Sample records for partial differential operator

  1. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  2. The Uniform Convergence of Eigenfunction Expansions of Schrödinger Operator in the Nikolskii Classes {H}_{p}^{\\alpha }(\\bar{\\Omega })

    NASA Astrophysics Data System (ADS)

    Jamaludin, N. A.; Ahmedov, A.

    2017-09-01

    Many boundary value problems in the theory of partial differential equations can be solved by separation methods of partial differential equations. When Schrödinger operator is considered then the influence of the singularity of potential on the solution of the partial differential equation is interest of researchers. In this paper the problems of the uniform convergence of the eigenfunction expansions of the functions from corresponding to the Schrödinger operator with the potential from classes of Sobolev are investigated. The spectral function corresponding to the Schrödinger operator is estimated in closed domain. The isomorphism of the Nikolskii classes is applied to prove uniform convergence of eigenfunction expansions of Schrödinger operator in closed domain.

  3. Canonical coordinates for partial differential equations

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1988-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma (m, j=1) x (2) sub j + X sub O can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  4. Canonical coordinates for partial differential equations

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma(m, j=1) X(2)sub j + X sub 0 can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  5. Geometric properties of commutative subalgebras of partial differential operators

    NASA Astrophysics Data System (ADS)

    Zheglov, A. B.; Kurke, H.

    2015-05-01

    We investigate further algebro-geometric properties of commutative rings of partial differential operators, continuing our research started in previous articles. In particular, we start to explore the simplest and also certain known examples of quantum algebraically completely integrable systems from the point of view of a recent generalization of Sato's theory, developed by the first author. We give a complete characterization of the spectral data for a class of 'trivial' commutative algebras and strengthen geometric properties known earlier for a class of known examples. We also define a kind of restriction map from the moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to an analogous moduli space on a divisor (both the surface and the divisor are part of the spectral data). We give several explicit examples of spectral data and corresponding algebras of commuting (completed) operators, producing as a by-product interesting examples of surfaces that are not isomorphic to spectral surfaces of any (maximal) commutative ring of partial differential operators of rank one. Finally, we prove that any commutative ring of partial differential operators whose normalization is isomorphic to the ring of polynomials k \\lbrack u,t \\rbrack is a Darboux transformation of a ring of operators with constant coefficients. Bibliography: 39 titles.

  6. Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries

    NASA Astrophysics Data System (ADS)

    Startsev, Sergey Ya.

    2017-05-01

    The paper is devoted to hyperbolic (generally speaking, non-Lagrangian and nonlinear) partial differential systems possessing a full set of differential operators that map any function of one independent variable into a symmetry of the corresponding system. We demonstrate that a system has the above property if and only if this system admits a full set of formal integrals (i.e., differential operators which map symmetries into integrals of the system). As a consequence, such systems possess both direct and inverse Noether operators (in the terminology of a work by B. Fuchssteiner and A.S. Fokas who have used these terms for operators that map cosymmetries into symmetries and perform transformations in the opposite direction). Systems admitting Noether operators are not exhausted by Euler-Lagrange systems and the systems with formal integrals. In particular, a hyperbolic system admits an inverse Noether operator if a differential substitution maps this system into a system possessing an inverse Noether operator.

  7. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  8. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  9. Shift-connected SIMD array architectures for digital optical computing systems, with algorithms for numerical transforms and partial differential equations

    NASA Astrophysics Data System (ADS)

    Drabik, Timothy J.; Lee, Sing H.

    1986-11-01

    The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.

  10. Differential formulation of the gyrokinetic Landau operator

    DOE PAGES

    Hirvijoki, Eero; Brizard, Alain J.; Pfefferlé, David

    2017-01-05

    Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this work investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Finally, based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.

  11. 7 CFR 1000.76 - Payments by a handler operating a partially regulated distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., compute a Class I differential price by subtracting Class III price from the current month's Class I price... by which the Class I differential price exceeds the producer price differential, both prices to be... Class I differential price nor the adjusted producer price differential shall be less than zero; (3) For...

  12. Solving Partial Differential Equations in a data-driven multiprocessor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.

    1988-12-31

    Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less

  13. A Unified Introduction to Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2006-01-01

    This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)

  14. Topics in spectral methods

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1985-01-01

    After detailing the construction of spectral approximations to time-dependent mixed initial boundary value problems, a study is conducted of differential equations of the form 'partial derivative of u/partial derivative of t = Lu + f', where for each t, u(t) belongs to a Hilbert space such that u satisfies homogeneous boundary conditions. For the sake of simplicity, it is assumed that L is an unbounded, time-independent linear operator. Attention is given to Fourier methods of both Galerkin and pseudospectral method types, the Galerkin method, the pseudospectral Chebyshev and Legendre methods, the error equation, hyperbolic partial differentiation equations, and time discretization and iterative methods.

  15. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    NASA Astrophysics Data System (ADS)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  16. Operational method of solution of linear non-integer ordinary and partial differential equations.

    PubMed

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.

  17. Ultrasound speckle reduction based on fractional order differentiation.

    PubMed

    Shao, Dangguo; Zhou, Ting; Liu, Fan; Yi, Sanli; Xiang, Yan; Ma, Lei; Xiong, Xin; He, Jianfeng

    2017-07-01

    Ultrasound images show a granular pattern of noise known as speckle that diminishes their quality and results in difficulties in diagnosis. To preserve edges and features, this paper proposes a fractional differentiation-based image operator to reduce speckle in ultrasound. An image de-noising model based on fractional partial differential equations with balance relation between k (gradient modulus threshold that controls the conduction) and v (the order of fractional differentiation) was constructed by the effective combination of fractional calculus theory and a partial differential equation, and the numerical algorithm of it was achieved using a fractional differential mask operator. The proposed algorithm has better speckle reduction and structure preservation than the three existing methods [P-M model, the speckle reducing anisotropic diffusion (SRAD) technique, and the detail preserving anisotropic diffusion (DPAD) technique]. And it is significantly faster than bilateral filtering (BF) in producing virtually the same experimental results. Ultrasound phantom testing and in vivo imaging show that the proposed method can improve the quality of an ultrasound image in terms of tissue SNR, CNR, and FOM values.

  18. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  19. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  20. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  1. Multigrid Methods

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.

  2. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

    1982-01-01

    A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

  3. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  4. Mathematics for Physics

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Goldbart, Paul

    2009-07-01

    Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.

  5. Hidden physics models: Machine learning of nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  6. Analysis of spectral operators in one-dimensional domains

    NASA Technical Reports Server (NTRS)

    Maday, Y.

    1985-01-01

    Results are proven concerning certain projection operators on the space of all polynomials of degree less than or equal to N with respect to a class of one-dimensional weighted Sobolev spaces. The results are useful in the theory of the approximation of partial differential equations with spectral methods.

  7. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    NASA Astrophysics Data System (ADS)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral decomposition. New method for the best approximation of the square-integrable function by multiple Fourier series summed over the elliptic levels are established. Using the best approximation, the Lebesgue constant corresponding to the elliptic partial sums is estimated. The latter is applied to obtain an estimation for the maximal operator in the classes of Liouville.

  8. Time-partitioning simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  9. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  10. Role of the autonomic nervous system in rat liver regeneration.

    PubMed

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  11. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    NASA Astrophysics Data System (ADS)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  12. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  13. Spherical means of solutions of partial differential equations in a conical region

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear ti surfaces. The spherical mean is the average of u over a constant ti surface. The conditions on the linear differential operator, L, and on the orthogonal coordinates (ti, eta, zeta) are established so that the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be determined directly as a problem with only space variable. Conditions are then established so that the spherical mean of the solution in one concial region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.

  14. Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows

    NASA Astrophysics Data System (ADS)

    Oevel, W.

    1993-05-01

    Generalizations of the classical Darboux theorem are established for pseudo-differential scattering operators of the form L = limit∑i=0N u i∂ i + limitΣi=1m Φ i∂ -1limitΨi†i. Iteration of the Darboux transformations leads to a gauge transformed operator with coefficients given by Wronskian formulas involving a set of eigenfunctions of L. Nonlinear integrable partial differential equations are associated with the scattering operator L which arise as a symmetry reduction of the multicomponent KP hierarchy. With a suitable linear time evolution for the eigenfunctions the Darboux transformation is used to obtain solutions of the integrable equations in terms of Wronskian determinants.

  15. Tensor calculus in polar coordinates using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

  16. Stable isotope ratios of carbon and nitrogen and mercury concentrations in 13 toothed whale species taken from the western Pacific Ocean off Japan.

    PubMed

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Lavery, Shane; Dalebout, Merel L; Funahashi, Naoko; Baker, C Scott

    2010-04-01

    Stable isotope ratios of carbon (partial differential(13)C) and nitrogen (partial differential(15)N) and total mercury (T-Hg) concentrations were measured in red meat samples from 11 odontocete species (toothed whales, dolphins, and porpoises) sold in Japan (n = 96) and in muscle samples from stranded killer whales (n = 6) and melon-headed whales (n = 15), and the analytical data for these species were classified into three regions (northern, central, and southern Japan) depending on the locations in which they were caught or stranded. The partial differential(15)N in the samples from southern Japan tended to be lower than that in samples from the north, whereas both partial differential(13)C and T-Hg concentrations in samples from the south tended to higher than those in samples from northern Japan. Negative correlations were found between the partial differential(13)C and partial differential(15)N values and between the partial differential(15)N value and T-Hg concentrations in the combined samples all three regions (gamma= -0.238, n = 117, P < 0.01). The partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the samples varied more by habitat than by species. Spatial variations in partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the ocean may be the cause of these phenomena.

  17. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods. Appendix 2

    NASA Technical Reports Server (NTRS)

    Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)

    2002-01-01

    We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.

  18. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  19. The Use of Lotus 1-2-3 Macros in Engineering Calculations.

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    1990-01-01

    Described are the use of spreadsheet programs in chemical engineering calculations using Lotus 1-2-3 macros. Discusses the macro commands, subroutine operations, and solution of partial differential equation. Provides examples of the subroutine programs and spreadsheet solution. (YP)

  20. A three operator split-step method covering a larger set of non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  1. Spherical means of solutions of partial differential equations in a conical region

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1975-01-01

    The spherical means of the solutions of a linear partial differential equation Lu = f in a conical region are studied. The conical region is bounded by a surface generated by curvilinear xi lines and by two truncating xi surfaces. The spherical mean is the average of u over a constant xi surface. Conditions on the linear differential operator, L, and on the orthogonal coordinates xi, eta, and zeta are established so that the problem for the determination of the spherical mean of the solution subjected to the appropriate boundary and initial conditions can be reduced to a problem with only one space variable. Conditions are then established so that the spherical mean of the solution in one conical region will be proportional to that of a known solution in another conical region. Applications to various problems of mathematical physics and their physical interpretations are presented.

  2. Recursive formulas for the partial fraction expansion of a rational function with multiple poles.

    NASA Technical Reports Server (NTRS)

    Chang, F.-C.

    1973-01-01

    The coefficients in the partial fraction expansion considered are given by Heaviside's formula. The evaluation of the coefficients involves the differential of a quotient of two polynomials. A simplified approach for the evaluation of the coefficients is discussed. Leibniz rule is applied and a recurrence formula is derived. A coefficient can also be determined from a system of simultaneous equations. Practical methods for the performance of the computational operations involved in both approaches are considered.

  3. A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

    NASA Astrophysics Data System (ADS)

    Feehan, Paul M. N.

    2017-09-01

    We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subsolutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and maximum and comparison principle estimates previously developed by the author [13].

  4. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  5. Test particle propagation in magnetostatic turbulence. 2: The local approximation method

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.

  6. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  7. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE PAGES

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    2017-02-24

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  8. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOEpatents

    Carolan, Michael Francis

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  9. Some More Solutions of Burgers' Equation

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Raj

    2015-01-01

    In this work, similarity solutions of viscous one-dimensional Burgers' equation are attained by using Lie group theory. The symmetry generators are used for constructing Lie symmetries with commuting infinitesimal operators which lead the governing partial differential equation (PDE) to ordinary differential equation (ODE). Most of the constructed solutions are found in terms of Bessel functions which are new as far as authors are aware. Effect of various parameters in the evolutional profile of the solutions are shown graphically and discussed them physically.

  10. Nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis ismore » on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.« less

  11. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOEpatents

    Carolan, Michael Francis [Allentown, PA

    2008-12-23

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  12. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  13. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  14. Differentiated protection method in passive optical networks based on OPEX

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicheng; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    Reliable service delivery becomes more significant due to increased dependency on electronic services all over society and the growing importance of reliable service delivery. As the capability of PON increasing, both residential and business customers may be included in a PON. Meanwhile, OPEX have been proven to be a very important factor of the total cost for a telecommunication operator. Thus, in this paper, we present the partial protection PON architecture and compare the operational expenditures (OPEX) of fully duplicated protection and partly duplicated protection for ONUs with different distributed fiber length, reliability requirement and penalty cost per hour. At last, we propose a differentiated protection method to minimize OPEX.

  15. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  16. A Study of Multigrid Preconditioners Using Eigensystem Analysis

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Swanson, R. C.

    2005-01-01

    The convergence properties of numerical schemes for partial differential equations are studied by examining the eigensystem of the discrete operator. This method of analysis is very general, and allows the effects of boundary conditions and grid nonuniformities to be examined directly. Algorithms for the Laplace equation and a two equation model hyperbolic system are examined.

  17. The solids-flux theory--confirmation and extension by using partial differential equations.

    PubMed

    Diehl, Stefan

    2008-12-01

    The solids-flux theory has been used for half a century as a tool for estimating concentration and fluxes in the design and operation of secondary settling tanks during stationary conditions. The flux theory means that the conservation of mass is used in one dimension together with the batch-settling flux function according to the Kynch assumption. The flux theory results correspond to stationary solutions of a partial differential equation, a conservation law, with discontinuous coefficients modelling the continuous-sedimentation process in one dimension. The mathematical analysis of such an equation is intricate, partly since it cannot be interpreted in the classical sense. Recent results, however, make it possible to partly confirm and extend the previous flux theory statements, partly draw new conclusions also on the dynamic behaviour and the possibilities and limitations for control. We use here a single example of an ideal settling tank and a given batch-settling flux in a whole series of calculations. The mathematical results are adapted towards the application and many of them are conveniently presented in terms of operating charts.

  18. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  19. Reflecting Solutions of High Order Elliptic Differential Equations in Two Independent Variables Across Analytic Arcs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Carleton, O.

    1972-01-01

    Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.

  20. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  1. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  2. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Zaky, M. A.

    2015-01-01

    In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.

  3. An Optimal Partial Differential Equations-based Stopping Criterion for Medical Image Denoising.

    PubMed

    Khanian, Maryam; Feizi, Awat; Davari, Ali

    2014-01-01

    Improving the quality of medical images at pre- and post-surgery operations are necessary for beginning and speeding up the recovery process. Partial differential equations-based models have become a powerful and well-known tool in different areas of image processing such as denoising, multiscale image analysis, edge detection and other fields of image processing and computer vision. In this paper, an algorithm for medical image denoising using anisotropic diffusion filter with a convenient stopping criterion is presented. In this regard, the current paper introduces two strategies: utilizing the efficient explicit method due to its advantages with presenting impressive software technique to effectively solve the anisotropic diffusion filter which is mathematically unstable, proposing an automatic stopping criterion, that takes into consideration just input image, as opposed to other stopping criteria, besides the quality of denoised image, easiness and time. Various medical images are examined to confirm the claim.

  4. Impact of a Differential Learning Approach on Practical Exam Performance: A Controlled Study in a Preclinical Dental Course.

    PubMed

    Pabel, Sven-Olav; Pabel, Anne-Kathrin; Schmickler, Jan; Schulz, Xenia; Wiegand, Annette

    2017-09-01

    The aim of this study was to evaluate if differential learning in a preclinical dental course impacted the performance of dental students in a practical exam (preparation of a gold partial crown) immediately after the training session and 20 weeks later compared to conventional learning. This controlled study was performed in a preclinical course in operative dentistry at a dental school in Germany. Third-year students were trained in preparing gold partial crowns by using either the conventional learning (n=41) or the differential learning approach (n=32). The differential learning approach consisted of 20 movement exercises with a continuous change of movement execution during the learning session, while the conventional learning approach was mainly based on repetition, a methodological series of exercises, and correction of preparations during the training phase. Practical exams were performed immediately after the training session (T1) and 20 weeks later (T2, retention test). Preparations were rated by four independent and blinded examiners. At T1, no significant difference between the performance (exam passed) of the two groups was detected (conventional learning: 54.3%, differential learning: 68.0%). At T2, significantly more students passed the exam when trained by the differential learning approach (68.8%) than by the conventional learning approach (18.9%). Interrater reliability was moderate (Kappa: 0.57, T1) or substantial (Kappa: 0.67, T2), respectively. These results suggest that a differential learning approach can increase the manual skills of dental students.

  5. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  6. On the hierarchy of partially invariant submodels of differential equations

    NASA Astrophysics Data System (ADS)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  7. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  8. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  9. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  10. Reciprocal links among differential parenting, perceived partiality, and self-worth: a three-wave longitudinal study.

    PubMed

    Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F

    2005-12-01

    This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).

  11. Approximation of the Newton Step by a Defect Correction Process

    NASA Technical Reports Server (NTRS)

    Arian, E.; Batterman, A.; Sachs, E. W.

    1999-01-01

    In this paper, an optimal control problem governed by a partial differential equation is considered. The Newton step for this system can be computed by solving a coupled system of equations. To do this efficiently with an iterative defect correction process, a modifying operator is introduced into the system. This operator is motivated by local mode analysis. The operator can be used also for preconditioning in Generalized Minimum Residual (GMRES). We give a detailed convergence analysis for the defect correction process and show the derivation of the modifying operator. Numerical tests are done on the small disturbance shape optimization problem in two dimensions for the defect correction process and for GMRES.

  12. Another elementary proof of the Jordan form of a matrix

    NASA Astrophysics Data System (ADS)

    Budhi, Wono Setya

    2012-05-01

    In this paper we establish the Jordan Form for a matrix using the elementary concepts of vector differentiation and partial fractions. The idea comes from the resolvent of the operator. For the matrix, the Laurent series is finite and easy to compute through rational representation. We also give a proof of some famous theorems in matrix analysis as consequences from the result.

  13. Spatial complexity of solutions of higher order partial differential equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor

    2004-03-01

    We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .

  14. Compatible Spatial Discretizations for Partial Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Douglas, N, ed.

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less

  15. On the Solution of Elliptic Partial Differential Equations on Regions with Corners

    DTIC Science & Technology

    2015-07-09

    In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on

  16. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.

    PubMed

    Wei, Qingkai; Huang, Xun; Peers, Edward

    2013-06-01

    An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method.

  17. Solutions to an advanced functional partial differential equation of the pantograph type

    PubMed Central

    Zaidi, Ali A.; Van Brunt, B.; Wake, G. C.

    2015-01-01

    A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained. PMID:26345391

  18. Solutions to an advanced functional partial differential equation of the pantograph type.

    PubMed

    Zaidi, Ali A; Van Brunt, B; Wake, G C

    2015-07-08

    A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.

  19. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  20. CPDES3: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.

  1. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  2. [MRI of the rotator cuff: evaluation of a new symptomatologic classification].

    PubMed

    Tavernier, T; Walch, G; Noël, E; Lapra, C; Bochu, M

    1995-05-01

    The different classifications use for the rotator cuff pathology seem to be incomplete. We propose a new classification with many advantages: 1) Differentiate the tendinopathy between less serious (grade 2A) and serious (grade 2B). 2) Recognize the intra-tendinous cleavage of the infra-spinatus associated with complete tear of the supra-spinatus. 3) Differentiate partial and complete tears of the supra-spinatus. We established this classification after a retrospective study of 42 patients operated on for a rotator cuff pathology. Every case had had a preoperative MRI. This classification is simple, reliable, especially for the associated intra tendinous cleavage.

  3. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    NASA Astrophysics Data System (ADS)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  4. A semigroup approach to the strong ergodic theorem of the multistate stable population process.

    PubMed

    Inaba, H

    1988-01-01

    "In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt

  5. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    NASA Astrophysics Data System (ADS)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  6. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  7. Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system

    NASA Astrophysics Data System (ADS)

    Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.

    2018-01-01

    To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.

  8. a Speculative Study on Negative-Dimensional Potential and Wave Problems by Implicit Calculus Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wang, Fajie

    Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.

  9. Analysis of differential and active charging phenomena on ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Whipple, E. C., Jr.

    1980-01-01

    Spacecraft charging on the differential charging and artificial particle emission experiments on ATS 5 and ATS 6 were studied. Differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The time dependence of the charging behavior was explained by the relatively large capacitance for differential charging in comparison to the small spacecraft to space capacitance. A daylight charging event on ATS 6 was shown to have a charging behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Ion engine operations and plasma emission experiments on ATS 6 were shown to be an effective means of controlling the spacecraft potential in eclipse and sunlight. Elimination of barrier effects around the detectors and improving the quality of the particle data are discussed.

  10. Representation of solution for fully nonlocal diffusion equations with deviation time variable

    NASA Astrophysics Data System (ADS)

    Drin, I. I.; Drin, S. S.; Drin, Ya. M.

    2018-01-01

    We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.

  11. Value of Nephrometry Score Constituents on Perioperative Outcomes and Split Renal Function in Patients Undergoing Minimally Invasive Partial Nephrectomy.

    PubMed

    Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza

    2017-01-01

    To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.

  12. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  13. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  14. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    ERIC Educational Resources Information Center

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  15. Impact of parenchymal loss on renal function after laparoscopic partial nephrectomy under warm ischemia.

    PubMed

    Bagheri, Fariborz; Pusztai, Csaba; Farkas, László; Kallidonis, Panagiotis; Buzogány, István; Szabó, Zsuzsanna; Lantos, János; Imre, Marianna; Farkas, Nelli; Szántó, Árpád

    2016-12-01

    To elucidate the impact of renal parenchymal loss and the ischemic reperfusion injury (RI) on the renal function after laparoscopic partial nephrectomy (LPN) under warm ischemia (WI). Thirty-five patients with a single polar renal mass ≤4 cm and normal contralateral kidney underwent LPN. Transperitoneal LPN with WI using en bloc hilar occlusion was performed. The total differential renal function (T-DRF) using 99m Tc-dimercaptosuccinic acid was evaluated preoperatively and postoperatively over a period of 1 year. A special region of interest (ROI) was selected on the non-tumorous pole of the involved kidney, and was compared with the same ROI in the contralateral kidney. The latter comparison was defined as partial differential renal function (P-DRF). Any postoperative decline in the P-DRF of the operated kidney was attributed to the RI. Subtraction of the P-DRF decline from the T-DRF decline was attributed to the parenchymal loss caused by the resection of the tumor and suturing of the normal parenchyma. The mean WI time was 22 min, and the mean weight of resected specimen was 18 g. The mean postoperative eGFR declined to 87 ml/min/1.73 m 2 from its baseline mean value of 97 ml/min/1.73 m 2 (p value = 0.075). Mean postoperative T-DRF and P-DRF of the operated kidney declined by 7 and 3 %, respectively. After LPN of small renal mass, decline in renal function is primarily attributed to parenchymal loss caused by tumor resection and suturing of the normal parenchyma rather than the RI.

  16. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial differentiated melt are two distinct MASH processes in the lower oceanic crust. They are potentially fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  17. A note on the regularity of solutions of infinite dimensional Riccati equations

    NASA Technical Reports Server (NTRS)

    Burns, John A.; King, Belinda B.

    1994-01-01

    This note is concerned with the regularity of solutions of algebraic Riccati equations arising from infinite dimensional LQR and LQG control problems. We show that distributed parameter systems described by certain parabolic partial differential equations often have a special structure that smoothes solutions of the corresponding Riccati equation. This analysis is motivated by the need to find specific representations for Riccati operators that can be used in the development of computational schemes for problems where the input and output operators are not Hilbert-Schmidt. This situation occurs in many boundary control problems and in certain distributed control problems associated with optimal sensor/actuator placement.

  18. Time Parallel Solution of Linear Partial Differential Equations on the Intel Touchstone Delta Supercomputer

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Fijany, A.; Barhen, J.

    1993-01-01

    Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.

  19. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    NASA Astrophysics Data System (ADS)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  20. Model selection for pion photoproduction

    DOE PAGES

    Landay, J.; Doring, M.; Fernandez-Ramirez, C.; ...

    2017-01-12

    Partial-wave analysis of meson and photon-induced reactions is needed to enable the comparison of many theoretical approaches to data. In both energy-dependent and independent parametrizations of partial waves, the selection of the model amplitude is crucial. Principles of the S matrix are implemented to a different degree in different approaches; but a many times overlooked aspect concerns the selection of undetermined coefficients and functional forms for fitting, leading to a minimal yet sufficient parametrization. We present an analysis of low-energy neutral pion photoproduction using the least absolute shrinkage and selection operator (LASSO) in combination with criteria from information theory andmore » K-fold cross validation. These methods are not yet widely known in the analysis of excited hadrons but will become relevant in the era of precision spectroscopy. As a result, the principle is first illustrated with synthetic data; then, its feasibility for real data is demonstrated by analyzing the latest available measurements of differential cross sections (dσ/dΩ), photon-beam asymmetries (Σ), and target asymmetry differential cross sections (dσ T/d≡Tdσ/dΩ) in the low-energy regime.« less

  1. Towards information-optimal simulation of partial differential equations.

    PubMed

    Leike, Reimar H; Enßlin, Torsten A

    2018-03-01

    Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.

  2. Mathematical Modelling of Continuous Biotechnological Processes

    ERIC Educational Resources Information Center

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  3. Tcf7 Is an Important Regulator of the Switch of Self-Renewal and Differentiation in a Multipotential Hematopoietic Cell Line

    PubMed Central

    Schulz, Vincent P.; Hariharan, Manoj; Tuck, David; Lian, Jin; Du, Jiang; Shi, Minyi; Ye, Zhijia; Gerstein, Mark; Snyder, Michael P.; Weissman, Sherman

    2012-01-01

    A critical problem in biology is understanding how cells choose between self-renewal and differentiation. To generate a comprehensive view of the mechanisms controlling early hematopoietic precursor self-renewal and differentiation, we used systems-based approaches and murine EML multipotential hematopoietic precursor cells as a primary model. EML cells give rise to a mixture of self-renewing Lin-SCA+CD34+ cells and partially differentiated non-renewing Lin-SCA-CD34− cells in a cell autonomous fashion. We identified and validated the HMG box protein TCF7 as a regulator in this self-renewal/differentiation switch that operates in the absence of autocrine Wnt signaling. We found that Tcf7 is the most down-regulated transcription factor when CD34+ cells switch into CD34− cells, using RNA–Seq. We subsequently identified the target genes bound by TCF7, using ChIP–Seq. We show that TCF7 and RUNX1 (AML1) bind to each other's promoter regions and that TCF7 is necessary for the production of the short isoforms, but not the long isoforms of RUNX1, suggesting that TCF7 and the short isoforms of RUNX1 function coordinately in regulation. Tcf7 knock-down experiments and Gene Set Enrichment Analyses suggest that TCF7 plays a dual role in promoting the expression of genes characteristic of self-renewing CD34+ cells while repressing genes activated in partially differentiated CD34− state. Finally a network of up-regulated transcription factors of CD34+ cells was constructed. Factors that control hematopoietic stem cell (HSC) establishment and development, cell growth, and multipotency were identified. These studies in EML cells demonstrate fundamental cell-intrinsic properties of the switch between self-renewal and differentiation, and yield valuable insights for manipulating HSCs and other differentiating systems. PMID:22412390

  4. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  5. Differential geometry techniques for sets of nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  6. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  7. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  8. C1,1 regularity for degenerate elliptic obstacle problems

    NASA Astrophysics Data System (ADS)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  9. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  10. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs

    DTIC Science & Technology

    2010-05-31

    Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by

  12. A Maple package for computing Gröbner bases for linear recurrence relations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Robertz, Daniel

    2006-04-01

    A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type.

  13. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  14. Are impulsive adolescents differentially influenced by the good and bad of neighborhood and family?

    PubMed

    Barker, Edward D; Trentacosta, Christopher J; Salekin, Randall T

    2011-11-01

    Using the differential susceptibility perspective (Belsky & Pluess, 2009) as a guiding frame-work, age 12 neighborhood disadvantage (ND) and family characteristics (parental knowledge) were examined as moderators of the relations between age 12 youth impulsivity and the development (ages 13, 14, and 15) of positive (community activities) and negative (antisocial behavior; ASB) adolescent behavior. An interaction between ND and youth impulsivity (age 12) operated with differential susceptibility, but only for female community activities at age 13: under low levels of ND, impulsive adolescent females engaged in the highest levels of community activities, whereas under high ND, they engaged in the lowest levels. Exploratory analysis showed the association between community activities and ND to be partially related to parents' or adults' engagement in informal social controls (e.g., alerting the police with misbehavior in the neighborhood). Differential susceptibility effects were not identified for: (i) parental knowledge and impulsivity; (ii) ASB (ages 13, 14 or 15); or (iii) community involvement at ages 14 and 15. Findings provide limited evidence for impulsivity as a differential susceptibility phenotype.

  15. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  16. On implicit abstract neutral nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  17. Oscillation of certain higher-order neutral partial functional differential equations.

    PubMed

    Li, Wei Nian; Sheng, Weihong

    2016-01-01

    In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.

  18. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.

    2013-01-01

    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method with method-of-lines integration Running time: Determined by the size of the problem

  19. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  20. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  1. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  2. Lattice Boltzmann model for high-order nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  3. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    PubMed

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  4. [Operative differential therapy of rheumatic wrists].

    PubMed

    Dinges, H; Fürst, M; Rüther, H; Schill, S

    2007-09-01

    The wrists are affected in the long-term in 90% of people with rheumatism and are often (42%) the first manifestation of a destructive disease. The functionality of the wrist and the whole hand is of great importance because in many cases loss of function of the wrists leads to severe limitations. Local and operative treatment of the wrist in rheumatoid arthritis (RA) is one of the main duties in rheuma-orthopaedics. For operative treatment there is a finely tuned differential therapeutic spectrum available. The diagnostic indications take the local and total pattern of affection, the current systemic therapy as well as patient wishes and patient compliance into consideration. In the early stages according to LDE (Larsen, Dale, Eek), soft tissues operations such as articulo-tenosynovectomy (ATS) are most commonly carried out. In further advanced stages osseus stabilisation must often be performed. At this point a smooth transition from partial arthrodesis to complete fixation is possible. After initial euphoria, arthroplasty of the wrist is being increasingly less used for operative treatment due to the unconvincing long-term results and high complication rate. With reference to the good long-term results of all operative procedures, in particular early ATS with respect to pain, function and protection of tendons, after failure of medicinal treatment and persistence of inflammatory activity in the wrist, patients should be transferred to an experienced rheuma-orthopaedic surgeon.

  5. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  6. Friedrichs systems in a Hilbert space framework: Solvability and multiplicity

    NASA Astrophysics Data System (ADS)

    Antonić, N.; Erceg, M.; Michelangeli, A.

    2017-12-01

    The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.

  7. Distributional fold change test – a statistical approach for detecting differential expression in microarray experiments

    PubMed Central

    2012-01-01

    Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055

  8. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  9. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  10. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  11. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  12. A model for the value of a business, some optimization problems in its operating procedures and the valuation of its debt

    NASA Astrophysics Data System (ADS)

    1997-12-01

    In this paper we present a model for the value of a firm based on observable variables and parameters: the annual turnover, the expenses, interest rates. This value is the solution of a parabolic partial differential equation. We show how the value of the company depends on its legal status such as its liability (that is, whether it is a Limited Company or a sole trader/partnership). We give examples of how the operating procedures can be optimized (for example, whether the firm should close down, relocate etc.). Finally, we show how the model can be used to value the debt issued by the firm.

  13. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  14. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  15. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    PubMed

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  16. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  17. Hidden symmetry in the presence of fluxes

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Warnick, Claude M.; Krtouš, Pavel

    2011-03-01

    We derive the most general first-order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogeneous form ω which is a solution to a coupled system of first-order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogeneous conformal Killing-Yano equations with torsion introduced in D. Kubiznak et al. (2009) [8] and the symmetry operator is essentially the one derived in T. Houri et al. (2010) [9]. We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.

  18. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  19. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    PubMed

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  20. Testing for Differential Item Functioning with Measures of Partial Association

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2009-01-01

    Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for one group of people versus another, irrespective of mean differences on the construct. There are many methods available for DIF assessment. The present article is focused on indices of partial association. A family of average…

  1. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  2. Structure parameters in rotating Couette-Poiseuille channel flow

    NASA Technical Reports Server (NTRS)

    Knightly, George H.; Sather, D.

    1986-01-01

    It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.

  3. Magnetic Evidence for a Partially Differentiated Carbonaceous Chondrite Parent Body and Possible Implications for Asteroid 21 Lutetia

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.

    2010-10-01

    The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.

  4. Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis.

    PubMed

    Mello, Cesar; Ribeiro, Diórginis; Novaes, Fábio; Poppi, Ronei J

    2005-10-01

    Use of classical microbiological methods to differentiate bacteria that cause gastroenteritis is cumbersome but usually very efficient. The high cost of reagents and the time required for such identifications, approximately four days, could have serious consequences, however, mainly when the patients are children, the elderly, or adults with low resistance. The search for new methods enabling rapid and reagentless differentiation of these microorganisms is, therefore, extremely relevant. In this work the main microorganisms responsible for gastroenteritis, Escherichia coli, Salmonella choleraesuis, and Shigella flexneri, were studied. For each microorganism sixty different dispersions were prepared in physiological solution. The Raman spectra of these dispersions were recorded using a diode laser operating in the near infrared region. Partial least-squares (PLS) discriminant analysis was used to differentiate among the bacteria by use of their respective Raman spectra. This approach enabled correct classification of 100% of the bacteria evaluated and unknown samples from the clinical environment, in less time ( approximately 10 h), by use of a low-cost, portable Raman spectrometer, which can be easily used in intensive care units and clinical environments.

  5. Differential Curing In Fiber/Resin Laminates

    NASA Technical Reports Server (NTRS)

    Webster, Charles N.

    1989-01-01

    Modified layup schedule counteracts tendency toward delamination. Improved manufacturing process resembles conventional process, except prepregs partially cured laid on mold in sequence in degree of partial cure decreases from mold side to bag side. Degree of partial cure of each layer at time of layup selected by controlling storage and partial-curing temperatures of prepreg according to Arrhenius equation for rate of gel of resin as function of temperature and time from moment of mixing. Differential advancement of cure in layers made large enough to offset effect of advance bag-side heating in oven or autoclave. Technique helps prevent entrapment of volatile materials during manufacturing of fiber/resin laminates.

  6. Stability and growth of continental shields in mantle convection models including recurrent melt production

    NASA Astrophysics Data System (ADS)

    de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.

    1998-10-01

    The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.

  7. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    NASA Astrophysics Data System (ADS)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  8. An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.E.; Ritchie, A.B.

    1997-12-31

    One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less

  9. Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type

    NASA Astrophysics Data System (ADS)

    Scarpa, Luca

    2017-08-01

    We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations of the form dXt - div γ (∇Xt) dt + β (Xt) dt ∋ B (t ,Xt) dWt, where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone operators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process. Using variational techniques, suitable uniform estimates (both pathwise and in expectation) and some compactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.

  10. Fractional calculus in hydrologic modeling: A numerical perspective

    PubMed Central

    Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan

    2013-01-01

    Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449

  11. A homotopy analysis method for the nonlinear partial differential equations arising in engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, G.

    2017-05-01

    In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.

  12. Parent Ratings of ADHD Symptoms: Generalized Partial Credit Model Analysis of Differential Item Functioning across Gender

    ERIC Educational Resources Information Center

    Gomez, Rapson

    2012-01-01

    Objective: Generalized partial credit model, which is based on item response theory (IRT), was used to test differential item functioning (DIF) for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.), inattention (IA), and hyperactivity/impulsivity (HI) symptoms across boys and girls. Method: To accomplish this, parents completed…

  13. An electric-analog simulation of elliptic partial differential equations using finite element theory

    USGS Publications Warehouse

    Franke, O.L.; Pinder, G.F.; Patten, E.P.

    1982-01-01

    Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.

  14. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    PubMed

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  15. Isolation of stress responsive Psb A gene from rice (Oryza sativa l.) using differential display.

    PubMed

    Tyagi, Aruna; Chandra, Arti

    2006-08-01

    Differential display (DD) experiments were performed on drought-tolerant rice (Oryza sativa L.) genotype N22 to identify both upregulated and downregulated partial cDNAs with respect to moisture stress. DNA polymorphism was detected between drought-stressed and control leaf tissues on the DD gels. A partial cDNA showing differential expression, with respect to moisture stress was isolated from the gel. Northern blotting analysis was performed using this cDNA as a probe and it was observed that mRNA corresponding to this transcript was accumulated to high level in rice leaves under water deficit stress. At the DNA sequence level, the partial cDNA showed homology with psb A gene encoding for Dl protein.

  16. Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-07-01

    In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.

  17. Generalized Lie symmetry approach for fractional order systems of differential equations. III

    NASA Astrophysics Data System (ADS)

    Singla, Komal; Gupta, R. K.

    2017-06-01

    The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.

  18. Concatenons as the solutions for non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Volkov, A. K.

    2017-07-01

    New class of solutions for nonlinear partial differential equations is introduced. We call them the concaten solutions. As an example we consider equations for the description of wave processes in the Fermi-Pasta-Ulam mass chain and construct the concatenon solutions for these equation. Stability of the concatenon-type solutions is investigated numerically. Interaction between the concatenon and solitons is discussed.

  19. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  20. Planar harmonic polynomials of type B

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    1999-11-01

    The hyperoctahedral group acting on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N is the Weyl group of type B and is associated with a two-parameter family of differential-difference operators {Ti:1icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> iicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> N}. These operators are analogous to partial derivative operators. This paper finds all the polynomials h on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N which are harmonic, icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/>Bh = 0 and annihilated by Ti for i>2, where the Laplacian 0305-4470/32/46/308/img1" ALT="(sum). They are given explicitly in terms of a novel basis of polynomials, defined by generating functions. The harmonic polynomials can be used to find wavefunctions for the quantum many-body spin Calogero model.

  1. Chaotic Oscillations of Second Order Linear Hyperbolic Equations with Nonlinear Boundary Conditions: A Factorizable but Noncommutative Case

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen

    If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.

  2. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  3. [The relationship among self-focused attention, depression, and anxiety].

    PubMed

    Tanaka, Seiichi; Sato, Hiroshi; Sakai, Motohiro; Sakano, Yuji

    2007-10-01

    Self-focused attention is considered to be a cognitive characteristic of depression. However, some articles report that self-focused attention is also related to anxiety. This study examines the differential relationships of self-focused attention to depression and anxiety. The Preoccupation Scale, Self-rating Depression Scale, and State-Trait Anxiety Inventory T-Form were administered to 454 undergraduate students. The results showed a partial correlation between self-focused attention and anxiety that was significant while controlling for depression, but the partial correlation between self-focused attention and depression was not significant while controlling for anxiety. In addition, the results of an analysis of covariance structure revealed that self-focused attention was related to anxiety, and the relationship between self-focused attention and depression was due to the mediating effect of anxiety. Therefore, it was suggested that self-focused attention appears to be a significant component of cognitive operations for anxiety, but not for depression.

  4. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  5. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T

    NASA Technical Reports Server (NTRS)

    Usui, T.; Jones, John H.; Mittlefehldt, D. W.

    2010-01-01

    Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.

  6. The application of Legendre-tau approximation to parameter identification for delay and partial differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1983-01-01

    Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.

  7. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling

    NASA Technical Reports Server (NTRS)

    Hodges, D. H., Roberta.

    1976-01-01

    The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.

  8. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  9. Exp-function method for solving fractional partial differential equations.

    PubMed

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  10. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  11. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  12. Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions.

    PubMed

    Petruccelli, Jonathan C; Alonso, Miguel A

    2007-09-01

    We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.

  13. Higher symmetries and exact solutions of linear and nonlinear Schr{umlt o}dinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fushchych, W.I.; Nikitin, A.G.

    1997-11-01

    A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, Painlev{acute e}, and Riccati forms. Algebraic properties of higher order symmetry operators are analyzed. Combinations of higher and conditional symmetries are used to generate families of exact solutions of linear and nonlinear Schr{umlt o}dinger equations. {copyright} {ital 1997 American Institute of Physics.}

  14. Lower body negative pressure chamber: Design and specifications for tilt-table mounting

    NASA Technical Reports Server (NTRS)

    Salamacha, Laura; Gundo, D.; Mulenburg, G. M.; Greenleaf, J. E.

    1995-01-01

    Specifications for a lower body negative pressure chamber for mounting on a tilting table are presented. The main plate is made from HEXEL honeycomb board 1.0 inch thick. The plate, supported at three edges, will be subjected to a uniform pressure differential of -4.7 lb/sq in. A semi-cylindrical Plexiglass top (chamber) is attached to the main plate; the pressure within the chamber will be about 10lb/sq in during operation. The stresses incurred by the main plate with this partial vacuum were calculated. All linear dimensions are in inches.

  15. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  16. Effect of evaporative surface cooling on thermographic assessment of burn depth

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1977-01-01

    Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.

  17. Solving Differential Equations in R: Package deSolve

    EPA Science Inventory

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  18. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    NASA Astrophysics Data System (ADS)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  19. Taguchi method for partial differential equations with application in tumor growth.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  20. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The frequency selection is achieved either by diffusion coefficients or by propagation time. Finally, we explore a large number of practical applications to further demonstrate the utility of proposed PDE transform. PMID:22207904

  1. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Zhou, Yuan

    2018-02-01

    Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln ⁡ f) x and u = 2(ln ⁡ f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

  2. A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption.

    PubMed

    Pearson, Natalie C; Oliver, James M; Shipley, Rebecca J; Waters, Sarah L

    2016-06-01

    We present a simplified two-dimensional model of fluid flow, solute transport, and cell distribution in a hollow fibre membrane bioreactor. We consider two cell populations, one undifferentiated and one differentiated, with differentiation stimulated either by growth factor alone, or by both growth factor and fluid shear stress. Two experimental configurations are considered, a 3-layer model in which the cells are seeded in a scaffold throughout the extracapillary space (ECS), and a 4-layer model in which the cell-scaffold construct occupies a layer surrounding the outside of the hollow fibre, only partially filling the ECS. Above this is a region of free-flowing fluid, referred to as the upper fluid layer. Following previous models by the authors (Pearson et al. in Math Med Biol, 2013, Biomech Model Mechanbiol 1-16, 2014a, we employ porous mixture theory to model the dynamics of, and interactions between, the cells, scaffold, and fluid in the cell-scaffold construct. We use this model to determine operating conditions (experiment end time, growth factor inlet concentration, and inlet fluid fluxes) which result in a required percentage of differentiated cells, as well as maximising the differentiated cell yield and minimising the consumption of expensive growth factor.

  3. An approximation theory for nonlinear partial differential equations with applications to identification and control

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  4. Research on Nonlinear Dynamical Systems.

    DTIC Science & Technology

    1983-01-10

    Applied Math., to appear. [26] Variational inequalities and flow in porous media, LCDS’Lecture Notes, Brown University #LN 82-1, July 1982. [27] On...approximation schemes for parabolic and hyperbolic systems of partial differential equations, including higher order equations of elasticity based on the...51,58,59,63,64,69]. Finally, stability and bifurcation in parabolic partial differential equations is the focus of [64,65,67,72,73]. In addition to these broad

  5. Sex differences in gut microbiota in patients with major depressive disorder.

    PubMed

    Chen, Jian-Jun; Zheng, Peng; Liu, Yi-Yun; Zhong, Xiao-Gang; Wang, Hai-Yang; Guo, Yu-Jie; Xie, Peng

    2018-01-01

    Our previous studies found that disturbances in gut microbiota might have a causative role in the onset of major depressive disorder (MDD). The aim of this study was to investigate whether there were sex differences in gut microbiota in patients with MDD. First-episode drug-naïve MDD patients and healthy controls were included. 16S rRNA gene sequences extracted from the fecal samples of the included subjects were analyzed. Principal-coordinate analysis and partial least squares-discriminant analysis were used to assess whether there were sex-specific gut microbiota. A random forest algorithm was used to identify the differential operational taxonomic units. Linear discriminant-analysis effect size was further used to identify the dominant sex-specific phylotypes responsible for the differences between MDD patients and healthy controls. In total, 57 and 74 differential operational taxonomic units responsible for separating female and male MDD patients from their healthy counterparts were identified. Compared with their healthy counterparts, increased Actinobacteria and decreased Bacteroidetes levels were found in female and male MDD patients, respectively. The most differentially abundant bacterial taxa in female and male MDD patients belonged to phyla Actinobacteria and Bacteroidia, respectively. Meanwhile, female and male MDD patients had different dominant phylotypes. These results demonstrated that there were sex differences in gut microbiota in patients with MDD. The suitability of Actinobacteria and Bacteroidia as the sex-specific biomarkers for diagnosing MDD should be further explored.

  6. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  7. Matrix multiplication operations using pair-wise load and splat operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E.; Gschwind, Michael K.; Gunnels, John A.

    Mechanisms for performing a matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A pair-wise load and splat operation is performed to load a pair of scalar values of a second vector operand and replicate the pair of scalar values within a second target vector register. An operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product is accumulatedmore » with other partial products and a resulting accumulated partial product is stored. This operation may be repeated for a second pair of scalar values of the second vector operand.« less

  8. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  9. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  10. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations

    PubMed Central

    Mitchell, William F.

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355

  11. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.

    PubMed

    Mitchell, William F

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.

  12. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  13. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  14. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  15. A convex penalty for switching control of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clason, Christian; Rund, Armin; Kunisch, Karl

    2016-01-19

    A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.

  16. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  17. Spectral methods for time dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  18. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  19. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    NASA Astrophysics Data System (ADS)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  20. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    PubMed

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  1. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  2. PetIGA: A framework for high-performance isogeometric analysis

    DOE PAGES

    Dalcin, Lisandro; Collier, Nathaniel; Vignal, Philippe; ...

    2016-05-25

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility ofmore » PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. Lastly, we show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.« less

  3. On Partial Fraction Decompositions by Repeated Polynomial Divisions

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2017-01-01

    We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…

  4. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography.

    PubMed

    Huang, Jehn-Yu; Pekmezci, Melike; Mesiwala, Nisreen; Kao, Andrew; Lin, Shan

    2011-02-01

    To evaluate the capability of the optic disc, peripapillary retinal nerve fiber layer (P-RNFL), macular inner retinal layer (M-IRL) parameters, and their combination obtained by Fourier-domain optical coherent tomography (OCT) in differentiating a glaucoma suspect from perimetric glaucoma. Two hundred and twenty eyes from 220 patients were enrolled in this study. The optic disc morphology, P-RNFL, and M-IRL were assessed by the Fourier-domain OCT (RTVue OCT, Model RT100, Optovue, Fremont, CA). A linear discriminant function was generated by stepwise linear discriminant analysis on the basis of OCT parameters and demographic factors. The diagnostic power of these parameters was evaluated with receiver operating characteristic (ROC) curve analysis. The diagnostic power in the clinically relevant range (specificity ≥ 80%) was presented as the partial area under the ROC curve (partial AROC). The individual OCT parameter with the largest AROC and partial AROC in the high specificity (≥ 80%) range were cup/disc vertical ratio (AROC = 0.854 and partial AROC = 0.142) for the optic disc parameters, average thickness (AROC = 0.919 and partial AROC = 0.147) for P-RNFL parameters, inferior hemisphere thickness (AROC = 0.871 and partial AROC = 0.138) for M-IRL parameters, respectively. The linear discriminant function further enhanced the ability in detecting perimetric glaucoma (AROC = 0.970 and partial AROC = 0.172). Average P-RNFL thickness is the optimal individual OCT parameter to detect perimetric glaucoma. Simultaneous evaluation on disc morphology, P-RNFL, and M-IRL thickness can improve the diagnostic accuracy in diagnosing glaucoma.

  5. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  6. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  7. On the Hardy Space Theory of Compensated Compactness Quantities

    NASA Astrophysics Data System (ADS)

    Lindberg, Sauli

    2017-05-01

    We make progress on a problem of Coifman et al. (J Math Pures Appl (9) 72(3): 247-286, 1993) by showing that the Jacobian operator J does not map {W^{1,n}(Rn, Rn) onto the Hardy space H1(Rn) for any {n ≥ 2}. The related question about the surjectivity of {J : dot{W}^{1,n}(Rn,Rn) to H1(Rn) is still open. The second main result and its variants reduce the proof of H1 regularity of a large class of compensated compactness quantities to an integration by parts or easy arithmetic, and applications are presented. Furthermore, we exhibit a class of nonlinear partial differential operators in which weak sequential continuity is a strictly stronger condition than H1 regularity, shedding light on another question of Coifman, Lions, Meyer and Semmes.

  8. Group theoretic approach for solving the problem of diffusion of a drug through a thin membrane

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Kassem, Magda M.; Meky, Mohammed L. M.

    2002-03-01

    The transformation group theoretic approach is applied to study the diffusion process of a drug through a skin-like membrane which tends to partially absorb the drug. Two cases are considered for the diffusion coefficient. The application of one parameter group reduces the number of independent variables by one, and consequently the partial differential equation governing the diffusion process with the boundary and initial conditions is transformed into an ordinary differential equation with the corresponding conditions. The obtained differential equation is solved numerically using the shooting method, and the results are illustrated graphically and in tables.

  9. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  10. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  11. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  12. Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise

    PubMed Central

    Zeng, Caibin; Yang, Qigui; Cao, Junfei

    2014-01-01

    This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB H(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903

  13. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  14. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  15. Multirate Integration Properties of Waveform Relaxation with Applications to Circuit Simulation and Parallel Computation

    DTIC Science & Technology

    1985-11-18

    Greenberg and K. Sakallah at Digital Equipment Corporation, and C-F. Chen, L Nagel, and P. ,. Subrahmanyam at AT&T Bell Laboratories, both for providing...Circuit Theory McGraw-Hill, 1969. [37] R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics...McGraw-Hill, N.Y., 1965. Page 161 [44) R. Courant and D. Hilbert , Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics

  16. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  17. The Riemann-Lanczos equations in general relativity and their integrability

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2008-06-01

    The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.

  18. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  19. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  20. An Improved Heaviside Approach to Partial Fraction Expansion and Its Applications

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2009-01-01

    In this note, we present an improved Heaviside approach to compute the partial fraction expansions of proper rational functions. This method uses synthetic divisions to determine the unknown partial fraction coefficients successively, without the need to use differentiation or to solve a system of linear equations. Examples of its applications in…

  1. Generalization of the Jones vector-matrix method and the regularity of the Weigert effect for partially polarized light.

    PubMed

    Kilosanidze, Barbara

    2010-06-01

    Generalization of the Jones vector for partially polarized radiation carried out by Kakichashvili is given. Partially polarized light is presented as two noncoherent components of mutually orthogonal polarization. The formal operation of amplitude summation of mutually noncoherent components and the symbol of this operation are introduced. The rules of operating with this symbol are determined. The regularity of the Weigert effect is modified for partial polarization of the inducing light. On this basis the modification of the Jones matrix for partially polarized light is made. The rules for the formation of the resulting matrix from the Jones matrices corresponding to the noncoherent components of partially polarized light are determined.

  2. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  3. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    PubMed

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  4. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  5. A computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution, theory and users manual

    NASA Technical Reports Server (NTRS)

    Ball, R. E.

    1972-01-01

    A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.

  6. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    PubMed

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  7. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  8. A partial differential equation for pseudocontact shift.

    PubMed

    Charnock, G T P; Kuprov, Ilya

    2014-10-07

    It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

  9. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 2: Two-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    A two-step semidirect procedure is developed to accelerate the one-step procedure described in NASA TP-2529. For a set of constant coefficient model problems, the acceleration factor increases from 1 to 2 as the one-step procedure convergence rate decreases from + infinity to 0. It is also shown numerically that the two-step procedure can substantially accelerate the convergence of the numerical solution of many partial differential equations (PDE's) with variable coefficients.

  10. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  11. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  12. Parameter estimation problems for distributed systems using a multigrid method

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Dutt, Pravir

    1990-01-01

    The problem of estimating spatially varying coefficients of partial differential equations is considered from observation of the solution and of the right hand side of the equation. It is assumed that the observations are distributed in the domain and that enough observations are given. A method of discretization and an efficient multigrid method for solving the resulting discrete systems are described. Numerical results are presented for estimation of coefficients in an elliptic and a parabolic partial differential equation.

  13. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  14. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  15. DISCHARGE AND DEPTH BEHIND A PARTIALLY BREACHED DAM.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1987-01-01

    The role that the velocity-distribution correction factor plays in the determination of the flood discharge and corresponding flow depth behind a partially breached dam is investigated. Assumption of a uniformly progressive flow for an established dam-break flood in a rectangular channel of infinite extent leads to the formulation of a theoretical relation between the depth and velocity of flow expressed in differential form. Integrating this ordinary differential equation, one can express the velocity in terms of the depth.

  16. Introducing the Improved Heaviside Approach to Partial Fraction Decomposition to Undergraduate Students: Results and Implications from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…

  17. Strongly nonlinear parabolic variational inequalities.

    PubMed

    Browder, F E; Brézis, H

    1980-02-01

    An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

  18. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions

    PubMed

    Bologna; Tsallis; Grigolini

    2000-08-01

    We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity

  19. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  20. Role of Alternative Polyadenylation during Adipogenic Differentiation: An In Silico Approach

    PubMed Central

    Spangenberg, Lucía; Correa, Alejandro; Dallagiovanna, Bruno; Naya, Hugo

    2013-01-01

    Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation. Our in silico analysis suggests a modest, consistent, bias in 3′UTR lengths during differentiation enabling a fine-tuned transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed discrepancies in relative abundance of protein and mRNA. PMID:24143171

  1. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  2. Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

    NASA Astrophysics Data System (ADS)

    Asai, Kazuto

    2009-02-01

    We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or C^{\\rho}-functions, where the constant \\rho is determined by the structure of the superposition. We also prove that the function u defined by u^n=xu^a+yu^b+zu^c+1 is generally non-representable in any real (resp. complex) domain as f\\bigl(g(x,y),h(y,z)\\bigr) with twice differentiable f and differentiable g, h (resp. analytic f, g, h).

  3. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  4. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluating Feynman integrals by the hypergeometry

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin

    2018-02-01

    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.

  6. Auto-Bäcklund transformations for a matrix partial differential equation

    NASA Astrophysics Data System (ADS)

    Gordoa, P. R.; Pickering, A.

    2018-07-01

    We derive auto-Bäcklund transformations, analogous to those of the matrix second Painlevé equation, for a matrix partial differential equation. We also then use these auto-Bäcklund transformations to derive matrix equations involving shifts in a discrete variable, a process analogous to the use of the auto-Bäcklund transformations of the matrix second Painlevé equation to derive a discrete matrix first Painlevé equation. The equations thus derived then include amongst other examples a semidiscrete matrix equation which can be considered to be an extension of this discrete matrix first Painlevé equation. The application of this technique to the auto-Bäcklund transformations of the scalar case of our partial differential equation has not been considered before, and so the results obtained here in this scalar case are also new. Other equations obtained here using this technique include a scalar semidiscrete equation which arises in the case of the second Painlevé equation, and which does not seem to have been thus derived previously.

  7. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  8. Jackknife variance of the partial area under the empirical receiver operating characteristic curve.

    PubMed

    Bandos, Andriy I; Guo, Ben; Gur, David

    2017-04-01

    Receiver operating characteristic analysis provides an important methodology for assessing traditional (e.g., imaging technologies and clinical practices) and new (e.g., genomic studies, biomarker development) diagnostic problems. The area under the clinically/practically relevant part of the receiver operating characteristic curve (partial area or partial area under the receiver operating characteristic curve) is an important performance index summarizing diagnostic accuracy at multiple operating points (decision thresholds) that are relevant to actual clinical practice. A robust estimate of the partial area under the receiver operating characteristic curve is provided by the area under the corresponding part of the empirical receiver operating characteristic curve. We derive a closed-form expression for the jackknife variance of the partial area under the empirical receiver operating characteristic curve. Using the derived analytical expression, we investigate the differences between the jackknife variance and a conventional variance estimator. The relative properties in finite samples are demonstrated in a simulation study. The developed formula enables an easy way to estimate the variance of the empirical partial area under the receiver operating characteristic curve, thereby substantially reducing the computation burden, and provides important insight into the structure of the variability. We demonstrate that when compared with the conventional approach, the jackknife variance has substantially smaller bias, and leads to a more appropriate type I error rate of the Wald-type test. The use of the jackknife variance is illustrated in the analysis of a data set from a diagnostic imaging study.

  9. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  11. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  12. A novel principle for partial agonism of liver X receptor ligands. Competitive recruitment of activators and repressors.

    PubMed

    Albers, Michael; Blume, Beatrix; Schlueter, Thomas; Wright, Matthew B; Kober, Ingo; Kremoser, Claus; Deuschle, Ulrich; Koegl, Manfred

    2006-02-24

    Partial, selective activation of nuclear receptors is a central issue in molecular endocrinology but only partly understood. Using LXRs as an example, we show here that purely agonistic ligands can be clearly and quantitatively differentiated from partial agonists by the cofactor interactions they induce. Although a pure agonist induces a conformation that is incompatible with the binding of repressors, partial agonists such as GW3965 induce a state where the interaction not only with coactivators, but also corepressors is clearly enhanced over the unliganded state. The activities of the natural ligand 22(R)-hydroxycholesterol and of a novel quinazolinone ligand, LN6500 can be further differentiated from GW3965 and T0901317 by their weaker induction of coactivator binding. Using biochemical and cell-based assays, we show that the natural ligand of LXR is a comparably weak partial agonist. As predicted, we find that a change in the coactivator to corepressor ratio in the cell will affect NCoR recruiting compounds more dramatically than NCoR-dissociating compounds. Our data show how competitive binding of coactivators and corepressors can explain the tissue-specific behavior of partial agonists and open up new routes to a rational design of partial agonists for LXRs.

  13. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway.

  14. [Prevention of side effects and complications after operation for partial ileal bypass].

    PubMed

    Mirchuk, K K; Sedletskiĭ, Iu I

    2014-01-01

    Side effects and complications of the application of partial ileal bypass used for dislipidemia were analyzed in 162 patients with atherosclerosis. It was shown, that the partial ileal bypass operation could lead to the development of series of undesirable side effects such as diarrhea, hypovitaminosis B12, off-state intestine enteritis. The application of modification of partial ileal bypass such as formation of ileo-ileoanastomosis 5-6 cm long near ileocecal valve with the maintenance of its functions disposed the diarrhea and minimized the risk of the development of hypovitaminosis B12 after operation. It is possible to prevent the development of enteritis of off-state loop of the small intestine by using microanastomosis between off-state and functioning iliac intestine. The partial ileal bypass operation didn't influence on body weight, wouldn't increase the risk of stone formation in the gallbladder and kidneys. The risk of the development of hypovitaminosis B12 is minimal after operation.

  15. The Boundary Function Method. Fundamentals

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  16. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  17. Artificial neural network methods in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lagaris, I. E.; Likas, A.; Fotiadis, D. I.

    1997-08-01

    In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrödinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schrödinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrödinger integrodifferential equation that models the n + α system in the framework of the resonating group method. In two dimensions we consider the well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.

  18. Automating the parallel processing of fluid and structural dynamics calculations

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Cole, Gary L.

    1987-01-01

    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.

  19. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease

    PubMed Central

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M.; Liddicoat, Brian; Russell, Megan R.; Walkley, Carl R.; Karlsson, Stefan

    2014-01-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease. PMID:24415629

  20. A Solution Space for a System of Null-State Partial Differential Equations: Part 4

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the last of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban in Commun Math Phys, 2012; Flores and Kleban, in Commun Math Phys, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Using these results in the third article (Flores and Kleban, in Commun Math Phys, 2013), we prove that dim and is spanned by (real-valued) solutions constructed with the Coulomb gas (contour integral) formalism of CFT. In this article, we use these results to prove some facts concerning the solution space . First, we show that each of its elements equals a sum of at most two distinct Frobenius series in powers of the difference between two adjacent points (unless is odd, in which case a logarithmic term may appear). This establishes an important element in the operator product expansion for one-leg boundary operators, assumed in CFT. We also identify particular elements of , which we call connectivity weights, and exploit their special properties to conjecture a formula for the probability that the curves of a multiple-SLE process join in a particular connectivity. This leads to new formulas for crossing probabilities of critical lattice models inside polygons with a free/fixed side-alternating boundary condition, which we derive in Flores et al. (Partition functions and crossing probabilities for critical systems inside polygons, in preparation). Finally, we propose a reason for why the exceptional speeds [certain values that appeared in the analysis of the Coulomb gas solutions in Flores and Kleban (Commun Math Phys, 2013)] and the minimal models of CFT are connected.

  1. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  2. On the nonlinear stability of the unsteady, viscous flow of an incompressible fluid in a curved pipe

    NASA Technical Reports Server (NTRS)

    Shortis, Trudi A.; Hall, Philip

    1995-01-01

    The stability of the flow of an incompressible, viscous fluid through a pipe of circular cross-section curved about a central axis is investigated in a weakly nonlinear regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe. A WKBJ perturbation solution is constructed, taking into account the need for an inner solution in the vicinity of the outer bend, which is obtained by identifying the saddle point of the Taylor number in the complex plane of the cross-sectional angle co-ordinate. The equation governing the nonlinear evolution of the leading order vortex amplitude is thus determined. The stability analysis of this flow to periodic disturbances leads to a partial differential system dependent on three variables, and since the differential operators in this system are periodic in time, Floquet theory may be applied to reduce this system to a coupled infinite system of ordinary differential equations, together with homogeneous uncoupled boundary conditions. The eigenvalues of this system are calculated numerically to predict a critical Taylor number consistent with the analysis of Papageorgiou. A discussion of how nonlinear effects alter the linear stability analysis is also given, and the nature of the instability determined.

  3. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  4. A Temperature-Hardened Sensor Interface with a 12-Bit Digital Output Using a Novel Pulse Width Modulation Technique

    PubMed Central

    Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed

    2018-01-01

    A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171

  5. On analyticity of linear waves scattered by a layered medium

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  6. Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter

    NASA Astrophysics Data System (ADS)

    Degasperis, A.; Lebedev, D.; Olshanetsky, M.; Pakuliak, S.; Perelomov, A.; Santini, P. M.

    1992-11-01

    The simplest generalization of the intermediate long-wave hierarchy (ILW) is considered to show how to extend the Zakharov-Shabat dressing method to nonlocal, i.e., integro-partial differential, equations. The purpose is to give a procedure of constructing the zero-curvature representation of this class of equations. This result obtains by combining the Drinfeld-Sokolov formalism together with the introduction of an operator-valued spectral parameter, namely, a spectral parameter that does not commute with the space variable x. This extension provides a connection between the ILWk hierarchy and the Saveliev-Vershik continuum graded Lie algebras. In the case of ILW2 the Fairlie-Zachos sinh-algebra was found.

  7. Calibration of Lévy Processes with American Options

    NASA Astrophysics Data System (ADS)

    Achdou, Yves

    We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.

  8. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  9. Numerical method based on the lattice Boltzmann model for the Fisher equation.

    PubMed

    Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng

    2008-06-01

    In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.

  10. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  11. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  12. Computer transformation of partial differential equations into any coordinate system

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.

    1977-01-01

    The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.

  13. Partial differential equation models in macroeconomics.

    PubMed

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  15. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  16. On the continuous differentiability of inter-spike intervals of synaptically connected cortical spiking neurons in a neuronal network.

    PubMed

    Kumar, Gautam; Kothare, Mayuresh V

    2013-12-01

    We derive conditions for continuous differentiability of inter-spike intervals (ISIs) of spiking neurons with respect to parameters (decision variables) of an external stimulating input current that drives a recurrent network of synaptically connected neurons. The dynamical behavior of individual neurons is represented by a class of discontinuous single-neuron models. We report here that ISIs of neurons in the network are continuously differentiable with respect to decision variables if (1) a continuously differentiable trajectory of the membrane potential exists between consecutive action potentials with respect to time and decision variables and (2) the partial derivative of the membrane potential of spiking neurons with respect to time is not equal to the partial derivative of their firing threshold with respect to time at the time of action potentials. Our theoretical results are supported by showing fulfillment of these conditions for a class of known bidimensional spiking neuron models.

  17. Effect of partial heating at mid of vertical plate adjacent to porous medium

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  18. Computations involving differential operators and their actions on functions

    NASA Technical Reports Server (NTRS)

    Crouch, Peter E.; Grossman, Robert; Larson, Richard

    1991-01-01

    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications.

  19. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2016-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.

  20. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2017-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.

  1. Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.

  2. Student Solution Manual for Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.

  3. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  4. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    PubMed

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  5. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species.

    PubMed

    Bowman, Larry L; Kondrateva, Elizaveta S; Timofeyev, Maxim A; Yampolsky, Lev Y

    2018-06-01

    Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures. © 2018 John Wiley & Sons Ltd.

  6. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-12-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  7. A Model for Siderophile Element Distribution in Planetary Differentiation

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.

    2005-01-01

    Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.

  8. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  9. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  10. Discussion summary: Fictitious domain methods

    NASA Technical Reports Server (NTRS)

    Glowinski, Rowland; Rodrigue, Garry

    1991-01-01

    Fictitious Domain methods are constructed in the following manner: Suppose a partial differential equation is to be solved on an open bounded set, Omega, in 2-D or 3-D. Let R be a rectangle domain containing the closure of Omega. The partial differential equation is first solved on R. Using the solution on R, the solution of the equation on Omega is then recovered by some procedure. The advantage of the fictitious domain method is that in many cases the solution of a partial differential equation on a rectangular region is easier to compute than on a nonrectangular region. Fictitious domain methods for solving elliptic PDEs on general regions are also very efficient when used on a parallel computer. The reason is that one can use the many domain decomposition methods that are available for solving the PDE on the fictitious rectangular region. The discussion on fictitious domain methods began with a talk by R. Glowinski in which he gave some examples of a variational approach to ficititious domain methods for solving the Helmholtz and Navier-Stokes equations.

  11. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.

    PubMed

    Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi

    2002-02-01

    The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.

  12. Algorithm refinement for stochastic partial differential equations: II. Correlated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.

    2005-08-10

    We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less

  13. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  14. On the integration of a class of nonlinear systems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Talyshev, Aleksandr A.

    2017-11-01

    For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.

  15. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  16. [25 year experience with using surgical correction of dislipidemia in treatment of patients with atherosclerosis].

    PubMed

    Sedov, V M; Mirchuk, K K; Sedletskiĭ, Iu I

    2011-01-01

    An analysis of results of using partial ileoshunting for the treatment of dislipidemia in 159 patients with atherosclerosis has shown that operation of partial ileoshunting has an obligatory, pronounced and lifelong lipidcorrecting effect. An antiatherogenic effect of the operation of partial ileoshunting is manifested as the improvement of the clinical course of the disease caused by atherosclerosis, by less number of thrombotic complications of atherosclerosis and less lethality from cardio-vascular diseases. At a longer follow-up period, the efficiency of partial ileoshunting as a means of secondary prophylactics of atherosclerosis is confirmed but in case of liquidation after operation of dislipoproteidemia.

  17. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  18. Indocyanine green fluorescence imaging in hepatobiliary surgery.

    PubMed

    Majlesara, Ali; Golriz, Mohammad; Hafezi, Mohammadreza; Saffari, Arash; Stenau, Esther; Maier-Hein, Lena; Müller-Stich, Beat P; Mehrabi, Arianeb

    2017-03-01

    Indocyanine green (ICG) is a fluorescent dye that has been widely used for fluorescence imaging during hepatobiliary surgery. ICG is injected intravenously, selectively taken up by the liver, and then secreted into the bile. The catabolism and fluorescence properties of ICG permit a wide range of visualization methods in hepatobiliary surgery. We have characterized the applications of ICG during hepatobiliary surgery into: 1) liver mapping, 2) cholangiography, 3) tumor visualization, and 4) partial liver graft evaluation. In this literature review, we summarize the current understanding of ICG use during hepatobiliary surgery. Intra-operative ICG fluorescence imaging is a safe, simple, and feasible method that improves the visualization of hepatobiliary anatomy and liver tumors. Intravenous administration of ICG is not toxic and avoids the drawbacks of conventional imaging. In addition, it reduces post-operative complications without any known side effects. ICG fluorescence imaging provides a safe and reliable contrast for extra-hepatic cholangiography when detecting intra-hepatic bile leakage following liver resection. In addition, liver tumors can be visualized and well-differentiated hepatocellular carcinoma tumors can be accurately identified. Moreover, vascular reconstruction and outflow can be evaluated following partial liver transplantation. However, since tissue penetration is limited to 5-10mm, deeper tissue cannot be visualized using this method. Many instances of false positive or negative results have been reported, therefore further characterization is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The SCD - Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

    NASA Astrophysics Data System (ADS)

    Versari, Silvia; Barenghi, Livia; van Loon, Jack; Bradamante, Silvia

    2016-04-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Previous researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of operative constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only partially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD - STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies performed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and storage of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable samples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

  20. Bipartite separability and nonlocal quantum operations on graphs

    NASA Astrophysics Data System (ADS)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  1. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  2. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    PubMed Central

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  3. Partial Fractions via Calculus

    ERIC Educational Resources Information Center

    Bauldry, William C.

    2018-01-01

    The standard technique taught in calculus courses for partial fraction expansions uses undetermined coefficients to generate a system of linear equations; we present a derivative-based technique that calculus and differential equations instructors can use to reinforce connections to calculus. Simple algebra shows that we can use the derivative to…

  4. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onopiuk, Marta; Wierzbicka, Katarzyna; Brutkowski, Wojciech

    Activation of T-cells triggers store-operated Ca{sup 2+} entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellularmore » STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca{sup 2+} entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: {yields} Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. {yields} Fas activation partially reduces mitochondrial potential in caspase dependent manner. {yields} Fas stimulation inhibits of store-operated Ca{sup 2+} entry in caspase dependent manner. {yields} Inhibition of Ca{sup 2+} entry in apoptotic cells may protect them from secondary necrosis.« less

  6. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  7. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  8. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  9. Double diffusive conjugate heat transfer: Part III

    NASA Astrophysics Data System (ADS)

    Soudagar, Manzoor Elahi M.; Azeem

    2018-05-01

    The placement of a small solid wall towards cold surface of square porous cavity affects the heat transfer behavior of porous region due to restriction of fluid motion in the region occupied by solid wall. An investigation of heat transfer is carried out to understand the fluid flow and heat transfer behavior in porous cavity by solving the governing partial differential equations. Galerkin's approach is used to convert the partial differential equations into algebraic form of equations by applying finite element method. The heat transfer increases for solid towards right surface as compared to the case of solid at center of cavity.

  10. Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.D.; Keyes, D.E.

    1988-03-01

    The authors discuss the parallel implementation of preconditioned conjugate gradient (PCG)-based domain decomposition techniques for self-adjoint elliptic partial differential equations in two dimensions on several architectures. The complexity of these methods is described on a variety of message-passing parallel computers as a function of the size of the problem, number of processors and relative communication speeds of the processors. They show that communication startups are very important, and that even the small amount of global communication in these methods can significantly reduce the performance of many message-passing architectures.

  11. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Jie; Ma, Chang-Feng

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.

  12. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  13. An efficient numerical scheme for the study of equal width equation

    NASA Astrophysics Data System (ADS)

    Ghafoor, Abdul; Haq, Sirajul

    2018-06-01

    In this work a new numerical scheme is proposed in which Haar wavelet method is coupled with finite difference scheme for the solution of a nonlinear partial differential equation. The scheme transforms the partial differential equation to a system of algebraic equations which can be solved easily. The technique is applied to equal width equation in order to study the behaviour of one, two, three solitary waves, undular bore and soliton collision. For efficiency and accuracy of the scheme, L2 and L∞ norms and invariants are computed. The results obtained are compared with already existing results in literature.

  14. Mathematical Model of Bubble Sloshing Dynamics for Cryogenic Liquid Helium in Orbital Spacecraft Dewar Container

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.

  15. Differentiation of magma oceans and the thickness of the depleted layer on Venus

    NASA Technical Reports Server (NTRS)

    Solomatov, V. S.; Stevenson, D. J.

    1993-01-01

    Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.

  16. Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells.

    PubMed

    Tratnjek, Larisa; Romih, Rok; Kreft, Mateja Erdani

    2017-08-01

    During differentiation, superficial urothelial cells (UCs) of the urinary bladder form the apical surface, which is almost entirely covered by urothelial plaques containing densely packed uroplakin particles. These urothelial plaques are the main structural components of the blood-urine permeability barrier in the urinary bladder. We have shown previously that endocytosis from the apical plasma membrane decreases during urothelial cell differentiation. Here, we investigated the role of actin filament and microtubule rearrangements in apical endocytosis of differentiating UCs cells using hyperplastic and normoplastic porcine urothelial models. Partially differentiated normal porcine UCs contained actin filaments in the subapical cytoplasm, while microtubules had a net-like appearance. In highly differentiated UCs, actin filaments mostly disappeared from the subapical cytoplasm and microtubules remained as a thin layer close to the apical plasma membrane. Inhibition of actin filament formation with cytochalasin-D in partially differentiated UCs caused a decrease in apical endocytosis. Depolymerisation of microtubules with nocodazole did not prevent endocytosis of the endocytotic marker WGA into the subapical cytoplasm; however, it abolished WGA transport to endolysosomal compartments in the central cytoplasm. Cytochalasin-D or nocodazole treatment did not significantly change apical endocytosis in highly differentiated UCs. In conclusion, we showed that the physiological differentiation-dependent or chemically induced redistribution and reorganization of actin filaments and microtubules impair apical endocytosis in UCs. Importantly, reduced apical endocytosis due to cytoskeletal rearrangements in highly differentiated UCs, together with the formation of rigid urothelial plaques, reinforces the barrier function of the urothelium.

  17. Differential Effects of Full and Partial Notes on Learning Outcomes and Attendance

    ERIC Educational Resources Information Center

    Cornelius, Tara L.; Owen-DeSchryver, Jamie

    2008-01-01

    Although college instructors are increasingly providing students with online notes, research is equivocal on how such notes affect student outcomes. This study examined partial versus full notes in introductory psychology classes while controlling for initial levels of student knowledge and academic ability. Results suggested that students…

  18. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  19. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE PAGES

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...

    2017-09-12

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  20. Analysis of partial-reflection data from the solar eclipse of 10 Jul. 1972. [ground-based experiment using vertical incident radio waves partially reflected from D region

    NASA Technical Reports Server (NTRS)

    Bean, T. A.; Bowhill, S. A.

    1973-01-01

    Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

  1. Development of Partial Discharging Simulation Test Equipment

    NASA Astrophysics Data System (ADS)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.

  2. Regularity estimates up to the boundary for elliptic systems of difference equations

    NASA Technical Reports Server (NTRS)

    Strikwerda, J. C.; Wade, B. A.; Bube, K. P.

    1986-01-01

    Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.

  3. The theory of an active magnetic regenerative refrigerator

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1983-01-01

    The adiabatic temperature change with field which is limited to about 2 K/Tesla for ferromagnets near their Curie temperatures by the change of magnetization with temperature and the lattice heat capacity is discussed. Practical magnetic refrigerators operate on a regenerative cycle such as the Brayton cycle. This cycle can be executed through the use of an active magnetic regenerator, i.e., a regenerator composed of magnetic material that is cycled in an out of a magnetic field with appropriate fluid flows. The theory of these devices is predicted by solving the partial differential equations that describe fluid and the magnetic solid. The active magnetic regenerator is described along with the method of calculation. Temperature profiles for a normal regenerator and a magnetic regenerative refrigerator are shown.

  4. User's guide to PMESH: A grid-generation program for single-rotation and counterrotation advanced turboprops

    NASA Technical Reports Server (NTRS)

    Warsi, Saif A.

    1989-01-01

    A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.

  5. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  6. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  7. Successful resection of metachronous para-aortic, Virchow lymph node and liver metastatic recurrence of rectal cancer.

    PubMed

    Takeshita, Nobuyoshi; Fukunaga, Toru; Kimura, Masayuki; Sugamoto, Yuji; Tasaki, Kentaro; Hoshino, Isamu; Ota, Takumi; Maruyama, Tetsuro; Tamachi, Tomohide; Hosokawa, Takashi; Asai, Yo; Matsubara, Hisahiro

    2015-11-28

    A 66-year-old female presented with the main complaint of defecation trouble and abdominal distention. With diagnosis of rectal cancer, cSS, cN0, cH0, cP0, cM0 cStage II, Hartmann's operation with D3 lymph node dissection was performed and a para-aortic lymph node and a disseminated node near the primary tumor were resected. Histological examination showed moderately differentiated adenocarcinoma, pSS, pN3, pH0, pP1, pM1 (para-aortic lymph node, dissemination) fStage IV. After the operation, the patient received chemotherapy with FOLFIRI regimen. After 12 cycles of FOLFIRI regimen, computed tomography (CT) detected an 11 mm of liver metastasis in the postero-inferior segment of right hepatic lobe. With diagnosis of liver metastatic recurrence, we performed partial hepatectomy. Histological examination revealed moderately differentiated adenocarcinoma as a metastatic rectal cancer with cut end microscopically positive. After the second operation, the patient received chemotherapy with TS1 alone for 2 years. Ten months after the break, CT detected a 20 mm of para-aortic lymph node metastasis and a 10 mm of lymph node metastasis at the hepato-duodenal ligament. With diagnosis of lymph node metastatic recurrences, we performed lymph node dissection. Histological examination revealed moderately differentiated adenocarcinoma as metastatic rectal cancer in para-aortic and hepato-duodenal ligament areas. After the third operation, we started chemotherapy with modified FOLFOX6 regimen. After 2 cycles of modified FOLFOX6 regimen, due to the onset of neutropenia and liver dysfunction, we switched to capecitabine alone and continued it for 6 mo and then stopped. Eleven months after the break, CT detected two swelling 12 mm of lymph nodes at the left supraclavicular region. With diagnosis of Virchow lymph node metastatic recurrence, we started chemotherapy with capecitabine plus bevacizumab regimen. Due to the onset of neutropenia and hand foot syndrome (Grade 3), we managed to continue capecitabine administration with extension of interval period and dose reduction. After 2 years and 2 mo from starting capecitabine plus bevacizumab regimen, Virchow lymph nodes had slowly grown up to 17 mm. Because no recurrence had been detected besides Virchow lymph nodes for this follow up period, considering the side effects and quality of life, surgical resection was selected. We performed left supraclavicular lymph node dissection. Histological examination revealed moderately differentiated adenocarcinoma as a metastatic rectal cancer. After the fourth operation, the patient selected follow up without chemotherapy. Now we follow up her without recurrence and keep her quality of life high.

  8. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia.

    PubMed

    Aly, H; Mohsen, L; Badrawi, N; Gabr, H; Ali, Z; Akmal, D

    2012-09-01

    Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.

  9. Cohomology and deformation of 𝔞𝔣𝔣(1|1) acting on differential operators

    NASA Astrophysics Data System (ADS)

    Basdouri, Khaled; Omri, Salem

    We consider the 𝔞𝔣𝔣(1|1)-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the second differential cohomology of the Lie superalgebra 𝔞𝔣𝔣(1|1) with coefficients in differential operators acting on the spaces of weighted densities. We classify formal deformations of the 𝔞𝔣𝔣(1|1)-module structure on the superspaces of symbols of differential operators. We prove that any formal deformation of a given infinitesimal deformation of this structure is equivalent to its infinitesimal part. This work is the simplest superization of a result by Basdouri [Deformation of 𝔞𝔣𝔣(1)-modules of pseudo-differential operators and symbols, J. Pseudo-differ. Oper. Appl. 7(2) (2016) 157-179] and application of work by Basdouri et al. [First cohomology of 𝔞𝔣𝔣(1) and 𝔞𝔣𝔣(1|1) acting on linear differential operators, Int. J. Geom. Methods Mod. Phys. 13(1) (2016)].

  10. Local algebraic analysis of differential systems

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2015-06-01

    We propose a new approach for studying the compatibility of partial differential equations. This approach is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As applications, we consider systems including the wave equation and the sine-Gordon equation.

  11. A theory of fine structure image models with an application to detection and classification of dementia.

    PubMed

    O'Neill, William; Penn, Richard; Werner, Michael; Thomas, Justin

    2015-06-01

    Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible.

  12. Contamination levels of mercury in the muscle of female and male spiny dogfishes (Squalus acanthias) caught off the coast of Japan.

    PubMed

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Kotaki, Yuichi; Kato, Yoshihisa; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi

    2009-11-01

    We analyzed the total mercury (T-Hg) and stable isotopes of (13)C and (15)N in the muscle of spiny dogfish (Squalus acanthias) caught off the coast of Japan. The average body length of the female spiny dogfish sampled (94.9+/-20.2 cm, 50.5-131.0 cm, n=40) was significantly larger than that of the males sampled (77.8+/-10.8 cm, 55.5-94.0 cm, n=35), although the ages of the samples were unknown. The T-Hg concentration in the muscle samples rapidly increased after maturity in the females (larger than about 120 cm) and males (larger than about 90 cm), followed by a continued gradual increase. Contamination level of T-Hg in female muscle samples (0.387+/-0.378 microg(wet g)(-1), n=40) was slightly higher than that in male muscle samples (0.316+/-0.202 microg(wet g)(-1), n=35), probably due to the greater longevity of females. In contrast, the contamination level of T-Hg in females smaller than 94.0 cm in length (0.204+/-0.098 microg(wet g)(-1), n=20) was slightly lower than that in the males, probably due to the faster growth rate of females. Although the partial differential(13)C and partial differential(15)N values in the muscle samples increased with an increase in body length, there were no significant differences between the females (-17.2+/-0.4 per thousand and 12.4+/-0.9 per thousand, respectively) and males (-17.3+/-0.4 per thousand and 12.4+/-0.8 per thousand, respectively). A positive correlation was found between partial differential(13)C and partial differential(15)N values, suggesting trophic enrichment due to the growth.

  13. A Model for the Oxidation of C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2003-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.

  14. Dynamic characteristics of a variable-mass flexible missile

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1970-01-01

    The general motion of a variable mass flexible missile with internal flow and aerodynamic forces is considered. The resulting formulation comprises six ordinary differential equations for rigid body motion and three partial differential equations for elastic motion. The simultaneous differential equations are nonlinear and possess time-dependent coefficients. The differential equations are solved by a semi-analytical method leading to a set of purely ordinary differential equations which are then solved numerically. A computer program was developed for the numerical solution and results are presented for a given set of initial conditions.

  15. Discovery and Optimization of Low-Storage Runge-Kutta Methods

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DISCOVERY AND OPTIMIZATION OF LOW-STORAGE RUNGE-KUTTA METHODS by Matthew T. Fletcher June 2015... methods are an important family of iterative methods for approximating the solutions of ordinary differential equations (ODEs) and differential...algebraic equations (DAEs). It is common to use an RK method to discretize in time when solving time dependent partial differential equations (PDEs) with a

  16. The decay widths, the decay constants, and the branching fractions of a resonant state

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael

    2015-08-01

    We introduce the differential and the total decay widths of a resonant (Gamow) state decaying into a continuum of stable states. When the resonance has several decay modes, we introduce the corresponding partial decay widths and branching fractions. In the approximation that the resonance is sharp, the expressions for the differential, partial and total decay widths of a resonant state bear a close resemblance with the Golden Rule. In such approximation, the branching fractions of a resonant state are the same as the standard branching fractions obtained by way of the Golden Rule. We also introduce dimensionless decay constants along with their associated differential decay constants, and we express experimentally measurable quantities such as the branching fractions and the energy distributions of decay events in terms of those dimensionless decay constants.

  17. Asymptotic analysis of the local potential approximation to the Wetterich equation

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Sarkar, Sarben

    2018-06-01

    This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D  <  2, one obtains a forward heat equation whose initial-value problem is well-posed. However, for D  >  2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D  =  1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g  >  0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.

  18. Patterns of differentiation among endangered pondberry populations

    Treesearch

    Craig S Echt; Dennis Deemer; Danny Gustafson

    2011-01-01

    Pondberry, Lindera melissifolia, is an endangered and partially clonally reproducing shrub species found in isolated populations that inhabit seasonally wet depressions in forested areas of the lower Mississippi River alluvial valley and southeastern regions of the United States. With eleven microsatellite loci, we quantified population genetic differentiation and...

  19. Metabonomics reveals metabolite changes in biliary atresia infants.

    PubMed

    Zhou, Kejun; Xie, Guoxiang; Wang, Jun; Zhao, Aihua; Liu, Jiajian; Su, Mingming; Ni, Yan; Zhou, Ying; Pan, Weihua; Che, Yanran; Zhang, Ting; Xiao, Yongtao; Wang, Yang; Wen, Jie; Jia, Wei; Cai, Wei

    2015-06-05

    Biliary atresia (BA) is a rare neonatal cholestatic disorder caused by obstruction of extra- and intra-hepatic bile ducts. If untreated, progressive liver cirrhosis will lead to death within 2 years. Early diagnosis and operation improve the outcome significantly. Infants with neonatal hepatitis syndrome (NHS) present similar symptoms, confounding the early diagnosis of BA. The lack of noninvasive diagnostic methods to differentiate BA from NHS greatly delays the surgery of BA infants, thus deteriorating the outcome. Here we performed a metabolomics study in plasma of BA, NHS, and healthy infants using gas chromatography-time-of-flight mass spectrometry. Scores plots of orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and healthy infants. Eighteen metabolites were found to be differentially expressed between BA and NHS, among which seven (l-glutamic acid, l-ornithine, l-isoleucine, l-lysine, l-valine, l-tryptophan, and l-serine) were amino acids. The altered amino acids were quantitatively verified using ultraperformance liquid chromatography-tandem mass spectrometry. Ingenuity pathway analysis revealed the network of "Cellular Function and Maintenance, Hepatic System Development and Function, Neurological Disease" was altered most significantly. This study suggests that plasma metabolic profiling has great potential in differentiating BA from NHS, and amino acid metabolism is significantly different between the two diseases.

  20. Minimum time search in uncertain dynamic domains with complex sensorial platforms.

    PubMed

    Lanillos, Pablo; Besada-Portas, Eva; Lopez-Orozco, Jose Antonio; de la Cruz, Jesus Manuel

    2014-08-04

    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models.

  1. Minimum Time Search in Uncertain Dynamic Domains with Complex Sensorial Platforms

    PubMed Central

    Lanillos, Pablo; Besada-Portas, Eva; Lopez-Orozco, Jose Antonio; de la Cruz, Jesus Manuel

    2014-01-01

    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models. PMID:25093345

  2. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  3. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  4. Solution of an eigenvalue problem for the Laplace operator on a spherical surface. M.S. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Walden, H.

    1974-01-01

    Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.

  5. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    NASA Astrophysics Data System (ADS)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  6. Planning actions in robot automated operations

    NASA Technical Reports Server (NTRS)

    Das, A.

    1988-01-01

    Action planning in robot automated operations requires intelligent task level programming. Invoking intelligence necessiates a typical blackboard based architecture, where, a plan is a vector between the start frame and the goal frame. This vector is composed of partially ordered bases. A partial ordering of bases presents good and bad sides in action planning. Partial ordering demands the use of a temporal data base management system.

  7. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography.

    PubMed

    Chung, Ji-Woo; Kim, Kyung-Min; Yoon, Tae-Ung; Kim, Seung-Ik; Jung, Tae-Sung; Han, Sang-Sup; Bae, Youn-Sang

    2017-12-22

    A novel power partial-discard (PPD) strategy was developed as a variant of the partial-discard (PD) operation to further improve the separation performance of the simulated moving bed (SMB) process. The PPD operation varied the flow rates of discard streams by introducing a new variable, the discard amount (DA) as well as varying the reported variable, discard length (DL), while the conventional PD used fixed discard flow rates. The PPD operations showed significantly improved purities in spite of losses in recoveries. Remarkably, the PPD operation could provide more enhanced purity for a given recovery or more enhanced recovery for a given purity than the PD operation. The two variables, DA and DL, in the PPD operation played a key role in achieving the desired purity and recovery. The PPD operations will be useful for attaining high-purity products with reasonable recoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.; Mozzhilkin, Vladimir V.

    2006-05-01

    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.

  9. Partial differential equation models in the socio-economic sciences.

    PubMed

    Burger, Martin; Caffarelli, Luis; Markowich, Peter A

    2014-11-13

    Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Estimating varying coefficients for partial differential equation models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  11. Survey of the status of finite element methods for partial differential equations

    NASA Technical Reports Server (NTRS)

    Temam, Roger

    1986-01-01

    The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.

  12. An Elementary Introduction to Recently Developed Computational Methods for Solving Singularly Perturbed Partial Differential Equations Arising in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Srivastava, Akanksha

    2013-01-01

    This paper presents a survey of innovative approaches of the most effective computational techniques for solving singular perturbed partial differential equations, which are useful because of their numerical and computer realizations. Many applied problems appearing in semiconductors theory, biochemistry, kinetics, theory of electrical chains, economics, solid mechanics, fluid dynamics, quantum mechanics, and many others can be modelled as singularly perturbed systems. Here, we summarize a wide range of research articles published by numerous researchers during the last ten years to get a better view of the present scenario in this area of research.

  13. A semi-direct procedure using a local relaxation factor and its application to an internal flow problem

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1984-01-01

    Generally, fast direct solvers are not directly applicable to a nonseparable elliptic partial differential equation. This limitation, however, is circumvented by a semi-direct procedure, i.e., an iterative procedure using fast direct solvers. An efficient semi-direct procedure which is easy to implement and applicable to a variety of boundary conditions is presented. The current procedure also possesses other highly desirable properties, i.e.: (1) the convergence rate does not decrease with an increase of grid cell aspect ratio, and (2) the convergence rate is estimated using the coefficients of the partial differential equation being solved.

  14. Solution of partial differential equations on vector and parallel computers

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.; Voigt, R. G.

    1985-01-01

    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed.

  15. Unsteady boundary layer flow over a sphere in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohammad, Nurul Farahain; Waini, Iskandar; Kasim, Abdul Rahman Mohd; Majid, Nurazleen Abdul

    2017-08-01

    This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to attain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the nonsimilar governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph.

  16. Analytical solutions for systems of partial differential-algebraic equations.

    PubMed

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  17. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    PubMed

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  18. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  19. Improved Sensitivity Relations in State Constrained Optimal Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettiol, Piernicola, E-mail: piernicola.bettiol@univ-brest.fr; Frankowska, Hélène, E-mail: frankowska@math.jussieu.fr; Vinter, Richard B., E-mail: r.vinter@imperial.ac.uk

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjointmore » state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because it is validated for a stronger set of necessary conditions.« less

  20. Retrograde renal hilar dissection and segmental arterial clamping: a simple modification to achieve super-selective robotic partial nephrectomy.

    PubMed

    Greene, Richard N; Sutherland, Douglas E; Tausch, Timothy J; Perez, Deo S

    2014-03-01

    Super-selective vascular control prior to robotic partial nephrectomy (also known as 'zero-ischemia') is a novel surgical technique that promises to reduce warm ischemia time. The technique has been shown to be feasible but adds substantial technical complexity and cost to the procedure. We present a simplified retrograde dissection of the renal hilum to achieve selective vascular control during robotic partial nephrectomy. Consecutive patients with stage 1 solid and complex cystic renal masses underwent robotic partial nephrectomies with selective vascular control using a modification to previously described super-selective robotic partial nephrectomy. In each case, the renal arterial branch supplying the mass and surrounding parenchyma was dissected in a retrograde fashion from the tumor. Intra-renal dissection of the interlobular artery was not performed. Intra-operative immunofluorescence was not utilized as assessment of parenchymal ischemia was documented before partial nephrectomy. Data was prospectively collected in an IRB-approved partial nephrectomy database. Operative variables between patients undergoing super-selective versus standard robotic partial nephrectomy were compared. Super-selective partial nephrectomy with retrograde hilar dissection was successfully completed in five consecutive patients. There were no complications or conversions to traditional partial nephrectomy. All were diagnosed with renal cell carcinoma and surgical margins were all negative. Estimated blood loss, warm ischemia time, operative time and length of stay were all comparable between patients undergoing super-selective and standard robotic partial nephrectomy. Retrograde hilar dissection appears to be a feasible and safe approach to super-selective partial nephrectomy without adding complex renovascular surgical techniques or cost to the procedure.

  1. Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Lauret, M.; Wehner, W.; Schuster, E.

    2015-11-01

    For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.

  2. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  3. Lagrange formula for differential operators on a tree-graph and the resolvents of well-posed restrictions of operator

    NASA Astrophysics Data System (ADS)

    Koshkarbayev, Nurbol; Kanguzhin, Baltabek

    2017-09-01

    In this paper we study the question on the full description of well-posed restrictions of given maximal differential operator on a tree-graph. Lagrange formula for differential operator on a tree with Kirchhoff conditions at its internal vertices is presented.

  4. An Introduction to Computational Physics

    NASA Astrophysics Data System (ADS)

    Pang, Tao

    2010-07-01

    Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.

  5. Parallel Algorithm Solves Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  6. 75 FR 33747 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Notice of Intent to Delete the soils of Operable Unit 1 and the underlying ground water of the... preclude future actions under Superfund. This partial deletion pertains to the soils of Operable Unit 1 and... Partial Deletion for the soils of Operable Unit 1 and the underlying ground water of the approximately 8...

  7. Primary Papillary Serous Carcinoma of the Fallopian Tube Presenting as a Vaginal Mass: A Case Report and Review of the Literature.

    PubMed

    Kadour-Peero, Einav; Sagi-Dain, Lena; Cohen, Gil; Korobochka, Roman; Agbarya, Abed; Bejar, Jacob; Sagi, Shlomi

    2018-05-07

    BACKGROUND There is now evidence to support that some cases of high-grade serous papillary carcinoma arise from the fallopian tubes rather than the ovaries. Common symptoms at presentation include abdominal pain and swelling, vomiting, altered bowel habit and urinary symptoms. To our knowledge, this is the first case of serous papillary carcinoma presenting as a vaginal mass lesion. CASE REPORT A 41-year-old woman was referred to the Bnai-Zion Medical Center with the main complaint of irregular vaginal bleeding, vaginal mucous discharge, and suspected pelvic mass. Physical examination showed a soft, painless mass, measuring about 10 cm in diameter located mainly in the recto-vaginal septum, but not involving the uterus. Ultrasound examination showed no abnormal ovarian or uterine findings. Transvaginal biopsies of the mass showed a poorly differentiated serous papillary carcinoma of ovarian, tubal, or peritoneal origin. The physical examination and imaging findings strongly indicated an inoperable tumor, and the patient was treated with neoadjuvant (pre-surgical) chemotherapy. Pre-operative computed tomography (CT) imaging showed the partial involvement of the colon, and so surgical treatment included total abdominal hysterectomy, bilateral salpingo-oophorectomy, omentectomy, partial vaginectomy, anterior rectal resection, and lymph node dissection. Histopathology of the surgical specimens showed a poorly differentiated serous carcinoma originating from the fimbria of the right fallopian tube. CONCLUSIONS To the best of our knowledge, this is the first report to describe primary fallopian tube papillary serous carcinoma presenting as a vaginal mass. Therefore, physicians should be aware of this possible diagnosis.

  8. Semicommuting and Commuting Operators for the Heun Family

    NASA Astrophysics Data System (ADS)

    Batic, D.; Mills, D.; Nowakowski, M.

    2018-04-01

    We derive the most general families of first- and second-order differential operators semicommuting with the Heun class differential operators. Among these families, we classify all the families that commute with the Heun class. In particular, we find that a certain generalized Heun equation commutes with the Heun differential operator, which allows constructing a general solution of a complicated fourth-order linear differential equation with variable coefficients whose solution cannot be obtained using Maple 16.

  9. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering.

    PubMed

    Brockmann, D; Morgenroth, E

    2010-03-01

    In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    PubMed

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  11. Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface

    NASA Astrophysics Data System (ADS)

    Bibi, Madiha; Khalil-Ur-Rehman; Malik, M. Y.; Tahir, M.

    2018-04-01

    In the present article, unsteady flow field characteristics of the Williamson fluid model are explored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through coupled partial differential equations to the used shooting method for a numerical solution. The obtained partial differential equations are converted into ordinary differential equations as an initial value problem. The shooting method is used to find a numerical solution. The mathematical modeling yields physical parameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration are a decreasing function of the unsteadiness parameter.

  12. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation and play responsiveness. By testing these drugs in animals which were either familiar or unfamiliar to the test cage, we show that environmental factors differentially modulate the effects of cannabinoid and opioid drugs on social play. These results support and extend our previous findings suggesting that, although cannabinoid and opioid systems interact in the modulation of social play behavior in adolescent rats, they do so through partially dissociable behavioral and pharmacological mechanisms. PMID:18434104

  13. Partial differential equation-based localization of a monopole source from a circular array.

    PubMed

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  14. On asymptotic behavior and energy distribution for some one-dimensional non-parabolic diffusion problems

    NASA Astrophysics Data System (ADS)

    Kim, Seonghak; Yan, Baisheng

    2018-06-01

    We study some non-parabolic diffusion problems in one space dimension, where the diffusion flux exhibits forward and backward nature of the Perona–Malik, Höllig or non-Fourier type. Classical weak solutions to such problems are constructed in a way to capture some expected and unexpected properties, including anomalous asymptotic behaviors and energy dissipation or allocation. Specific properties of solutions will depend on the type of the diffusion flux, but the primary method of our study relies on reformulating diffusion equations involved as an inhomogeneous partial differential inclusion and on constructing solutions from the differential inclusion by a combination of the convex integration and Baire’s category methods. In doing so, we introduce the appropriate notion of subsolutions of the partial differential inclusion and their transition gauge, which plays a pivotal role in dealing with some specific features of the constructed weak solutions.

  15. Miura-type transformations for lattice equations and Lie group actions associated with Darboux-Lax representations

    NASA Astrophysics Data System (ADS)

    Berkeley, George; Igonin, Sergei

    2016-07-01

    Miura-type transformations (MTs) are an essential tool in the theory of integrable nonlinear partial differential and difference equations. We present a geometric method to construct MTs for differential-difference (lattice) equations from Darboux-Lax representations (DLRs) of such equations. The method is applicable to parameter-dependent DLRs satisfying certain conditions. We construct MTs and modified lattice equations from invariants of some Lie group actions on manifolds associated with such DLRs. Using this construction, from a given suitable DLR one can obtain many MTs of different orders. The main idea behind this method is closely related to the results of Drinfeld and Sokolov on MTs for the partial differential KdV equation. Considered examples include the Volterra, Narita-Itoh-Bogoyavlensky, Toda, and Adler-Postnikov lattices. Some of the constructed MTs and modified lattice equations seem to be new.

  16. Medial rectus Faden operations with or without recession for partially accommodative esotropia associated with a high accommodative convergence to accommodation ratio.

    PubMed

    Akar, Serpil; Gokyigit, Birsen; Sayin, Nihat; Demirok, Ahmet; Yilmaz, Omer Faruk

    2013-01-01

    To evaluate the results of Faden operations on the medial rectus (MR) muscles with or without recession for the treatment of partially accommodative esotropia associated with a high accommodative convergence to accommodation (AC : A) ratio and to determine whether there was a decrease in the effects of posterior fixation over time. In this retrospective study, 108 of 473 patients who underwent surgery for partially accommodative esotropia with a high AC : A ratio received Faden operations on both MR muscles, and 365 received symmetric MR muscle recessions combined with a Faden operation. For the Faden operation, a satisfactory outcome of 76.9% at 1 month postoperation, decreased to 71.3% by the final follow-up visit (mean 4.8 years). A moderate positive correlation was observed between the increase in the postoperative near deviation and postoperative time. For the Faden operations combined with MR recession, a satisfactory outcome of 78.9% at 1 month post-operation, decreased to 78.4% by the final follow-up visit. A Faden operation of the MR muscles with or without recession is an effective surgical option for treating partially accommodative esotropia associated with a high AC : A ratio. For Faden operations of the MR muscles without recession, the effects of the posterior fixation decline over time.

  17. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tertmore » adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation. • Findings suggest dual functions of APOE for lipid accumulation and differentiation.« less

  18. Operation bandwidth optimization of photonic differentiators.

    PubMed

    Yan, Siqi; Zhang, Yong; Dong, Jianji; Zheng, Aoling; Liao, Shasha; Zhou, Hailong; Wu, Zhao; Xia, Jinsong; Zhang, Xinliang

    2015-07-27

    We theoretically investigate the operation bandwidth limitation of the photonic differentiator including the upper limitation, which is restrained by the device operation bandwidth and the lower limitation, which is restrained by the energy efficiency (EE) and detecting noise level. Taking the silicon photonic crystal L3 nano-cavity (PCN) as an example, for the first time, we experimentally demonstrate that the lower limitation of the operation bandwidth does exist and differentiators with different bandwidths have significantly different acceptable pulse width range of input signals, which are consistent to the theoretical prediction. Furthermore, we put forward a novel photonic differentiator scheme employing cascaded PCNs with different Q factors, which is likely to expand the operation bandwidth range of photonic differentiator dramatically.

  19. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  20. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  1. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  2. On the classification of scalar evolution equations with non-constant separant

    NASA Astrophysics Data System (ADS)

    Hümeyra Bilge, Ayşe; Mizrahi, Eti

    2017-01-01

    The ‘separant’ of the evolution equation u t   =  F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order dependencies, we show that equations with non-trivial {ρ(3)} and b  =  3 are symmetries of the ‘essentially non-linear third order equation’ for trivial {ρ(3)} , the equations with b  =  5 are symmetries of a non-quasilinear fifth order equation obtained in previous work, while for b  =  3, 4 they are symmetries of quasilinear fifth order equations.

  3. Peridynamic Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less

  4. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    PubMed

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  5. An Introduction to Computational Physics - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Pang, Tao

    2006-01-01

    Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.

  6. Intuitive Understanding of Solutions of Partially Differential Equations

    ERIC Educational Resources Information Center

    Kobayashi, Y.

    2008-01-01

    This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…

  7. Partial wave analysis for folded differential cross sections

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  8. Tumor necrosis factor-alpha antagonists: differential clinical effects by different biotechnological molecules.

    PubMed

    Licastro, F; Chiappelli, M; Ianni, M; Porcellini, E

    2009-01-01

    Inhibitors of tumor necrosis factor-alpha have deeply changed the therapy of several inflammatory human diseases. For instance, clinical management of rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis have profoundly benefited after the introduction of new therapeutic tools, such as antagonist of TNF-alpha molecule. These drugs include etanercept, a soluble TNF-alpha receptor antagonist, three anti-TNF-alpha antibodies, adalimumab, infliximab, golimumab and certolizumab a humanized Fab fragment combined with polyethylene glycol. These compounds efficiently inhibit several TNF-alpha biological-mediated effects, however, they have also shown differential clinical efficacy in several trials from different autoimmune diseases. It is of clinical relevance that non-responders to one of these drugs often positively responded to another. Different mechanisms of action and diversity in pharmacokinetics of these three compounds may partially explain different clinical effects. However, partially diverse pathogenetic mechanisms in different diseases also contribute to differential therapeutic responses. Therefore, these apparently homogeneous agents can not be considered equivalent in their clinically efficacy. Differential therapeutic actions of these drugs may be advantageously used in clinical practice and further improve the great potential of individual TNF-alpha inhibitors.

  9. Closed-form expressions for state-to-state charge-transfer differential cross sections in a modified Faddeev three-body approach

    NASA Astrophysics Data System (ADS)

    Adivi, E. Ghanbari; Brunger, M. J.; Bolorizadeh, M. A.; Campbell, L.

    2007-02-01

    The second-order Faddeev-Watson-Lovelace approximation in a modified form is applied to charge transfer from hydrogenlike target atoms by a fully stripped energetic projectile ion. The state-to-state, nlm→n'l'm' , partial transition amplitudes are calculated analytically. The method is specifically applied to the collision of protons with hydrogen atoms, where differential cross sections of different transitions are calculated for incident energies of 2.8 and 5.0MeV . It is shown that the Thomas peak is present in all transition cross sections. The partial cross sections are then summed and compared with the available forward-angle experimental data, showing good agreement.

  10. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  11. Analytical Derivation of Power Laws in Firm Size Variables from Gibrat's Law and Quasi-inversion Symmetry: A Geomorphological Approach

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki; Watanabe, Tsutomu

    2014-03-01

    We start from Gibrat's law and quasi-inversion symmetry for three firm size variables (i.e., tangible fixed assets K, number of employees L, and sales Y) and derive a partial differential equation to be satisfied by the joint probability density function of K and L. We then transform K and L, which are correlated, into two independent variables by applying surface openness used in geomorphology and provide an analytical solution to the partial differential equation. Using worldwide data on the firm size variables for companies, we confirm that the estimates on the power-law exponents of K, L, and Y satisfy a relationship implied by the theory.

  12. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    PubMed

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  13. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE PAGES

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...

    2016-01-26

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  14. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

    PubMed Central

    Xing, W. W.; Triantafyllidis, V.

    2017-01-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327

  15. Separation of Variables and Superintegrability; The symmetry of solvable systems

    NASA Astrophysics Data System (ADS)

    Kalnins, Ernest G.; Kress, Jonathan M.; Miller, Willard, Jr.

    2018-06-01

    Separation of variables methods for solving partial differential equations are of immense theoretical and practical importance in mathematical physics. They are the most powerful tool known for obtaining explicit solutions of the partial differential equations of mathematical physics. The purpose of this book is to give an up-to-date presentation of the theory of separation of variables and its relation to superintegrability. Collating and presenting it in a unified, updated and a more accessible manner, the results scattered in the literature that the authors have prepared is an invaluable resource for mathematicians and mathematical physicists in particular, as well as science, engineering, geological and biological researchers interested in explicit solutions.

  16. Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun

    2018-01-01

    In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.

  17. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    PubMed

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  18. A note on the accuracy of spectral method applied to nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Wong, Peter S.

    1994-01-01

    Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.

  19. Spectral methods in time for a class of parabolic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ierley, G.; Spencer, B.; Worthing, R.

    1992-09-01

    In this paper, we introduce a fully spectral solution for the partial differential equation u[sub t] + uu[sub x] + vu[sub xx] + [mu]u[sub xxx] + [lambda]u[sub xxxx] = O. For periodic boundary conditions in space, the use of a Fourier expansion in x admits of a particularly efficient algorithm with respect to expansion of the time dependence in a Chebyshev series. Boundary conditions other than periodic may still be treated with reasonable, though lesser, efficiency. for all cases, very high accuracy is attainable at moderate computational cost relative to the expense of variable order finite difference methods in time.more » 14 refs., 9 figs.« less

  20. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  1. Application of modified R.E.N.A.L. nephrometry score system in evaluating the retroperitoneal partial nephrectomy for T1 renal cell carcinoma.

    PubMed

    Wang, Qinzhang; Qian, Biao; Li, Qiang; Ni, Zhao; Li, Yinglong; Wang, Xinmin

    2015-01-01

    This study aims to investigate the application of the modified R.E.N.A.L. nephrometry score system in evaluating the operation difficulty of retroperitoneal partial nephrectomy in T1 renal cell carcinoma patients. A total of 52 patients with T1 renal cell carcinoma were enrolled. They all had retroperitoneal partial nephrectomy. Their clinical data was retrospectively analyzed. R.E.N.A.L. nephrometry score system was modified based on the features of retroperitoneal partial nephrectomy. The specificity, sensitivity and Youden index were compared between R.E.N.A.L. nephrometry score system and the modified R.E.N.A.L. nephrometry score system. The effect of the modified R.E.N.A.L. nephrometry score system on perioperative outcomes was analyzed. Three degrees of operation difficulty were defined by the modified R.E.N.A.L. nephrometry score system, which included the low, medium and high degree of operation difficulty. The specificity, sensitivity and Youden index of the modified R.E.N.A.L. nephrometry score system were better than those of the original R.E.N.A.L. nephrometry score system. Compared with low degree of operation difficulty, patients with medium and high degree of operation difficulty had significantly higher levels of operative time, warm ischemia time, and intraoperative blood loss (P < 0.05). And, the levels of operative time, warm ischemia time, and intraoperative blood loss in patients with high degree were significantly higher than those in patients with medium degree (P < 0.05). The modified R.E.N.A.L. nephrometry score system has a good effect in evaluating the operation difficulty of retroperitoneal partial nephrectomy.

  2. Complex partial status epilepticus: a recurrent problem.

    PubMed Central

    Cockerell, O C; Walker, M C; Sander, J W; Shorvon, S D

    1994-01-01

    Twenty patients with complex partial status epilepticus were identified retrospectively from a specialist neurology hospital. Seventeen patients experienced recurrent episodes of complex partial status epilepticus, often occurring at regular intervals, usually over many years, and while being treated with effective anti-epileptic drugs. No unifying cause for the recurrences, and no common epilepsy aetiologies, were identified. In spite of the frequency of recurrence and length of history, none of the patients showed any marked evidence of cognitive or neurological deterioration. Complex partial status epilepticus is more common than is generally recognised, should be differentiated from other forms of non-convulsive status, and is often difficult to treat. PMID:8021671

  3. Relationship between the Temporal Changes in Positron-Emission-Tomography-Imaging-Based Textural Features and Pathologic Response and Survival in Esophageal Cancer Patients.

    PubMed

    Yip, Stephen S F; Coroller, Thibaud P; Sanford, Nina N; Mamon, Harvey; Aerts, Hugo J W L; Berbeco, Ross I

    2016-01-01

    Although change in standardized uptake value (SUV) measures and PET-based textural features during treatment have shown promise in tumor response prediction, it is unclear which quantitative measure is the most predictive. We compared the relationship between PET-based features and pathologic response and overall survival with the SUV measures in esophageal cancer. Fifty-four esophageal cancer patients received PET/CT scans before and after chemoradiotherapy. Of these, 45 patients underwent surgery and were classified into complete, partial, and non-responders to the preoperative chemoradiation. SUVmax and SUVmean, two cooccurrence matrix (Entropy and Homogeneity), two run-length matrix (RLM) (high-gray-run emphasis and Short-run high-gray-run emphasis), and two size-zone matrix (high-gray-zone emphasis and short-zone high-gray emphasis) textures were computed. The relationship between the relative difference of each measure at different treatment time points and the pathologic response and overall survival was assessed using the area under the receiver-operating-characteristic curve (AUC) and Kaplan-Meier statistics, respectively. All Textures, except Homogeneity, were better related to pathologic response than SUVmax and SUVmean. Entropy was found to significantly distinguish non-responders from the complete (AUC = 0.79, p = 1.7 × 10(-4)) and partial (AUC = 0.71, p = 0.01) responders. Non-responders can also be significantly differentiated from partial and complete responders by the change in the run-length and size-zone matrix textures (AUC = 0.71-0.76, p ≤ 0.02). Homogeneity, SUVmax, and SUVmean failed to differentiate between any of the responders (AUC = 0.50-0.57, p ≥ 0.46). However, none of the measures were found to significantly distinguish between complete and partial responders with AUC <0.60 (p = 0.37). Median Entropy and RLM textures significantly discriminated patients with good and poor survival (log-rank p < 0.02), while all other textures and survival were poorly related (log-rank p > 0.25). For the patients studied, temporal changes in Entropy and all RLM were better correlated with pathological response and survival than the SUV measures. The hypothesis that these metrics can be used as clinical predictors of better patient outcomes will be tested in a larger patient dataset in the future.

  4. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    PubMed

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  5. Entanglement cost under positive-partial-transpose-preserving operations.

    PubMed

    Audenaert, K; Plenio, M B; Eisert, J

    2003-01-17

    We study the entanglement cost under quantum operations preserving the positivity of the partial transpose (PPT operations). We demonstrate that this cost is directly related to the logarithmic negativity, thereby providing the operational interpretation for this entanglement measure. As examples we discuss general Werner states and arbitrary bipartite Gaussian states. Then we prove that for the antisymmetric Werner state PPT cost and PPT entanglement of distillation coincide. This is the first example of a truly mixed state for which entanglement manipulation is asymptotically reversible, which points towards a unique entanglement measure under PPT operations.

  6. Use and Availability of Continuous Streamflow Records in Tennessee

    DTIC Science & Technology

    1988-01-01

    which are operated for a water budget study of Reelfoot Lake and two stations for a base flow-groundwater study at the Department of Energy’s Oak...continuous lake stage; (3) 5 flood hydrograph; (4) 75 low-flow partial-record; (5) 84 crest-stage partial-record; and (6) 6 flood-profile partial...operated for planning or design purposes. There is one gage at each of three water-supply studies, five stations are used in a lake sedimentation

  7. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea.

    PubMed

    Hildebrand, Michael S; Dahl, Hans-Henrik M; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K; de Silva, Michelle G

    2005-12-01

    The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment.

  8. Survival of Partially Differentiated Mouse Embryonic Stem Cells in the Scala Media of the Guinea Pig Cochlea

    PubMed Central

    Hildebrand, Michael S.; Dahl, Hans-Henrik M.; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K.

    2005-01-01

    The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment. PMID:16208453

  9. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.

    PubMed

    Cooper, F; Hyman, J M; Khare, A

    2001-08-01

    Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial differential equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, and the Kadomtsev-Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support. We have derived and investigate a new KdV-like Hamiltonian partial differential equation from a four-parameter Lagrangian where the nonlinear dispersion gives rise to solitons with compact support (compactons). The new equation does not seem to be integrable and only mass, momentum, and energy seem to be conserved; yet, the solitons display almost the same modal decompositions and structural stability observed in integrable partial differential equations. The compactons formed from arbitrary initial data, are nonlinearly self-stabilizing, and maintain their coherence after multiple collisions. The robustness of these compactons and the inapplicability of the inverse scattering tools, that worked so well for the KdV equation, make it clear that there is a fundamental mechanism underlying the processes beyond integrability. We have found explicit formulas for multiple classes of compact traveling wave solutions. When there are more than one compacton solution for a particular set of parameters, the wider compacton is the minimum of a reduced Hamiltonian and is the only one that is stable.

  10. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  11. NonMarkov Ito Processes with 1- state memory

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  12. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  13. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  14. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  15. Midwest Generation, Waukegan Generating Station; Order Partially Denying And Partially Granting Petition For Objection To Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database.

  16. Robot-assisted approach improves surgical outcomes in obese patients undergoing partial nephrectomy.

    PubMed

    Malkoc, Ercan; Maurice, Matthew J; Kara, Onder; Ramirez, Daniel; Nelson, Ryan J; Caputo, Peter A; Mouracade, Pascal; Stein, Robert; Kaouk, Jihad H

    2017-02-01

    To assess the impact of approach on surgical outcomes in otherwise healthy obese patients undergoing partial nephrectomy for small renal masses. Using our institutional partial nephrectomy database, we abstracted data on otherwise healthy (Charlson comorbidity score ≤1 and bilateral kidneys), obese patients (body mass index >30 kg/m 2 ) with small renal masses (<4 cm) treated between 2011 and 2015. The primary outcomes were intra-operative transfusion, operating time, length of hospital stay (LOS), and postoperative complications. The association between approach, open (OPN) vs robot-assisted partial nephrectomy (RAPN), and outcomes was assessed by univariable and multivariable logistic regression analyses. Covariates included age, gender, obesity severity, tumour size and tumour complexity. Of 237 obese patients undergoing partial nephrectomy, 25% underwent OPN and 75% underwent RAPN. Apart from larger tumour size in the OPN group (2.8 vs 2.5 cm; P = 0.02), there was no significant difference between groups. The rate of intra-operative blood transfusion (1.1 vs 10%; P = 0.01), the median operating time (180 vs 207 min; P < 0.01) and the median ischaemia time (19.5 vs 27 min; P < 0.01) were all greater for OPN. The LOS was significantly shorter for RAPN (3 vs 4 days; P < 0.01). While the overall complication rate was higher for OPN (15.8 vs 31.7%; P < 0.01), major complications were not significantly different (5.6 vs 1.7%; P = 0.20). On multivariable analyses, OPN independently predicted longer operating time, longer length of stay, and more overall complications. At a high-volume centre, the robot-assisted approach offers less blood transfusion, shorter operating time, faster recovery, and fewer peri-operative complications compared with the open approach in obese patients undergoing partial nephrectomy for small renal masses. In this setting, RAPN may be a preferable treatment option. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  17. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  18. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  19. A theory of fine structure image models with an application to detection and classification of dementia

    PubMed Central

    Penn, Richard; Werner, Michael; Thomas, Justin

    2015-01-01

    Background Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. Methods In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. Results We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Conclusions Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible. PMID:26029638

  20. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows.

    PubMed

    Siebert, Stefan; Robinson, Mark D; Tintori, Sophia C; Goetz, Freya; Helm, Rebecca R; Smith, Stephen A; Shaner, Nathan; Haddock, Steven H D; Dunn, Casey W

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing.

  1. Differential Gene Expression in the Siphonophore Nanomia bijuga (Cnidaria) Assessed with Multiple Next-Generation Sequencing Workflows

    PubMed Central

    Siebert, Stefan; Robinson, Mark D.; Tintori, Sophia C.; Goetz, Freya; Helm, Rebecca R.; Smith, Stephen A.; Shaner, Nathan; Haddock, Steven H. D.; Dunn, Casey W.

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing. PMID:21829563

  2. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  3. Electron-pair-production cross section in the tip region of the positron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, K.K.; Sharma, D.K.

    1984-11-01

    The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less

  4. GRHL3/GET1 and Trithorax Group Members Collaborate to Activate the Epidermal Progenitor Differentiation Program

    PubMed Central

    Hopkin, Amelia Soto; Gordon, William; Klein, Rachel Herndon; Espitia, Francisco; Daily, Kenneth; Zeller, Michael; Baldi, Pierre; Andersen, Bogi

    2012-01-01

    The antagonistic actions of Polycomb and Trithorax are responsible for proper cell fate determination in mammalian tissues. In the epidermis, a self-renewing epithelium, previous work has shown that release from Polycomb repression only partially explains differentiation gene activation. We now show that Trithorax is also a key regulator of epidermal differentiation, not only through activation of genes repressed by Polycomb in progenitor cells, but also through activation of genes independent of regulation by Polycomb. The differentiation associated transcription factor GRHL3/GET1 recruits the ubiquitously expressed Trithorax complex to a subset of differentiation genes. PMID:22829784

  5. A Perron-Frobenius Type of Theorem for Quantum Operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng

    2017-10-01

    We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.

  6. Population response of the northern red-backed vole (Clethrionomys rutilus) to differentially cut white spruce forest.

    Treesearch

    Stephen D. West; R. Glenn Ford; John C. Zasada

    1980-01-01

    The population response of the northern red-backed vole (Clethrionomys rutilus) to a differentially cut white spruce (Picea glauca) forest 30 km southwest of Fairbanks, Alaska, was monitored by simultaneous livetrapping in a clearcut, in a partially cut or shelterwood area, and in an area of uncut forest. During the first...

  7. Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions

    ERIC Educational Resources Information Center

    Aliev, Nihan; Jahanshahi, Mohammad

    2002-01-01

    Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the…

  8. Direct Shear Failure in Reinforced Concrete Beams under Impulsive Loading

    DTIC Science & Technology

    1983-09-01

    115 References ............... ............................. 119 Tables . ............................. 124 Figures ............ 1..............30...8217. : = differentiable functions of time 1 = elastic modulus enhancement function 4) 41’ = constants for a given mode W’, = frequency w tfirst thickness-shear...are defined by linear partial differential equations. The analytic results are compared to data gathered on one-way slabs loaded with impulsive blast

  9. A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, Christine, E-mail: christine.gruen@univ-brest.fr

    We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.

  10. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  11. Operant conditioning of enhanced pain sensitivity by heat-pain titration.

    PubMed

    Becker, Susanne; Kleinböhl, Dieter; Klossika, Iris; Hölzl, Rupert

    2008-11-15

    Operant conditioning mechanisms have been demonstrated to be important in the development of chronic pain. Most experimental studies have investigated the operant modulation of verbal pain reports with extrinsic reinforcement, such as verbal reinforcement. Whether this reflects actual changes in the subjective experience of the nociceptive stimulus remained unclear. This study replicates and extends our previous demonstration that enhanced pain sensitivity to prolonged heat-pain stimulation could be learned in healthy participants through intrinsic reinforcement (contingent changes in nociceptive input) independent of verbal pain reports. In addition, we examine whether different magnitudes of reinforcement differentially enhance pain sensitivity using an operant heat-pain titration paradigm. It is based on the previously developed non-verbal behavioral discrimination task for the assessment of sensitization, which uses discriminative down- or up-regulation of stimulus temperatures in response to changes in subjective intensity. In operant heat-pain titration, this discriminative behavior and not verbal pain report was contingently reinforced or punished by acute decreases or increases in heat-pain intensity. The magnitude of reinforcement was varied between three groups: low (N1=13), medium (N2=11) and high reinforcement (N3=12). Continuous reinforcement was applied to acquire and train the operant behavior, followed by partial reinforcement to analyze the underlying learning mechanisms. Results demonstrated that sensitization to prolonged heat-pain stimulation was enhanced by operant learning within 1h. The extent of sensitization was directly dependent on the received magnitude of reinforcement. Thus, operant learning mechanisms based on intrinsic reinforcement may provide an explanation for the gradual development of sustained hypersensitivity during pain that is becoming chronic.

  12. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.

    PubMed

    Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N

    2013-01-01

    Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.

  13. Depth and Differentiation of the Orientale Melt Lake

    NASA Technical Reports Server (NTRS)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact melt emplacement and evolution in lunar multi-ring basins is poorly understood since impact melt deposits in basins are generally buried by mare basalt fill and obscured by subsequent impact cratering. The relatively young Orientale basin, which is only partially flooded with mare basalt, opens a rare window into basin-scale impact melts. We describe the geology of impact melt-related facies in Orientale and suggest that the central depression of Orientale may represent a solidified impact melt lake that vertically subsided shortly after basin formation due to solidification and cooling. We use Lunar Orbiter Laser Altimeter (LOLA) data to measure the depth (approx. 1.75 km) and diameter (approx 350 km) of this central depression. If all the observed subsidence of the central depression is due to solidification and cooling, the melt lake should be approx 12.5-16 km deep, far more voluminous (approx 106 km3) than the largest known differentiated igneous intrusions on Earth. We investigate the possibility that the Orientale melt lake has differentiated and model 1) the bulk composition of the melt lake, 2) the operation of melt mixing in the melt lake, and 3) the chemical evolution of the resulting liquids on the An-Fo-Qz ternary in order to predict the lithologies that might be present in the solidified Orientale melt lake. Finally, we consider the possible significance of these lithologies.

  14. Validity of GNRB® arthrometer compared to Telos™ in the assessment of partial anterior cruciate ligament tears.

    PubMed

    Lefevre, N; Bohu, Y; Naouri, J F; Klouche, S; Herman, S

    2014-02-01

    The main goal of this study was to compare the results of the GNRB(®) arthrometer to those of Telos™ in the diagnosis of partial thickness tears of the anterior cruciate ligament (ACL). A prospective study performed January-December 2011 included all patients presenting with a partial or full-thickness ACL tears without ACL reconstruction and with a healthy contralateral knee. Anterior laxity was measured in all patients by the Telos™ and GNRB(®) devices. This series included 139 patients, mean age 30.7 ± 9.3 years. Arthroscopic reconstruction was performed in 109 patients, 97 for complete tears and 12 single bundle reconstructions for partial thickness tears. Conservative treatment was proposed in 30 patients with a partial thickness tear. The correlation between the two devices was evaluated by the Spearman coefficient. The optimal laxity thresholds were determined with ROC curves, and the diagnostic value of the tests was assessed by the area under the curve (AUC). The differential laxities of full and partial thickness tears were significantly different with the two tests. The correlation between the results of laxity measurement with the two devices was fair, with the strongest correlation between Telos™ 250 N and GNRB(®) 250 N (r = 0.46, p = 0.00001). Evaluation of the AUC showed that the informative value of all tests was fair with the best results with the GNRB(®) 250 N: AUC = 0.89 [95 % CI 0.83-0.94]. The optimal differential laxity threshold with the GNRB(®) 250 N was 2.5 mm (Se = 84 %, Sp = 81 %). The diagnostic value of GNRB(®) was better than Telos™ for ACL partial thickness tears.

  15. On an additive partial correlation operator and nonparametric estimation of graphical models.

    PubMed

    Lee, Kuang-Yao; Li, Bing; Zhao, Hongyu

    2016-09-01

    We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance.

  16. On an additive partial correlation operator and nonparametric estimation of graphical models

    PubMed Central

    Li, Bing; Zhao, Hongyu

    2016-01-01

    Abstract We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance. PMID:29422689

  17. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  18. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  19. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Naik, Vijay K.

    1988-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  20. Learning partial differential equations via data discovery and sparse optimization

    NASA Astrophysics Data System (ADS)

    Schaeffer, Hayden

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.

  1. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, J. H.; Naik, V. K.

    1985-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  2. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations

    DOE PAGES

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; ...

    2012-01-01

    A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertaintymore » quantification results for a 3D PDE application.« less

  3. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  4. Learning partial differential equations via data discovery and sparse optimization.

    PubMed

    Schaeffer, Hayden

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.

  5. Learning partial differential equations via data discovery and sparse optimization

    PubMed Central

    2017-01-01

    We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection. PMID:28265183

  6. Some properties for integro-differential operator defined by a fractional formal.

    PubMed

    Abdulnaby, Zainab E; Ibrahim, Rabha W; Kılıçman, Adem

    2016-01-01

    Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator [Formula: see text] defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions.

  7. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  8. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    PubMed

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  9. Proceedings of the Dundee Conference (10th) Held in Dundee, Scotland on July 1988. Ordinary and Partial Differential Equations. Volume 2

    DTIC Science & Technology

    1988-07-01

    a priori inequalities with applications to R J Knops boundary value problems 40 Singular systems of differential equations V G Sigiilito S L...Stochastic functional differential equations S E A Mohammed 100 Optimal control of variational inequalities 125 Ennio de Giorgi Colloquium V Barbu P Kr e...location of the period-doubled bifurcation point varies slightly with Zc [ 3 ]. In addition, no significant effect is found if a smoother functional

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isa, Sharena Mohamad; Ali, Anati

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  11. Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.

    PubMed

    Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan

    2013-01-01

    This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.

  12. [Differential diagnosis of chronic myeloic leucemia in infancy (author's transl)].

    PubMed

    Binder, C; Pichler, E; Radaskiewicz, T; Scheibenreiter, S

    1976-01-01

    A 3 months old girl presented with significant enlargement of liver, spleen and lymphnodes, with moderate anemia, thrombopenia and leucocytosis. In the differential count there was a shift to the left and an increase of monocyte-like cells (35%). Differential diagnosis included leucemoid reaction, infectious mononucleosis, myelo-proliferative disorder with a missing C chromosome and chronic myeloid leucemia. Clinical symptoms, cytochemistry and caryotype of bone marrow cells suggested infantile chronic myeloic leucemia and normal ALP index and possibly normal HbF. Treatment with 6-mercaptopurine was followed by partial remission. The therapeutic consequences of exact differential diagnosis are discussed.

  13. The evolution of the moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.; Johnston, D. H.

    1974-01-01

    The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.

  14. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  15. Group invariant solution for a pre-existing fracture driven by a power-law fluid in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fareo, A. G.; Mason, D. P.

    2013-12-01

    The effect of power-law rheology on hydraulic fracturing is investigated. The evolution of a two-dimensional fracture with non-zero initial length and driven by a power-law fluid is analyzed. Only fluid injection into the fracture is considered. The surrounding rock mass is impermeable. With the aid of lubrication theory and the PKN approximation a partial differential equation for the fracture half-width is derived. Using a linear combination of the Lie-point symmetry generators of the partial differential equation, the group invariant solution is obtained and the problem is reduced to a boundary value problem for an ordinary differential equation. Exact analytical solutions are derived for hydraulic fractures with constant volume and with constant propagation speed. The asymptotic solution near the fracture tip is found. The numerical solution for general working conditions is obtained by transforming the boundary value problem to a pair of initial value problems. Throughout the paper, hydraulic fracturing with shear thinning, Newtonian and shear thickening fluids are compared.

  16. Classification of multipartite entanglement via negativity fonts

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2012-04-01

    Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.

  17. Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2014-05-01

    Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.

  18. Augmentation of partially regenerated nerves by end-to-side side-to-side grafting neurotization: experience based on eight late obstetric brachial plexus cases

    PubMed Central

    2006-01-01

    Objective The effect of end-to-side neurotization of partially regenerated recipient nerves on improving motor power in late obstetric brachial plexus lesions, so-called nerve augmentation, was investigated. Methods Eight cases aged 3 – 7 years were operated upon and followed up for 4 years (C5,6 rupture C7,8T1 avulsion: 5; C5,6,7,8 rupture T1 avulsion:1; C5,6,8T1 rupture C7 avulsion:1; C5,6,7 ruptureC8 T1 compression: one 3 year presentation after former neurotization at 3 months). Grade 1–3 muscles were neurotized. Grade0 muscles were neurotized, if the electromyogram showed scattered motor unit action potentials on voluntary contraction without interference pattern. Donor nerves included: the phrenic, accessory, descending and ascending loops of the ansa cervicalis, 3rd and 4th intercostals and contralateral C7. Results Superior proximal to distal regeneration was observed firstly. Differential regeneration of muscles supplied by the same nerve was observed secondly (superior supraspinatus to infraspinatus regeneration). Differential regeneration of antagonistic muscles was observed thirdly (superior biceps to triceps and pronator teres to supinator recovery). Differential regeneration of fibres within the same muscle was observed fourthly (superior anterior and middle to posterior deltoid regeneration). Differential regeneration of muscles having different preoperative motor powers was noted fifthly; improvement to Grade 3 or more occurred more in Grade2 than in Grade0 or Grade1 muscles. Improvements of cocontractions and of shoulder, forearm and wrist deformities were noted sixthly. The shoulder, elbow and hand scores improved in 4 cases. Limitations The sample size is small. Controls are necessary to rule out any natural improvement of the lesion. There is intra- and interobserver variability in testing muscle power and cocontractions. Conclusion Nerve augmentation improves cocontractions and muscle power in the biceps, pectoral muscles, supraspinatus, anterior and lateral deltoids, triceps and in Grade2 or more forearm muscles. As it is less expected to improve infraspinatus power, it should be associated with a humeral derotation osteotomy and tendon transfer. Function to non improving Grade 0 or 1 forearm muscles should be restored by muscle transplantation. Level of evidence Level IV, prospective case series. PMID:17147803

  19. Polytomous Differential Item Functioning and Violations of Ordering of the Expected Latent Trait by the Raw Score

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2008-01-01

    The graded response (GR) and generalized partial credit (GPC) models do not imply that examinees ordered by raw observed score will necessarily be ordered on the expected value of the latent trait (OEL). Factors were manipulated to assess whether increased violations of OEL also produced increased Type I error rates in differential item…

  20. Early differentiation of the Moon: Experimental and modeling studies

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1986-01-01

    Major accomplishments include the mapping out of liquidus boundaries of lunar and meteoritic basalts at low pressure; the refinement of computer models that simulate low pressure fractional crystallization; the development of a computer model to calculate high pressure partial melting of the lunar and Martian interiors; and the proposal of a hypothesis of early lunar differentiation based upon terrestrial analogs.

  1. On the Well-Definedness of the Order of an Ordinary Differential Equation

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2006-01-01

    It is proved that if the differential equations "y[(n)] = f(x,y,y[prime],...,y[(n-1)])" and "y[(m)] = g(x,y,y[prime],...,y[(m-1)])" have the same particular solutions in a suitable region where "f" and "g" are continuous real-valued functions with continuous partial derivatives (alternatively, continuous functions satisfying the classical…

  2. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  3. A Multilevel Algorithm for the Solution of Second Order Elliptic Differential Equations on Sparse Grids

    NASA Technical Reports Server (NTRS)

    Pflaum, Christoph

    1996-01-01

    A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.

  4. Multilevel Mediation: Cumulative Contextual Risk, Maternal Differential Treatment, and Children's Behavior within Families

    ERIC Educational Resources Information Center

    Meunier, Jean Christophe; Boyle, Michael; O'Connor, Thomas G.; Jenkins, Jennifer M.

    2013-01-01

    This study tests the hypothesis that links between contextual risk and children's outcomes are partially explained by differential parenting. Using multi-informant measurement and including up to four children per family (M[subscript age] = 3.51, SD = 2.38) in a sample of 397 families, indirect effects (through maternal differential…

  5. Fitted Fourier-pseudospectral methods for solving a delayed reaction-diffusion partial differential equation in biology

    NASA Astrophysics Data System (ADS)

    Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.

    2017-07-01

    In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.

  6. Scale Space for Camera Invariant Features.

    PubMed

    Puig, Luis; Guerrero, José J; Daniilidis, Kostas

    2014-09-01

    In this paper we propose a new approach to compute the scale space of any central projection system, such as catadioptric, fisheye or conventional cameras. Since these systems can be explained using a unified model, the single parameter that defines each type of system is used to automatically compute the corresponding Riemannian metric. This metric, is combined with the partial differential equations framework on manifolds, allows us to compute the Laplace-Beltrami (LB) operator, enabling the computation of the scale space of any central projection system. Scale space is essential for the intrinsic scale selection and neighborhood description in features like SIFT. We perform experiments with synthetic and real images to validate the generalization of our approach to any central projection system. We compare our approach with the best-existing methods showing competitive results in all type of cameras: catadioptric, fisheye, and perspective.

  7. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  8. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

    PubMed

    Bolborici, V; Dawson, F P; Pugh, M C

    2014-03-01

    Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    PubMed

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less

  11. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Forister, Matthew L; Buerkle, C Alex

    2012-07-01

    Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome-wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus-specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas-like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus-specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance. © 2012 The Author(s).

  12. Randomized clinical study of Gastrografin administration in patients with adhesive small bowel obstruction.

    PubMed

    Biondo, S; Parés, D; Mora, L; Martí Ragué, J; Kreisler, E; Jaurrieta, E

    2003-05-01

    Oral Gastrografin has been used to differentiate partial from complete small bowel obstruction (SBO). It may have a therapeutic effect and predict the need for early surgery in adhesive SBO. The aim of this study was to determine whether contrast examination in the management of SBO allows an early oral intake and reduces hospital stay. Eighty-three patients admitted between February 2000 and November 2001 with 90 episodes of symptoms and signs suggestive of postoperative adhesive SBO were randomized into two groups, a control group and Gastrografin group. Patients in the control group were treated conservatively. If symptoms of strangulation developed or the obstruction did not resolve spontaneously after 4-5 days, a laparotomy was performed. Patients in the Gastrografin group received 100 ml Gastrografin. Those in whom the contrast medium reached the colon in 24 h were considered to have partial SBO, and were fed orally. If Gastrografin failed to reach the colon and the patient did not improve in the following 24 h a laparotomy was performed. Conservative treatment was successful in 77 episodes (85.6 per cent) and 13 (14.4 per cent) required operation. Among patients treated conservatively, hospital stay was shorter in the Gastrografin group (P < 0.001). All patients in whom contrast medium reached the colon tolerated an early oral diet. Gastrografin did not reduce the need for operation (P = 1.000). No patient died in either group. Oral Gastrografin helps in the management of patients with adhesive SBO and allows a shorter hospital stay. Copyright 2003 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  13. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence

    PubMed Central

    Keresztes, Attila; Bender, Andrew R.; Bodammer, Nils C.; Shing, Yee Lee

    2017-01-01

    Adaptive learning systems need to meet two complementary and partially conflicting goals: detecting regularities in the world versus remembering specific events. The hippocampus (HC) keeps a fine balance between computations that extract commonalities of incoming information (i.e., pattern completion) and computations that enable encoding of highly similar events into unique representations (i.e., pattern separation). Histological evidence from young rhesus monkeys suggests that HC development is characterized by the differential development of intrahippocampal subfields and associated networks. However, due to challenges in the in vivo investigation of such developmental organization, the ontogenetic timing of HC subfield maturation remains controversial. Delineating its course is important, as it directly influences the fine balance between pattern separation and pattern completion operations and, thus, developmental changes in learning and memory. Here, we relate in vivo, high-resolution structural magnetic resonance imaging data of HC subfields to behavioral memory performance in children aged 6–14 y and in young adults. We identify a multivariate profile of age-related differences in intrahippocampal structures and show that HC maturity as captured by this pattern is associated with age differences in the differential encoding of unique memory representations. PMID:28784801

  14. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  15. Performing differential operation with a silver dendritic metasurface at visible wavelengths.

    PubMed

    Chen, Huan; An, Di; Li, Zhenchun; Zhao, Xiaopeng

    2017-10-30

    We design a reflective silver dendritic metasurface that can perform differential operation at visible wavelengths. The metasurface consists of an upper layer of silver dendritic structures, a silica spacer, and a lower layer of silver film. Simulation results show that the metasurface can realize differential operation in red, yellow, and green bands. Such a functionality is readily extended to infrared and communication wavelengths. The metasurface samples that respond to green and red bands are prepared by using the electrochemical deposition method, and their differential operation properties are proved through tests. Silver dendritic metasurfaces that can conduct the mathematical operation in visible light pave the way for realizing miniaturized, integratable all-optical information processing systems. Their differentiation functionality, which is used for real-time ultra-fast edge detection, image contrast enhancement, hidden object detection, and other practical applications, has a great development potential.

  16. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).

    PubMed

    Murase, Kenya

    2016-01-01

    In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.

  17. Differential Calculus on h-Deformed Spaces

    NASA Astrophysics Data System (ADS)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  18. A systematic literature review of Burgers' equation with recent advances

    NASA Astrophysics Data System (ADS)

    Bonkile, Mayur P.; Awasthi, Ashish; Lakshmi, C.; Mukundan, Vijitha; Aswin, V. S.

    2018-06-01

    Even if numerical simulation of the Burgers' equation is well documented in the literature, a detailed literature survey indicates that gaps still exist for comparative discussion regarding the physical and mathematical significance of the Burgers' equation. Recently, an increasing interest has been developed within the scientific community, for studying non-linear convective-diffusive partial differential equations partly due to the tremendous improvement in computational capacity. Burgers' equation whose exact solution is well known, is one of the famous non-linear partial differential equations which is suitable for the analysis of various important areas. A brief historical review of not only the mathematical, but also the physical significance of the solution of Burgers' equation is presented, emphasising current research strategies, and the challenges that remain regarding the accuracy, stability and convergence of various schemes are discussed. One of the objectives of this paper is to discuss the recent developments in mathematical modelling of Burgers' equation and thus open doors for improvement. No claim is made that the content of the paper is new. However, it is a sincere effort to outline the physical and mathematical importance of Burgers' equation in the most simplified ways. We throw some light on the plethora of challenges which need to be overcome in the research areas and give motivation for the next breakthrough to take place in a numerical simulation of ordinary / partial differential equations.

  19. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Incorporating Conservation Zone Effectiveness for Protecting Biodiversity in Marine Planning

    PubMed Central

    Makino, Azusa; Klein, Carissa J.; Beger, Maria; Jupiter, Stacy D.; Possingham, Hugh P.

    2013-01-01

    Establishing different types of conservation zones is becoming commonplace. However, spatial prioritization methods that can accommodate multiple zones are poorly understood in theory and application. It is typically assumed that management regulations across zones have differential levels of effectiveness (“zone effectiveness”) for biodiversity protection, but the influence of zone effectiveness on achieving conservation targets has not yet been explored. Here, we consider the zone effectiveness of three zones: permanent closure, partial protection, and open, for planning for the protection of five different marine habitats in the Vatu-i-Ra Seascape, Fiji. We explore the impact of differential zone effectiveness on the location and costs of conservation priorities. We assume that permanent closure zones are fully effective at protecting all habitats, open zones do not contribute towards the conservation targets and partial protection zones lie between these two extremes. We use four different estimates for zone effectiveness and three different estimates for zone cost of the partial protection zone. To enhance the practical utility of the approach, we also explore how much of each traditional fishing ground can remain open for fishing while still achieving conservation targets. Our results show that all of the high priority areas for permanent closure zones would not be a high priority when the zone effectiveness of the partial protection zone is equal to that of permanent closure zones. When differential zone effectiveness and costs are considered, the resulting marine protected area network consequently increases in size, with more area allocated to permanent closure zones to meet conservation targets. By distributing the loss of fishing opportunity equitably among local communities, we find that 84–88% of each traditional fishing ground can be left open while still meeting conservation targets. Finally, we summarize the steps for developing marine zoning that accounts for zone effectiveness. PMID:24223870

  1. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    NASA Astrophysics Data System (ADS)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  2. Topographical scattering of gravity waves

    NASA Astrophysics Data System (ADS)

    Miles, J. W.; Chamberlain, P. G.

    1998-04-01

    A systematic hierarchy of partial differential equations for linear gravity waves in water of variable depth is developed through the expansion of the average Lagrangian in powers of [mid R:][nabla del, Hamilton operator][mid R:] (h=depth, [nabla del, Hamilton operator]h=slope). The first and second members of this hierarchy, the Helmholtz and conventional mild-slope equations, are second order. The third member is fourth order but may be approximated by Chamberlain & Porter's (1995) ‘modified mild-slope’ equation, which is second order and comprises terms in [nabla del, Hamilton operator]2h and ([nabla del, Hamilton operator]h)2 that are absent from the mild-slope equation. Approximate solutions of the mild-slope and modified mild-slope equations for topographical scattering are determined through an iterative sequence, starting from a geometrical-optics approximation (which neglects reflection), then a quasi-geometrical-optics approximation, and on to higher-order results. The resulting reflection coefficient for a ramp of uniform slope is compared with the results of numerical integrations of each of the mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker 1995), and the full linear equations (Booij 1983). Also considered is a sequence of sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and for which the modified mild-slope approximation is in close agreement with Mei's (1985) asymptotic approximation.

  3. Seismological Signature of Chemical Differentiation of Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Nishihara, Y.; Karato, S.

    2004-12-01

    Chemical differentiation from a primitive rock (such as pyrolite) to harzburgite due to partial melting and melt extraction is one of the most important mechanisms that causes the chemical heterogeneity in Earth's upper mantle. In this study, we investigate the seismic signature of chemical differentiation that helps mapping chemical heterogeneity in the upper mantle. The relation between chemical differentiation and its seismological signature is not straightforward because a large number of unknown parameters are involved although the seismological observations provide only a few parameters (e.g., VP, VS, QP). Therefore it is critical to identify a small number of parameters by which the gross trend of chemical evolution can be described. The variation in major element composition in natural samples reflect complicated processes that include not only partial melting but also other complex processes (e.g., metasomatism, influx melting). We investigate the seismic velocities of hypothetical but well-defined simple chemical differentiation processes (e.g., partial melting of various pressure conditions, addition of Si-rich melt or fluid), which cover the chemical variation of the natural mantle peridotites with various tectonic settings (mid ocean ridge, island arc and continent). The seismic velocities of the peridotites were calculated to 13 GPa and 1730 K. We obtained two major conclusions. First is that the variations of seismic velocities of upper mantle peridotites can be interpreted in terms of a few distinct parameters. For one class of peridotites which is formed by simple partial melting (e.g. mid-ocean ridges peridotites), seismic velocities can be described in terms of one parameter, namely Mg# (=Mg/(Mg+Fe) atomic ratio). In contrast, some of the peridotites in the continental (cratonic) environment with high silica content and high Mg# need at least two parameters (such as Mg# and Opx# (the volume fraction of orthopyroxene)) are needed to characterize their seismic velocities. Second is the jump of seismic velocity at 300 km in harzburgite that is caused by orthorhombic (opx) to high-pressure monoclinic phase transition in MgSiO3 pyroxene. If opx-rich harzburgite (the maximum content of opx in continental harzburgite is ˜45 vol%) exists at around 300km, the maximum contrast of jump would be 2.5 % for VS and 0.9 % for VP. This phase transition will correspond to the seismological discontinuity around 300km (X-discontinuity).

  4. Lactobacillus Strain Diversity Based on Partial hsp60 Gene Sequences and Design of PCR-Restriction Fragment Length Polymorphism Assays for Species Identification and Differentiation▿ †

    PubMed Central

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages. PMID:17993558

  5. Operant Variability: A Conceptual Analysis

    ERIC Educational Resources Information Center

    Barba, Lourenco de Souza

    2012-01-01

    Some researchers claim that variability is an operant dimension of behavior. The present paper reviews the concept of operant behavior and emphasizes that differentiation is the behavioral process that demonstrates an operant relation. Differentiation is conceived as change in the overlap between two probability distributions: the distribution of…

  6. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  7. A framework for simultaneous aerodynamic design optimization in the presence of chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi

    Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less

  8. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  9. Inclusion of exact exchange in the noniterative partial-differential-equation method of electron-molecule scattering - Application to e-N2

    NASA Technical Reports Server (NTRS)

    Weatherford, C. A.; Onda, K.; Temkin, A.

    1985-01-01

    The noniterative partial-differential-equation (PDE) approach to electron-molecule scattering of Onda and Temkin (1983) is modified to account for the effects of exchange explicitly. The exchange equation is reduced to a set of inhomogeneous equations containing no integral terms and solved noniteratively in a difference form; a method for propagating the solution to large values of r is described; the changes in the polarization potential of the original PDE method required by the inclusion of exact static exchange are indicated; and the results of computations for e-N2 scattering in the fixed-nuclei approximation are presented in tables and graphs and compared with previous calculations and experimental data. Better agreement is obtained using the modified PDE method.

  10. A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter

    1989-01-01

    An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.

  11. Mathematical Analysis and Optimization of Infiltration Processes

    NASA Technical Reports Server (NTRS)

    Chang, H.-C.; Gottlieb, D.; Marion, M.; Sheldon, B. W.

    1997-01-01

    A variety of infiltration techniques can be used to fabricate solid materials, particularly composites. In general these processes can be described with at least one time dependent partial differential equation describing the evolution of the solid phase, coupled to one or more partial differential equations describing mass transport through a porous structure. This paper presents a detailed mathematical analysis of a relatively simple set of equations which is used to describe chemical vapor infiltration. The results demonstrate that the process is controlled by only two parameters, alpha and beta. The optimization problem associated with minimizing the infiltration time is also considered. Allowing alpha and beta to vary with time leads to significant reductions in the infiltration time, compared with the conventional case where alpha and beta are treated as constants.

  12. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  13. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  14. Jeffrey fluid effect on free convective over a vertically inclined plate with magnetic field: A numerical approach

    NASA Astrophysics Data System (ADS)

    Rao, J. Anand; Raju, R. Srinivasa; Bucchaiah, C. D.

    2018-05-01

    In this work, the effect of magnetohydrodynamic natural or free convective of an incompressible, viscous and electrically conducting non-newtonian Jeffrey fluid over a semi-infinite vertically inclined permeable moving plate embedded in a porous medium in the presence of heat absorption, heat and mass transfer. By using non-dimensional quantities, the fundamental governing non-linear partial differential equations are transformed into linear partial differential equations and these equations together with associated boundary conditions are solved numerically by using versatile, extensively validated, variational finite element method. The sway of important key parameters on hydrodynamic, thermal and concentration boundary layers are examined in detail and the results are shown graphically. Finally the results are compared with the works published previously and found to be excellent agreement.

  15. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 1: One-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    An algorithm for solving a large class of two- and three-dimensional nonseparable elliptic partial differential equations (PDE's) is developed and tested. It uses a modified D'Yakanov-Gunn iterative procedure in which the relaxation factor is grid-point dependent. It is easy to implement and applicable to a variety of boundary conditions. It is also computationally efficient, as indicated by the results of numerical comparisons with other established methods. Furthermore, the current algorithm has the advantage of possessing two important properties which the traditional iterative methods lack; that is: (1) the convergence rate is relatively insensitive to grid-cell size and aspect ratio, and (2) the convergence rate can be easily estimated by using the coefficient of the PDE being solved.

  16. Stable multi-domain spectral penalty methods for fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  17. Mean field games with congestion

    NASA Astrophysics Data System (ADS)

    Achdou, Yves; Porretta, Alessio

    2018-03-01

    We consider a class of systems of time dependent partial differential equations which arise in mean field type models with congestion. The systems couple a backward viscous Hamilton-Jacobi equation and a forward Kolmogorov equation both posed in $(0,T)\\times (\\mathbb{R}^N /\\mathbb{Z}^N)$. Because of congestion and by contrast with simpler cases, the latter system can never be seen as the optimality conditions of an optimal control problem driven by a partial differential equation. The Hamiltonian vanishes as the density tends to $+\\infty$ and may not even be defined in the regions where the density is zero. After giving a suitable definition of weak solutions, we prove the existence and uniqueness results of the latter under rather general assumptions. No restriction is made on the horizon $T$.

  18. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  19. Isostable reduction with applications to time-dependent partial differential equations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2016-07-01

    Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.

  20. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

Top