Cajal bodies in cells extracted to reveal the nuclear matrix. Adenovirus infection, which is known to disassemble Cajal bodies, resulted in loss of actin from these structures late in infection. In infected cells, nuclear actin was observed to relocate to structures at the periphery of the nucleus, inside the nuclear envelope. Based on these findings, it is suggested that actin may play an important role in the organization or function of the Cajal body.

  18. Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections.

    PubMed

    Kertesz, Vilmos; Van Berkel, Gary J

    2010-07-15

    In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach.

  19. Communication: Electron ionization of DNA bases

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Krishnakumar, E.

    2016-04-01

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  20. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  1. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  2. Sub-cycle dynamics of multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Nasiri Avanaki, K.; Chu, Shih-I.

    2014-05-01

    Sub-cycle oscillatory structures are revealed in calculated time-dependent multiphoton ionization rates. Both atomic and molecular targets manifest multiple ionization bursts per one optical cycle of the laser field. Using the accurate and efficient time-dependent generalized pseudospectral method to solve the time-dependent Schrödinger equation, we have performed calculations on H, He+, H2+,and HHe2+, for the laser fields with several intensities and wavelengths in the near-infrared range (750 nm to 1064 nm). The sub-cycle structures appear a universal feature of multiphoton ionization and become well pronounced for sufficiently strong laser fields depending on the target atom or molecule. Analysis of the electron density distributions on the sub-femtosecond time scale shows several time moments per optical cycle (not necessarily corresponding to the peak values of the laser field) when significant portions of the electron density move away from the nucleus giving rise to the bursts in the ionization rate. The nature of the phenomenon can be related to ionization through different pathways, including direct ionization as well as population of the excited states by the laser field with subsequent ionization at later times. This work is partially supported by DOE.

  3. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius.

    PubMed

    Bhandari, Dhaka Ram; Schott, Matthias; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-03-01

    Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250-500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was <3 ppm root mean square error, and mapping of different compound classes from a single experiment was possible. This approach improved the understanding of the biochemistry of P. riparius. Concentration differences and distributions of pederin and its analogues could be visualized in the whole-insect section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods.

  4. Partial Return Yoke for MICE

    SciTech Connect

    Witte H.; Plate, S

    2013-05-03

    The international Muon Ionization Cooling Experiment (MICE) is a large scale experiment which is presently assembled at the Rutherford Appleton Laboratory in Didcot, UK. The purpose of MICE is to demonstrate the concept of ionization cooling experimentally. Ionization cooling is an important accelerator concept which will be essential for future HEP experiments such as a potential Muon Collider or a Neutrino Factory. The MICE experiment will house up to 18 superconducting solenoids, all of which produce a substantial amount of magnetic flux. Recently it was realized that this magnetic flux leads to a considerable stray magnetic field in the MICE hall. This is a concern as technical equipment in the MICE hall may may be compromised by this. In July 2012 a concept called partial return yoke was presented to the MICE community, which reduces the stray field in the MICE hall to a safe level. This report summarizes the general concept, engineering considerations and the expected shielding performance.

  5. The Mitochondrial SDHD Gene Is Required for Early Embryogenesis, and Its Partial Deficiency Results in Persistent Carotid Body Glomus Cell Activation with Full Responsiveness to Hypoxia

    PubMed Central

    Piruat, José I.; Pintado, C. Oscar; Ortega-Sáenz, Patricia; Roche, Marta; López-Barneo, José

    2004-01-01

    The SDHD gene encodes one of the two membrane-anchoring proteins of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. This gene has recently been proposed to be involved in oxygen sensing because mutations that cause loss of its function produce hereditary familiar paraganglioma, a tumor of the carotid body (CB), the main arterial chemoreceptor that senses oxygen levels in the blood. Here, we report the generation of a SDHD knockout mouse, which to our knowledge is the first mammalian model lacking a protein of the electron transport chain. Homozygous SDHD−/− animals die at early embryonic stages. Heterozygous SDHD+/− mice show a general, noncompensated deficiency of succinate dehydrogenase activity without alterations in body weight or major physiological dysfunction. The responsiveness to hypoxia of CBs from SDHD+/− mice remains intact, although the loss of an SDHD allele results in abnormal enhancement of resting CB activity due to a decrease of K+ conductance and persistent Ca2+ influx into glomus cells. This CB overactivity is linked to a subtle glomus cell hypertrophy and hyperplasia. These observations indicate that constitutive activation of SDHD+/− glomus cells precedes CB tumor transformation. They also suggest that, contrary to previous beliefs, mitochondrial complex II is not directly involved in CB oxygen sensing. PMID:15572694

  6. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases.

    PubMed

    Marin, Raquel; Fabelo, Noemí; Martín, Virginia; Garcia-Esparcia, Paula; Ferrer, Isidre; Quinto-Alemany, David; Díaz, Mario

    2017-01-01

    Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimer's disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the β-amyloidogenic pathway, including β-amyloid precursor protein, presenilin 1, β-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinson's disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the β-amyloidogenic pathway in DLB can facilitate generation of β-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimer's disease pathology, particularly β-amyloid deposition, in DLB.

  7. New Results in Electron-Atom Ionization

    NASA Astrophysics Data System (ADS)

    Madison, Don

    1997-10-01

    A deeper insight into atomic ionization by electron impact is gained by studying electron-electron correlation in a model-independent approach for calculating (e,2e) triply-differential cross sections using correlated (three-body) wave functions of arbitrary complexity. Results will be presented from the continuum distorted wave (CDW) model, three Coulomb-wave (3C) model, three-body distorted-wave Born approximation (3DWBA), Alt and Mukhamedzhanov (AM) model, dynamic-screening three Coulomb-wave (DS3C) model, and the eikonal approximation (EA). The sucesses and failures of the above models can be used to gain a better understanding of ionization processes.

  8. Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Chen, Jing; Huang, Yuping; Liu, Jun; Luo, Jiexin; Wang, Xi

    2016-11-01

    Radio-frequency (RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-on-insulator (PD SOI) n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) with tunnel diode body-contact (TDBC) structure and T-gate body-contact (TB) structure are investigated in this paper. When operating at 77 K, TDBC device suppresses floating-body effect (FBE) as well as the TB device. For TB device and TDBC device, cut-off frequency (f T) improves as the temperature decreases to liquid-helium temperature (77 K) while that of the maximum oscillation frequency (f MAX) is opposite due to the decrease of the unilateral power gain. While operating under 77 K, f T and f MAX of TDBC device reach to 125 GHz and 77 GHz, representing 8% and 15% improvements compared with those of TB device, respectively, which is mainly due to the lower parasitic resistances and capacitances. The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.

  9. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A.

    PubMed

    Lu, Mei-Chin; Du, Ying-Chi; Chuu, Jiunn-Jye; Hwang, Shiuh-Lin; Hsieh, Pao-Chuan; Hung, Chih-Sheng; Chang, Fang-Rong; Wu, Yang-Chang

    2009-02-01

    The endemic species of Antrodia camphorate (AC) is a promising chemotherapeutic drug for cancer. We found that the ethanol extract from wild fruiting bodies of Antrodia camphorata (EEAC) could induce HL 60 cells apoptosis via histone hypoacetylation, up-regulation of histone deacetyltransferase 1 (HDAC 1), and down-regulation of histone acetyltransferase activities including GCN 5, CBP and PCAF in dose-dependent manner. In combination with histone deacetylase inhibitor, trichostatin A (TSA), did not block EEAC-induced apoptosis. Interestingly, combined treatment (100 nM of TSA and 100 microg/ml EEAC) caused synergistic inhibition of cell growth and increase of apoptotic induction. EEAC could effectively increase the cytotoxic sensitivity of TSA through the up-regulation of DR5 and NFkappaB activation. In this present study, bioassay-guided fractionation of EEAC led to a major active compound, zhankuic acid A, as the bioactive marker. Moreover, our findings may represent an experimental basis for developing EEAC as a potential chemotherapeutic adjuvant.

  10. Electron-impact ionization of ozone

    NASA Astrophysics Data System (ADS)

    Newson, Karl A.; Luc, Stephanie M.; Price, Stephen D.; Mason, Nigel J.

    1995-10-01

    Partial electron ionization cross-sections of ozone for incident electron energies from 40 to 500 eV have been determined using time-of-flight mass spectrometry. The cross-sections are derived by identifying the contribution of ozone to the ion signals recorded following ionization of a mixture of O2 and O3. Only one previous determination of these cross-sections, for energies up to 100 eV, is available in the literature. The cross-sections derived in the present study at these lower electron energies are in good agreement with the previous determination.

  11. N-acetyl-L-glutamine, a liquid-stable source of glutamine, partially prevents changes in body weight and on intestinal immunity induced by protein energy malnutrition in pigs.

    PubMed

    López-Pedrosa, José M; Manzano, Manuel; Baxter, Jeffrey H; Rueda, Ricardo

    2007-03-01

    The goal of this study was to evaluate the preventive effect of free glutamine versus N-acetyl-L-glutamine, a liquid-stable source of glutamine, on gut damage induced by protein energy malnutrition in pigs. Healthy pigs (n = 6) were fed a liquid formula for 30 days. Three subgroups of malnourished pigs (n = 6) received daily 20% of the food intake recorded in control group, supplemented with calcium caseinate, glutamine, or N-acetyl-L-glutamine. Body weight was recorded, and small intestinal samples were evaluated for biochemical and immunologic parameters. Suppression in body weight gain was significantly lower in pigs fed with N-acetyl-L-glutamine than in the rest of malnourished pigs. Total number of lymphocytes, CD21+ B cells and CD4+ T cells in ileal Peyer patches were not significantly different in malnourished pigs fed with N-acetyl-L-glutamine and in healthy pigs. In conclusion, N-acetyl-L-glutamine has a moderate protective effect, partially preventing changes induced by protein energy malnutrition.

  12. Green's function and Dyson orbital studies of the electronic structure of cage compounds and flexible molecules: A confrontation of many-body quantum mechanics with electron momentum, photo-electron and penning ionization electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Knippenberg, Stefan

    Electron Momentum Spectroscopy (EMS) has emerged in recent years as a powerful experimental technique for studying the valence electronic structure of molecules and solids. With such experiments, orbital Momentum Distributions (MDs) are reconstructed from an angular analysis of electron impact ionization energies in the limit of the binary encounter, the Born (sudden) and the plane wave impulse approximations. In this thesis, the possibilities and limitations of ubiquitous orbital depictions (Hartree-Fock, Kohn-Sham and Dyson orbitals) are emphasized through theoretical studies of EMS experiments on two extreme cases: rigid cage compounds and conformationally versatile molecules. These EMS studies employ benchmark Green's Function (GF) calculations of valence one-electron and shake-up ionization spectra, as well as spherically averaged MDs derived from the related Dyson orbitals. Shortcomings of empirical analyses of EMS experiments based on Kohn-Sham orbitals and the related eigen-energies are comparatively discussed. Our work demonstrates that, owing to recent advances in energy and momentum resolution, EMS is now at a stage to very finely image the influence of the molecular conformation on orbital topologies, or changes in the effective topology of orbitals at varying distances from the molecular center. GF and Dyson orbital calculations are advocated in particular in order to safely identify complications such as distorted wave effects, vibronic coupling, nuclear dynamics, or a breakdown of the standard orbital picture of ionization. As an example, ionization experiments at large enough electron binding energies seem to result into an ultrafast intramolecular Coulomb decay and fragmentation of norbornane. On the experimental side, our work also advocates accurate enough determination of the absolute temperature in ionization experiments of all kind.

  13. Radiation injury and acute death in Armadillidium vulgare (terrestrial isopod, Crustacea) subjected to ionizing radiation. [/sup 137/Cs

    SciTech Connect

    Nakatsuchi, Y.; Egami, N.

    1981-01-01

    From whole- and partial-body irradiation experiments with adult Armadillidium vulgare, the following conclusions were drawn: the LD/sub 50/-30 days for this animal when subjected to ..gamma.. radiation at 25 +- 2/sup 0/C was about 30 kR. Radiosensitivity of the animal changed during the molt cycle. Ionizing radiation increased mortality at ecdysis and during intermolt stages. Anatomical and histological observations indicated that (1) gastrointestinal injury as the major cause of acute death does not apply to this animal because the intestine is not a cell-proliferative organ: (2) the epidermis may be the critical target organ.

  14. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  15. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Feng, W.; Desch, S.

    2017-03-01

    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  16. Laparoscopic partial splenic resection.

    PubMed

    Uranüs, S; Pfeifer, J; Schauer, C; Kronberger, L; Rabl, H; Ranftl, G; Hauser, H; Bahadori, K

    1995-04-01

    Twenty domestic pigs with an average weight of 30 kg were subjected to laparoscopic partial splenic resection with the aim of determining the feasibility, reliability, and safety of this procedure. Unlike the human spleen, the pig spleen is perpendicular to the body's long axis, and it is long and slender. The parenchyma was severed through the middle third, where the organ is thickest. An 18-mm trocar with a 60-mm Endopath linear cutter was used for the resection. The tissue was removed with a 33-mm trocar. The operation was successfully concluded in all animals. No capsule tears occurred as a result of applying the stapler. Optimal hemostasis was achieved on the resected edges in all animals. Although these findings cannot be extended to human surgery without reservations, we suggest that diagnostic partial resection and minor cyst resections are ideal initial indications for this minimally invasive approach.

  17. Concerning the equation of state for partially ionized system

    SciTech Connect

    Baker, Jr, George A

    2008-01-01

    I will discuss the expansion of various thermodynamic quantities about the ideal gas in powers of the electric charge, and I will discuss some cellular models. The first type of cellular model is appropriate for hydrogen. The second type is for Z > 1. It has the independent electron approximation within the atoms. These models are cross compared and minimal regions of validity are determined. The actual region of validity is expected to be larger. In the cellular models, the phase boundaries for liquid-gas transitions are found. For the second type of cellular model, in the part of the low-temperature, low-density region where there is not much expectation of validity of these methods, a non-thermodynamic region is found. I have devised a construction, similar in spirit to the Maxwell construction, to bridge this region so as to leave a thermodynamically valid equation of state. The non-thermodynamic region does not occur in hydrogen and it seems to be due to the inadequacy of the aforementioned approximation in that region.

  18. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  19. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  20. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  1. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations

    PubMed Central

    Kutanzi, Kristy R.; Lumen, Annie; Koturbash, Igor; Miousse, Isabelle R.

    2016-01-01

    Children are at a greater risk than adults of developing cancer after being exposed to ionizing radiation. Because of their developing bodies and long life expectancy post-exposure, children require specific attention in the aftermath of nuclear accidents and when radiation is used for diagnosis or treatment purposes. In this review, we discuss the carcinogenic potential of pediatric exposures to ionizing radiation from accidental, diagnostic, and therapeutic modalities. Particular emphasis is given to leukemia and thyroid cancers as consequences of accidental exposures. We further discuss the evidence of cancers that arise as a result of radiotherapy and conclude the review with a summary on the available literature on the links between computer tomography (CT) and carcinogenesis. Appropriate actions taken to mitigate or minimize the negative health effects of pediatric exposures to ionizing radiation and future considerations are discussed. PMID:27801855

  2. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  3. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  4. Satellite lines at the ionization threshold in charge transfer systems

    NASA Astrophysics Data System (ADS)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  5. Partial Return Yoke for MICE Step IV and Final Step

    SciTech Connect

    Witte, Holger; Plate, Stephen; Berg, J.Scott; Tarrant, Jason; Bross, Alan

    2015-06-01

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  6. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  7. Fossil Ionized Bubbles around Dead Quasars during Reionization

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Haiman, Zoltán; Oh, S. Peng

    2008-10-01

    One of the most dramatic signatures of the reionization era may be the enormous ionized bubbles around luminous quasars (with radii reaching ~40 comoving Mpc), which may survive as "fossil" ionized regions long after their source shuts off. Here we study how the inhomogeneous intergalactic medium (IGM) evolves inside such fossils. The average recombination rate declines rapidly with time, and the brief quasar episode significantly increases the mean free path inside the fossil bubbles. As a result, even a weak ionizing background generated by galaxies inside the fossil can maintain it in a relatively highly and uniformly ionized state. For example, galaxies that would ionize 20%-30% of hydrogen in a random patch of the IGM can maintain 80%-90% ionization inside the fossil for a duration much longer than the average recombination time in the IGM. Quasar fossils at zlesssim 10 thus retain their identity for nearly a Hubble time and appear "gray," distinct from both the average IGM (which has a "Swiss cheese" ionization topology and a lower mean ionized fraction) and the fully ionized bubbles around active quasars. More distant fossils, at zgtrsim 10, have a weaker galaxy-generated ionizing background and a higher gas density, so they can attain a Swiss cheese topology similar to the rest of the IGM, but with a smaller contrast between the ionized bubbles and the partially neutral regions separating them. Analogous He III fossils should exist around the epoch of He II/He III reionization at z ~ 3, although rapid recombination inside the He III fossils is more common. Our model of inhomogeneous recombination also applies to "double-reionization" models and shows that a nonmonotonic reionization history is even more unlikely than previously thought.

  8. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  9. Alfvén ionization in an MHD-gas interactions code

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Diver, D. A.

    2016-07-01

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

  10. CSU-FDA (Colorado State Univ. -Food and Drug Administration) Collaborative Radiological Health Laboratory. Annual report - 1982: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog

    SciTech Connect

    Benjamin, S.A.

    1984-09-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. The study is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages at irradiation selected for comparison reflect the primary concern with medical exposures during the development period. This annual report summarizes the current status of the study for the reporting period of January 1 through December 31, 1982.

  11. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.

  12. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  13. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  14. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  15. Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2015-09-01

    Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.

  16. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  17. Rydberg atom spectroscopy enabled by blackbody radiation ionization

    SciTech Connect

    Lu Xiaoxu; Sun Yuan; Metcalf, Harold

    2011-09-15

    We have excited helium atoms from their metastable 2 {sup 3} S state to Rydberg states in the range 13partially overlapping laser beams of the appropriate frequencies in the counterintuitive order to exploit the high efficiency of stimulated rapid adiabatic passage. The interaction region is between two plates that can be used for Stark tuning in a few V/cm field or for field ionization. At fields much too low for field ionization, we observe signals attributed to ionization by blackbody radiation. Multiple tests confirm this attribution as the cause of ionization. For example, by heating the plates we observe the expected signal increases. Our experiments reinforce previous work where the interaction between Rydberg atoms and room temperature blackbody radiation is important for experiments.

  18. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  19. Collaborative Radiological Health Laboratory annual report 1983: health effects of prenatal and postnatal whole-body exposure to ionizing radiation in the beagle dog. Report for 1 January-20 November 1983

    SciTech Connect

    Benjamin, S.A.

    1985-01-01

    The Collaborative Radiological Health Laboratory was established in 1962 by the U.S. Public Health Service and Colorado State University for the purpose of determining in a carefully controlled animal experiment the life-time hazards associated with prenatal and early postnatal exposure to ionizing radiation. The CRHL study is designed to provide information that will facilitate the evaluation of risks to human beings from medical exposure during early development. This is a long-term (lifespan) study of a moderately large and long-lived mammal exposed at one of several times during development to a relatively small and discrete dose of external radiation. Ages at irradiation selected for comparison reflect the primary concern with medical exposures during the developmental period. The basic experiment under this contract contains 1680 beagles that will be maintained and evaluated for most of their natural lives. Commitment of animals began in December 1967 and was completed in October 1972. This annual report summarizes the current status of the study for the reporting period of January 1 through November 20, 1983.

  20. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  1. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  2. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  3. On the Magnetic Flux Conservation in the Partially Ionzied Plasma

    NASA Astrophysics Data System (ADS)

    Tsap, Yu.; Kopylova, Yu.

    2014-12-01

    The Ohm, Hall, and ambipolar diffusions in the partially ionized plasma are considered. It has been shown that the statement of Pandey and Wardle that only the Ohm diffusion is capable to decrease the magnetic flux is not sufficiently correct due to the formal dependence of the magnetic diffusion on a selected frame of reference. Thes ignificance of understanding of the physical nature for the dissipation and diffusion of the magnetic field in the partially ionized plasma as well as consequences of obtained results are discussed.

  4. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments.

    PubMed

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q F; He, Xian-Tu

    2016-02-08

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas.

  5. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments

    PubMed Central

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu

    2016-01-01

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107

  6. Electron Impact Ionization of C_2F_6

    NASA Astrophysics Data System (ADS)

    Iga, Ione; Pereira Sanches, Ivana; Srivastava, Santosh Kumar

    2001-10-01

    Besides CF_4, perfluoroethane, C_2F_6, is also one of the fluorocarbon compounds most frequently used in plasma processing applications. Consequently, the knowledge of the ionization properties of C_2F6 is clearly of interest in order to model the plasma-chemical reactions. Nevertheless, only few partial ionization-cross-section measurements [1,2] for this molecule were reported in the literature. Also, the energy range covered in these studies was very limited (below 120 eV). Recently, we have studied these properties. More specifically, partial ionization cross sections (PICS) for the fragments: C^+, F^+, CF^+, CF_2^+, CF_3^+ and C_2F_5^+, produced by electron impact on C_2F_6, were measured in a single-collision condition from near ionization threshold to 1000 eV. In addition, total ionization cross sections (TICS) are also obtained by summing up the PICS's. The comparison of our measured PICS and derived TICS with available data [1-4] will be presented during the Conference. [1] H. U. Poll, J. Meischner, Contrib. Plasma Phys. 27 (1987) 359. [2] C. Q. Jiao, A Garscadden, P. D. Haaland, Chem. Phys. Lett. 310 (1999) 52. [3] H. Nishimura, W. M. Huo, M. A Ali and Y -K. Kim, J. Chem. Phys. 110 (1999) 3811. [4] L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27 (1998) 1 and references therein.

  7. Menopausal attitudes, objectified body consciousness, aging anxiety, and body esteem: European American women's body experiences in midlife.

    PubMed

    McKinley, Nita Mary; Lyon, Louise Ann

    2008-12-01

    Seventy-four European American women aged 50-68 years completed surveys of menopausal attitudes, appearance aging anxiety, body esteem, body surveillance, and body shame. Hypotheses based on the connections between cultural constructions of femininity and menopause were partially supported. Menopausal attitudes and appearance-related aging anxiety were related to body surveillance. Appearance-related menopausal attitudes were related to both body surveillance and body esteem. Body shame moderated the relationship between appearance-related menopausal attitudes and body esteem.

  8. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  9. Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold.

    PubMed

    Arbó, D G; Yoshida, S; Persson, E; Dimitriou, K I; Burgdörfer, J

    2006-04-14

    We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].

  10. Electron-Impact Dissociative Ionization Of Ethylene (Postprint)

    DTIC Science & Technology

    2006-02-01

    seen in Fig. 5 , where the discrepancy between em- pirical calculation and the experiment is more profound, FIG. 2 . Partial ionization cross section...not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YY) 2 . REPORT TYPE 3...ANSI Std. Z39-18 Electron-impact dissociative ionization of ethylene S. Popović,1,* S. Williams, 2 ,† and L. Vušković1,‡ 1Department of Physics, Old

  11. Momentum correlation of electron-hydrogen ionization

    NASA Astrophysics Data System (ADS)

    Sui-meng, Zhang; Zhang-jin, Chen

    1999-07-01

    Following the work of Berakdar, the momentum correlation in the three-body Coulomb continuum problem is considered by the introduction of effective Sommerfeld parameters for both symmetric and asymmetric geometry. The triple differential cross sections for electron impact ionization of atomic hydrogen at incident energies of 54.4 and 150eV in asymmetric geometry are calculated. Results are compared with the related measurements and the only existing theoretical results of the convergent close-coupling method. They are in good agreement with experiment, though some small quantitative discrepancies remain.

  12. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  13. The Phobos neutral and ionized torus

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Curry, S. M.; Fatemi, S.

    2016-05-01

    Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars.

  14. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    DOE PAGES

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; ...

    2015-11-03

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less

  15. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    SciTech Connect

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; Gan, Jinping; Kertesz, Vilmos

    2015-11-03

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.

  16. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  17. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  18. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  19. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  20. Associative ionization reactions involving excited atoms in nitrogen plasma

    SciTech Connect

    Popov, N. A.

    2009-05-15

    A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N({sup 2}P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N({sup 2}P) + O({sup 3}P) {yields} e + NO{sup +}. The calculated results agree well with available experimental data.

  1. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  2. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  3. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  4. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  5. Ultrafast molecular dynamics of dissociative ionization in OCS probed by soft x-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ramadhan, Ali; Wales, Benji; Karimi, Reza; Gauthier, Isabelle; MacDonald, Michael; Zuin, Lucia; Sanderson, Joe

    2016-11-01

    Soft x-rays (90-173 eV) from the 3rd generation Canadian Light Source have been used in conjunction with a multi coincidence time and position sensitive detection apparatus to observe the dissociative ionization of OCS. By varying the x-ray energy we can compare dynamics from direct and Auger ionization processes, and access ionization channels which result in two or three body breakup, from 2+ to 4+ ionization states. We make several new observations for the 3+ state such as kinetic energy release limited by photon energy, and using Dalitz plots we can see evidence of timescale effects between the direct and Auger ionization process for the first time. Finally, using Dalitz plots for OCS4+ we observe for the first time that breakup involving an O2+ ion can only proceed from out of equilibrium nuclear arrangement for S(2p) Auger ionization.

  6. Ionized calcium concentrations in squid axons

    PubMed Central

    1976-01-01

    Values for ionized [Ca] in squid axons were obtained by measuring the light emission from a 0.1-mul drop of aequorin confined to a plastic dialysis tube of 140-mum diameter located axially. Ionized Ca had a mean value of 20 x 10(-9) M as judged by the subsequent introduction of CaEGTA/EGTA buffer (ratio ca. 0.1) into the axoplasm, and light measurement on a second aequorin drop. Ionized Ca in axoplasma was also measured by introducing arsenazo dye into an axon by injection and measuring the Ca complex of such a dye by multichannel spectrophotometry. Values so obtained were ca. 50 x 10(-9) M as calibrated against CaEGTA/EGTA buffer mixtures. Wth a freshly isolated axon in 10 mM Ca seawater, the aequorin glow invariably increased with time; a seawater [Ca] of 2-3 mM allowed a steady state with respect to [Ca]. Replacement of Na+ in seawater with choline led to a large increase in light emission from aequorin. Li seawater partially reversed this change and the reintroduction of Na+ brought light levels back to their initial value. Stimulation at 60/s for 2-5 min produced an increase in aequorin glow about 0.1% of that represented by the known Ca influx, suggesting operationally the presence of substantial Ca buffering. Treatment of an axon with CN produced a very large increase in aequorin glow and in Ca arsenazo formation only if the external seawater contained Ca. PMID:818340

  7. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  8. Detection of sputtered and evaporated carbon aggregates: relative and absolute electron ionization fragmentation yields

    NASA Astrophysics Data System (ADS)

    Mair, C.; Deutsch, H.; Becker, K.; Märk, T. D.; Vietzke, E.

    2001-03-01

    The present study is a first attempt to determine electron impact ionization efficiencies for C 2 and C 3. A novel method has been applied to obtain the partial cross-section values for the reactions C 2+e→C +,C 2+e→C 2+ and C 3+e→C +,C 3+e→C 2+ and C 3+e→C 3+. The neutral target consisting of C, C 2 and C 3 is produced by thermal evaporation from a heated graphite sample and the neutral precursors in the subsequent ionization process can be distinguished by their different flight-time distributions acquired in the evaporation process. The partial ionization cross-section ratios obtained in this experiment have been calibrated with calculated absolute total ionization cross section curves of C 2 and C 3 using the Deutsch-Märk (DM) formalism.

  9. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  10. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  11. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  12. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  13. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  14. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  15. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  16. Body lice

    MedlinePlus

    ... Body lice are tiny insects (scientific name is Pediculus humanus corporis ) that are spread through close contact ... disease Images Body louse Lice, body with stool (Pediculus humanus) Body louse, female and larvae Head louse ...

  17. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  18. Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    SciTech Connect

    Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; Amami, S.; Madison, D. H.; Pursehouse, J.; Nixon, K. L.; Murray, A. J.

    2015-09-11

    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionization from excited Ca and Na atoms.

  19. Two-effective-center approximation for proton-impact single ionization of hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, Ebrahim

    2015-10-01

    Some closed-form expressions are derived for the partial direct and indirect transition amplitudes for proton-impact single ionization of the hydrogen molecules using a first-order two-effective center continuum-wave approximation. The method satisfies the correct boundary conditions in the entrance channel. The basic assumption in this model is that when the active electron is ionized from one of the atomic centers in the molecule, the other scattering center is completely screened by the passive electron. Consequently, the transition amplitude can be expressed as a superposition of the partial ionization amplitudes from two independent scattering centers located at a constant distance from each other. The superposition of the partial amplitudes leads to different interference patterns for various orientations of the molecular target. The calculated cross sections are compared with the experiments and also with other theories. The comparison shows that the present results are reliable.

  20. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  1. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  2. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOEpatents

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  3. Zero-Net-Charge Air Ionizer

    NASA Technical Reports Server (NTRS)

    Woods, W. R., Jr.

    1985-01-01

    Instrument monitors air supplied by air ionizer and regulates ionizer to ensure net charge neutral. High-impedance electrometer and nulling control amplifier regulate output of air ionizer. Primarily intended to furnish ionized air having no net charge, instrument adaptable to generating air with positive or negative net charge is so desired. Useful where integrated circuit chips are manufactured, inspected, tested or assembled.

  4. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  5. [Effect of ionizing radiation on the living body].

    PubMed

    Kojima, Shuji

    2014-01-01

    Since the Fukushima nuclear plant accident following the great East Japan earthquake on March 11, 2011, we have been warned to be careful about possible radiation exposure almost every day in newspapers and on TV. Radioactive iodine ((131)I) and cesium ((134)Cs, (137)Cs) produced by nuclear reactions were released into the air during and after the accident, and have been scattered by the winds in Tohoku and in the Kanto district. Even today, 2 years after the accident, there is great public concern about possible pollution of foodstuffs and fishery products with radioactive cesium, not only in Japan, but also in other countries. On the other hand, decontamination work has been proceeding, including removal of contaminated soil near the accident site. Since the accident, many media reports have continued to tell us only that current dose levels of radiation are not dangerous to human health. But, many people are not satisfied with such vague statements, and want to understand the situation in more detail. So, it is important to provide basic education about the effects of radiation to the general public. I am a professor of the Department of Radiation Biosciences at Tokyo University of Science, and so I am very familiar with radiation and its dangers. So, in my lecture today, we would like to explain the effects of radiation and put the present situation into perspective, so that people will better understand the risks, and not be unnecessarily afraid.

  6. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-09-15

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l{sub dom} for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T){sub n}{sup A}. The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists.

  7. The distribution of ionized gas in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Buson, L. M.; Sadler, E. M.; Zeilinger, W. W.; Bertin, G.; Bertola, F.; Danzinger, J.; Dejonghe, H.; Saglia, R. P.; de Zeeuw, P. T.

    1993-12-01

    We present and discuss H-alpha+(N II) imaging observations of fifteen nearby elliptical and SO galaxies with extended optical emission lines. The morphology of the emitting regions suggests that the ionized gas usually lies in a disk which is often geometrically decoupled from the stellar body, as expected in a triaxial galaxy. The presence of a gaseous disk makes these galaxies suitable for testing their gravitational field in a straightforward way. The presence of dust in many of the disks, together with the observed morphological properties, suggests that the ionized gas in most of these galaxies is more closely associated with the cold Interstellar Medium (ISM) than with the hot X-ray component. The mass of ionized gas in the galaxies studied here is typically 10-100 times that in a 'normal' early-type galaxy of similar optical luminosity. These appear to be galaxies where an unusually high fraction of the cold gas has been ionized, rather than unusually gas-rich systems in an overall sense. The extra ionizing source may be related to an active nucleus, since the continuum radio emission from these galaxies is typically 10-15 times more powerful than in 'normal' ellipticals of the smae optical luminosity.

  8. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, J.

    2010-05-01

    Flux ropes are now generally accepted to be the magnetic configuration of Coronal Mass Ejections (CMEs), which may be formed prior or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its instability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, the partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches one, the critical index goes to a maximum value that depends on the distribution of the external magnetic field. We demonstrate that the partial torus instability helps us to understand the confinement, growth, and eventual eruption of a flux rope CME.

  9. Biochemistry of ionizing radiation

    SciTech Connect

    Walden, T.L.; Nushin, F.K.

    1990-01-01

    This volume examines the biochemical changes occurring in normal tissue after irradiation. A review of radiation chemistry is followed by an analysis of factors affecting biochemical responses and a timely discussion of radiobiology in space flight. The authors then describe the effects of radiation on lipid peroxidation, amino acids, peptides, proteins, polysaccharides, DNA, thiols, and body fluids. Close attention is given to alterations in biological mediators such as eicosanoids, cyclic nucleotides, angiotensin, histamine, polyamines, catecholamines, and serotonin and in hormones such as adrenocorticotropic hormone, testosterone, estrogens, follicle-stimulating hormone, luteinizing hormone, thyroid hormones, insulin and glucagon, gastrin, and melatonin. Other chapters focus on changes in carbohydrate metabolism, oxidative phosphorylation, protein synthesis, and serum proteins. A chapter on biological dosimeters discusses prodromal syndrome, hematological dosimeters, serum composition, urine, chromosomal aberrations, and fluorometric and immunoassays.

  10. Single ionization of molecular iodine

    NASA Astrophysics Data System (ADS)

    Smith, Dale L.; Tagliamonti, Vincent; Dragan, James; Gibson, George N.

    2017-01-01

    We performed a study of the single ionization of iodine, I2 over a range of wavelengths. Single ionization of I2 is unexpectedly found to have a contribution from inner molecular orbitals involving the 5 s electrons. The I+I+ dissociation channel was recorded through velocity map imaging, and the kinetic-energy release of each channel was determined with two-dimensional fitting of the images. Most of the measured kinetic-energy data were inconsistent with ionization to the X , A , and B states of I2 + , implying ionization from deeper orbitals. A pump-probe Fourier transform technique was used to look for modulation at the X - and A -state vibrational frequencies to see if they were intermediate states in a two-step process. X - and A -state modulation was seen only for kinetic-energy releases below 0.2 eV, consistent with dissociation through the B state. From these results and intensity-, polarization-, and wavelength-dependent experiments we found no evidence of bond softening, electron rescattering, or photon mediation through the X or A states to higher-energy single-ionization channels.

  11. Thermal ionization of Cs Rydberg states

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Ovsiannikov, V. D.

    2009-01-01

    Rates Pnl of photoionization from Rydberg ns-, np-, nd-states of a valence electron in Cs, induced by black-body radiation, were calculated on the basis of the modified Fues model potential method. The numerical data were approximated with a three-term expression which reproduces in a simple analytical form the dependence of Pnl on the ambient temperature T and on the principal quantum number n. The comparison between approximate and exactly calculated values of the thermal ionization rate demonstrates the applicability of the proposed approximation for highly excited states with n from 20 to 100 in a wide temperature range of T from 100 to 10,000 K. We present coefficients of this approximation for the s-, p- and d-series of Rydberg states.

  12. Electron Impact Ionization of the Rare Gases

    NASA Astrophysics Data System (ADS)

    Lohmann, Birgit

    2008-10-01

    Detailed information about the electron impact ionization process can be obtained from fully differential cross section measurements, in which the ionized electron is detected in coincidence with the outgoing scattered projectile electron. Incident and outgoing electron momenta are completely determined in these measurements. A considerable body of experimental and theoretical data exists for H and He targets, and the level of agreement between theory and experiment for these simple atoms is exceptional. However, there are still significant discrepancies between theory and experiment in the case of ionization of more complex atomic targets such as the heavier rare gas atoms. In this talk I will present recent measurements and theoretical predictions of fully differential cross sections for ionization of a range of rare gas targets: He, Ne, Ar and Xe. The talk will concentrate primarily on experiments which have been performed by two experimental groups, our group in Australia [1-3] and that of Lahmam-Bennani [3-5] in France. The experimental conditions span two different kinematic regimes, one with intermediate incident electron energy and low ejected electron energy, and the other with higher incident electron energy, and ejected electron energies which correspond to large energy transfer in the collision process. All experiments have been performed in a coplanar asymmetric configuration in which the scattered electron is detected at a small forward scattering angle. The experimental apparatus used in Australia is of quite different design to that in France, and I will present the results of an experiment in which the two groups have collaborated to produce data under identical kinematic conditions and for the same targets, using these two very different experimental approaches. This comprehensive set of experimental data has provided an interesting challenge to theory, and I will discuss the state of play with regard to the alignment between curent state

  13. Partial knee replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  14. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  15. Gasification and Ionization of Chemically Complex Liquids for FRC Injection

    NASA Astrophysics Data System (ADS)

    Holmes, Michael; Hill, Carrie

    2014-10-01

    Ion thrusters provide reliable and efficient spacecraft propulsion but are limited to noble gas propellants to limit chemical attack of components. However, thrusters based on Field Reversed Configuration (FRC) plasmas are becoming a reality. High beta compact-toroids are generated within an FRC thruster and then expelled to provide thrust. The closed field lines restrict the plasma from attacking thruster components. More convenient propellants such as water are therefore possible. The FRC thruster would generate a series of compact-toroids (plasmoids) to develop continuous spacecraft thrust. Each plasmoid ejection would empty the discharge region. The feed system would then refill the discharge region with partially ionized gas for the next discharge. The ionization part of this feed system is the subject of this paper. The question is how to produce a uniform, chemically complex, ionized gas within the discharge region that optimizes compact-toroid formation? We will be measuring chemical state, ionization state, and uniformity as the propellant enters the discharge region.

  16. Partially coherent nonparaxial beams.

    PubMed

    Duan, Kailiang; Lü, Baida

    2004-04-15

    The concept of a partially coherent nonparaxial beam is proposed. A closed-form expression for the propagation of nonparaxial Gaussian Schell model (GSM) beams in free space is derived and applied to study the propagation properties of nonparaxial GSM beams. It is shown that for partially coherent nonparaxial beams a new parameter f(sigma) has to be introduced, which together with the parameter f, determines the beam nonparaxiality.

  17. PARTIAL TORUS INSTABILITY

    SciTech Connect

    Olmedo, Oscar; Zhang Jie

    2010-07-20

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  18. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, Jie

    2010-07-01

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  19. Prediction of Shock Wave Structure in Weakly Ionized Gas Flow by Solving MGD Equation

    NASA Technical Reports Server (NTRS)

    Deng, Z. T.; Oviedo-Rojas, Ruben; Chow, Alan; Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    This paper reports the recent research results of shockwave structure predictions using a new developed code. The modified Rankine-Hugoniot relations across a standing normal shock wave are discussed and adopted to obtain jump conditions. Coupling a electrostatic body force to the Burnett equations, the weakly ionized flow field across the shock wave was solved. Results indicated that the Modified Rankine-Hugoniot equations for shock wave are valid for a wide range of ionization fraction. However, this model breaks down with small free stream Mach number and with large ionization fraction. The jump conditions also depend on the value of free stream pressure, temperature and density. The computed shock wave structure with ionization provides results, which indicated that shock wave strength may be reduced by existence of weakly ionized gas.

  20. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  1. Dust and Ionized Gas in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    1995-05-01

    The thesis presents results of a study of the optical and far-infrared properties of dust and ionized gas in a complete, blue magnitude-limited (B_T^0 < 12) sample of 56 luminous elliptical (E) galaxies. The main aim is to investigate the origin and fate of this interstellar material and possible implications for scenarios of galaxy formation and evolution. To ensure consistency in the assignment of morphological types, the galaxy sample was drawn exclusively from the Revised Shapley-Ames Catalog of Bright Galaxies. A deep, systematic optical survey has been performed, including CCD imaging through both broad-band filters and narrow-band filters. For each galaxy we have constructed colour index (B-V, B-I) images and images of the H-alpha+ [N II]-emitting gas to derive the distributions of dust features and ionized gas. Long-slit spectra have also been obtained in two resolutions. Low-resolution spectra (covering the whole optical region) are used to study the properties of the underlying stellar populations (e.g., metallicity gradients), and to study the excitation mechanism of the ionized gas. Additional medium-resolution (~2A) spectra in the wavelength region around H-alpha have been obtained for all sample elliptical galaxies containing ionized gas to study the kinematics of the gas, and derive pure H-alpha luminosities. In this thesis, analysis of the extensive imaging data and of the medium-resolution spectra is reported. In Chapter 1 we report an early result of our survey: The galaxy IC 1459 is found to exhibit a large (15 Kpc diameter) H-alpha+[N II] emission-line region, showing spiral structure. Patchy dust absorption is also found in the inner part of the emission-line region. This galaxy was already shown to contain a massive stellar core which counter-rotates rapidly with respect to the stellar body of the galaxy. Interestingly, the sense of rotation of the spiral "arms" of the ionized gas distribution is the same as that of the rapidly rotating

  2. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  3. UNEXPECTED IONIZATION STRUCTURE IN ETA CARINAE'S ''WEIGELT KNOTS''

    SciTech Connect

    Remmen, Grant N.; Davidson, Kris; Mehner, Andrea

    2013-08-10

    The Weigelt knots, dense slow-moving ejecta near {eta} Carinae, are mysterious in structure as well as in origin. Using spatially dithered spectrograms obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS), we have partially resolved the ionization zones of one knot. Contrary to simple models, higher ionization levels occur on the outer side, i.e., farther from the star. They cannot represent a bow shock, and no satisfying explanation is yet available-though we sketch one qualitative possibility. STIS spectrograms provide far more reliable spatial measurements of the Weigelt knots than HST images do, and this technique can also be applied to the knots' proper motion problem. Our spatial measurement accuracy is about 10 mas, corresponding to a projected linear scale of the order of 30 AU, which is appreciably smaller than the size of each Weigelt knot.

  4. Partial thromboplastin time (PTT)

    MedlinePlus

    ... which there is a problem with the body's blood clotting process Disorder in which the proteins that control blood clotting become over active ( disseminated intravascular coagulation ) Liver disease ...

  5. Electroencephalographic responses to ionizing radiation.

    PubMed

    GARCIA, J; BUCHWALD, N A; BACH-Y-RITA, G; FEDER, B H; KOELLING, R A

    1963-04-19

    Electroencephalographic recordings made from chronically implanted cortical electrodes indicate that ionizing radiation has an immediate effect upon brain wave patterns. X-rays delivered at the rate of 0.2 roentgen per second produce an arousal effect resembling that which occurs as a result of stimulation through peripheral receptor systems.

  6. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  7. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  8. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  9. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  10. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  11. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  12. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  13. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  14. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  15. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  16. The partial fission of fast spinning asteroids

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with

  17. Partially strong WW scattering

    SciTech Connect

    Cheung Kingman; Chiang Chengwei; Yuan Tzuchiang

    2008-09-01

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  18. Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    DOE PAGES

    Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...

    2015-09-11

    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less

  19. Integral-equation approach to the weak-field asymptotic theory of tunneling ionization

    NASA Astrophysics Data System (ADS)

    Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2016-03-01

    An integral equation approach to the weak-field asymptotic theory (WFAT) of tunneling ionization is developed. An integral representation for the exact partial amplitudes of ionization into parabolic channels is derived. The WFAT expansion for the ionization rate follows immediately from this relation. Integral representations for the coefficients in the expansion are obtained. The integrals accumulate where the ionizing orbital has large amplitude and are not sensitive to its behavior in the asymptotic region. Hence, these formulas enable one to reliably calculate the WFAT coefficients even if the orbital is represented by an expansion in Gaussian basis, as is usually the case in standard software packages for electronic structure calculations. This development is expected to greatly simplify the implementation of the WFAT for polyatomic molecules, and thus facilitate its growing applications in strong-field physics.

  20. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  1. Electron impact ionization-excitation of Helium

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  2. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  3. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  4. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  5. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  6. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards...

  7. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  8. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  9. Dilemmas of partial cooperation.

    PubMed

    Stark, Hans-Ulrich

    2010-08-01

    Related to the often applied cooperation models of social dilemmas, we deal with scenarios in which defection dominates cooperation, but an intermediate fraction of cooperators, that is, "partial cooperation," would maximize the overall performance of a group of individuals. Of course, such a solution comes at the expense of cooperators that do not profit from the overall maximum. However, because there are mechanisms accounting for mutual benefits after repeated interactions or through evolutionary mechanisms, such situations can constitute "dilemmas" of partial cooperation. Among the 12 ordinally distinct, symmetrical 2 x 2 games, three (barely considered) variants are correspondents of such dilemmas. Whereas some previous studies investigated particular instances of such games, we here provide the unifying framework and concisely relate it to the broad literature on cooperation in social dilemmas. Complementing our argumentation, we study the evolution of partial cooperation by deriving the respective conditions under which coexistence of cooperators and defectors, that is, partial cooperation, can be a stable outcome of evolutionary dynamics in these scenarios. Finally, we discuss the relevance of such models for research on the large biodiversity and variation in cooperative efforts both in biological and social systems.

  10. Body Measurement.

    ERIC Educational Resources Information Center

    Neufeld, K. Allen

    1989-01-01

    Described are activities for measuring the human body. The activities include measurements and calculations, calculating volume and density, problems related to body measurement, and using a nomogram. Several charts, illustrations, and a nomogram are provided. (YP)

  11. Virtual environment application with partial gravity simulation

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  12. Ionizing radiation and cancer prevention.

    PubMed Central

    Hoel, D G

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation is unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. PMID:8741791

  13. Charge segregation in weakly ionized microgels

    NASA Astrophysics Data System (ADS)

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; Do, Changwoo; Barker, Thomas H.; Fernández-Nieves, Alberto

    2017-01-01

    We investigate microgels synthesized from N -isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ˜0.2 , indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence of a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. We successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.

  14. Effect of ionizing radiation on polyaniline solutions

    NASA Astrophysics Data System (ADS)

    Wolszczak, M.; Kroh, J.; Abdel-Hamid, M. M.

    1996-06-01

    This communication presents the optical studies associated with transition doped (metallic)-neutral (semiconductor or insulator) state for conducting polymers. Special attention is focused on the electronic properties of polyaniline. The interconversion of different oxidation states of polyanilines has been studied by chemical and radiolytic methods. The polyaniline system is described by three sets of chromophores of three different oxidation states: fully reduced leucoemeraldine base (LB), partially oxidized emeraldine base (EB), and fully oxidized pernigraniline (PB). Each oxidation state can exist in its protonated form by treatment with an acid. All members of polyaniline family are spectroscopically distinguishable. The radiolytic study presents evidence that the polyaniline can exist in a continuum of oxidation states. The highly conducting form of polymer, i.e. emeraldine salt can be converted by using ionizing radiation into leucoemeraldine salt. The leucoemeraldine base is the final product of radiolysis of emeraldine base solution. The fully oxidized form of polyaniline can also be obtained by the irradiation of EB in the presence of CCl 4 or chlorobenzene.

  15. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  16. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  17. Polarization phenomena in multiphoton ionization of atoms.

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  18. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  19. Electron-impact ionization of the K-shells of Heavy Atoms

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.

    2016-05-01

    Fully-relativistic subconfiguration-average distorted-wave (SCADW) calculations are made for the electron-impact ionization of the K-shells of heavy atoms. One set of calculations only include the two-body electrostatic interaction, while the other set includes the full two-body retarded electromagnetic interaction. The SCADW retarded electromagnetic calculations are found to be in good agreement with recent measurements made at the Institute for Physics at the University of Sao Paulo, Brazil for Au and Bi atoms. Calculations and measurements will also be presented for the K-shell ionization of the Ta atom. Work supported in part by Grants from NSF and DOE.

  20. Further Biodosimetry Investigations Using Murine Partial-body Irradiation Model

    DTIC Science & Technology

    2014-04-21

    Blakely, W. F., Salter , C. A. and Prasanna, P. G. Early- response biological dosimetry–recommended counter- measure enhancements for mass-casualty...L., Salter , C. A., Levine, I. H., Jackson, W. E., Grace, M. B., Prasanna, P. G. S., Sandgren, D. J. and Ledney, G. D. Amylase and blood cell count

  1. Performance deficit produced by partial body exposures to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  2. Partially coherent ultrafast spectrography

    PubMed Central

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-01-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080

  3. Hierarchical partial order ranking.

    PubMed

    Carlsen, Lars

    2008-09-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritization of polluted sites is given.

  4. Partially coherent ultrafast spectrography

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-03-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.

  5. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  6. Activated partial thromboplastin time.

    PubMed

    Ignjatovic, Vera

    2013-01-01

    Activated partial thromboplastin time (APTT) is a commonly used coagulation assay that is easy to perform, is affordable, and is therefore performed in most coagulation laboratories, both clinical and research, worldwide. The APTT is based on the principle that in citrated plasma, the addition of a platelet substitute, factor XII activator, and CaCl2 allows for formation of a stable clot. The time required for the formation of a stable clot is recorded in seconds and represents the actual APTT result.

  7. Photo Double Ionization of Fixed in Space Deuterium Molecules

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Dörner, Reinhard; Czasch, Achim; Jagutzki, Ottmar; Böcking, Horst Schmidt; Müller, Alkis; Mergel, Volker; Prior, Mike; Osipov, Timur; Daveau, Sebastian; Rotenberg, Eli; Meigs, George; Cocke, Lew; Landers, Allen; Kheifets, Anatoli; Feagin, Jim; Muino, Ricardo Diez

    2006-11-01

    In the following we present the kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo double ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis in the coplanar geometry. This effect is reproduced by a model in which a pair of photo ionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis. The results in a non-coplanar geometry reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

  8. Electron impact ionization dynamics of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Ning, C. G.; Colgan, J.; Ingólfsson, O.; Madison, D. H.; Brunger, M. J.

    2016-10-01

    Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles -7.5°, -10.0°, -12.5° and -15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS.

  9. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  10. Electron- and photon-impact ionization of furfural

    SciTech Connect

    Jones, D. B.; Ali, E.; Madison, D. H. E-mail: madison@mst.edu; Nixon, K. L.; Limão-Vieira, P. E-mail: madison@mst.edu; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; and others

    2015-11-14

    The He(I) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green’s function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″  +  21a′ highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  11. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  12. Laparoscopic partial adrenalectomy.

    PubMed

    Ikeda, Y; Takami, H; Tajima, G; Sasaki, Y; Takayama, J; Kurihara, H; Niimi, M

    2002-01-01

    Since corticosteroids are indispensable hormones, partial or cortical-sparing adrenalectomies may be adopted for the surgical treatment of adrenal diseases. In this article, we describe the technique and results of these procedures. Laparoscopic partial or cortical-sparing adrenalectomy has been performed in 10 patients. Seven cases had an aldosterone-producing adenoma (APA) and three had a pheochromocytoma. Three cases with an APA and a case with a pheochromocytoma had tumors located far from the adrenal central vein, and the vein could be preserved. Four cases with an APA and two with a pheochromocytoma had tumors located close to the adrenal central vein, and it was necessary to section the central vein to resect them. All endoscopic procedures were performed successfully. There were no postoperative complications. At follow-up, adrenal 131I-adosterol scintigrams showed the preservation of remnant adrenal function in all patients. Laparoscopic partial or cortical-sparing adrenal surgery was safely performed, and adrenal function was preserved irrespective of whether the adrenal central vein could be preserved or not. We consider this to be a useful operative technique for selected cases.

  13. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    SciTech Connect

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.

  14. Highly ionized xenon and volumetric weighting in restricted focal geometries

    NASA Astrophysics Data System (ADS)

    Strohaber, J.; Kolomenskii, A. A.; Schuessler, H. A.

    2015-08-01

    The ionization of xenon atoms subjected to 42 fs, 800 nm pulses of radiation from a Ti:Sapphire laser was investigated. In our experiments, a maximum laser intensity of ˜ 2 × 10 15 W / cm 2 was used. Xenon ions were measured using a time-of-flight ion mass spectrometer having an entrance slit with dimensions of 12 μ m × 400 μ m . The observed yields Xe n + ( n = 1 - 7 ) were partially free of spatial averaging. The ion yields showed sequential and nonsequential multiple ionization and dip structures following saturation. To investigate the dip structures and to perform a comparison between experimental and simulated data, with the goal of clarifying the effects of residual spatial averaging, we derived a hybrid analytical-numerical solution for the integration kernel in restricted focal geometries. We simulated xenon ionization using Ammosov-Delone-Krainov and Perelomov-Popov-Terent'ev theories and obtained agreement with the results of observations. Since a large number of experiments suffer from spatial averaging, the results presented are important to correctly interpret experimental data by taking into account spatial averaging.

  15. A Sturmian approach for ionization processes of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo

    2016-09-01

    The Sturmian approach, using Generalized Sturmian Functions (GSF), is a spectral method that has been applied successfully both for structure calculations and for the study of several ionization processes with atomic targets. GSF are two-body functions that solve a Sturm-Liouville problem. They can be used as a basis set to deal with two- or three-body bound or scattering problems. By construction, the whole GSF set can be chosen to possess asymptotic conditions appropriate for the physical problem under consideration: bound-type behavior with a specific asymptotic charge are chosen for bound states, while - for example - outgoing behavior with a given adequate energy are taken for solving scattering processes. This important intrinsic property makes GSF basis sets - and thus the whole approach - computationally efficient. In the case of ionization, a specific feature of our methodology is that the scattering amplitude and the corresponding cross section are extracted directly from the asymptotic part of the scattering function without requiring the evaluation of a matrix element. Compared to the case of many-electron atoms several extra challenges occur for molecules: the scattering problem is generally multicenter and highly non-central, and the molecular orientation must also be taken into account. These features make the computational task much more cumbersome and expensive than for atomic targets. The Sturmian approach with GSF has been recently extended and implemented to study single ionization of small polyatomic molecules by photon and electron impact. Results for a variety of single and double ionization processes will be presented. This work has been done in collaboration with G. Gasaneo, D.M. Mitnik, J.M. Randazzo, F.D. Colavecchia, M.J. Ambrosio, J.A. Del Punta and C.M. Granados-Castro. We would like to acknowledge the CNRS funding (PICS project N. 06304).

  16. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  17. The CoRoT target HD 49933: a possible seismic signature of heavy elements ionization in the deep convective zone

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2017-04-01

    We use a seismic diagnostic, based on the derivative of the phase shift of the acoustic waves reflected by the surface, to probe the outer layers of the star HD 49933. This diagnostic is particularly sensitive to partial ionization processes occurring above the base of the convective zone. The regions of partial ionization of light elements, hydrogen and helium, have well-known seismological signatures. In this work, we detect a different seismic signature in the acoustic frequencies, which we showed to correspond to the location where the partial ionization of heavy elements occurs. The location of the corresponding acoustic glitch lies between the region of the second ionization of helium and the base of the convective zone, approximately 5 per cent below the surface of the stars.

  18. Partial Southwest Elevation Mill #5 West (Part 3), Partial ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial Southwest Elevation - Mill #5 West (Part 3), Partial Southwest Elevation - Mill #5 West (with Section of Courtyard) (Parts 1 & 2) - Boott Cotton Mills, John Street at Merrimack River, Lowell, Middlesex County, MA

  19. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  20. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  1. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  2. The Tevatron Ionization Profile Monitors

    SciTech Connect

    Jansson, A.; Fitzpatrick, T.; Bowie, K.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-05-01

    In designing an ionization profile monitor system for the Tevatron some novel approaches were taken, in particular for the readout electronics. This was motivated by the desire to resolve the individual bunches in both beams simultaneously. For this purpose, custom made electronics originally developed for Particle Physics experiments was used to provide a fast charge integration with very low noise. The various parts of the read-out electronics have been borrowed or adapted from the KTev, CMS, MINOS and BTev experiments. The detector itself also had to be modified to provide clean signals with sufficient bandwidth. The system design will be described along with the initial results.

  3. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  4. Superponderomotive regime of tunneling ionization

    NASA Astrophysics Data System (ADS)

    Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    Ultrarelativistic photoelectron spectra exhibit unexpected characteristics in a paraxial laser focus. The photoelectron energy scales superponderomotively, and the usual parabolic momentum distribution is distorted into a variety of intricate patterns, depending on the location of the ion. These patterns include discrete contours, which in some cases can be easily identified with a particular subcycle burst of ionization current. An analytical formula for the maximum photoelectron energy in a paraxial radiation field is given, and high-resolution momentum distributions with narrowly peaked features are presented. These narrowly peaked features suggest application to electron injection into plasma-based accelerators.

  5. Paternalism and partial autonomy.

    PubMed Central

    O'Neill, O

    1984-01-01

    A contrast is often drawn between standard adult capacities for autonomy, which allow informed consent to be given or withheld, and patients' reduced capacities, which demand paternalistic treatment. But patients may not be radically different from the rest of us, in that all human capacities for autonomous action are limited. An adequate account of paternalism and the role that consent and respect for persons can play in medical and other practice has to be developed within an ethical theory that does not impose an idealised picture of unlimited autonomy but allows for the variable and partial character of actual human autonomy. PMID:6520849

  6. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  7. Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine

    ERIC Educational Resources Information Center

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-01-01

    Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of…

  8. Electron-impact-ionization dynamics of five C2 to C4 perfluorocarbons

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Bart, Mark; Vallance, Claire; Harland, Peter W.

    2013-12-01

    Perfluorocarbons (PFCs) are man-made compounds whose ion physics exhibit complex interplays between statistical and nonstatistical fragmentation and intramolecular rearrangement processes. One probe of such processes is the energy-dependent electron-impact-ionization cross section. Partial electron-impact-ionization cross sections are reported for the fragments arising from five C2 to C4 PFCs, namely, C2F6, C3F8, C3F6, CF2=CF-CF=CF2, and CF3-C≡C-CF3, over the energy range from threshold to ˜210 eV. Care was taken to maximize ion collection efficiency and to minimize discrimination against ions produced with high kinetic-energy release, and the measured cross sections have been calibrated using independent absolute total (gross) ionization efficiency curves measured previously in the same laboratory with an instrument that was designed to essentially have unit detection efficiency. Total ionization cross sections have also been modeled using the binary-encounter Bethe model, and the shortcomings of the model when applied to perfluorinated compounds are discussed. Analysis of the mass spectral fragmentation patterns in combination with ab initio energetics suggests that nonstatistical dissociative ionization processes play a significant role in the fragmentation dynamics of saturated PFCs. In contrast, unsaturated PFCs exhibit long-lived parent ions, which tend to undergo a higher degree of statistical dissociation following ionization, involving considerable intramolecular rearrangement.

  9. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  10. Partial cross sections of helium satellites at medium photon energies

    SciTech Connect

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  11. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  12. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  13. The relationships between body surveillance, body shame, and contextual body concern during sexual activities in ethnically diverse female college students.

    PubMed

    Claudat, Kim; Warren, Cortney S; Durette, Robert T

    2012-09-01

    This study investigated the relationships between body surveillance, body shame, and contextual body image during sexual activity in American female college students of European, African, Asian, and Hispanic/Latina descent (N=1174). Responses to self-report questionnaires indicated that body surveillance and body shame were significantly positively correlated with contextual body concern during sexual activities for women of all ethnic groups. Examination of direct and indirect effects using structural equation modeling indicated that body shame partially mediated the relationship between body surveillance and contextual body image during sexual activity for the sample as a whole. However, multiple-group analyses (i.e., path invariance tests) showed that some of these relationships differed by ethnic group, with European American women reporting the strongest relationships. Study results generally support the mediational role of body shame, but highlight that the strength of these relationships and means may differ across ethnic groups.

  14. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  15. Sequential binary collision ionization mechanisms

    NASA Astrophysics Data System (ADS)

    van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.

    2004-03-01

    Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).

  16. Ionizing radiation and orthopaedic prostheses

    NASA Astrophysics Data System (ADS)

    Rimnac, Clare M.; Kurtz, Steven M.

    2005-07-01

    Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.

  17. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  18. New design of high performance ionizing bar

    NASA Astrophysics Data System (ADS)

    Wang, Ronggang; Sun, Yurong

    2013-03-01

    This paper introduces a new design of DC-pulse ionizing bar to solve the problem of imbalance offset voltage for the AC ionizing bar, which is easily affected by the environment, as well as indicate the final tests. The new design mainly includes five parts: power supply circuit, main control unit, logic circuit, high frequency transformer unit, and feedback unit. The ionizing bar can automatically adjust the discharge voltage, pulse frequency and pulse width to balance the positive and negative ions. The final test results indicate that the DC ionizing bar owns good effect in electrostatic elimination.

  19. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  20. The evolution of partially differentiated planetesimals Evidence from iron meteorite groups IAB and IIICD

    NASA Technical Reports Server (NTRS)

    Kracher, A.

    1985-01-01

    Some of the properties of IAB and IIICD iron meteorites thought to be derived from partially differentiated planetesimals are summarized, and the physical aspects that may have controlled parent body differentiation and affected the composition of the sulfide melt are outlined. The chemical evolution of the parent body is then discussed, and observations supporting the partial differentiation model are examined. Finally, an attempt is made to reinterpret barometric and chronometric data in light of the partial differentiation model, and tentative conclusions are presented.

  1. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-08-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  2. Multielectron effects in strong field ionization of molecules

    NASA Astrophysics Data System (ADS)

    Jaron-Becker, Agnieszka; Xia, Yuqing

    2014-05-01

    Multielectron effects are studied for strong field ionization of di- and polyatomic molecules at their equilibrium geometries, using time dependent density functional theory. Strong field ionization of molecules have been previously often analyzed using ``single active electron'' (SAE) approximation based theories such as for example Intense Field Many Body S-matrix Theory and typically the contributions from inner valence orbitals and multielectron effects were concluded to be of less importance. For several di- and polyatomic molecules we show that ionization rate from inner valence orbitals can increase dramatically due to a novel resonant coupling which influences the molecular dynamics. We discuss the dependence of the results on the orientation of the molecules and laser parameters. Moreover we show how such a mechanism can lead to localization of electron depending on the symmetry of the orbitals involved. Finally, we propose how the novel mechanism can be observed experimentally and show how the multi-electron effects can help explain several experimental results which have shown disagreement with SAE approximation based theories. Supported by NSF (Grants No. PHY-1068706 and PHY-1125844).

  3. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  4. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  5. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  6. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    NASA Astrophysics Data System (ADS)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.

    2008-05-01

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  7. Body Image

    MedlinePlus

    ... spider veins Body dysmorphic disorder (BDD) Eating disorders Anorexia nervosa Binge eating disorder Bulimia nervosa Over-exercising ... conditions? Visit our Mental health section. Fact sheets Anorexia nervosa Binge eating disorder Bulimia nervosa Cosmetics and ...

  8. Body Piercing

    MedlinePlus

    ... must have a consistent mirror finish. Implant grade stainless steel is least likely to produce a foreign body ... All of these cost more than implant grade stainless steel. Gold jewelry should be at least 14 karat ...

  9. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    PubMed

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy

  10. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  11. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  12. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  13. Ionization tube simmer current circuit

    DOEpatents

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  14. Bog bodies.

    PubMed

    Lynnerup, Niels

    2015-06-01

    In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma. Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article presents an overview of our knowledge about the taphomic processes as well as the methods used in bog body research.

  15. Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure

    NASA Astrophysics Data System (ADS)

    Gao, Chang; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping; He, X. T.

    2016-11-01

    With 6LiD as an example, we show that the applicable region of the orbital-free molecular dynamics (OFMD) method in a large temperature range is determined by the thermal ionization process of bound electrons in shell structures. The validity boundary of the OFMD method is defined roughly by the balance point of the average thermal energy of an electron and the ionization energy of the lowest localized electronic state. This theoretical proposition is based on the observation that the deviation of the OFMD method originates from its less accurate description to the charge density in partially ionized shells, as compared with the results of the extended first-principles molecular dynamics method, which well reproduces the charge density of shell structures.

  16. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  17. Three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Berakdar, J.; Briggs, J. S.

    1994-06-01

    A symmetric representation of the three-body Coulomb continuum wave function as a product of three two-body Coulomb wave functions is modified to allow for three-body effects whereby the Sommerfeld parameter describing the strength of interaction of any two particles is affected by the presence of the third particle. This approach gives excellent agreement with near-threshold absolute (e,2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar geometry is reproduced for the first time.

  18. Ionizing radiation and breast cancer in men (United States).

    PubMed

    Thomas, D B; Rosenblatt, K; Jimenez, L M; McTiernan, A; Stalsberg, H; Stemhagen, A; Thompson, W D; Curnen, M G; Satariano, W; Austin, D F

    1994-01-01

    The purposes of this study were to determine whether exposure of the vestigial male breast to ionizing radiation is associated with an increase in risk of breast cancer and, if so, to determine whether the apparent effects on risk in men are similar to those reported for women. A population-based case-control study of breast cancer in men was conducted in 10 geographic areas of the United States. Information on possible prior exposure to ionizing radiation, and on other potential risk factors for breast cancer, was obtained from personal interviews of 227 cases and 300 controls who were recruited from October 1983 to September 1986. Evidence from this study that ionizing radiation can cause breast cancer in men includes: a modest trend of increasing risk with frequency of chest X-rays; an increase in risk in men with three or more radiographic examinations, especially if received prior to 1963; and an increase in risk in men who received X-ray treatments to the chest and adjacent body areas. Risk was increased only from 20 to 35 years after initial exposure from either radiographic examinations or X-ray treatments, and declined after three to four decades since last exposure, suggesting a wave of increased risk of finite duration following exposure. The doses of radiation received could not be estimated precisely, but those from diagnostic procedures were likely similar to those received by prepubertal females in prior studies, and the results of those and the present investigation are compatible. The carcinogenic effects of ionizing radiation may be similar in the male and prepubertal female breast.

  19. Whole-Body MRA.

    PubMed

    Kramer, Harald; Quick, Harald H; Tombach, Bernd; Schoenberg, Stefan O; Barkhausen, Joerg

    2008-09-01

    Vascular diseases today constitute a serious health burden, ranking atherosclerosis as number one in the morbidity and mortality statistics of developed countries, with a still-growing incidence. Different treatment options are available for all vascular territories, ranging from conservative pharmacological treatment and catheter-based interventions up to surgical methods with remodelling of the vessels or bypass implantation. For treatment planning, all listed procedures have in common that they rely on initial diagnostic imaging to assess the degree and extent of stenoses. In this respect, imaging of the arterial system from the head down to the feet seems to be reasonable. Up to now no imaging technique allowed the assessment of the complete arterial system in only one exam within a reasonable time and without limiting factors like invasiveness and ionizing radiation. However, recent developments in magnetic resonance (MR) hardware and software, such as dedicated whole-body MR systems with specially designed surface coils, the movement to higher field strength and the implementation of parallel acquisition techniques (PAT), have helped to overcome the long-standing limitations of MR angiography (MRA), like reduced spatial resolution, long acquisition time, the restriction to body parts and only one field of view of a maximum 50 cm.

  20. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  1. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  2. Investigation of Ionization and Dissociation Processes Produced by Electron Impact on Molecules.

    NASA Astrophysics Data System (ADS)

    Ma, Ce.

    1990-01-01

    Absolute electron impact partial ionization cross sections for Ar and CF_4 were measured by use of a newly built pulsed electron beam time-of-flight apparatus for incident electron energies from thresholds to 500 eV. The apparatus employed consisted of a low energy electron gun, 40 mm diameter ion extraction gold screens, time-of-flight drift tubes, micro-channel plate detectors and fast time to digital electronics. A pulsed electron beam was obtained by pulsing the control grid of the electron gun. Both beam - beam experiments and beam - constant gas target pressure experiments were carried out to determine the absolute partial ionization cross sections for Ar ^{+}, Ar^{2+ }, Ar^{3+} from an argon gas target, and for CF_sp {3}{+}, CF_sp {2}{+}, CF_sp {3}{2+}, CF^ {+}, CF_sp{2} {2+}, F^{+}, C^{+} from a CF _4 gas target. By charge weighted summing of the partial ionization cross sections, the total ionization cross sections of Ar and CF_4 were obtained. The total neutral dissociation cross section for CF_4 was inferred from the total ionization cross section and the total dissociation cross section. Also, a new method for determining absolute total electron scattering cross sections with corrections for forward scattering was developed. The electron beam current was measured as function of gas target pressure and the scattering path length. The total electron scattering cross section obtained from the new model is as much as 6% larger than the cross section derived from the traditional Beer's law for Ar at an incident electron energy of 300 eV. This method is capable of yielding reliable total cross section up to 10 keV. Finally, a study of the secondary electron emission as a function of ejection angle and ejection energy for CO, the doubly differential cross section (DDCS), is presented.

  3. Ensemble Monte Carlo calculation of the hole initiated impact ionization rate in bulk GaAs and silicon using a k-dependent, numerical transition rate formulation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    The hole initiated impact ionization rate in bulk silicon and GaAs is calculated using a numerical formulation of the impact ionization transition rate incorporated into an ensemble Monte Carlo simulation. The transition rate is calculated from Fermi's golden rule using a two-body screened Coulomb interaction including a wavevector dependent dielectric function. It is found that the effective threshold for hole initiated ionization is relatively soft in both materials, that the split-off band dominates the ionization process in GaAs. and that no clear dominance by any one band is observed in silicon, though the rate out of the light hole band is greatest.

  4. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  5. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    PubMed Central

    2016-01-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  6. Multiphoton laser ionization for energy conversion in barium vapor

    NASA Astrophysics Data System (ADS)

    Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.

    2013-03-01

    We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.

  7. Removable partial denture occlusion.

    PubMed

    Ivanhoe, John R; Plummer, Kevin D

    2004-07-01

    No single occlusal morphology, scheme, or material will successfully treat all patients. Many patients have been treated, both successfully and unsuccessfully, using widely varying theories of occlusion, choices of posterior tooth form, and restorative materials. Therefore, experience has demonstrated that there is no one righ r way to restore the occlusion of all patients. Partially edentulous patients have many and varied needs. Clinicians must understand the healthy physiologic gnathostomatic system and properly diagnose what is or may become pathologic. Henderson [3] stated that the occlusion of the successfully treated patient allows the masticating mechanism to carry out its physiologic functions while the temporomandibular joints, the neuromuscular mechanism, the teeth and their supporting structures remain in a good state of health. Skills in diagnosis and treatment planning are of utmost importance in treating these patients, for whom the clinician's goals are not only an esthetic and functional restoration but also a lasting harmonious state. Perhaps this was best state by DeVan [55] more than 60 years ago in his often-quoted objective. "The patient's fundamental need is the continued meticulous restoration of what is missing, since what is lost is in a sense irretrievably lost." Because it is clear that there is no one method, no one occlusal scheme, or one material that guarantees success for all patients, recommendations for consideration when establishing or reestablishing occlusal schemes have been presented. These recommendations must be used in conjunction with other diagnostic and technical skills.

  8. Partially solidified systems

    NASA Astrophysics Data System (ADS)

    The evolution of magmas is a topic of considerable importance in geology and geophysics because it affects volcanology, igneous petrology, geothermal energy sources, mantle convection, and the thermaland chemical evolution of the earth. The dynamics and evolution of magmas are strongly affected by the presence of solid crystals that occur either in suspension in liquid or as a rigid porous matrix through which liquid magma can percolate. Such systems are physically complex and difficult to model mathematically. Similar physical situations are encountered by metallurgists who study the solidification of molten alloys, and applied mathematicians have long been interested in such moving boundary problems. Clearly, it would be of mutual benefit to bring together scientists, engineers, and mathematicians with a common interest in such systems. Such a meeting is being organized as a North Atlantic Treaty Organization (NATO) Advanced Research Workshop on the Structure and Dynamics of Partially Solidified Systems, to be held at Stanford University's Fallen Leaf Lodge at Tahoe, Calif., May 12-16, 1986 The invited speakers and their topics are

  9. Partial disassembly of peroxisomes

    PubMed Central

    1985-01-01

    Rat liver peroxisomes were subjected to a variety of procedures intended to partially disassemble or damage them; the effects were analyzed by recentrifugation into sucrose gradients, enzyme analyses, electron microscopy, and SDS PAGE. Freezing and thawing or mild sonication released some matrix proteins and produced apparently intact peroxisomal "ghosts" with crystalloid cores and some fuzzy fibrillar content. Vigorous sonication broke open the peroxisomes but the membranes remained associated with cores and fibrillar and amorphous matrix material. The density of both ghosts and more severely damaged peroxisomes was approximately 1.23. Pyrophosphate (pH 9) treatment solubilized the fibrillar content, yielding ghosts that were empty except for cores. Some matrix proteins such as catalase and thiolase readily leak from peroxisomes. Other proteins were identified that remain in mechanically damaged peroxisomes but are neither core nor membrane proteins because they can be released by pyrophosphate treatment. These constitute a class of poorly soluble matrix proteins that appear to correspond to the fibrillar material observed morphologically. All of the peroxisomal beta-oxidation enzymes are located in the matrix, but they vary greatly in how easily they leak out. Palmitoyl coenzyme A synthetase is in the membrane, based on its co-distribution with the 22-kilodalton integral membrane polypeptide. PMID:2989301

  10. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    PubMed Central

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of

  11. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  12. Body Imaging

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  13. Threshold for thermal ionization of an aluminum surface by pulsed megagauss magnetic field.

    PubMed

    Awe, T J; Bauer, B S; Fuelling, S; Siemon, R E

    2010-01-22

    The first measurement of the threshold for thermal ionization of the surface of thick metal by pulsed magnetic field (B) is reported. Thick aluminum-with depth greater than the magnetic skin layer-was pulsed with partial differential B/ partial differential t from 30-80 MG/micros. Novel loads avoided nonthermal plasma (from electron avalanche, or energetic particles or photons from arcs). Thermal plasma forms from 6061-alloy aluminum when the surface magnetic field reaches 2.2 MG, in qualitative agreement with numerical simulation results by Garanin et al. [J. Appl. Mech. Tech. Phys. 46, 153 (2005)].

  14. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing microorganisms. Eradification techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation- based sterilization processes. Due to their resistance to a variety of perturbations, the non-spore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-spore-forming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/sq m), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  15. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  16. Body parts

    NASA Astrophysics Data System (ADS)

    Ayiter, Elif

    2010-01-01

    In this project, the artist wishes to examine corporeality in the virtual realm, through the usage of the (non)-physical body of the avatar. An art installation created in the virtual world of Second Life, which is meant to be accessed with site specific avatars, will provide the creative platform whereby this investigation is undertaken. Thus, "body parts" seeks to challenge the residents of virtual environments into connecting with the virtual manifestations, i.e., avatars of others in an emotionally expressive/intimate manner.

  17. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  18. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses

    PubMed Central

    Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  19. Momentum spectra for single and double electron ionization of He in relativistic collisions

    NASA Astrophysics Data System (ADS)

    Wood, C. J.; Olson, R. E.; Schmitt, W.; Moshammer, R.; Ullrich, J.

    1997-11-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons.

  20. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  1. Coincidence studies of capture and ionization in highly charged Iq+-He and Uq+-He collisions at medium velocities

    NASA Astrophysics Data System (ADS)

    Datz, S.; Hippler, R.; Andersen, L. H.; Dittner, P. F.; Knudsen, H.; Krause, H. F.; Miller, P. D.; Pepmiller, P. L.; Rosseel, T.; Schuch, R.; Stolterfoht, N.; Yamazaki, Y.; Vane, C. R.

    1990-04-01

    Electron capture and ionization processes were investigated for Iq+-He and Uq+-He collisions at incident energies 0.1-1.0 MeV/nucleon and for incident charge states q=5-44. Cross sections for single-electron capture, transfer ionization, single ionization, and double ionization were obtained using a projectile-ion recoil-ion coincidence technique. A pronounced interplay among the different electronic processes was observed. Cross sections for single ionization show a rather weak charge-state dependence, in disagreement with recent calculations of McKenzie and Olson [Phys. Rev. A 35, 2863 (1987)]. In a second experiment, photon recoil-ion coincidences were measured to obtain partial cross sections for capture into certain projectile n states. These measurements provide strong evidence that transfer ionization populates lower projectile n states than does single-electron capture. Zero-degree electron spectroscopy, coincident with charge capture for 0.5 MeV/nucleon U30+ projectiles revealed that the free electron in transfer ionization is released from the projectile to its continuum and from high-lying Rydberg states of the projectile.

  2. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  3. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  4. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  5. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  6. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-10-15

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections {sigma}{sub n} and asymmetry parameters {beta}{sub n} are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n{sup -3} dependence of the partial ionization cross sections. However, the {beta}{sub {infinity}}=-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold.

  7. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  8. Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.

    1974-01-01

    Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.

  9. Investigation of stopping power for deuterons in partially ionized warm Al plasmas

    SciTech Connect

    He, Bin Wang, Jian-Guo

    2014-06-15

    The stopping powers for deuterons in Al plasmas with a fixed density of 0.02 g/cm{sup 3} and the temperatures at 4.5, 13, and 17 eV are studied in detail for a wide projectile energy range with different models. Comparison of these models indicates that our model is totally in best agreement with the experimental data and the main reason for this is that our calculation for the inelastic processes should be the most reliable. It is found that the difference between our model and the local density approximation model (Wang et al., Phys. Plasmas 5, 2977 (1998)) is mainly due to the quite different physical picture behind them. In Mehlhorn's model (J. Appl. Phys. 52, 6522 (1981)), the Bethe equation is found to overestimate the inelastic stopping in Al plasmas, meanwhile, it is gradually close to our results with temperature decreasing. The model by classical dielectric function with the choice of the maximum of the momentum transfer associated with the temperature is found not suitable to describe the stopping in warm plasmas. With temperature increasing the stopping due to plasma wave rises up which rapidly exceeds the inelastic stopping in warm Al plasmas.

  10. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    SciTech Connect

    Dzhumagulova, K. N. Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  11. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-01

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer-Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  12. Mitigation Effect of an FGF-2 Peptide on Acute Gastrointestinal Syndrome After High-Dose Ionizing Radiation

    SciTech Connect

    Zhang Lurong; Sun Weimin; Wang Jianjun; Zhang Mei; Yang Shanmin; Tian Yeping; Vidyasagar, Sadasivan; Pena, Louis A.; Zhang Kunzhong; Cao Yongbing; Yin Liangjie; Wang Wei; Zhang Lei; Schaefer, Katherine L.; Saubermann, Lawrence J.; Swarts, Steven G.; Fenton, Bruce M.; Keng, Peter C.; Okunieff, Paul

    2010-05-01

    Purpose: Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined. Methods and Materials: A subtotal body irradiation (sub-TBI) model was created to induce gastrointestinal (GI) death while avoiding bone marrow death. After 10.5 to 16 Gy sub-TBI, mice received an intramuscular injection of FGF-P (10 mg/kg/day) or saline (0.2 ml/day) for 5 days; survival (frequency and duration) was measured. Crypt cells and their proliferation were assessed by hematoxylin, eosin, and BrdU staining. In addition, GI hemoccult score, stool formation, and plasma levels of endotoxin, insulin, amylase, interleukin (IL)-6, keratinocyte-derived chemokine (KC) monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF)-alpha were evaluated. Results: Treatment with FGF-P rescued a significant fraction of four strains of mice (33-50%) exposed to a lethal dose of sub-TBI. Use of FGF-P improved crypt survival and repopulation and partially preserved or restored GI function. Furthermore, whereas sub-TBI increased plasma endotoxin levels and several pro-inflammation cytokines (IL-6, KC, MCP-1, and TNF-alpha), FGF-P reduced these adverse responses. Conclusions: The study data support pursuing FGF-P as a mitigator for AGS.

  13. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2010-07-15

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO{sub 2} laser interaction with helium is simulated successfully.

  14. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas.

    PubMed

    Li, Huayu; Ki, Hyungson

    2010-07-01

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO2 laser interaction with helium is simulated successfully.

  15. X-ray double ionization of helium iso-electronic sequence

    SciTech Connect

    Dalgarno, A.; Sadeghpour, H.R.

    1992-12-01

    A simple and accurate procedure for calculating the rate of double ionization of {open_quotes}two-electron{close_quotes} systems by X-ray photons is presented. Arguments are given to support the validity of the method used. In particular, the authors show that the many-body perturbation theory diagrams depend asymptotically on the choice of the gauge for the electric dipole operator. The ratio of double-to single-ionization is calculated to be 1.68% in agreement with the recent synchrotron measurements. For H{sup {minus}} and Li{sup +}, they predict ratios of 1.51% and 0.89%, respectively.

  16. Ionizing radiation and hematopoietic malignancies

    PubMed Central

    Fleenor, Courtney J; Marusyk, Andriy

    2010-01-01

    Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53. PMID:20676038

  17. Ionizing radiation and heart risks.

    PubMed

    Bhattacharya, Souparno; Asaithamby, Aroumougame

    2016-10-01

    Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.

  18. Ionization and Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Gritschneder, M.; Lin, D. N. C.; Murray, S. D.; Burkert, A.

    2011-12-01

    We perform a set of high resolution simulations on the impact of the UV-radiation of massive stars on the turbulent interstellar medium with the tree-SPH code iVINE. This parameter study includes different levels and driving scales of the turbulence, different ionizing flux as well as different temperatures and densities of the cold gas. We find a clear correlation between the initial state of the turbulent cloud and the final morphology and physical properties of the structures adjacent to the HII region. From the simulations we are able to derive a criterion for the formation of pillar-like structures and thus the formation of cores and stars. Gravitational collapse occurs regularly on the tips of the structures. We also derive column densities and velocity profiles of our simulations and find these to be in very good agreement with the observations of trunks and cores. In addition, we investigate the further evolution of the pillars once the massive star explodes. This leads to a supernova triggered scenario for the formation of our Solar System.

  19. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  20. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  1. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  2. Charged-Particle Impact Ionization of Atoms

    SciTech Connect

    Bartschat, Klaus; Guan Xiaoxu

    2008-08-08

    We have developed a hybrid method to treat charged-particle impact ionization of complex atoms and ions. The essential idea is to describe the interaction between a fast projectile and the target perturbatively, up to second order, while the initial bound state and the ejected-electron--residual-ion interaction can be handled via a convergent R-matrix with pseudo-states (close-coupling) expansion. Example results for ionization of the heavy noble gases (Ne-Xe) by positron and electron impact are presented. The general scheme for a distorted-wave treatment of ionization by heavy-particle impact is described.

  3. Ionization of excited xenon atoms by electrons

    NASA Astrophysics Data System (ADS)

    Erwin, Daniel A.; Kunc, Joseph A.

    2004-08-01

    Measured cross sections for electron-impact ionization of excited Xe atoms are not presently available. Therefore, we combine in this work the formalisms of the binary encounter approximation and Sommerfeld’s quantization of atomic orbits and derive from first-principles cross sections for ionization of excited atoms by electrons of low and moderate energies (up to a few hundred eV ). The approach of this work can be used to calculate the cross sections for electron-impact ionization of excited atoms and atomic ions other than xenon.

  4. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  5. Calculations of non-coplanar ionization of helium

    NASA Astrophysics Data System (ADS)

    Stauffer, Allan; Kalajdzievski, Timjan

    2016-09-01

    Nixon et al. have measured the triple differential cross sections for electron ionization of the noble gases in the case where the direction of the incident electron is perpendicular to the plane containing the outgoing electrons which have equal energies. Miller et al. have carried out non-relativistic distorted-wave Born approximation calculations in these cases. In preparation for a study of all of these cases we have carried out calculations of the ionization of helium using a relativistic distorted-wave model. The evaluation of the relativistic distorted waves representing the outgoing electrons is based on a program which produces relativistic coulomb waves which has been modified to take account of the finite size of the helium nucleus. The calculations are based on an integral equation approach as given in and an asymptotic correction has been applied to account for the integration over an infinite interval. Convergence in the sum over partial waves has been obtained and a preliminary evaluation of the explicit inclusion of post-collision interaction has been carried out.

  6. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  7. White Dwarf Pollution by Disk Accretion of Tidally Disrupted Rocky Bodies

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Desch, Steven

    2017-01-01

    Approximately 30% of cool white dwarfs (WDs) show heavy elements which should otherwise sediment out of their atmospheres (Koester et al. 2014; Zuckerman et al. 2010). The prevailing model for the pollution of white dwarf photospheres invokes the formation of a solid disk upon a rocky body falling within the WD Roche radius, which is then transported inward by Poynting-Robertson drag (e.g., Metzger et al. 2012, Rafikov 2011). At high temperatures close to the WD, solid particles sublimate to gas that accretes onto the WD and viscously spreads outward. This concept is supported by observations of Ca II emission from WD disks (e.g., Manser et al. 2016). The model by Metzger et al. (2012) successfully explains the range in inferred mass accretion rates (10^10 g/s, Farihi et al. 2010), provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (MRI). However, Metzger et al. (2012) do not consider disk chemistry or dust-to-gas mixing in their model, and do not calculate the degree of ionization to explore the extent of MRI in WD disks.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The disk composition is considered with changes in sublimation rate by pressure. The degree of ionization is determined by considering UV, X-ray, and high-temperature ionization. We calculate the rate of viscous spreading and accretion rates of metals onto WDs.

  8. Autosomal Trisomies and Partial Trisomy Syndromes

    PubMed Central

    Zaleski, W. A.

    1963-01-01

    The establishing of 46 chromosomes as the normal complement in man and the report of the sex chromatin bodies in buccal smears were followed by reports of trisomies and other abnormal patterns of the X and Y chromosomes in Klinefelter's and Turner's syndromes. Abnormal autosomal complements were described in mongolism, in the E-trisomy syndrome, the D-trisomy syndrome, in the Sturge-Weber syndrome, Waldenstrom's macroglobulinemia, benign congenital hypotonia, atrial septal defect and in the schizoid personality. Certain of these conditions, as well as the “oral-facial-digital” syndrome, were also found to exist as partial trisomies. The mechanism of a trisomy is one of non-disjunction and of partial trisomy translocation or insertion. Two cases of the partial trisomy in the E group are described; these are of especial interest because of the familial incidence, longer survival and male sex occurrence, features which are rarely seen in the full E-trisomy syndrome. ImagesFig. 4Fig. 5Fig. 6 PMID:20327419

  9. On the interweaving of partial cross sections of different parity

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    Partial cross sections of definite parity, calculated for electronic-rotational energy transfer in the F +H2 collision system, interweave with increasing total angular momentum J. An explanation, in terms of diabatic curve crossings induced by the centrifugal potential in the body-fixed coordinate system, predicts the interweaving to occur only in systems having half-integer J.

  10. Characterization of the CDMS Ionization Readout

    NASA Astrophysics Data System (ADS)

    Phipps, Arran

    2007-10-01

    Current cosmological models predict that a large portion of the total mass of the universe, about eighty percent, consists of putative dark matter. Theory predicts this dark matter may be in the form of particles constantly passing through the Earth. A class of these particles may interact with ordinary matter, earning the name weakly-interacting massive particles (WIMPs). The Cryogenic Dark Matter Search (CDMS) aims to directly detect the existence of WIMPs. CDMS has designed ZIP (Z-dependent Ionization & Phonon) detectors which measure phonon production and ionization of an interaction, making it possible to determine the interacting particle. The low-energy threshold of the ZIP detectors is determined by the signal-to-noise ratio of the ionization readout. A characterization of the signal-to-noise ratio of the ionization readout, along with possible modifications for improved sensitivity will be presented.

  11. Ionization and positronium formation in noble gases

    SciTech Connect

    Marler, J.P.; Sullivan, J.P.; Surko, C.M.

    2005-02-01

    Absolute measurements are presented for the positron-impact cross sections for direct ionization and positronium formation of noble gas atoms in the range of energies from threshold to 90 eV. The experiment uses a cold, trap-based positron beam and the technique of studying positron scattering in a strong magnetic field. The current data show generally good, quantitative agreement with previous measurements taken using a qualitatively different method. However, significant differences in the cross sections for both direct ionization and positronium formation are also observed. An analysis is presented that yields another, independent measurement of the direct ionization and positronium formation cross sections that is in agreement with the present, direct measurements to within {+-}10% for argon, krypton, and xenon. Comparison with available theoretical predictions yields good quantitative agreement for direct ionization cross sections, and qualitative agreement in the case of positronium formation.

  12. Which Stars Are Ionizing the Orion Nebula?

    NASA Astrophysics Data System (ADS)

    O’Dell, C. R.; Kollatschny, W.; Ferland, G. J.

    2017-03-01

    The common assumption that {θ }1 {Ori} {{C}} is the dominant ionizing source for the Orion Nebula is critically examined. This assumption underlies much of the existing analysis of the nebula. In this paper we establish through comparison of the relative strengths of emission lines with expectations from Cloudy models and through the direction of the bright edges of proplyds that {θ }2 {Ori} {{A}}, which lies beyond the Bright Bar, also plays an important role. {θ }1 {Ori} {{C}} does dominate ionization in the inner part of the Orion Nebula, but outside of the Bright Bar as far as the southeast boundary of the Extended Orion Nebula, {θ }2 {Ori} {{A}} is the dominant source. In addition to identifying the ionizing star in sample regions, we were able to locate those portions of the nebula in 3D. This analysis illustrates the power of MUSE spectral imaging observations to identify sources of ionization in extended regions.

  13. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  14. (Resonance ionization spectroscopy and its applications)

    SciTech Connect

    Ramsey, J.M.

    1990-10-11

    The Fifth International Symposium in Resonance Ionization Spectroscopy and Its Applications was attended. The Joint Research Centre of the European Communities at Ispra, Italy was also visited. The traveler presented an invited talk, chaired a meeting session and gave an impromptu presentation on how current laser technology limits the development of commercial instrumentation based upon Resonance Ionization Spectroscopy. The conference was truely international with scientists from 19 countries and less than 1/4 from the US. The meeting also provided a health mixture of experimentalists and theoreticians. Technical developments reported included the use of electric field ionization from laser prepared Rydberg states as a way to reduce background signals and commercial development of an optical parametric oscillator for replacing pulsed dye laser. A speaker from the Soviet Union suggested their willingness to market hardware they have developed based upon the resonance ionization technique.

  15. The galactic cosmic ray ionization rate.

    PubMed

    Dalgarno, A

    2006-08-15

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium.

  16. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  17. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  18. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  19. Diagnosing transient ionization in dynamic events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Madjarska, M. S.; Summers, H.; O'Mullane, M.; Singh, A.

    2013-09-01

    Aims: The present study aims to provide a diagnostic line ratio that will enable the observer to determine whether a plasma is in a state of transient ionization. Methods: We use the Atomic Data and Analysis Structure (ADAS) to calculate line contribution functions for two lines, Si iv 1394 Å and O iv 1401 Å, formed in the solar transition region. The generalized collisional-radiative theory is used. It includes all radiative and electron collisional processes, except for photon-induced processes. State-resolved direct ionization and recombination to and from the next ionization stage are also taken into account. Results: For dynamic bursts with a decay time of a few seconds, the Si iv 1394 Å line can be enhanced by a factor of 2-4 in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature due to transient ionization compared to ionization equilibrium conditions. On the other hand, the O iv 1401 Å does not show such any enhancement. Thus the ratio of these two lines, which can be observed with the Interface Region Imaging Spectrograph, can be used as a diagnostic of transient ionization. Conclusions: We show that simultaneous high-cadence observations of two lines formed in the solar transition region may be used as a direct diagnostic of whether the observed plasma is in transient ionization. The ratio of these two lines can change by a factor of four in a few seconds owing to transient ionization alone.

  20. The body fades away: investigating the effects of transparency of an embodied virtual body on pain threshold and body ownership

    PubMed Central

    Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V.

    2015-01-01

    The feeling of “ownership” over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an “embodied” dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested. PMID:26415748

  1. Resonant effects in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.

    2000-09-01

    The ionization of noble gases in high intensity laser fields produces an electron spectrum with characteristic peaks corresponding to atomic levels of the atom. While many of the features in the low energy part of the spectrum have been explained qualitatively, current models are incomplete and are not able to account for the recurrence of ionization probability for higher energy electrons. In particular, one of the basic questions arising is the importance of multiple ionization in these spectra. While the light intensities are in the regime where multiple ionization is known to occur, it was not clear whether the higher energy (or plateau) electrons are a result of this, and whether multiple ionization even leaves a signature in the electron spectrum. In this dissertation, we use several experimental techniques to explore this problem in argon. Our results show that although multiple ionization occurs, electrons from this process do not appear in the observed electron spectrum. Furthermore, the appearance intensities of the peaks visible in the plateau region of the electron spectrum and of the resonance peaks in the well- understood low energy part show a strong correlation, suggestion a common origin of production. Accurate computer simulations of the process, using a single- active-electron model, reproduce all essential features of the experimental spectra. Our results support the conclusion that all high energy electrons observed in our experiments can be explained with single-electron effects.

  2. Multiple ionization of argon by helium ions

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2016-09-01

    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1-10 Mev amu-1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu-1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  3. Neutral depletion versus repletion due to ionization

    SciTech Connect

    Fruchtman, A.; Makrinich, G.; Raimbault, J.-L.; Liard, L.; Rax, J.-M.; Chabert, P.

    2008-05-15

    Recent theoretical analyses which predicted unexpected effects of neutral depletion in both collisional and collisionless plasmas are reviewed. We focus on the depletion of collisionless neutrals induced by strong ionization of a collisionless plasma and contrast this depletion with the effect of strong ionization on thermalized neutrals. The collisionless plasma is analyzed employing a kinetic description. The collisionless neutrals and the plasma are coupled through volume ionization and wall recombination only. The profiles of density and pressure both of the plasma and of the neutral-gas and the profile of the ionization rate are calculated. It is shown that for collisionless neutrals the ionization results in neutral depletion, while when neutrals are thermalized the ionization induces a maximal neutral-density at the discharge center, which we call neutral repletion. The difference between the two cases stems from the relation between the neutral density and pressure. The pressure of the collisionless neutral-gas turns out to be maximal where its density is minimal, in contrast to the case of a thermalized neutral gas.

  4. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  5. Amphibian Nitrate Stress as an Additional Terrestrial Threat from Astrophysical Ionizing Radiation Events?

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Honeyman, Michelle D.

    2008-08-01

    Various astrophysical events have been suggested as sources of ionizing radiation that, by way of destruction of the ozone layer and the subsequent increase in UVB and deposition of nitrate, could pose a threat to life on Earth. We have investigated whether the nitrate deposition that follows an ionizing event is sufficient to cause an additional stress beyond that of the heightened UVB previously considered. Our results show that, subsequent to the most intense ionization event likely to have occurred in the last billion years, the increase in nitrate concentration in bodies of water would not be sufficient to cause serious additional stress on amphibian populations and may actually provide some benefit by acting as fertilizer.

  6. Optimization of a hot-cavity type resonant ionization laser ion source

    SciTech Connect

    Henares, J. L. Lecesne, N.; Hijazi, L.; Bastin, B.; Leroy, R.; Osmond, B.; Vignet, J. L.; Kron, T.; Naubereit, P.; Wendt, K.; Lassen, J.; Le Blanc, F.

    2016-02-15

    Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

  7. Nonsequential double ionization with time-dependent renormalized-natural-orbital theory

    NASA Astrophysics Data System (ADS)

    Brics, M.; Rapp, J.; Bauer, D.

    2014-11-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is tested on nonsequential double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle, 800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of nonperturbative, highly correlated electron dynamics. As such, NSDI is an important "worst-case" benchmark for any time-dependent few and many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI "knee," i.e., a many-order-of-magnitude enhancement of the double-ionization yield (as compared to purely sequential ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra—as "more differential" observables—require more NOs.

  8. Planarian immobilization, partial irradiation, and tissue transplantation.

    PubMed

    Guedelhoefer, Otto C; Sánchez Alvarado, Alejandro

    2012-08-06

    The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed. Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration. Both tissue transplantation and partial irradiation have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the

  9. Planarian Immobilization, Partial Irradiation, and Tissue Transplantation

    PubMed Central

    Guedelhoefer IV, Otto C.; Sánchez Alvarado, Alejandro

    2012-01-01

    The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology1,2. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts3. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal4, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed. Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration. Both tissue transplantation5,6 and partial irradiation7 have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We

  10. Biostereometric analysis of body form

    NASA Technical Reports Server (NTRS)

    Whittle, M. W.; Herron, R. L.; Cuzzi, J. R.

    1977-01-01

    Four-camera stereophotogrammetry of Skylab crewmen, preflight and postflight, revealed a loss of volume of one to one and one-half liters from the legs, much of which was replaced during the first 4 postflight days. It is estimated that about one third of the loss represents partial atrophy due to relative disuse in zero-gravity, the remainder being due to a deficit in body fluid. Reduction in volume of the abdomen has also been noted.

  11. Electromagnetic Resonances of Metallic Bodies.

    DTIC Science & Technology

    1997-06-01

    complex objects. MOM creates a discrete model of the object by dividing the object into electrically small charge and current segments referred to as the...distribution is unlimited ELECROMAGNETIC RESONANCES OF METALLIC BODIES William A. Lintz Lieutenant, United States Navy B.E.E., Villanova University, 1992...Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL June

  12. Experimental generating the partially coherent and partially polarized electromagnetic source.

    PubMed

    Ostrovsky, Andrey S; Rodríguez-Zurita, Gustavo; Meneses-Fabián, Cruz; Olvera-Santamaría, Miguel A; Rickenstorff-Parrao, Carolina

    2010-06-07

    The technique for generating the partially coherent and partially polarized source starting from the completely coherent and completely polarized laser source is proposed and analyzed. This technique differs from the known ones by the simplicity of its physical realization. The efficiency of the proposed technique is illustrated with the results of physical experiment in which an original technique for characterizing the coherence and polarization properties of the generated source is employed.

  13. Accuracy of Theoretical Calculations for Electron-Impact Ionization of atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Madison, Don

    2015-09-01

    In the last two decades, there have been several close-coupling approaches developed which can accurately calculate the triply differential cross sections for electron impact ionization of effective one and two electron atoms. The agreement between experiment and theory is not particularly good for more complicated atoms and molecules. Very recently, a B-spline R-matrix with pseudostates (BSRPS) approach was used to investigate low energy electron impact ionization of neon and very good agreement with experiment was found. The perturbative 3-body distorted wave (3DW) approach which includes the exact final state electron-electron interaction (post collision interaction - PCI) gave comparably good agreement with experiment. For ionization of molecules, there have been numerous studies of high-energy electron impact. These studies are called EMS (Electron Momentum Spectroscopy) and they were very valuable in determining the accuracy of molecular wavefunctions since the measured cross sections were proportional to the momentum space molecular wavefunction. More recently, lower energy collisions have started to be measured and these cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. So far, the only close coupling calculation reported for ionization of molecules is the time-dependent close-coupling calculation (TDCC) which has been developed for ionization of H2 and it yields relative good agreement with experiment. Again the molecular 3-body distorted wave (M3DW) gave equally good agreement with experiment. For polyatomic molecules, the only theory available is the M3DW. In this talk, I will show the current status of agreement between experiment and theory for low and intermediate energy single ionization of atoms and molecules. Work supported by the NSF and XSEDE.

  14. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry.

    PubMed

    Constapel, M; Schellenträger, M; Schmitz, O J; Gäb, S; Brockmann, K J; Giese, R; Benter, Th

    2005-01-01

    We report on the development of a new laser-ionization (LI) source operating at atmospheric pressure (AP) for liquid chromatography/mass spectrometry (LC/MS) applications. APLI is introduced as a powerful addition to existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI), and atmospheric pressure photoionization (APPI). Replacing the one-step VUV approach in APPI with step-wise two-photon ionization strongly enhances the selectivity of the ionization process. Furthermore, the photon flux during an ionization event is drastically increased over that of APPI, leading to very low detection limits. In addition, the APLI mechanism generally operates primarily directly on the analyte. This allows for very efficient ionization even of non-polar compounds such as polycyclic aromatic hydrocarbons (PAHs). The APLI source was characterized with a MicroMass Q-Tof Ultima II analyzer. Both the effluent of an HPLC column containing a number of PAHs (benzo[a]pyrene, fluoranthene, anthracene, fluorene) and samples from direct syringe injection were analyzed with respect to selectivity and sensitivity of the overall system. The liquid phase was vaporized by a conventional APCI inlet (AP probe) with the corona needle removed. Ionization was performed through selective resonance-enhanced multi-photon ionization schemes using a high-repetition-rate fixed-frequency excimer laser operating at 248 nm. Detection limits well within the low-fmol regime are readily obtained for various aromatic hydrocarbons that exhibit long-lived electronic states at the energy level of the first photon. Only molecular ions are generated at the low laser fluxes employed ( approximately 1 MW/cm(2)). The design and performance of the laser-ionization source are presented along with results of the analysis of aromatic hydrocarbons.

  15. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  16. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    SciTech Connect

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-10-10

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10{sup –7}) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10{sup –6}-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H{sub 2}, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  17. An Overview of Ionization of Organics in Water Ices: Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy

    2008-05-01

    Water-rich ices are ubiquitous throughout our solar system and interstellar medium. While interstellar ices (DMCs, ISM, circumstellar disks etc) are mostly amorphous and exist at temperatures as low as 10 K, majority of Solar System ices (comets, icy satellites, Mars and Earth's polar regions, KBOs etc) are crystalline and occur at much higher temperatures (>100; K) with minor amorphous components. Our recent findings have shown that ionization of impurities, in the present case polycyclic aromatic hydrocarbons (PAHs), is the most prominent process in both amorphous and crystalline ices under radiation. These studies have further shown that: • PAHs embedded in cryogenic ice are easily and efficiently ionized (>80%, i.e., near quantitative ion yields) to the cation form by VUV photons. • PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. • Some of the PAH cations are stabilized in these ices to temperatures as high as 120 K. • Multiple ionization of aromatic molecules to generate closed-shell PAH dications occurs in water ice, generating and stabilizing PAH2+. Spitzer observations have reaffirmed PAH abundance in our Galaxy. Water ice being equally abundant, coexistence of PAHs and water ice should be more common. Some of the implications of ionization of PAHs in ices are listed below. • Ionization of PAH impurities in ices results in charge separation in the ice particles. Stronger Coulomb forces between the charged particles can initiate nucleation of particle accretion, which ultimately leads to the formation of large macroscopic bodies. • PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons become important to be included in the modeling of regions of lower energy radiation fields than normally considered for ion-driven chemistry and physics.

  18. Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.

    PubMed

    Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2016-03-01

    The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water.

  19. Partial-Payload Support Structure

    NASA Technical Reports Server (NTRS)

    Mitchell, R.; Freeman, M.

    1984-01-01

    Partial-payload support structure (PPSS) is modular, bridge like structure supporting experiments weighing up to 2 tons. PPSS handles such experiments more economically than standard Spacelab pallet system.

  20. Partial arthrodeses of the wrist.

    PubMed

    Marcuzzi, A; Cristiani, G; Castagnini, L; Castagnetti, C; Caroli, A

    1995-01-01

    The authors report 16 cases of partial arthrodeses of the wrist for the treatment of Kienboeck's disease, pseudarthrosis of the scaphoid, rotatory subluxation of the scaphoid, rheumatoid arthritis, etc. Based on the good results obtained (76.6%) the authors believe that partial arthrodeses constitute the type of treatment indicated for the treatment of pathologies that involve only some of the carpal bones, and they also emphasize that this type of surgery represents a valid alternative to total arthrodesis of the wrist.