Sample records for partial dnapl source

  1. The DNAPL challenge: Is there a case for partial source removal?

    NASA Astrophysics Data System (ADS)

    Kavanaugh, M. C.; Rao, P. S. C.

    2003-04-01

    Despite significant advances in the science and technology of DNAPL source zone characterization, and DNAPL removal technologies over the past two decades, source remediation has not become a standard objective at most DNAPL sites. Few documented cases of DNAPL source removal have been published, and achievement of the usual cleanup metric in these source zones, namely, meeting Maximum Contaminant Levels ("MCLs") is rare. At most DNAPL sites, removal of sufficient amounts of DNAPL from the source zones to achieve MCLs is considered technically impracticable, taking cost into consideration. Leaving substantial quantities of DNAPL in source zones and instituting appropriate technologies to eliminate continued migration of groundwater plumes emanating from these source zones requires long-term reliability of barrier technologies (hydraulic or physical), and the permanence institutional controls. This strategy runs the risk of technical or institutional failures and possible liabilities associated with natural resource damage claims. To address this challenge, the U.S. Environmental Protection Agency ("EPA") established a panel of experts ("Panel") on DNAPL issues to provide their opinions on the overarching question of whether DNAPL source remediation is feasible. This Panel, co-chaired by the authors of this paper, has now prepared a report summarizing the opinions of the Panel on the key question of whether DNAPL source removal is achievable. This paper will present the findings of the Panel, addressing such issues as the current status of DNAPL source characterization and remediation technologies, alternative metrics of success for DNAPL source remediation, the potential benefits of partial DNAPL source depletion, and research needs to address data gaps that hinder the more widespread implementation of source removal strategies.

  2. IMPACTS OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  3. Impacts of DNAPL Source Treatment: Experimental and Modeling Assessment of the Benefits of Partial DNAPL Source Removal

    DTIC Science & Technology

    2009-09-01

    nuclear industry for conducting performance assessment calculations. The analytical FORTRAN code for the DNAPL source function, REMChlor, was...project. The first was to apply existing deterministic codes , such as T2VOC and UTCHEM, to the DNAPL source zone to simulate the remediation processes...but describe the spatial variability of source zones unlike one-dimensional flow and transport codes that assume homogeneity. The Lagrangian models

  4. MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  5. THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  6. ANALYTICAL ASSESSMENT OF THE IMPACTS OF PARTIAL MASS DEPLETION IN DNAPL SOURCE ZONES (SAN FRANCISCO, CA)

    EPA Science Inventory

    Analytical solutions describing the time-dependent DNAPL source-zone mass and contaminant discharge rate are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged sourc...

  7. THE IMPACT OF PARTIAL DNAPL SOURCE ZONE REMEDIATION

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL) constitute a long-term source of groundwater contamination and a significant effort is usually required to treat these contaminated waters and bring them back to maximum contaminant level (MCL) required by the regulatory authorities.
    Fi...

  8. FIELD MEASUREMENTS OF CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (SAN FRANCISCO, CA)

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of flux measurements before and af...

  9. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.

    PubMed

    Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P

    2014-12-01

    A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10-20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. Copyright © 2014. Published by Elsevier B.V.

  10. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.

    2014-12-01

    A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn > 10-20%) and pools (Sn > 20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.

  11. AN EXPERIMENTAL ASSESSMENT OF THE IMPACTS OF PARTIAL DNAPL SOURCE ZONE DELETION USING SPARGING AS A REMEDIATION TECHNIQUE

    EPA Science Inventory

    The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...

  12. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution

    NASA Astrophysics Data System (ADS)

    Kaye, Andrew J.; Cho, Jaehyun; Basu, Nandita B.; Chen, Xiaosong; Annable, Michael D.; Jawitz, James W.

    2008-11-01

    This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction ( Rj) vs. mass reduction ( Rm) relationships ( Rj( Rm)): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the Rj( Rm) relationship. All of the single-flushing experiments exhibited similar Rj( Rm) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The Rj( Rm) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less Rj for a given Rm. UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict Rj( Rm) relationships for non-uniformly distributed NAPL sources.

  13. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution.

    PubMed

    Kaye, Andrew J; Cho, Jaehyun; Basu, Nandita B; Chen, Xiaosong; Annable, Michael D; Jawitz, James W

    2008-11-14

    This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.

  14. Investigating the influence of DNAPL spill characteristics on source zone architecture and mass removal in pool-dominated source zones

    NASA Astrophysics Data System (ADS)

    Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.

    2009-12-01

    Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass recovery and contaminant mass discharge was significantly influenced by the fraction of mass residing in DNAPL pools. The greater the fraction of mass residing in DNAPL pools the greater the likelihood for significant reductions in contaminant mass discharge at modest levels of mass removal. These results will help guide numerical and experimental studies on the remediation of pool-dominated source zones and will likely guide future source zone characterization efforts.

  15. MEASUREMENTS OF CAPILLARY PRESSURE-SATURATION RELATIONSHIPS AND DNAPL DISTRIBUTION IN SILICA SANDS USING LIGHT TRANSMISSION VISUALIZATION

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of partial DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL (modeled by PCE) architecture, mass removal and cont...

  16. Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation

    NASA Astrophysics Data System (ADS)

    Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.

    2012-12-01

    Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below the water table, as well as an estimate of the minimum DNAPL saturation changes necessary for an observable response from ERT.

  17. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  18. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of sorption, especially for the case of non-ideal sorption, demonstrating the limitations of employing 2-D predictions for field-scale modeling.

  19. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock

    DTIC Science & Technology

    2017-01-27

    FINAL REPORT Designing , Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock ESTCP...W912HQ-12-C-0062 Designing , Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock 5b. GRANT...31  5.0  TEST DESIGN

  20. Modeling the Impact of Cracking in Low Permeability Layers in a Groundwater Contamination Source Zone on Dissolved Contaminant Fate and Transport

    NASA Astrophysics Data System (ADS)

    Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2011-12-01

    Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model and compare four scenarios: (1) CAH diffusion only into cracks, (2) CAH advection-dispersion into cracks, (3) separate phase DNAPL movement into the cracks, and (4) CAH diffusion into an uncracked low permeability clay layer. For each scenario, model simulations are used to show the evolution and persistence of groundwater contamination downgradient of the DNAPL source.

  1. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.

    PubMed

    Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios

    2014-07-01

    Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mapping Site Remediation with Electrical Resistivity Tomography Explored via Coupled-Model Simulations

    NASA Astrophysics Data System (ADS)

    Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.

    2011-12-01

    Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.

  3. Quantitative evaluation of intensive remedial action using long-term monitoring and tracer data at a DNAPL contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Kim, H. J.; Kim, M. O.; Lee, K.; Lee, K. K.

    2016-12-01

    A study finding evidence of remediation represented on monitoring data before and after in site intensive remedial action was performed with various quantitative evaluation methods such as mass discharge analysis, tracer data, statistical trend analysis, and analytical solutions at DNAPL contaminated site, Wonju, Korea. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Prior to the remediation action, the concentration and mass discharges of TCE at all transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the main source zone and industrial complex. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The removal amount of the residual source mass during the intensive remedial action was estimated to evaluate the efficiency of the intensive remedial action using analytical solution. From results of quantitative evaluation using analytical solution, it is assessed that the intensive remedial action had effectively performed with removal efficiency of 70% for the residual source mass during the remediation period. Analytical solution which can consider and quantify the impacts of partial mass reduction have been proven to be useful tools for quantifying unknown contaminant source mass and verifying dissolved concentration at the DNAPL contaminated site and evaluating the efficiency of remediation using long-term monitoring data. Acknowledgement : This subject was supported by the Korea Ministry of Environment under "GAIA project (173-092-009) and (201400540010)", R&D Project on Enviornmental Management of Geologic CO2 storage" from the KEITI (Project number:2014001810003).

  4. Predicting DNAPL Source Zone and Plume Response Using Site-Measured Characteristics

    DTIC Science & Technology

    2017-05-19

    FINAL REPORT Predicting DNAPL Source Zone and Plume Response Using Site- Measured Characteristics SERDP Project ER-1613 MAY 2017...Final Report 3. DATES COVERED (From - To) 2007 - 2017 4. TITLE AND SUBTITLE PREDICTING DNAPL SOURCE ZONE AND PLUME RESPONSE USING SITE- MEASURED ...historical record of concentration and head measurements , particularly in the near-source region. For each site considered, currently available data

  5. FIELD AND LABORATORY EVALUATION OF DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    The basic goal of DNAPL source treatment is to reduce health and environmental risks posed by the DNAPL contamination. Removing a sufficient mass of DNAPL to achieve concentration-based regulatory goals is difficult because of site hydrogeologic heterogeneity and uncertainties ab...

  6. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    NASA Astrophysics Data System (ADS)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  7. CONTAMINANT FLUX RESPONSES TO THERMAL TREATMENT OF DNAPL SOURCE ZONES (ABSTRACT ONLY)

    EPA Science Inventory

    Contaminant flux is being proposed as a metric to help elucidate the benefits of DNAPL source-zone remedial efforts. While it is clear that aggressive remediation technologies can rapidly remove DNAPL mass, experience has shown that complete removal is often not practicable. H...

  8. EVALUATIONS OF DNAPL REMEDIAL PERFORMANCE BASED ON FIELD MEASUREMENTS OF CONTAMINANT FLUX

    EPA Science Inventory

    Under a concentration-based regulatory framework, the benefits of conducting dense nonaqueous phase liquid (DNAPL) source-zone remediation are questionable because of the impracticality of complete DNAPL elimination at most sites. Removing a sufficient mass of DNAPL to achieve c...

  9. Flux-Based Site Management

    EPA Science Inventory

    Managing DNAPL contaminated sites continues to be among the most pressing environmental problems currently faced. In particular, the benefits of partial DNAPL mass depletion due to remedial activity are unclear. Recent work conducted by an inter-agency research team has been in...

  10. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.

  11. Biodegradation of Dense Non-Aqueous Phase Liquids (DNAPL) Through Bioaugmentation of Source Areas - Dover National Test Site, Dover, Delaware

    DTIC Science & Technology

    2008-08-01

    the distribution of DNAPL. The OSU research team evaluated the use of radon as a partitioning groundwater tracer. The DNAPL release fulfilled one...close to the source area generated more PCE equivalent mass over time. The exponential decay from the fitted line (predicted PCE, orange line in each

  12. Prediction of Down-Gradient Impacts of DNAPL Source Depletion Using Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Fure, A. D.; Jawitz, J. W.

    2006-12-01

    Four simplified DNAPL source depletion models that have been discussed in the literature recently are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. One of the source depletion models, the equilibrium streamtube model, is shown to be relatively easily parameterized using non-reactive and reactive tracers. Non-reactive tracers are used to characterize the aquifer heterogeneity while reactive tracers are used to describe the mean DNAPL mass and its distribution. This information is then used in a Lagrangian framework to predict source remediation performance. In a Lagrangian approach the source zone is conceptualized as a collection of non-interacting streamtubes with hydrodynamic and DNAPL heterogeneity represented by the variation of the travel time and DNAPL saturation among the streamtubes. The travel time statistics are estimated from the non-reactive tracer data while the DNAPL distribution statistics are estimated from the reactive tracer data. The combined statistics are used to define an analytical solution for contaminant dissolution under natural gradient flow. The tracer prediction technique compared favorably with results from a multiphase flow and transport simulator UTCHEM in domains with different hydrodynamic heterogeneity (variance of the log conductivity field = 0.2, 1 and 3).

  13. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual model of DNAPL accumulation may be applicable to a given site, depending on details of the contaminant release and geologic setting. Trapping in regolith is most likely to occur where the regolith is thick and relatively impermeable with few large cracks, fissures, or macropores. Accumulation at the top of rock is favored by flat-lying strata with few fractures or karst features near the bedrock surface. Fractures or karst features near the bedrock surface encourage migration of chlorinated DNAPL into karst conduits or diffuse-flow zones in bedrock. DNAPL can migrate through one bedrock flow regime into an underlying flow regime with different characteristics or into openings that are isolated from significant ground-water flow. As a general rule, the difficulty of finding and removing DNAPL increases with depth, lateral distance from the source, and complexity of the ground-water flow system. The prospects for mitigation are generally best for DNAPL accumulation in the regolith or at the bedrock surface. However, many such accumulations are likely to be difficult to find or remove. Accumulations in bedrock diffuse-flow zones or in fractures isolated from flow may be possible to find and partially mitigate, but will likely leave significant amounts of contaminant in small fractures or as solute diffused into primary pores.

  14. IMPACTS OF DNAPL MASS DEPLETION ON SOURCE STRENGTH

    EPA Science Inventory

    Implementation of remediation technologies at DNAPL contaminated sites has shown that large quantities of contaminants can be removed or degraded using in-situ heating, flushing or oxidation. The rate and magnitude of DNAPL removal is dependent upon site-specific and technology-...

  15. Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization.

    PubMed

    Alexandra, Richards; Gerhard, Jason I; Kueper, Bernard H

    2012-01-01

    Hydraulic displacement is a mass removal technology suitable for stabilization of a dense, nonaqueous phase liquid (DNAPL) source zone, where stabilization is defined as reducing DNAPL saturations and reducing the risk of future pool mobilization. High resolution three-dimensional multiphase flow simulations incorporating a spatially correlated, heterogeneous porous medium illustrate that hydraulic displacement results in an increase in the amount of residual DNAPL present, which in turn results in increased solute concentrations in groundwater, an increase in the rate of DNAPL dissolution, and an increase in the solute mass flux. A higher percentage of DNAPL recovery is associated with higher initial DNAPL release volumes, lower density DNAPLs, more heterogeneous porous media, and increased drawdown of groundwater at extraction wells. The fact that higher rates of recovery are associated with more heterogeneous porous media stems from the fact that larger contrasts in permeability provide for a higher proportion of capillary barriers upon which DNAPL pooling and lateral migration can occur. Across all scenarios evaluated in this study, the ganglia-to-pool (GTP) ratio generally increased from approximately 0.1 to between approximately 0.3 and 0.7 depending on the type of DNAPL, the degree of heterogeneity, and the imposed hydraulic gradient. The volume of DNAPL recovered as a result of implementing hydraulic displacement ranged from between 9.4% and 45.2% of the initial release volume, with the largest percentage recovery associated with 1,1,1 trichloroethane, the least dense of the three DNAPLs considered. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  16. Spontaneous Growth and Mobilization of a Gas Phase in the Presence of Dense Non- Aqueous Phase Liquid (DNAPL)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Smith, J. E.

    2006-12-01

    A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.

  17. Bioenhanced DNAPL Dissolution: Understanding how Microbial Competition, Biostimulation, and Bioaugmentation Affect Source Zone Longevity

    NASA Astrophysics Data System (ADS)

    Becker, J. G.; Seagren, E. A.

    2006-12-01

    The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation simulates a contaminant-source zone consisting of DNAPL ganglia trapped in a subsurface porous medium that slowly releases organic pollutants into the groundwater flowing past it. The model used in the simulations was based on a biokinetic model recently developed by Becker [Environ. Sci. Technol. 40(14):4473-4480] to describe competition among PCE-respiring populations in a homogenous continuously-stirred tank reactor. Becker's model was expanded by adding terms for chlorinated ethene partitioning between the DNAPL and aqueous phases, as well as advection and dispersion of aqueous chlorinated ethenes. The results of these preliminary simulations demonstrate that the outcome of competition between populations for growth substrates can have a significant impact on bioenhancement and, thus, on DNAPL source zone longevity. Although these proof-of- concept simulations do not incorporate all of the complexity of actual field systems, the modeling results are useful for identifying which parameters are important in determining the outcome of competition in the different scenarios and its impact on DNAPL dissolution. This information is needed to understand how biostimulation and bioaugmentation affect bioenhancement by stimulating different populations and develop bioremediation strategies that incorporate these treatment technologies while balancing the twin clean-up goals of reduced source longevity and complete detoxification.

  18. Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation

    DTIC Science & Technology

    2012-05-01

    sensitivity study completed to investigate the potential influence of manganese dioxide rind formation during permanganate treatment... permanganate as the oxidant. This evaluation is specific to permanganate treatment and the corresponding manganese dioxide rind formation; however...forms within close proximity of the DNAPL phase, as occurs when permanganate reacts with the DNAPL. 1.4 IMPLEMENTATION ISSUES DNAPL TEST has been

  19. IMPACT OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX

    EPA Science Inventory

    Implementation of remediation technologies at DNAPL contaminated sites has shown that large quantities of contaminants can be removed or degraded using in-situ heating, flushing or oxidation. The rate and magnitude of DNAPL removal is dependent upon site-specific and technology-...

  20. A survey of the geophysical properties of chlorinated DNAPLs

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, Jonathan B.; Geller, Jil T.; Harris, Jerry M.

    2006-07-01

    Dense Non Aqueous Phase Liquids (DNAPLs) are a family of fluids often encountered as industrial contaminants. Some of the most problematic DNAPLs are chlorinated solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE). While many DNAPLs have been extensively studied from a hydrology perspective, documentation of DNAPL properties relevant to geophysical detection is far from complete. We present a short survey of acoustic velocity, density, and dielectric constant measurements for an important subset of commonly encountered dense chlorinated contaminants. Viscosity and surface tension data are included to allow exploration of contaminant signatures within the context of poroelastic or contact theory models. Where available, the temperature dependence of solvent properties are also provided. Densities for the listed DNAPLs range from 1253 to 1622 kg/m 3 at 20 °C. All are effectively non-polar with dielectric constants between 2.2 and 10.9 and have relatively low compressional wave velocities ranging from 938 to 1217 m/s. We conclude with documentation of a small collection of recent experiments investigating the properties of soils partially saturated with similar fluids. Current laboratory evidence demonstrates that DNAPLs can produce changes in geophysically measurable properties. We hope that this survey will facilitate further studies of the feasibility and effectiveness of geophysical techniques for detection of DNAPLs in the subsurface.

  1. IMPACTS OF DNAPL SOURCE TREATMENT: OVERVIEW OF GWERD RESEARCH

    EPA Science Inventory

    The Ground Water and Ecosystems Restoration Division (GWERD) is conducting research to evaluate the benefits derived from aggressive DNAPL source treatment. It is assumed that contaminant mass flux from the source zone can be used to estimate the performance of applied remedial ...

  2. Numerical Modeling to Assess DNAPL Movement and Removal at the Scenic Site Operable Unit Near Baton Rouge, Louisiana: A Case Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Thorne, Paul D.; White, Mark D.

    2003-12-01

    Detailed three-dimensional multifluid flow modeling was conducted to assess movement and removal of dense nonaqueous phase liquid (DNAPL) movement at a waste site in Louisiana. The site’s subsurface consists of several permeable zones separated by (semi) confining clays. In the upper subsurface, the two major permeable zones are, starting with the uppermost zone, the +40- and +20-MSL (mean sea level) zones. At the site, a total of 23,000 m3 of DNAPL was emplaced in an open waste pit between 1962 and 1974. In this period, considerable amounts of DNAPL moved into the subsurface. By 1974 a portion of the DNAPLmore » was removed and the waste site was filled with low-permeability materials and closed. During this process, some of the DNAPL was mixed with the fill material and remained at the site. Between 1974 and 2000, no additional DNAPL recovery activities were implemented. In an effort to reduce the DNAPL source, organic liquid has been pumped through a timed-pumping scheme from a total of 7 wells starting in calendar year 2000. The recovery wells are screened in the lower part of the waste fill material. In site investigations, DNAPL has been encountered in the +40-MSL but not in the +20-MSL zone. The following questions are addressed: (1) Where has the DNAPL migrated vertically and laterally? (2) How much further is DNAPL expected to move in the next century? (3) How effective is the current DNAPL pumping in reducing the DNAPL source? The computational domains for the simulations were derived from 3-D interpolations of borehole logs using a geologic interpretation software (EarthvisionTM ) . The simulation results show that DNAPL primarily entered the subsurface in the period 1962 – 1974, when the waste site was operational. After 1974, the infiltration rates dropped dramatically as a result of the infilling of the waste pit. The simulation results indicate that DNAPL moved from the pit into the underlying +40-MSL zone through two contact zones at the west side of the pit. Lateral movement of the DNAPL body has been relatively slow as a result of the high viscosity and the rapidly decreasing driving force after the waste pit was filled in. For all simulations, lateral movement of DNAPL in the period 1962 - 2001 is predicted to be less than 60 m from the two contact areas, while additional movement in the next century is expected to be less than 30 m. No DNAPL is predicted to enter the +20-MSL zone, which agrees with site information. The simulations also clearly demonstrate the minimal effect of the current pumping scheme on source reduction and DNAPL movement.« less

  3. DNAPL Remediation: Selected Projects Approaching Regulatory Closure

    EPA Pesticide Factsheets

    This paper is a status update on the use of DNAPL source reduction remedial technologies, and provides information about recent projects where regulatory closure has been reached or projects are approaching regulatory closure, following source reduction.

  4. CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING

    EPA Science Inventory

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile
    isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL
    remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

  5. Predicting dense nonaqueous phase liquid dissolution using a simplified source depletion model parameterized with partitioning tracers

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-07-01

    Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.

  6. Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites by Applying Partitioning Electron Donors (PEDs)

    DTIC Science & Technology

    2014-07-01

    at an effective concentration at the DNAPL:water interface for the growth of and consumption by dechlorinating biomass . In heterogeneous geological...the promotion of dechlorinating biomass growth close to the DNAPL, which results in sustained enhanced DNAPL dissolution rates. This approach...fine- grained sands with varying amounts of shell fragments, with a hydraulic conductivity of 3 ft/day in the 30 to 45 ft BLS interval; • 45 to 48 ft

  7. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid

    NASA Astrophysics Data System (ADS)

    Roy, James W.; Smith, James E.

    2007-01-01

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  8. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    PubMed

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  9. THE MEASUREMENT AND USE OF CONTAMINANT FLUX FOR PERFORMANCE ASSESSMENT OF DNAPL REMEDIATION

    EPA Science Inventory

    A review is presented of both mass flux as a DNAPL remedial performance metric and reduction in mass flux as a remedial performance objective at one or more control planes down gradient of DNAPL source areas. The use of mass flux to assess remedial performance has been proposed ...

  10. Dense Non-Aqueous Phase Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies

    DTIC Science & Technology

    2000-06-01

    the chemical can contact and fully react with contaminants in situ. The advantage of in situ destruction is that the process is completed in the ground...Because chemical oxidation is primarily targeted at dissolved plumes and is only marginally applicable to DNAPL source zones exhibiting relatively low...refer to a “DNAPL plume .” Certainly, a portion of the chemical components of a DNAPL may become dissolved in ground water, and this solution may spread

  11. Impact of DNAPL Storage in Cracked Low Permeability Layers on Dissolved Contaminant Plume Persistence

    NASA Astrophysics Data System (ADS)

    Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.

    2012-12-01

    The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.

  12. Assessing the joint impact of DNAPL source-zone behavior and degradation products on the probabilistic characterization of human health risk

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2016-02-01

    The release of industrial contaminants into the subsurface has led to a rapid degradation of groundwater resources. Contamination caused by Dense Non-Aqueous Phase Liquids (DNAPLs) is particularly severe owing to their limited solubility, slow dissolution and in many cases high toxicity. A greater insight into how the DNAPL source zone behavior and the contaminant release towards the aquifer impact human health risk is crucial for an appropriate risk management. Risk analysis is further complicated by the uncertainty in aquifer properties and contaminant conditions. This study focuses on the impact of the DNAPL release mode on the human health risk propagation along the aquifer under uncertain conditions. Contaminant concentrations released from the source zone are described using a screening approach with a set of parameters representing several scenarios of DNAPL architecture. The uncertainty in the hydraulic properties is systematically accounted for by high-resolution Monte Carlo simulations. We simulate the release and the transport of the chlorinated solvent perchloroethylene and its carcinogenic degradation products in randomly heterogeneous porous media. The human health risk posed by the chemical mixture of these contaminants is characterized by the low-order statistics and the probability density function of common risk metrics. We show that the zone of high risk (hot spot) is independent of the DNAPL mass release mode, and that the risk amplitude is mostly controlled by heterogeneities and by the source zone architecture. The risk is lower and less uncertain when the source zone is formed mostly by ganglia than by pools. We also illustrate how the source zone efficiency (intensity of the water flux crossing the source zone) affects the risk posed by an exposure to the chemical mixture. Results display that high source zone efficiencies are counter-intuitively beneficial, decreasing the risk because of a reduction in the time available for the production of the highly toxic subspecies.

  13. SERDP AND NRMRL SPONSOR FIELD TEST OF COSOLVENT-ENHANCED DNAPL REMOVAL

    EPA Science Inventory

    A field test of multicomponent cosolvent flooding for in-situ remediation of DNAPL source zones was conducted at the Dover National Test Site (DNTS) at Dover Air Force Base, Delaware, in July, 2001. The test was part of an Enhanced Source Removal (ESR) demonstration project fund...

  14. Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...

  15. Spatial And Temporal Distribution Of Microbial Communities In A TCE DNAPL Site: SABRE Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project was conducted to evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. To study performance of this technology, a test cell was constructed with a longitudi...

  16. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.

    PubMed

    Phenrat, Tanapon; Kumloet, Itsaraphong

    2016-12-15

    In this study, a novel electromagnetically enhanced treatment concept is proposed for in situ remediation of a source zone of chlorinated dense non-aqueous phase liquid (DNAPL) that is slowly dissolved, causing contaminated groundwater for centuries. Here, we used polystyrene sulfonate (PSS)-modified nanoscale zerovalent iron (NZVI) particles (ferromagnetic) in combination with a low frequency (LF) (150 kHz) AC electromagnetic field (EMF) to accelerate the degradation of the DNAPLs via enhanced dissolution and reductive dechlorination. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were used in a bench-scaled evaluation. The PSS-modified NZVI successfully targeted the DNAPL/water interface, as evidenced by the Pickering emulsion formation. Dechlorination of TCE- and PCE-DNAPL was measured by quantifying the by-product formation (acetylene, ethene, and ethane). Without magnetic induction heating (MIH) by LF EMF, PSS-modified NZVI transformed TCE- and PCE-DNAPL to ethene and ethane at the rate constants of 12.19 × 10 -3 and 1.00 × 10 -3  μmol/h/m 2 , respectively, following pseudo zero-order reactions. However, four MIH cycles of PSS-NZVI increased the temperature up to 87 °C and increased the rate constants of TCE-DNAPL and PCE-DNAPL up to 14.58 and 58.01 times, respectively, in comparison to the dechlorination rate without MIH. Theoretical analysis suggested that the MIH of the PSS-modified NZVI enhanced the dechlorination of TCE- and PCE-DNAPL via the combination of the enhanced thermal dissolution of DNAPL, the effect of increasing the temperature on the rate constant (the Arrhenius equation), and the accelerated NZVI corrosion. Nevertheless, the effect of the Arrhenius equation was dominant. For the first time, this proof-of-concept study reveals the potential for using polyelectrolyte-modified NZVI coupled with LF EMF as a combined remediation technique for increasing the rate and completeness of in situ chlorinated DNAPL source remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Changes in Contaminant Mass Discharge from DNAPL Source Mass Depletion: Evaluation at Two Field Sites

    EPA Science Inventory

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...

  18. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the dissolution models diverged, showing disparate approaches to possible remediation objectives. However, it also showed that an appreciable proportion of the source would need to be removed to discriminate between the models. This may limit the utility of such modelling early in the history of a DNAPL source. A further limitation is the simplified approach of analysing the combined parent/daughter compounds with different solubilities as a total molar concentration. Although the fitted results gave confidence to this approach, there were appreciable changes in relative abundance. The dissolution and partitioning processes are discussed in relation to the lower-solubility TBA becoming dominant in pumped groundwater over time, despite its known rapid transformation to TriBE. These processes are also related to the architecture of the depleting source as revealed by multi-level groundwater sampling under reversed pumping/injection conditions.

  19. Mass Transfer from Entrapped DNAPL Sources Undergoing Remediation: Characterization Methods and Prediction Tools

    DTIC Science & Technology

    2006-08-31

    volumetric depletion efficiency ( VDE ) considers how much DNAPL is depleted from the system, relative to the total volume of solution flushed through the...aqueous phase contaminant. VDE is important to consider, as conditions that result in the fastest mass transfer, highest enhancement, or best MTE, may...volumes of flushing fluid, maximizing DNAPL depletion while minimizing flushing volume requirements may be desirable from a remediation standpoint. VDE

  20. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Cápiro, Natalie L.; Löffler, Frank E.; Pennell, Kurt D.

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0 ± 1.3 and 4.0 ± 1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥ 155 μM) and ethene (≥ 65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance.

  1. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their small computation time and their inclusion of spatially integrated parameters that can be measured in the field using tracer tests. Analytical models that couple source depletion to plume transport were used for optimization of source and plume treatment. These models are being used for the development of decision and management tools (for DNAPL sites) that consider uncertainty assessments as an integral part of the decision-making process for contaminated site remediation.

  3. Biogeochemical gradients above a coal tar DNAPL.

    PubMed

    Scherr, Kerstin E; Backes, Diana; Scarlett, Alan G; Lantschbauer, Wolfgang; Nahold, Manfred

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares - Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H' and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are absent or shrinking. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-04-01

    The EZVI is composed of food-grade surfactant, biodegradable oil , water, and ZVI particles (either nano- or micro-scale iron), which form...emulsion particles (Figure 2-1). Each emulsion particle or droplet contains ZVI particles in water surrounded by an oil -liquid membrane. Since the...exterior oil membrane of the emulsion droplet has hydrophobic properties similar to that of DNAPL, the droplets are miscible with DNAPL. It is believed

  5. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  6. Consistent Simulation Framework for Efficient Mass Discharge and Source Depletion Time Predictions of DNAPL Contaminants in Heterogeneous Aquifers Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Nowak, W.; Koch, J.

    2014-12-01

    Predicting DNAPL fate and transport in heterogeneous aquifers is challenging and subject to an uncertainty that needs to be quantified. Models for this task needs to be equipped with an accurate source zone description, i.e., the distribution of mass of all partitioning phases (DNAPL, water, and soil) in all possible states ((im)mobile, dissolved, and sorbed), mass-transfer algorithms, and the simulation of transport processes in the groundwater. Such detailed models tend to be computationally cumbersome when used for uncertainty quantification. Therefore, a selective choice of the relevant model states, processes, and scales are both sensitive and indispensable. We investigate the questions: what is a meaningful level of model complexity and how to obtain an efficient model framework that is still physically and statistically consistent. In our proposed model, aquifer parameters and the contaminant source architecture are conceptualized jointly as random space functions. The governing processes are simulated in a three-dimensional, highly-resolved, stochastic, and coupled model that can predict probability density functions of mass discharge and source depletion times. We apply a stochastic percolation approach as an emulator to simulate the contaminant source formation, a random walk particle tracking method to simulate DNAPL dissolution and solute transport within the aqueous phase, and a quasi-steady-state approach to solve for DNAPL depletion times. Using this novel model framework, we test whether and to which degree the desired model predictions are sensitive to simplifications often found in the literature. With this we identify that aquifer heterogeneity, groundwater flow irregularity, uncertain and physically-based contaminant source zones, and their mutual interlinkages are indispensable components of a sound model framework.

  7. Modeling field-scale cosolvent flooding for DNAPL source zone remediation

    NASA Astrophysics Data System (ADS)

    Liang, Hailian; Falta, Ronald W.

    2008-02-01

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  8. Modeling field-scale cosolvent flooding for DNAPL source zone remediation.

    PubMed

    Liang, Hailian; Falta, Ronald W

    2008-02-19

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  9. Modeling long-term trends of chlorinated ethene contamination at a public supply well

    USGS Publications Warehouse

    Chapelle, Francis H.; Kauffman, Leon J.; Widdowson, Mark A.

    2015-01-01

    A mass-balance solute-transport modeling approach was used to investigate the effects of dense nonaqueous phase liquid (DNAPL) volume, composition, and generation of daughter products on simulated and measured long-term trends of chlorinated ethene (CE) concentrations at a public supply well. The model was built by telescoping a calibrated regional three-dimensional MODFLOW model to the capture zone of a public supply well that has a history of CE contamination. The local model was then used to simulate the interactions between naturally occurring organic carbon that acts as an electron donor, and dissolved oxygen (DO), CEs, ferric iron, and sulfate that act as electron acceptors using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. The modeling results indicate that asymmetry between rapidly rising and more gradual falling concentration trends over time suggests a DNAPL rather than a dissolved source of CEs. Peak concentrations of CEs are proportional to the volume and composition of the DNAPL source. The persistence of contamination, which can vary from a few years to centuries, is proportional to DNAPL volume, but is unaffected by DNAPL composition. These results show that monitoring CE concentrations in raw water produced by impacted public supply wells over time can provide useful information concerning the nature of contaminant sources and the likely future persistence of contamination.

  10. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski

    2006-12-27

    Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.

  11. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    PubMed

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS

    EPA Science Inventory

    Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...

  13. DNAPL distribution in the source zone: Effect of soil structure and uncertainty reduction with increased sampling density

    NASA Astrophysics Data System (ADS)

    Pantazidou, Marina; Liu, Ke

    2008-02-01

    This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.

  14. THE DNAPL REMEDIATION CHALLENGE: IS THERE A CASE FOR SOURCE DEPLETION?

    EPA Science Inventory

    Releases of Dense Non-Aqueous Phase Liquids (DNAPLs) at a large number of public and private sector sites in the United States pose significant challenges in site remediation and long-term site management. Extensive contamination of groundwater occurs as a result of significant ...

  15. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants

    NASA Astrophysics Data System (ADS)

    Suchomel, Eric J.; Ramsburg, C. Andrew; Pennell, Kurt D.

    2007-12-01

    The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween® 80) and sodium dihexyl sulfosuccinate (Aerosol® MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl 2 yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (> 30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR = 1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (< 5%) occurring when the total trapping number exceeded 2 × 10 - 5 . These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.

  16. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    NASA Astrophysics Data System (ADS)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced both air and water, depending on the initial water distribution within the pores. This indicates that the conventional wettability hierarchy, in which the NAPL has an intermediate wetting state between the air and the water phases, is not valid for liquid elemental mercury. Therefore, for future modelling of elemental mercury DNAPL infiltration behaviour in variably water saturated porous media, a different formulation of the governing constitutive relations will be required.

  17. Valiant 'Zero-Valent' Effort Restores Contaminated Grounds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dense non-aqueous phase liquids (DNAPLs) are chemical compounds that can contaminate soil and groundwater to the point of irreparability. These substances are only slightly soluble in water, and are much denser than water. Because of their solubility, DNAPLs form separate liquid phases in groundwater, and because of their density, DNAPLs sink in aquifers instead of floating at the water table, making it extremely difficult to detect their presence. If left untreated in the ground, they can taint fresh water sources. Common DNAPLs include chlorinated hydrocarbon compounds such as carbon tetrachloride, chloroform, tetrachloroethylene, and trichloroethylene. Trichloroethylene was used during the early days of the Space Program, as a solvent for flushing rocket engines, and for metal cleaning and degreasing of equipment, electronics, and heavy machinery. As a result, areas of Cape Canaveral s Launch Complex 34, the site of several historic Saturn rocket launches occurring from 1959 to 1968, were polluted with chlorinated DNAPLs. Through the direction and guidance of Dr. Jacqueline Quinn, an environmental engineer in the Spaceport Engineering and Technology Directorate at NASA s Kennedy Space Center, a biodegradable environmental cleanup technology was developed to reductively dechlorinate DNAPL sources in polluted water at Launch Complex 34. It was important for Kennedy to nip this problem in the bud, in light of the fact that the Space Center is also a National Wildlife Refuge, home to thousands of shorebirds, endangered sea turtles and eagles, manatees, alligators, and diverse habitats that include brackish marshes and salt water estuaries. The success in remediating this historic launch site has led to numerous commercial applications that are restoring the health of our environmental surroundings.

  18. Demonstration of ISCO Treatment of a DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Station, FL

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (U.S. EPA), Department of Defense (DoD), and National Aeronautics and Space Administration as a vehicle for marshalling the resourc...

  19. Fusion of Tomography Tests for DNAPL Source Zone Characterization: Technology Development and Validation

    DTIC Science & Technology

    2011-07-01

    alternative to the REV and fracture network concepts, pp. 533-561, Rock Mechanics : Proceedings of the 28th U.S. Symposium, Tucson, Arizona, edited by I.W...spatially integrated measure of residual DNAPL volume in the flow without causing disturbances to the source zone domain [ Jin et al., 1995; Nelson and...step. 6 Hydrological inversion has been a major focus of groundwater hydrology during the last three decades [see Yeh, 1986; Sun , 1994 and

  20. Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

  1. Interpreting DNAPL saturations in a laboratory-scale injection using one- and two-dimensional modeling of GPR Data

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2005-01-01

    Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.

  2. Demonstration of Steam Injection/Extraction Treatment of a DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Force Station, Final Innovative Technology Evaluation Report

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...

  3. Demonstration of Resistive Heating Treatment of DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Force Station, Florida, Final Innovative Technology Evaluation Report

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...

  4. A consistent framework to predict mass fluxes and depletion times for DNAPL contaminations in heterogeneous aquifers under uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Jonas; Nowak, Wolfgang

    2013-04-01

    At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these changes, the probability density functions demonstrate strong statistical shifts in their expected values and in their uncertainty. Considering the uncertainties of all key parameters but neglecting their interactions overestimates the output uncertainty. However, consistently using all available physical knowledge when assigning input parameters and simulating all relevant interactions of the involved processes reduces the output uncertainty significantly back down to useful and plausible ranges. When using our framework in an inverse setting, omitting a parameter dependency within a crucial physical process would lead to physical meaningless identified parameters. Thus, we conclude that the additional complexity we propose is both necessary and adequate. Overall, our framework provides a tool for reliable and plausible prediction, risk assessment, and model based decision support for DNAPL contaminated sites.

  5. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.

  6. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Lessons Learned on Bioaugmentation of DNAPL Source Zone Areas

    DTIC Science & Technology

    2007-10-01

    but rather have stringers, ganglia or blobs that can create an “effective pool length”. As the leading edge of these discontinuous DNAPL free-phases...terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE), and fluorescent in situ hybridization ( FISH ...question of interest (e.g. PCR, FISH , DGGE); (ii) sampling location(s); (iii) an appropriate sampling procedure; and (iv) an appropriate sample handling

  8. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-09-01

    Significant laboratory and field research has demonstrated that zero-valent metals will reductively dehalogenate dissolved chlorinated solvents such as...Eekert, Servé W. M. Kengen, Gosse Schraa, and Alfons J. M. Stams. 1999. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes...and T. Holdsworth. 2005. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environmental Science Technology, vol 39

  9. Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of Multi-Component Dissolution Kinetics on Cleanup Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNab, W; Ezzedine, S; Detwiler, R

    2007-02-26

    Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, andmore » the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to quantify the dissolution rate in response to local dissolved-phase concentrations distributed across the source area using a volume-averaging approach (Figure 1). The fundamental problem with the lumped mass transfer parameter is that its value is typically derived empirically through column-scale experiments that combine the effects of pore-scale flow, diffusion, and pore-scale geometry in a manner that does not provide a robust theoretical basis for upscaling. In our view, upscaling processes from the pore-scale to the field-scale requires new computational approaches (Held and Celia, 2001) that are directly linked to experimental studies of dissolution at the pore scale. As such, our investigation has been multi-pronged, combining theory, experiments, numerical modeling, new data analysis approaches, and a synthesis of previous studies (e.g. Glass et al, 2001; Keller et al., 2002) aimed at quantifying how the mechanisms controlling dissolution at the pore-scale control the long-term dissolution of source areas at larger scales.« less

  10. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  11. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media.

    PubMed

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg 0 , and PCE for comparison, were determined using P c (S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19cm and 12.51cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg 0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg 0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg 0 entry heads (10.45 and 15.74cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced both air and water, depending on the initial water distribution within the pores. This indicates that the conventional wettability hierarchy, in which the NAPL has an intermediate wetting state between the air and the water phases, is not valid for liquid elemental mercury. Therefore, for future modelling of elemental mercury DNAPL infiltration behaviour in variably water saturated porous media, a different formulation of the governing constitutive relations will be required. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  13. Application of an Optimal Search Strategy for the DNAPL Source Identification to a Field Site in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Longting, M.; Ye, S.; Wu, J.

    2014-12-01

    Identification and removing the DNAPL source in aquifer system is vital in rendering remediation successful and lowering the remediation time and cost. Our work is to apply an optimal search strategy introduced by Zoi and Pinder[1], with some modifications, to a field site in Nanjing City, China to define the strength, and location of DNAPL sources using the least samples. The overall strategy uses Monte Carlo stochastic groundwater flow and transport modeling, incorporates existing sampling data into the search strategy, and determines optimal sampling locations that are selected according to the reduction in overall uncertainty of the field and the proximity to the source locations. After a sample is taken, the plume is updated using a Kalman filter. The updated plume is then compared to the concentration fields that emanate from each individual potential source using fuzzy set technique. The comparison followed provides weights that reflect the degree of truth regarding the location of the source. The above steps are repeated until the optimal source characteristics are determined. Considering our site case, some specific modifications and work have been done as follows. K random fields are generated after fitting the measurement K data to the variogram model. The locations of potential sources that are given initial weights are targeted based on the field survey, with multiple potential source locations around the workshops and wastewater basin. Considering the short history (1999-2010) of manufacturing optical brightener PF at the site, and the existing sampling data, a preliminary source strength is then estimated, which will be optimized by simplex method or GA later. The whole algorithm then will guide us for optimal sampling and update as the investigation proceeds, until the weights finally stabilized. Reference [1] Dokou Zoi, and George F. Pinder. "Optimal search strategy for the definition of a DNAPL source." Journal of Hydrology 376.3 (2009): 542-556. Acknowledgement: Funding supported by National Natural Science Foundation of China (No. 41030746, 40872155) and DuPont Company is appreciated.

  14. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Simplified contaminant source depletion models as analogs of multiphase simulators

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-04-01

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  16. Simplified contaminant source depletion models as analogs of multiphase simulators.

    PubMed

    Basu, Nandita B; Fure, Adrian D; Jawitz, James W

    2008-04-28

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  17. SERDP and ESTCP Expert Panel Workshop on Reducing the Uncertainty of DNAPL Source Zone Remediation

    DTIC Science & Technology

    2006-09-01

    Conventional – Wells – Geoprobe • Pneumatic Fracturing • Hydraulic Fracturing • Pressure Pulse Success is achieved when enough Oxidant/Reductant is...al, 2003; Parker et al, 2004). In fractured aquitards (i.e., silts/clays and shales/mudstones), where the bulk hydraulic conductivity is...relatively low, DNAPL can readily migrate into these units via the fractures and, after a few years to decades, nearly all the mass resides in the low

  18. Three-Dimensional Multifluid Flow and Transport at the Brooklawn Site near Baton Rouge, LA: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Mart; Truex, Michael J.; Thorne, Paul D.

    2007-03-19

    Disposal quantities of organic wastes at the Brooklawn Site in Louisiana are suspected to equal nearly 160 Ktons, making this site one of the most contaminated DNAPL sites in the world. Remedial activities at the site include groundwater and dense nonaqueous phase liquid (DNAPL) extraction from recovery wells. DNAPL recovery has markedly declined in recent years, with many of the peripheral wells showing negligible recovery of organic liquids. Three-dimensional simulations of DNAPL movement in the subsurface were conducted using the STOMP simulator, including a new coupled well model. The objectives of this modeling effort were to (1) determine the fatemore » and transport of infiltrated DNAPL, and (2) measure the effects of active recovery through DNAPL pumping. A detailed three-dimensional geologic model of the Brooklawn primary DNAPL disposal area was developed and used as the framework for DNAPL simulations. Additionally, site-specific data were obtained to obtain the most important hydraulic properties of the subsurface related to DNAPL movement and formation of entrapped DNAPL in the laboratory. Besides a simulation using the best available subsurface information, several sensitivity simulations were conducted to assess the effects on DNAPL migration. These simulations include DNAPL pumping, well screen extension, an alternative geology, increased DNAPL density, lower DNAPL viscosity, and more-permeable sand and silt deposits. Results of the simulations were compared to field data that define the extent of DNAPL movement based on where DNAPL has been extracted in the site recovery wells. The model simulations predict no significant reduction in the extent of the DNAPL as a result of pumping. Pumping returns diminish rapidly due to the limited radius of influence of the wells and movement of the DNAPL out of the zone of influence of the wells with a maximum radius of influence of about 6 m. The numerical analysis also demonstrates that it is impractical to extend existing wells or install new wells to retrieve enough DNAPL to affect the overall extent of DNAPL movement.« less

  19. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will help provide insights into the degradation kinetics that can be expected in the field and help with field scale implementation of nZVI.

  20. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bin; Li, Huiying; Du, Xiaoming

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significantmore » positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.« less

  1. Kinetic limitations on tracer partitioning in ganglia dominated source zones.

    PubMed

    Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew

    2011-11-01

    Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Aquitard contaminant storage and flux resulting from dense nonaqueous phase liquid source zone dissolution and remediation

    EPA Science Inventory

    A one-dimensional diffusion model was used to investigate the effects of dense non-aqueous phase liquid (DNAPL) source zone dissolution and remediation on the storage and release of contaminants from aquitards. Source zone dissolution was represented by a power-law source depleti...

  3. Remedial options for creosote-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.J.; Delshad, M.; Oolman, T.

    2000-03-31

    Free-phase DNAPL recovery operations are becoming increasingly prevalent at creosote-contaminated aquifer sites. This paper illustrates the potential of both classical and innovative recovery methods. The UTCHEM multiphase flow and transport numerical simulator was used to predict the migration of creosote DNAPL during a hypothetical spill event, during a long-term redistribution after the spill, and for a variety of subsequent free-phase DNAPL recovery operations. The physical parameters used for the DNAPL and the aquifer in the model are estimates for the DNAPL and the aquifer in the model are estimates for a specific creosote DNAPL site. Other simulations were also conductedmore » using physical parameters that are typical of a trichloroethene (TCE) DNAPL. Dramatic differences in DNAPL migration were observed between these simulations.« less

  4. The Impact of DNAPL Source-Zone Architecture on Contaminant Mass Flux and Plume Evolution in Heterogeneous Porous Media

    DTIC Science & Technology

    2013-08-01

    remediation, ISCO, permanganate , persistence, DNAPL 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...focus on the lower-K zone 2 and surrounding higher-K matrix sand during the constant permanganate injection………………………… 45 Figure 5.1.3-3...Photographic image of the lower-K zone 2 and surrounding area after permanganate injection, exhibiting the shadow zone downgradient of the lower-K zone

  5. pH Control for Effective Anaerobic Bioremediation of Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D.; Gerhard, J. I.; Kouznetsova, I.

    2007-12-01

    SABRE (Source Area BioREmediation) is a 4-year collaborative project that aims to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated solvent DNAPL source areas. The project focuses on a pilot scale demonstration at a trichloroethene (TCE) DNAPL field site, and includes complementary laboratory and modelling studies. Organic acids and hydrogen ions (HCl) typically build up in the treatment zone during anaerobic bioremediation. In aquifer systems with relatively low buffering capacity the generation of these products can cause significant groundwater acidification thereby inhibiting dehalogenating activity. Where the soil buffering capacity is exceeded, addition of buffer may be needed for the effective continuation of TCE degradation. As an aid to the design of remediation schemes, a geochemical model was designed to predict the amount of buffer required to maintain the source zone pH at a suitable level for dechlorinating bacteria (i.e. > 6.5). The model accounts for the amount of TCE to be degraded, site water chemistry, type of organic amendment and soil mineralogy. It assumes complete dechlorination of TCE, and further considers mineral dissolution and precipitation kinetics. The model is applicable to a wide range of sites. For illustration we present results pertinent to the SABRE field site. Model results indicate that, for the extensive dechlorination expected in proximity to the SABRE DNAPL source zone, significant buffer addition may be necessary. Additional simulations are performed to identify buffer requirements over a wider range of field conditions.

  6. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.

  7. METRICS OF PERFORMANCE FOR THE SABRE MICROCOSM STUDY (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, a laboratory microcosm study was conducted to provide...

  8. CHARACTERIZING THE MICROBIAL COMMUNITY IN SABRE MICROCOSM STUDIES (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, laboratory microcosm and column studies were conducte...

  9. Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gerhard, J. I.; Barry, D. A.

    2005-12-01

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical modelling parameters typically employed for simulating TCE dechlorination relevant for a range of system conditions (e.g, bioaugmented, high TCE concentrations, etc.). The significance of the obtained variability of parameters is illustrated with one-dimensional simulations of enhanced anaerobic bioremediation of residual TCE DNAPL.

  10. Numerical Modeling Analysis of Hydrodynamic and Microbial Controls on DNAPL Pool Dissolution and Detoxification: Dehalorespirers in Co-culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolutionmore » by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.« less

  11. Modeling unstable alcohol flooding of DNAPL-contaminated columns

    NASA Astrophysics Data System (ADS)

    Roeder, Eberhard; Falta, Ronald W.

    Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.

  12. Numerical examination of the factors controlling DNAPL migration through a single fracture.

    PubMed

    Reynolds, D A; Kueper, B H

    2002-01-01

    The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.

  13. Sensitivity models and design protocol for partitioning tracer tests in alluvial aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Butler, G.W.; Jackson, R.E.

    1997-11-01

    Zones of dense, nonaqueous phase liquids (DNAPLs) are difficult to characterize as to their volume, composition, and spatial distribution using conventional ground-water extraction and soil-sampling methods. Such incompletely characterized sites have negative consequences for those responsible for their remedial design, e.g., the uncertainties in the optimal placement of ground-water extraction wells and in the duration of remediation. However, the recent use of the partitioning interwell tracer test (PITT) to characterize DNAPL zones at sites in New Mexico [unsaturated alluvium] and in Ohio, Texas, and Utah [saturated alluvium] demonstrates that the volume and spatial distribution of residual DNAPL can be determinedmore » with accuracy. The PITT involves injection of a suite of tracers which reversibly partition to different degrees between the DNAPL and the ground water or soil air resulting in the chromatographic separation of the tracer signals observed at the extraction well(s). The design of a PITT requires careful consideration of the hydrostratigraphic, hydraulic, and certain geochemical properties of the alluvium being tested. A three-dimensional, numerical model of a heterogeneous alluvial aquifer containing DNAPL has been developed for use with the UTCHEM simulator to demonstrate partitioning tracer testing and to address questions that are frequently raised in its application. The simulations include (1) the estimation of DNAPL volume for the simple case where only residual DNAPL is present in heterogeneous alluvium, (2) sensitivity studies to demonstrate the effect of increasingly low residual DNAPL saturation on the tracer signal, and (3) the effect of free-phase DNAPL on the estimation of the volume of DNAPL present. Furthermore, the potential interference of sedimentary organic carbon as a DNAPL surrogate on the tracer signal is considered and shown to be readily resolved by the careful choice of tracers.« less

  14. High-Resolution Experimental Investigation of mass transfer enhancement by chemical oxidation from DNAPL entrapped in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.

    2012-12-01

    Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.

  15. DNAPL SITE EVALUATION - Project Summary

    EPA Science Inventory

    Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including (a) the...

  16. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    DTIC Science & Technology

    2016-01-01

    USER’S GUIDE Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in...Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers F.D. Day-Lewis, C.D. Johnson, J.H. Williams, C.L...are doomed to failure. DNAPL biodegradation charactrization and monitoring, remediation, fractured rock aquifers. Unclassified Unclassified UU UL 6

  17. Effect of sequential release of NAPLs on NAPL migration in porous media

    NASA Astrophysics Data System (ADS)

    Bang, Woohui; Yeo, In Wook

    2016-04-01

    NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of porous media. To study the effect of subsequent release of NAPLs, as soon as LNAPL was released to porous medium with 1 mm of glass beads, being buoyant above water table, water table was lowered, which left residuals along the path of LNAPL. DNAPL was subsequently released. DNAPL was breaking through the water table now, which was opposed to only DNAPL release case. This study indicates that sequential release of NAPLs can leads to different migration characteristics of NAPLs, compared with the release of single phase NAPL into porous media.

  18. PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...

  19. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION?

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  20. BENCH-SCALE PERFORMANCE OF PARTITIONING ELECTRON DONORS FOR TCE DNAPL BIOREMEDIATION

    EPA Science Inventory

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethen...

  1. BIOENHANCED IN-WELL VAPOR STRIPPING TO TREAT TRICHLOROETHYLENE(TCE)

    EPA Science Inventory

    Removal of chlorinated solvent contaminants at their subsurface source is one of the most challenging problems for remediation of these prevalent contaminants. Here, the solvents are generally present as dense non-aqueous phase liquids (DNAPLs). The potential for applicatio...

  2. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION? (ABSTRACT)

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  3. Monitoring the decontamination of a site polluted by DNAPLs

    NASA Astrophysics Data System (ADS)

    Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

    2012-04-01

    The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. δ13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in δ13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). δ13Ccis-DCE experienced an enrichment upstream to downstream of the barrier (from -15.5‰ to -11.5‰) indicating that a possible abiotic degradation due to the PRB is being produced. However, an enrichment in δ13Ccis-DCE from the focus area to the barrier (from -19.9‰ to -15.5‰) was also detected, suggesting that biotic degradation of cis-DCE is occurring in the field. As a conclusion, preliminary concentration and isotopic results seem to indicate that the PRB does not intercept the whole contaminated plume. The installation of a monitoring system of multilevel piezometers of new construction around the PRB has been proposed in order to study in detail the underground sections most affected by pollution and help to define patterns of migration of DNAPLs in the subsurface, giving the possibility to improve the design of the ZVI-PRB.

  4. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (DNAPL CONFERENCE)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  5. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  6. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  7. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  8. ENHANCED SOURCE REMOVAL USING IN-SITU CHEMICAL FLUSHING

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL) have been identified as a major impediment to the cleanup of many contaminated sites. Conventional ground water remediation methods such as pump-and-treat have proven ineffective at these sites. As a result, alternative remediation approach...

  9. Increasing Confidence In Treatment Performance Assessment Using Geostatistical Methods

    EPA Science Inventory

    It is well established that the presence of dense non-aqueous phase liquids (DNAPLs) such as trichloroethylene (TCE) in aquifer systems represents a very long-term source of groundwater contamination. Significant effort in recent years has been focussed on developing effective me...

  10. Biodegradation of Dense Non-Aqueous Phase Liquids (DNAPLs) Through Bioaugmentation of Source Areas Dover National Test Site, Dover, Delaware

    DTIC Science & Technology

    2007-05-01

    Bioaugmentation of Source Areas Dover National Test Site, Dover, Delaware ESTCP Project Number ER-0008 May 2007 Revision 3.0 ER0008 ii...2007.05.24 Revision 3.0 TABLE OF CONTENTS Page 1. INTRODUCTION...ER0008 iii 2007.05.24 Revision 3.0 3.5 Testing and Evaluation Plan

  11. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation.

    PubMed

    Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D

    2010-10-21

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, R.A.

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. Themore » ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.« less

  13. Transport of Carbon Tetrachloride in a Fractured Vadose Zone due to Atmospheric Pressure Fluctuations, Diffusion, and Vapor Density

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.

    2005-12-01

    DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.

  14. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  15. Know Your Enemy - Implementation of Bioremediation within a Suspected DNAPL Source Zone Following High-Resolution Site Characterization at Contractors Road Heavy Equipment Area, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Chrest, Anne; Daprato, Rebecca; Burcham, Michael; Johnson, Jill

    2018-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), has adopted high-resolution site characterization (HRSC) sampling techniques during baseline sampling prior to implementation of remedies to confirm and refine the conceptual site model (CSM). HRSC sampling was performed at Contractors Road Heavy Equipment Area (CRHE) prior to bioremediation implementation to verify the extent of the trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source area (defined as the area with TCE concentrations above 1% solubility) and its daughter product dissolved plume that had been identified during previous HRSC events. The results of HRSC pre-bioremediation implementation sampling suggested that the TCE source area was larger than originally identified during initial site characterization activities, leading to a design refinement to improve electron donor distribution and increase the likelihood of achieving remedial objectives. Approach/Activities: HRSC was conducted from 2009 through 2014 to delineate the vertical and horizontal extent of chlorinated volatile organic compounds (CVOCs) in the groundwater. Approximately 2,340 samples were collected from 363 locations using direct push technology (DPT) groundwater sampling techniques. Samples were collected from up to 14 depth intervals at each location using a 4-foot sampling screen. This HRSC approach identified a narrow (approx. 5 to 30 feet wide), approximately 3,000 square foot TCE DNAPL source area (maximum detected TCE concentration of 160,000 micrograms per liter [micro-g/L] at DPT sampling location DPT0225). Prior to implementation of a bioremediation interim measure, HRSC baseline sampling was conducted using DPT groundwater sampling techniques. Concentrations of TCE were an order of magnitude lower than previous reported (12,000 micro-g/L maximum at DPT sampling location DPT0225) at locations sampled adjacent to previous sampling locations. To further evaluate the variability in concentrations observed additional sampling was conducted in 2016. The results identified higher concentrations than originally detected within the previously defined source area and the presence of source zone concentrations upgradient of the previously defined source area (maximum concentration observed 570,000 micro-g/L). The HRSC baseline sampling data allowed for a revision of the bioremediation design prior to implementation. Bioremediation was implemented within the eastern portion of the source area in November and December 2016 and quarterly performance monitoring was completed in March and June 2017. Reductions in CVOC concentrations from baseline were observed at all performance monitoring wells in the treatment area, and by June 2017, an approximate 95% CVOC mass reduction was observed based on monitoring well sampling results. Results/Lessons Learned: The results of this project suggest that, due to the complexity of DNAPL source zones, HRSC during pre-implementation baseline sampling in the TCE source zone was an essential strategy for verifying the treatment area and depth prior to remedy implementation. If the upgradient source zone mass was not identified prior to bioremediation implementation, the mass would have served as a long-term source for the dissolved plume.

  16. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  17. POP-contaminated sites from HCH production in Sabiñánigo, Spain.

    PubMed

    Fernández, J; Arjol, M A; Cacho, C

    2013-04-01

    In 2009, hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, and γ-HCH [lindane]) were listed as persistent organic pollutants (POP) in the Stockholm Convention. Accordingly, the legacy of HCH/lindane production with the associated large HCH waste deposits has become recognized as an issue of global concern and is addressed in the implementation of the Convention. The current paper gives an overview of the major contaminated sites from lindane production of the INQUINOSA Company. This company operated from 1975 to 1988 in the city of Sabiñánigo, Spain. HCH production resulted in the production of approximately 115,000 tonnes of waste isomers which were mainly dumped in two unlined landfills. These two landfill sites, together with the former production site, are recognized sources of environmental pollution. Assessment and remediation activities at these sites are described. A dense nonaqueous phase liquid (DNAPL) contaminated inter alia with HCH isomers, benzene, chlorobenzenes, and chlorophenols as the main contaminants and an associated contaminated groundwater plume have been discovered at both landfill/dumpsites and at the former production site. The approximately 4,000 t of DNAPLs constitute a serious risk for the environment due to the proximity of the Gállego River. Since 2004, more than 20 tonnes of this DNAPL has been extracted using "pump and treat" techniques. The Aragon Regional Government and the Spanish Environmental Ministry are taking action, focusing on the treatment of DNAPL and on the transfer of the large quantities of solid POP wastes to a new landfill. A range of laboratory tests has been performed in order to plan the aquifer remediation.

  18. LIPID ANALYSIS TO DETERMINE THE EFFECT OF A SOURCE REMEDIAL TECHNOLOGY IN MICROBIAL ECOLOGY

    EPA Science Inventory

    Microbial community structures and related changes in the subsurface environment were investigated following in situ chemical oxidation (ISCO) treatment at Launch Complex 34, Cape Canaveral Air Station, Florida. The site has dense non-aqueous phase (DNAPL) concentrations of TCE ...

  19. Annual Report to Congress - Fiscal Year 1996. A Report by the Council of the Strategic Environmental Research and Development Program

    DTIC Science & Technology

    1997-03-01

    volatile organic compounds (VOCs), dense non-aqueous phase liquids (DNAPLs), and permeable reactive walls for chlorinated solvents The GRFL is the only... compounds , solvents, and heavy metals. SCAPS technology has been demonstrated to reduce the costs of traditional site screening by up to 90 percent; it...styphnate and volatile organic compounds (VOCs). Hazardous wastes also are generated during demilitarization. Under partial sponsorship of SERDP, the US Army

  20. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  1. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be usedmore » for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.« less

  2. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives ofmore » this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.« less

  3. Optimal Search Strategy for the Definition of a DNAPL Source

    DTIC Science & Technology

    2009-08-01

    29. Flow field results for stochastic model (colored contours) and potentiometric map created by hydrogeologist using well water level measurements...potentiometric map created by hydrogeologist using well water level measurements (black contours). 5.1.3. Source search algorithm Figure 30 shows the 15...and C. D. Tankersley, “Forecasting piezometric head levels in the Floridian aquifer: A Kalman filtering approach”, Water Resources Research, 29(11

  4. ZVI-CLAY SOIL MIXING TREATS DNAPL SOURCE AREA AT 35-FOOT DEPTH

    EPA Science Inventory

    The DuPont Company and Colorado State University (CSU) are collaborating in development and refinement of a technology that involves in-situ admixing of contaminated soil, granular zero valent iron (ZVI), and clay using conventional soil mixing equipment. A full-scale application...

  5. Final report for demonstration of in situ oxidation of DNAPL using the Geo-Cleanse technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Riha, B.; Looney, B.B.

    1997-09-23

    At large industrial sites like the A/M Area of the Savannah River Site (SRS), undissolved dense non-aqueous phase liquid (DNAPL) in soil and groundwater is the most significant barrier to successful clean up. DNAPL acts as a reservoir that will continue to generate contaminant levels far above remediation concentration goals well into the future.

  6. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer.

    PubMed

    Maire, Julien; Joubert, Antoine; Kaifas, Delphine; Invernizzi, Thomas; Marduel, Julien; Colombano, Stéfan; Cazaux, David; Marion, Cédric; Klein, Pierre-Yves; Dumestre, Alain; Fatin-Rouge, Nicolas

    2018-01-15

    Immiscible mobilization and foam flushing were assessed as low surfactant consuming technologies, for the enhanced recovery of dense non-aqueous phase liquid (DNAPL) residual at a site contaminated by heavy chlorinated compounds. Preliminary experiments in well-controlled conditions demonstrated the phenomena involved in these remediation technologies and their limitations. Furthermore, we characterized the technologies according to by their surfactant consumption (per kg of DNAPL recovered) and the final DNAPL saturation reached. Surfactant foam flushing (SFF) produced lower DNAPL saturation than immiscible mobilization, thanks to its higher viscosity. However, its efficiency is strongly correlated to the pressure gradient (▽P) used during injection, and that is limited by risks of soil fracturing. The two technologies were tested in field cells (10m×10m×10m) delimited by cement/bentonite walls anchored in the clayey substratum. The deepest soil layer was the most contaminated. It was composed of silt-sandy soil and had an average hydraulic conductivity of 10 -4 ms -1 . Field results show that we should now model flushing fluid propagation to design efficient set-ups for recovering the displaced DNAPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.

    PubMed

    Hwang, Yong Keun; Endres, Anthony L; Piggott, Scott D; Parker, Beth L

    2008-04-04

    An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.

  8. A Numerical Investigation of Metabolic Reductive Dechlorination in DNAPL Source Zones

    DTIC Science & Technology

    2005-01-01

    APPENDICES ..................................................................................... 249 APPENDIX A UTCHEM VALIDATION...using UTCHEM ............................................................... 82 Table IV.2: Statistics for saturation distribution metrics in 2-D and...Saturation profiles simulated in (a) 2D using UTCHEM and (b) in the same 2D slice extracted from a 3D UTCHEM simulation

  9. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  10. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    In July 1993, the soil and groundwater of the factory of Taiwan , Miaoli was found to be contaminated by dichloroethane, chlorobenzene and other hazardous solvents. The contaminants were termed to be dense non-aqueous phase liquids (DNAPLs). The contaminated site was neglected for the following years until May 1998, the Environment Protection Agency of Miaoli ordered the company immediately take an action for treatment of the contaminated site. Excavating and exposing the contaminated soil was done at the previous waste DNAPL dumped area. In addition, more than 53 wells were drilled around the pool with a maximum depth of 12 m where a clayey layer was found. Continuous pumping the groundwater and monitoring the concentration of residual DNAPL contained in the well water samples have done in different stages of remediation. However, it is suspected that the DNAPL has existed for a long time, therefore the contaminants might dilute but remnants of a DNAPL plume that are toxic to humans still remain in the soil and migrate to deeper aquifers. A former contaminated site was investigated using the 2D, 3D and 4D resisitivity image technique, with aims of determining buried contaminant geometry. This paper emphasizes the use of resistivity image profiling (RIP) method to map the limit of this DNAPL waste disposal site where the records of operations are not variations. A significant change in resistivity values was detected between known polluted and non-polluted subsurface; a high resistivity value implies that the subsurface was contaminated by DNAPL plume. The results of the survey serve to provide insight into the sensitivity of RIP method for detecting DNAPL plumes within the shallow subsurface, and help to provide valuable information related to monitoring the possible migration path of DNAPL plume in the past. According to the formerly studies in this site, affiliation by excavates with pumps water remediation had very long time, Therefore this research was used iron nanoparticles with pumps water remediation ways. The survey lines use the same length and the same position of the different time observation. The survey lines monitors the iron nanoparticles and pollution flow direction with remediation effect. By used the iron nanoparticles and pumping water remediation ways, the DNAPL plumes had eminent changed. Iron nanoparticles granule is smaller than the micron iron, Therefore the reaction rate was quite quick at the iron nanoparticles and pumps, but the ferric oxide can cause the electronic resistivity to elevate produces after the response. Pumps water rectifies may remove the ferric oxide to cause the electronic resistivity to reduce. The iron nanoparticles and pollution response is extremely obviously of the Resistivity Image Profile.

  11. Geoelectrical mapping of the Soil and Groundwater Contaminated Site: Case Study from Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, H. C.; Lin, C. P.; Wang, T. P.

    2016-12-01

    In recent years, geophysical technology has been widely used in soil and groundwater investigation and remediation of contaminated sites assessments in Taiwan, such technology can securely work in either small or large sampler areas, and collect data from the traditional one-dimensional data to two-dimensional and three-dimensional data. In other words, geophysical technology helps provide more information to assist the data interpretation, and improves the overall effectiveness of soil and groundwater contamination surveys. Electrical Resistivity Tomography (ERT) is one of useful geophysical technology to the soil and groundwater contaminated sites. By estimating the groundwater flow direction and distribution of contaminations, we could establish monitoring or sampling wells in potential pollution areas. ERT survey could delineate the contaminated areas with high concentrations in relatively simple sites. Even in the seriously DNAPL leakage cases, it is possible to directly detect the DNAPL pool. In this study, we presented the investigation outcomes of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) at the DNAPLs-impacted site. Evaluation of ERT/GPR technique deployment in detecting buried DNAPLs and assessment of remediation efforts are also discussed. Results indicated zones with anomalously high resistivity to be associated with contaminated DNAPLs presence. Resistivity maps clearly outlined the subsurface distribution and the possible migration path of DNAPLs.

  12. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    Tinker DRA-3 Chem. Ox. Potassium permanganate 10 2.2 Advantages and Limitations Potential advantages and disadvantages of our dataset, and...Washington DC. Thomson, N.R., E.D. Hood, and G.J. Farquhar, 2007. “ Permanganate Treatment of an Emplaced DNAPL Source,” Ground Water Monitoring

  13. Coupling Surfactants/Cosolvents with Oxidants: Effects on Site Characterization and DNAPL Remediation

    NASA Astrophysics Data System (ADS)

    Dugan, P. J.; Siegrist, R. L.; Crimi, M. L.

    2004-12-01

    Within the last decade, surfactant-enhanced aquifer remediation \\(SEAR\\), and more recently, in-situ chemical oxidation \\(ISCO\\) show promise for remediation of dense nonaqueous phase liquid \\(DNAPL\\) contamination in the subsurface. DNAPL removal is typically difficult to achieve with one remedial technique; however, coupling of treatments can be a highly effective method for remediation of DNAPL contamination. Little research has been completed to date to evaluate such coupling and the factors that impact appropriate engineering design and remediation performance assessment. Partitioning tracer tests (PTTs) are a promising method for estimating the volume and distribution of DNAPL. PTTs have several useful purposes: locating subsurface DNAPL zones, estimating NAPL saturation or volume within these contaminated zones, and providing a quantitative and qualitative means of assessing remediation performance. PTT theory permits direct calculation of the NAPL saturation from the chromatographic separation of a tracer pulse consisting of suites of partitioning and non-partitioning tracers that travel with the advecting groundwater. The PTT has been used with limited success after surfactant/cosolvent recovery but has not been assessed as a performance assessment tool after ISCO. There are several factors that could potentially impact the feasibility of the PTT after ISCO. First, previous batch experiments indicate that partitioning tracers degrade in the presence of the oxidant potassium permanganate. Secondly, tracer partitioning could be inhibited by manganese dioxide film formation after chemical oxidation of DNAPL. Both of these factors have potential to influence partitioning tracer transport, which could lead to inaccurate estimates of the post-remediation NAPL saturation, and therefore remediation efficiency. There is a need for researching PTTs after surfactant/cosolvent coupling with ISCO. In general, DNAPL-zone characterization methods have significant uncertainty, and assessing remediation efficiency is difficult. Effluent concentrations can be monitored in the extraction fluid during surfactant/cosolvent flushing, as an independent measure of mass removed. However, a challenge with ISCO in terms of performance assessment is that there is no way to directly measure mass destroyed, except through post-remediation characterization (i.e., PTTs or soil cores). Column and 2-D cell studies were conducted to investigate removal of DNAPL with surfactant/cosolvent flushing coupled with ISCO using the oxidant potassium permanganate. Partitioning and non-partitioning tracers were used in the pre- and post-remediation studies to investigate the effect of these remedial techniques on the viability of PTT.

  14. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    PubMed

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    NASA Astrophysics Data System (ADS)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.

  16. Dense Nonaqueous Phase Liquids

    EPA Pesticide Factsheets

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  17. In situ remediation of DNAPL compounds in low permeability media fate/transport, in situ control technologies, and risk reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  18. Site Characterization Technologies for DNAPL Investigations

    EPA Pesticide Factsheets

    This document is intended to help managers at sites with potential or confirmed DNAPL contamination identify suitable characterization technologies, screen the technologies for potential application, learn about applications at similar sites, and...

  19. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock

    DTIC Science & Technology

    2017-03-27

    the project, and was based on CB&I’s experience at DoD sites, a literature review, and by discussions with site contractors , regulators, and DoD...to collection in the holding tank ( HT -1) for characterization and proper disposal. The use of GAC and diversion to the holding tank was only employed

  20. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  1. GROUND WATER ISSUE: DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  2. Application of the UTCHEM simulator to DNAPL site characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.

    1995-12-31

    Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less

  3. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  4. FIELD ASSESSMENT OF MULTIPLE DNAPL REMEDIATION TECHNIQUES

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated in constructed test cells at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor...

  5. FIELD EVALUATION OF DNAPL EXTRACTION TECHNOLOGIES: PROJECT OVERVIEW

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor extraction. The effectiv...

  6. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  7. Sampling results, DNAPL monitoring well GW-726, Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Quarterly report, April 1, 1994--September 30, 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 foot below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. This report summarizes purging and sampling activities for one of these multiport wells, GW-726, and presents analytical results for GW-726.

  8. Optimal Design and Operation of In-Situ Chemical Oxidation Using Stochastic Cost Optimization Toolkit

    NASA Astrophysics Data System (ADS)

    Kim, U.; Parker, J.; Borden, R. C.

    2014-12-01

    In-situ chemical oxidation (ISCO) has been applied at many dense non-aqueous phase liquid (DNAPL) contaminated sites. A stirred reactor-type model was developed that considers DNAPL dissolution using a field-scale mass transfer function, instantaneous reaction of oxidant with aqueous and adsorbed contaminant and with readily oxidizable natural oxygen demand ("fast NOD"), and second-order kinetic reactions with "slow NOD." DNAPL dissolution enhancement as a function of oxidant concentration and inhibition due to manganese dioxide precipitation during permanganate injection are included in the model. The DNAPL source area is divided into multiple treatment zones with different areas, depths, and contaminant masses based on site characterization data. The performance model is coupled with a cost module that involves a set of unit costs representing specific fixed and operating costs. Monitoring of groundwater and/or soil concentrations in each treatment zone is employed to assess ISCO performance and make real-time decisions on oxidant reinjection or ISCO termination. Key ISCO design variables include the oxidant concentration to be injected, time to begin performance monitoring, groundwater and/or soil contaminant concentrations to trigger reinjection or terminate ISCO, number of monitoring wells or geoprobe locations per treatment zone, number of samples per sampling event and location, and monitoring frequency. Design variables for each treatment zone may be optimized to minimize expected cost over a set of Monte Carlo simulations that consider uncertainty in site parameters. The model is incorporated in the Stochastic Cost Optimization Toolkit (SCOToolkit) program, which couples the ISCO model with a dissolved plume transport model and with modules for other remediation strategies. An example problem is presented that illustrates design tradeoffs required to deal with characterization and monitoring uncertainty. Monitoring soil concentration changes during ISCO was found to be important to avoid decision errors associated with slow rebound of groundwater concentrations.

  9. Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Rockhold, M.; Truex, M.; Thorne, P.; Last, G.; Rohay, V.

    2006-12-01

    Three-dimensional modeling was conducted with layered and heterogeneous models to enhance the conceptual model of CT distribution in the vertical and lateral direction beneath the 216-Z-9 trench and to investigate the effects of soil vapor extraction (SVE). This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy. Simulations targeted migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co-disposed organics in the subsurface beneath the 216-Z-9 trench as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Subsurface Transport Over Multiple Phases (STOMP) simulator. Simulation results support a conceptual model for CT distribution where CT in the DNAPL phase is expected to have migrated primarily in a vertical direction below the disposal trench. Presence of small-scale heterogeneities tends to limit the extent of vertical migration of CT DNAPL due to enhanced retention of DNAPL compared to more homogeneous conditions, but migration is still predominantly in the vertical direction. Results also show that the Cold Creek units retain more CT DNAPL within the vadose zone than other hydrologic unit during SVE. A considerable amount of the disposed CT DNAPL may have partitioned to the vapor and subsequently water and sorbed phases. Presence of small-scale heterogeneities tends to increase the amount of volatilization. Any continued migration of CT from the vadose zone to the groundwater is likely through interaction of vapor phase CT with the groundwater and not through continued DNAPL migration. The results indicated that SVE appears to be an effective technology for vadose zone remediation, but additional effort is needed to improve simulation of the SVE process.

  10. Decision & Management Tools for DNAPL Sites: Optimization of Chlorinated Solvent Source and Plume Remediation Considering Uncertainty

    DTIC Science & Technology

    2010-09-01

    differentiated between source codes and input/output files. The text makes references to a REMChlor-GoldSim model. The text also refers to the REMChlor...To the extent possible, the instructions should be accurate and precise. The documentation should differentiate between describing what is actually...Windows XP operating system Model Input Paran1eters. · n1e input parameters were identical to those utilized and reported by CDM (See Table .I .from

  11. In Situ Bioremediation of Chlorinated Solvents Source Areas with Enhanced Mass Transfer

    DTIC Science & Technology

    2009-11-01

    cells within NAPL Area 3 ................................. 22 Figure 6. Impact of whey injection on pH in the treatment cells...locations following 1% and 10% whey injections. ............................ 39 Figure 12. Total chlorinated ethene concentration contours at select time...points. ................ 40 Figure 13. Relationship between interfacial tension reduction and enhanced solubility of TCE DNAPL as a function of whey

  12. Development of Assessment Tools for Evaluation of the Benefits of DNAPL Source Zone Treatment

    DTIC Science & Technology

    2008-09-01

    SEAR), surfactant fermentation and the production of organic acids, alcohols and hydrogen, and the activity, distribution , and abundance of key... Distribution Statement A: Approved for Public Release, Distribution is Unlimited Report Documentation Page Form...MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release, distribution

  13. Combining Low-Energy Electrical Resistance Heating with Biotic and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2015-01-01

    5 2.1.2 In Situ Bioremediation ...Technology Certification Program gpm gallons per minute ISB in situ bioremediation JBLM Joint Base Lewis-McChord mmol millimole MROD Mount...EXECUTIVE SUMMARY BACKGROUND The applicability of in situ groundwater remedies such as in situ bioremediation (ISB) or zero valent iron (ZVI) reduction

  14. Fundamental Study of the Delivery of Nanoiron to DNAPL Source Zones in Naturally Heterogeneous Field Systems

    DTIC Science & Technology

    2012-09-01

    121 Published text books , book chapters, and theses.........................................................................125...optimize the rate and method of injection (e.g. direct push, hydraulic fracture ), or to optimize the nanoiron properties for specific site geology...expected that higher injection rates will increase the radius of influence by decreasing the efficiency of all three attachment mechanisms (diffusion

  15. PCE DNAPL degradation using ferrous iron solid mixture (ISM).

    PubMed

    Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho

    2009-08-01

    Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.

  16. Estimation of representative elementary volume for DNAPL saturation and DNAPL-water interfacial areas in 2D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Cheng, Zhou; Wu, Jianfeng; Wu, Jichun

    2017-06-01

    Representative elementary volume (REV) is important to determine properties of porous media and those involved in migration of contaminants especially dense nonaqueous phase liquids (DNAPLs) in subsurface environment. In this study, an experiment of long-term migration of the commonly used DNAPL, perchloroethylene (PCE), is performed in a two dimensional (2D) sandbox where several system variables including porosity, PCE saturation (Soil) and PCE-water interfacial area (AOW) are accurately quantified by light transmission techniques over the entire PCE migration process. Moreover, the REVs for these system variables are estimated by a criterion of relative gradient error (εgi) and results indicate that the frequency of minimum porosity-REV size closely follows a Gaussian distribution in the range of 2.0 mm and 8.0 mm. As experiment proceeds in PCE infiltration process, the frequency and cumulative frequency of both minimum Soil-REV and minimum AOW-REV sizes change their shapes from the irregular and random to the regular and smooth. When experiment comes into redistribution process, the cumulative frequency of minimum Soil-REV size reveals a linear positive correlation, while frequency of minimum AOW-REV size tends to a Gaussian distribution in the range of 2.0 mm-7.0 mm and appears a peak value in 13.0 mm-14.0 mm. Undoubtedly, this study will facilitate the quantification of REVs for materials and fluid properties in a rapid, handy and economical manner, which helps enhance our understanding of porous media and DNAPL properties at micro scale, as well as the accuracy of DNAPL contamination modeling at field-scale.

  17. MICROSCOPIC OBSERVATION AND QUANTIFICATION OF ENHANCED DNAPL REMOVAL BY COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The simultaneous injection of cosolvent and air has been suggested to improve sweep efficiency of cosolvent flooding for dense nonaqueous phase liquid (DNAPL) remediation. Glass micromodel experiments were conducted to investigate the factors that influence perchloroethylene (PCE...

  18. Spectral Induced Polarization Response of Unconsolidated Saturated Sand and Surfactant Solutions

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL), such as chlorinated solvents, are common groundwater contaminants. Traditional pump-and-treat methods are often not effective at removing residual DNAPL from the subsurface. Surfactant-enhanced aquifer remediation is a promising remediatio...

  19. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectivenessmore » of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume geometry. The AVO analysis located a major amplitude anomaly, which was tested using a Geoprobe{trademark} direct push system. The Geoprobe{trademark} was equipped with a membrane interface probe (MIP) that was interfaced with a sorbent trap/gas chromatograph (GC) system. Both the Photo Ionization Detector (PID) and Electron Capture Detector (ECD) on the GC exceeded the maximum measurement values through the anomaly. A well was installed to collect a water sample. The concentration of chlorinated solvents in the water sample was in excess of 500 ppm. Other amplitude anomalies located directly under an asphalt road were also tested. Both the PID and ECD were zero. It appears that editing of poor quality near-offset traces during data processing caused these anomalies. Not having the full range of source to receiver offset traces in those areas resulted in a false anomaly during AVO analysis. This phenomenon was also observed at the beginning and end of each seismic profile also for the same reason. Based upon the water samples and MIP probes, it appears that surface seismic and AVO analysis were able to detect the area of highest concentration of DNAPL.« less

  1. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground-water contamination by nonaqueous phase liquids poses one of the greatest remedial challenges In the field of environmental engineering. Denser-than-water nonaqueous phase liquids (DNAPLs) are especially problematic due to their tow water solubility, high density, and capi...

  2. In Situ Thermal Remediation of DNAPL Source Zones

    DTIC Science & Technology

    2011-12-01

    electrode locations, the red Xs are injection and extraction .......... 20 Figure 3. 3. Photograph showing detail of the visualization tank...tank. The green circles are thermocouple locations, the blue squares are electrode locations, the red Xs are injection and extraction...through that zone. As water continues to move into that zone and outgas bubbles, the bubbles will move upward. In general terms, it has been

  3. Combining Low-Energy Electrical Resistance Heating with Biotic and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL Source Area

    DTIC Science & Technology

    2012-12-01

    DEPTH DRILLED INTO ROCK NIA 18. TOTAL CORE RECOVERY FOR BORING 9. TOTAL DEPTH OF HOLE 3o.o I 19. SIGNATURE OF INSPECT/’fi1’ ~V.U.. ELEVATION...EPA/540/-93/ 505 , U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, OH. Farrell, J., Kason, M., Melitas, N., Li

  4. Effect of Porous Media and Fluid Properties on Dense Non-Aqueous Phase Liquid Migration and Dilution Mass Flux

    DTIC Science & Technology

    2005-08-01

    Research and iii Development Program, Department of Defense, who in part funded this research (CU- 1295: Impacts of DNAPL Source Zone Treatment : Experimental...Trichlorosilane Treatment and Retardation Factor ....................... 46 Results and D iscussion... treatments . Water entry rates were then experimentally measured for various media treatments altering contact angle. With all other data known, contact

  5. Investigation of Chemical Reactivity, Mass Recovery and Biological Activity During Thermal Treatment of DNAPL Source Zones

    DTIC Science & Technology

    2009-10-01

    Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE OCT 2009 2...xvi E. 1 . Research Approach .........................................................................................................xvi E.2

  6. Assessing the Feasibility of DNAPL Source Zone Remediation: Review of Case Studies

    DTIC Science & Technology

    2004-05-01

    such as sugars, alcohols, fatty acids that are fermented to hydrogen and used for reductive dechlorination) are more soluble than the chlorinated...addition because a greater percentage of the hydrogen produced during the fermentation of added electron donors is consumed by dechlorinating...Battelle, 2002; Stegemeier and Vinegar , 2001; Roote, 2003; USEPA, 1999): i) increasing vapor pressure and volatilization rates of low boiling point

  7. STEAM INJECTION REMEDIATION IN FRACTURED BEDROCK AT LORING AIR FORCE BASE

    EPA Science Inventory

    Contaminated groundwater occurs at many Superfund, RCRA, and Brownfields sites. Chlorinated solvents which can form a dense nonaqueous phase (DNAPL) when released to the subsurface can pose an extreme challenge for remediation, as DNAPLs are often difficult to locate and even ha...

  8. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  9. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancementmore » technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.« less

  10. Piezo-resistivity electric cone penetration technology investigation of the M-basin at the Savannah River Site, Aiken, South Carolina. Progress report, May 1, 1992--October 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, B.; Rossabi, J.; Shinn, J.D. II

    1997-05-01

    This report documents the results of a combined field and laboratory investigation program to: (1) delineate the geologic layering and (2) determine the location of a dense non-aqueous liquid-phase (DNAPL) contaminated plume beneath the M Area Hazardous Waste Management Facility at the Savannah River Plant. During April of 1991, DNAPLs were detected in monitoring well (MSB-3D), located adjacent to the capped M-Area Settling Basin. Solvents in the well consisted mainly of tetrachloroethylene and trichloroethylene, which are also the main solvents found in groundwater in the M Area. In permeable soils, DNAPLs move downward rapidly due to their high density andmore » low viscosity as compared to water. Within the vadose zone, DNAPLs tend to be held by the less permeable clay and silts by capillary force. In the saturated zone, the downward movement is slowed by clays and silts and the DNAPL tends to pool on this layer, then spread laterally. The lateral movement continues until a permeable layer is encountered, which can be a sand lens, fracture or other high conductivity seam. The DNAPL then moves downward, until another low permeability layer is encountered. Applied Research Associates was contracted to conduct a program to: (1) field demonstrate the utility of Cone Penetration Technology to investigate DOE contaminant sites and, (2) conduct a laboratory and field program to evaluate the use of electric resistivity surveys to locate DNAPL contaminated soils. The field program was conducted in the M-Basin and laboratory tests were conducted on samples from the major stratigraphy units as identified in Eddy et. al. Cone Penetration Technology was selected to investigate the M-Basin as it: (1) is minimally invasive, (2) generates minimal waste, (3) is faster and less costly than drilling, (4) provides continuous, detailed in situ characterization data, (5) permits real-time data processing, and (6) can obtain soil, soil gas, and water samples without the need for a boring.« less

  11. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  12. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  13. MONITOIRNG OF A CONTROLLED DNAPL SPILL USING A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    The U. S. Geological Survey (USGS) utilized their prototype dielectric logging tool to monitor a controlled Dense Non-Aqueous Phase Liquid (DNAPL) spill into a large tank located at the University of California Richmond Field Station (RFS) containing multiple sand and clayey sand...

  14. FLUX-BASED METHODS FOR DNAPL REMEDIATION DESIGN AND ASSESSMENT

    EPA Science Inventory

    One tool that has been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit area per unit time) and mass discharge (mass per unit time) measurements. These measurements, when collected across one or more control planes located down grad...

  15. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (Battelle Conference)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) was conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island, SC. The EZVI technology was developed at the University of Central Fl...

  16. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (BATTELLE PRESENTATION)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The EZVI technology was developed at the University of Central ...

  17. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  18. The Use of Molecular and Genomic Techniques Applied to Microbial Diversity, Community Structure, and Activities at DNAPL and Metal Contaminated Sites

    EPA Science Inventory

    A wide variety of in situ subsurface remediation strategies have been developed to mitigate contamination by chlorinated solvent dense non-aqueous phase liquids (DNAPLS) and metals. Geochemical methods include: zerovalent iron emplacement, various electrolytic applications, elec...

  19. A SCREENING MODEL FOR SIMULATING DNAPL FLOW AND TRANSPORT IN POROUS MEDIA: THEORETICAL DEVELOPMENT

    EPA Science Inventory

    There exists a need for a simple tool that will allow us to analyze a DNAPL contamination scenario from free-product release to transport of soluble constituents to downgradient receptor wells. The objective of this manuscript is to present the conceptual model and formulate the ...

  20. Verification of Methods for Assessing the Sustainability of Monitored Natural Attenuation (MNA)

    DTIC Science & Technology

    2013-01-01

    sugars TOC total organic carbon TSR thermal source removal USACE U.S. Army Corps of Engineers USEPA U.S. Environmental Protection Agency USGS...the SZD function for long-term DNAPL dissolution simulations. However, the sustainability assessment was easily implemented using an alternative...neutral sugars [THNS]). Chapelle et al. (2009) suggested THAA and THNS as measures of the bioavailability of organic carbon based on an analysis of

  1. Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock

    DTIC Science & Technology

    2017-03-27

    document has been cleared for public release REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection...Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD

  2. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    Performance Metrics University of Waterloo Permanganate Treatment of an Emplaced DNAPL Source (Thomson et al., 2007) Table 5.6 Remediation Performance Data... permanganate vs. peroxide/Fenton’s for chemical oxidation).  Poorer performance was generally observed when the Total CVOC was the contaminant metric...using a soluble carbon substrate (lactate), chemical oxidation using Fenton’s reagent, and chemical oxidation using potassium permanganate . At

  3. The DNAPL Remediation Challenge: Is There a Case for Source Depletion?

    DTIC Science & Technology

    2003-12-01

    fermentation products acting as electron donors to promote reductive dechlorination of chlorinated solvents (e.g., see discussion on Sages and Bachman...has been primarily used to remove organic contamination in the vadose zone (see e.g., Stegemeier and Vinegar , 2001). Signifi cant removals of...Stegemeier, G.L., and H.J. Vinegar . 2001. Thermal conduction heating for in-situ thermal desorption of soils. In: Hazardous and Radioactive Waste Treatment

  4. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  5. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  6. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  7. INTERAGENCY DNAPL CONSORTIUM: A COMMITMENT TO SUCCESSFULLY ACCOMPLISH A COMPLEX DEMONSTRATION OF INNOVATIVE TECHNOLOGIES FOR DNAPL REMEDIATION

    EPA Science Inventory

    The USDOE, Office of Science and Technology (DOE-OST); USEPA/NRMRL; National Aeronautics and Space Administration, Kennedy Space Center (NASA-KSC); and the USAir Force 45th Space Wing (rtth Space Wing) have combined resources to form the Interagency Dense Non Aqueous Phase Liquid...

  8. SATURATION MEASUREMENT OF IMMISCIBLE FLUIDS IN 2-D STATIC SYSTEMS: VALIDATION BY LIGHT TRANSMISSION VISUALIZATION (SAN FRANCISCO, CA)

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...

  9. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun

    2017-10-01

    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  10. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  11. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We developed a general non-dimensionalization of the problem and a perturbation analysis to show that there is always an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the total reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients and initial concentrations of the two species.

  12. Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment

    DTIC Science & Technology

    2010-01-01

    from steel pipe , copper plate for heating distinct zones and sheet pile. Sheet pile electrodes allow for quick installation with little to no drilling...as electrodes. Electrodes constructed using Thermal Remediation Services - Electrical Resistance Heating ER-0314 18 Appendix B steel pipe are...who authored state- of-the-art descriptions for the most common in-situ thermal technologies currently employed:  Electrical Resistance Heating

  13. Large-Scale Physical Models of Thermal Remediation of DNAPL Source Zones in Aquitards

    DTIC Science & Technology

    2009-05-01

    pressure at the bottom of the tank. The higher pressure is reflected in higher measured water levels in external gauges . Figure 63: 3D Cross...than atmospheric. This higher pressure can raise the apparent water level in a sight gauge or external overflow and can even drive more fluid through...the water table. All met or exceeded their goals. Typical turnkey unit costs (including design, permitting, fabrication, mobilization, drilling

  14. Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation

    DTIC Science & Technology

    2012-02-01

    the different remedial time frames used in the modeling case studies. • Matrix Diffusion: Modeling results demonstrated that in fractured rock ...being used for the ISCO, EISB and SEAR fractured rock numerical simulations at the field scale. Figure 2-4 presents the distribution of intrinsic...sedimentary limestone, sandstone, and shale, igneous basalts and granites, and metamorphous rock . For the modeling sites, three general geologies are

  15. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  16. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  17. Improving Effectiveness of Bioremediation at DNAPL Source Zone Sites by Applying Partitioning Electron Donors (PEDs)

    DTIC Science & Technology

    2014-05-01

    as trichloroethene (TCE) and tetrachloroethene (PCE). EISB typically relies on the addition of electron donor formulations to enhance the rate of... value (NPV) cost when applied using passive (i.e., biostimulation) methods. Hence, the selection of electron donors has a major implication on EISB...Engineering Service Center NAVFACSW NAVFAC Southwest nBA n-Butyl acetate nBuOH n-Butanol nHEX n-Hexanol NPV net present value O&M operation and

  18. Technical and Regulatory Guidance for Surfactant/Cosolvent Flushing of DNAPL Source Zones

    DTIC Science & Technology

    2003-04-01

    industry and public institutions who contributed to this document: George J . Hall – ITRC Program Advisor Doug Beal – BEM Systems Susan Gawarecki...these tests are also used during the design process to estimate hydraulic properties based on empirical correlations ( Vukovic and Soro, 1992). Samples...Journal of Environmental Engineering, 124(6): 498–503. Bear, J . 1972. Flow Through Porous Media. Elsevier, N.Y. Bedient, P.B., A.W. Holder, C.G

  19. Improved Monitoring Methods for Performance Assessment During Remediation of DNAPL Source Zones

    DTIC Science & Technology

    2010-04-01

    partitioning behavior of TCE (Schwarzenbach et al. 2003). Kile et al. (1995) determined that the Koc values for two chlorinated solvents in the... Kile et al. (1995) that the sediment organic matter was less polar than the terrestrial material. This difference in polarity was assumed by Kile et al...of reasoning was tested further by Kile et al. (1999), who first related carbon functional group contents of whole soil and sediment samples with

  20. Metric Identification and Protocol Development for Characterizing DNAPL Source Zone Architecture and Associated Plume Response

    DTIC Science & Technology

    2013-09-01

    M.4.1. Two-dimensional domains cropped out of three-dimensional numerically generated realizations; (a) 3D PCE-NAPL realizations generated by UTCHEM...165 Figure R.3.2. The absolute error vs relative error scatter plots of pM and gM from SGS data set- 4 using multi-task manifold...error scatter plots of pM and gM from TP/MC data set using multi- task manifold regression

  1. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    NASA Astrophysics Data System (ADS)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order-of-magnitude reductions. Additionally, sites may require monitoring for a minimum of 5-years in order to sufficiently evaluate remedial performance. The study shows that enhanced anaerobic source zone bioremediation contributed to a modest reduction of source zone contaminant mass discharge and appears to have mitigated rebound of chlorinated ethenes.

  2. Oil-in-water emulsions for encapsulated delivery of reactive iron particles.

    PubMed

    Berge, Nicole D; Ramsburg, C Andrew

    2009-07-01

    Treatment of dense nonaqueous phase liquid (DNAPL) source zones using suspensions of reactive iron particles relies upon effective transport of the nano- to submicrometer scale iron particles within the subsurface. Recognition that poor subsurface transport of iron particles results from particle-particle and particle-soil interactions permits development of strategies which increase transport. In this work, experiments were conducted to assess a novel approach for encapsulated delivery of iron particles within porous media using oil-in-water emulsions. Objectives of this study included feasibility demonstration of producing kinetically stable, iron-containing, oil-in-water emulsions and evaluating the transport of these iron-containing, oil-in-water emulsions within water-saturated porous media. Emulsions developed in this study have mean droplet diameters between 1 and 2 microm, remain kinetically stable for > 1.5 h, and possess densities (0.996-1.00 g/mL at 22 degrees C) and dynamic viscosities (2.4-9.3 mPa x s at 22 degrees C and 20 s(-1)) that are favorable to transport within DNAPL source zones. Breakthrough curves and post-experiment extractions from column experiments conducted with medium and fine sands suggest little emulsion retention (< 0.20% wt) at a Darcy velocity of 0.4 m/day. These findings demonstrate that emulsion encapsulation is a promising method for delivery of iron particles and warrants further investigation.

  3. Steam injection for in-situ remediation of DNAPLs in low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPLmore » in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.« less

  4. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Woong-Sang; Gavaskar, Arun; hide

    2005-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  5. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Sam; Gavaskar, Arun; hide

    2004-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nano-scale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, non-aqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (V005) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  6. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

    NASA Astrophysics Data System (ADS)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-12-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  7. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    USGS Publications Warehouse

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  8. The Vapor-phase Multi-stage CMD Test for Characterizing Contaminant Mass Discharge Associated with VOC Sources in the Vadose Zone: Application to Three Sites in Different Lifecycle Stages of SVE Operations

    PubMed Central

    Brusseau, M.L.; Mainhagu, J.; Morrison, C.; Carroll, K.C.

    2015-01-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages along the soil vapor extraction (SVE) operations lifecycle- pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32 g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6 years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25 g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270 g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability (“non-advective”) regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. PMID:26047819

  9. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.

    PubMed

    Brusseau, M L; Mainhagu, J; Morrison, C; Carroll, K C

    2015-08-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages of the soil vapor extraction (SVE) operations lifecycle-pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability ("non-advective") regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Assessing Alternative Endpoints for Groundwater Remediation at Contaminated Sites

    DTIC Science & Technology

    2011-05-01

    HRC), SVE, in-well aeration, phytoremediation , excavation, and pump-and-treat) (Appendix A, sites 2, 7, 21, 42, 43, 48, 55, 69, 72, and 77). Three... phytoremediation 2001 FS, TI evaluation, and ROD Reason(s) for TI Approval: Primary reasons: DNAPL is present in the surficial aquifer...given Cost estimate: Not given Final remedy: Free-phase DNAPL recovery in a localized area, continued phytoremediation , monitored biodegradation

  11. Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Hou, Zeyu; Lu, Wenxi

    2018-05-01

    Knowledge of groundwater contamination sources is critical for effectively protecting groundwater resources, estimating risks, mitigating disaster, and designing remediation strategies. Many methods for groundwater contamination source identification (GCSI) have been developed in recent years, including the simulation-optimization technique. This study proposes utilizing a support vector regression (SVR) model and a kernel extreme learning machine (KELM) model to enrich the content of the surrogate model. The surrogate model was itself key in replacing the simulation model, reducing the huge computational burden of iterations in the simulation-optimization technique to solve GCSI problems, especially in GCSI problems of aquifers contaminated by dense nonaqueous phase liquids (DNAPLs). A comparative study between the Kriging, SVR, and KELM models is reported. Additionally, there is analysis of the influence of parameter optimization and the structure of the training sample dataset on the approximation accuracy of the surrogate model. It was found that the KELM model was the most accurate surrogate model, and its performance was significantly improved after parameter optimization. The approximation accuracy of the surrogate model to the simulation model did not always improve with increasing numbers of training samples. Using the appropriate number of training samples was critical for improving the performance of the surrogate model and avoiding unnecessary computational workload. It was concluded that the KELM model developed in this work could reasonably predict system responses in given operation conditions. Replacing the simulation model with a KELM model considerably reduced the computational burden of the simulation-optimization process and also maintained high computation accuracy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, R.A.; McWhorter, D.B.

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a proposed framework for quantifying the degree to which risk is reduced as mass is removed from DNAPL source areas in shallow, saturated, low-permeability media. Risk is defined in terms of meeting an alternate concentration limit (ACL) at a compliance well in an aquifer underlying the sourcemore » zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downgradient water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phase (aqueous, sorbed, NAPL). Due to the uncertainties in currently available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making specific risk-reduction calculations for individual technologies. Despite the qualitative nature of the exercise, results imply that very high total mass-removal efficiencies are required to achieve significant long-term risk reduction with technology applications of finite duration. This paper is not an argument for no action at contaminated sites. Rather, it provides support for the conclusions of Cherry et al. (1992) that the primary goal of current remediation should be short-term risk reduction through containment, with the aim to pass on to future generations site conditions that are well-suited to the future applications of emerging technologies with improved mass-removal capabilities.« less

  13. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.

    PubMed

    Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A

    2008-11-14

    This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.

  14. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.

    PubMed

    Paul, Laiby; Smolders, Erik

    2015-01-01

    The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment. State-of-the-Practice Overview

    DTIC Science & Technology

    2009-05-01

    recovery in their design. Electrodes have been constructed from steel pipe , copper plate for heating distinct zones, and sheet pile. Sheet pile...energy transfer/ heating in the subsurface) The components required to implement ERH include: • Electrodes (steel pipe , copper plate, well points...including piping , blower, and condenser • A vapor treatment system Electrical Resistance Heating (Smith) A-3 • An ERH power control unit to

  16. Strategies for Monitoring the Performance of DNAPL Source Zone Remedies. Technical/Regulatory Guidelines

    DTIC Science & Technology

    2004-08-01

    Vinegar , 2002; Bierschenk, et al., 2004; Baker and Kuhlman, 2002). It should be noted that the presence of even small amounts of liquid water will limit...Bioremediation of Trichloroethene.” Environmental Science and Technology, 36(10):2262–68. Stegemeier, G.L., and H.J. Vinegar . 2001. “Thermal Conduction...1134. Vinegar , H.J., G.L. Stegemeier, F.G. Carl, J.D. Stevenson, and R.J. Dudley. 1999. “In Situ Thermal Desorption of Soils Impacted with Chlorinated

  17. Verification of Methods for Assessing the Sustainability of Monitored Natural Attenuation (MNA)

    DTIC Science & Technology

    2013-01-01

    surface CVOC chlorinated volatile organic compound DCE cis-1,2-Dichloroethylene DNAPL dense non-aqueous phase liquid DO dissolved oxygen DOC...considered detailed representations of aquifer heterogeneity, DNAPL distributions, and interfacial surface area. Thus, the upscaled SZD function considers...the effects of decreases in interfacial surface area with time as NAPL mass depletes, but not in an explicit manner. Likewise, the upscaled model is

  18. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  19. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. Copyright © 2016. Published by Elsevier Ltd.

  20. Field pilot test of surfactant-enhanced remediation of trichloroethane DNAPL in a sand aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.E.; Butler, G.W.; Londergan, J.T.

    The sequence of lacustrine and outwash deposits beneath a vapor degreasing operation at the Paducah Gaseous Division Plant, Kentucky, is contaminated with trichloroethane due to leakage from a sewer/sump line. A plume of dissolved trichloroethane (TCE) extends throughout an area of approximately 3 km[sup 2] in the Regional Gravel Aquifer (RGA) which is located between 20 and 30 meters below ground surface. It is suspected that some 40,000 liters of TCE might have escaped into the subsurface at Paducah, most of which is still present in the lacustrine deposits and the underlying RGA as DNAPL. A field test to confirmmore » the presence of TCE DNAPL in the sandy, upper portion of the RGA around a monitoring well and to test the efficiency of the surfactant for TCE solubilization is described. The aqueous concentrations of TCE in this well have consistently been measured at 300--550 mg TCE/L over a period of three years. The use of Capillary and Bond numbers to estimate the improbability of mobilization of DNAPL due to the lowering of the interfacial tension is described. The multiphase, multicomponent simulator UTCHEM was used to simulate both the injection and extraction of the surfactant solution and the solubilization of the TCE by the surfactant micelles.« less

  1. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock using Thermal Conductive Heating (TCH)

    DTIC Science & Technology

    2013-01-01

    of 95% or greater in parent compounds . The data also show that most rock concentrations were lowered to around 0-5...INTRODUCTION 1.1 BACKGROUND The removal of dense non-aqueous phase liquids (DNAPL) and associated dissolved phase compounds is challenging in ...trend as presented in Figure 10. Figure 10. Vapor stream VOC concentrations for the dominant compounds . The more or less consistent level of

  2. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    DOE PAGES

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; ...

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C 3-C 6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less

  3. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.

  4. Application of multiple tracers (SF6 and chloride) to identify the transport by characteristics of contaminant at two separate contaminated sites

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.

    2016-12-01

    Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".

  5. Direct Push Optical Screening Tool for High-Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    DTIC Science & Technology

    2016-04-01

    due to higher densities, lower viscosities , and increased weathering (mass depletion) of residual chlorinated solvent DNAPL compared to those other...demonstration area can be generally classified as stratified layers of fine sand and silt with few clay layers. A silt layer was penetrated consistently at...toxic and carcinogenic. Another potential issue evaluated was that in plastic soils (stiff clays for example) there is potential for the thickness of

  6. Direct Push Optical Screening Tool for High Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    DTIC Science & Technology

    2016-07-01

    petroleum hydrocarbon fuels due to higher densities, lower viscosities , and increased weathering (mass depletion) of residual chlorinated solvent DNAPL...generally classified as stratified layers of fine sand and silt with few clay layers. A silt layer was penetrated consistently at a depth of about 45...e.g., stiff clays ) there is potential for the thickness of the dye interaction zone to increase to approximately 1-2 mm. Intuition suggests that this

  7. Radio frequency heating for in-situ remediation of DNAPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  8. Sampling results, DNAPL monitoring well GW-729, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drier, R.B.; Caldanaro, A.J.

    1996-12-01

    This document, Sampling Results, DNAPL Monitoring Well G W-729, Third Quarter FY 1995 through Third Quarter FY 1996, was performed under Work Breakdown Structure 1.4.12.1.1.02 (Activity Data Sheet 2312, `Bear Creek Valley`). This document provides the Environmental Restoration Program with groundwater concentrations for nonradionuclides in the vicinity of the Y-12 Burial Grounds. These data can be used to determine reference concentrations for intermediate and deep groundwater systems.

  9. Practical Cost-Optimization of Characterization and Remediation Decisions at DNAPL Sites with Consideration of Prediction Uncertainty

    DTIC Science & Technology

    2011-05-01

    well] TR GWsampC sampling and analysis cost per groundwater sample [$K/sample] i TR boreC cost per soil boring [$K/boring] TR SOILsampC cost per... soil sample analyzed [$K/sample] d annual discount rate [-] DNAPL dense nonaqueous phase liquid (E0, N0) raw easting and northing field...kg] fE fraction of non-monitoring variable costs attributable to energy use [-] Fi total soil and/or groundwater samples divided by pre

  10. Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.

  11. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation

    NASA Astrophysics Data System (ADS)

    Pierce, Amanda A.; Chapman, Steven W.; Zimmerman, Laura K.; Hurley, Jennifer C.; Aravena, Ramon; Cherry, John A.; Parker, Beth L.

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i.e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes.

  12. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.

    PubMed

    Pierce, Amanda A; Chapman, Steven W; Zimmerman, Laura K; Hurley, Jennifer C; Aravena, Ramon; Cherry, John A; Parker, Beth L

    2018-05-01

    Plumes of trichloroethene (TCE) with degradation products occur at a large industrial site in California where TCE as a dense non-aqueous phase liquid (DNAPL) entered the fractured sandstone bedrock at many locations beginning in the late 1940s. Groundwater flows rapidly in closely spaced fractures but plume fronts are strongly retarded relative to groundwater flow velocities owing largely to matrix diffusion in early decades and degradation processes in later decades and going forward. Multiple data types show field evidence for both biotic and abiotic dechlorination of TCE and its degradation products, resulting in non-chlorinated compounds. Analyses were conducted on groundwater samples from hundreds of monitoring wells and on thousands of rock samples from continuous core over depths ranging from 6 to 426 metres below ground surface. Nearly all of the present-day mass of TCE and degradation products resides in the water-saturated, low-permeability rock matrix blocks. Although groundwater and DNAPL flow primarily occur in the fractures, DNAPL dissolution followed by diffusion and sorption readily transfers contaminant mass into the rock matrix. The presence of non-chlorinated degradation products (ethene, ethane, acetylene) and compound specific isotope analysis (CSIA) of TCE and cis-1,2-dichloroethene (cDCE) indicate at least some complete dechlorination by both biotic and abiotic pathways, consistent with the observed mineralogy and hydrogeochemistry and with published results from crushed rock microcosms. The rock matrix contains abundant iron-bearing minerals and solid-phase organic carbon with large surface areas and long contact times, suggesting degradation processes are occurring in the rock matrix. Multiple, high-resolution datasets provide strong evidence for spatially heterogeneous distributions of TCE and degradation products with varying degrees of degradation observed only when using new methods that achieve better detection of dissolved gases (i.e., Snap Sampler™) and contaminant mass stored in the low permeability rock matrix (i.e., CORE-DFN™). Simulations using a discrete fracture-matrix (DFN-M) numerical model capable of rigorously simulating flow and transport in both the fractures and matrix, including interactions, show that even slow, first-order degradation rates (i.e., 5- to 20-year half-lives) informed by site-derived parameters can contribute strongly to natural attenuation, resulting in TCE plumes that become stationary in space and might even retreat after 50 to 100 years, if the DNAPL sources become depleted due to the combination of diffusion and degradation processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Field scale DNAPLs transport under nonequilibrium sorption conditions.

    PubMed

    Ahmed, Ashraf A; Chen, Daoyi

    2006-01-01

    The purpose of this work is to study the desorption of dense nonaqueous phase liquids (DNAPLs), TCE in particular, from solid particles in field scale heterogeneous aquifers upon their remediation. A computer program, capable of simulating the fate and transport of NAPLs in porous media, has been developed to work under nonequilibrium sorption conditions. The model has been applied to a field scale site at Hill Air Force Base, Utah, which has been contaminated by DNAPLs. The simulated domain was 155 ft (47.25 m) long, 60 ft (18.29 m) wide, and 15.5 ft (4.72 m) thick. This thickness represents only the saturated zone of the aquifer. Changes in permeability, grain size distribution, and sorptive properties throughout the site have been incorporated into the model. Immediately after the aquifer cleanup, the DNAPL concentration in the aqueous phase was assumed to be zero, and this was considered the start-off time for the simulation. Results show that, with an increase in time, the TCE diffused out of the solid particles, forming a plume. The rate of contaminant diffusion was observed to be very fast at the start, followed by a very slow stage, with a number of years required for substantial desorption of the contaminant from the solid particles. There were local variations in contaminant concentration in the fluid phase across the site due to aquifer heterogeneity. A comparison between numerical results and water samples taken from the site after the end of the cleanup operation is also presented.

  14. Periodic Application of Stochastic Cost Optimization Methodology to Achieve Remediation Objectives with Minimized Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kim, U.; Parker, J.

    2016-12-01

    Many dense non-aqueous phase liquid (DNAPL) contaminated sites in the U.S. are reported as "remediation in progress" (RIP). However, the cost to complete (CTC) remediation at these sites is highly uncertain and in many cases, the current remediation plan may need to be modified or replaced to achieve remediation objectives. This study evaluates the effectiveness of iterative stochastic cost optimization that incorporates new field data for periodic parameter recalibration to incrementally reduce prediction uncertainty and implement remediation design modifications as needed to minimize the life cycle cost (i.e., CTC). This systematic approach, using the Stochastic Cost Optimization Toolkit (SCOToolkit), enables early identification and correction of problems to stay on track for completion while minimizing the expected (i.e., probability-weighted average) CTC. This study considers a hypothetical site involving multiple DNAPL sources in an unconfined aquifer using thermal treatment for source reduction and electron donor injection for dissolved plume control. The initial design is based on stochastic optimization using model parameters and their joint uncertainty based on calibration to site characterization data. The model is periodically recalibrated using new monitoring data and performance data for the operating remediation systems. Projected future performance using the current remediation plan is assessed and reoptimization of operational variables for the current system or consideration of alternative designs are considered depending on the assessment results. We compare remediation duration and cost for the stepwise re-optimization approach with single stage optimization as well as with a non-optimized design based on typical engineering practice.

  15. The delineation of DNAPL in a heterogeneous unconsolidated aquifer using a hydro punch sampler and hydrophobic dye testing procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirilli, J.; DeRose, N.

    1995-09-01

    The site is a pharmaceutical facility located in Newark, New Jersey. The facility which has been in operation for approximately 90 years, previously contained a 15,000 gallon underground tank used to store TCE. Upon the tanks removal in the early 1980`s the tank integrity was found to have been compromised. In compliance with the NJDEP Industrial Site Recovery Act, the responsible party was required to locate DNAPL in the aquifer. Due to TCE`s relative density, vertical migration to depths greater than 80 feet has occurred. Lateral migration over distances greater than 500 feet has been documented. Currently, the investigation hasmore » focused on the neighboring cemetery, where approximately 20 deep soil borings have been advanced at selected locations downslope of the TCE source area. The soil borings were drilled by mud rotary methods to a depth that was determined in the field to be proximal to the bottom of the heterogeneous unconsolidated aquifer. Continuous split spoon soil sampling for detailed geologic interpretation and field screening utilizing an organic vapor instrument was performed. The Hydro Punch (HP II) sampler was used in the aqueous sampling model to collect a discrete ground water sample from the interface between the aquifer and the till.« less

  16. In Situ Remediation of Polychlorinated Bephenyls Using Palladium Coated Iron or Magnesium

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2003-01-01

    The remediation of polychlorinated biphenyls (PCBs) and other chlorinated synthetic aromatic compounds are of great concern due to their toxicity and persistence in the environment. When released into the environment, PCBs are sorbed to particulate matter that can then disperse over large areas. Although the US Environmental Protection Agency (EPA) has banned the manufacture of PCBs since 1979, they are still present in the environment posing possible adverse health affects to both humans and animals. Thus, it is of utmost importance to develop a method that remediates PCB-contaminated soil, sediments, and water. The objective of our research was to develop an in-situ PCB remediation technique that is applicable for the treatment of soils and sediments. Previous research conducted at the University of Central Florida (UCF) proved the feasibility of using an emulsified system to dehalogenate a dense non-aqueous phase liquid (DNAPL) source, such as TCE, in the subsurface by means of an in-situ injection. The generation of a hydrophobic emulsion system drew the DNAPL TCE, through the oil membrane where it diffused to the iron particle and underwent degradation. TCE continued to enter, diffuse, degrade and exit the droplet maintaining a concentration gradient across the membrane, thus maintaining the driving force of the reaction.

  17. Dissolution of a Tetrachloroethene (PCE) pool in an Anaerobic Sand Tank Aquifer System: Bioenhancement, Ecology, and Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klemm, Sara; Becker, Jennifer; Seagren, Eric

    2017-04-01

    Dehalorespiring bacteria that reductively dechlorinate and grow on chlorinated ethenes in the aqueous phase can also achieve treatment of dense nonaqueous phase liquid (DNAPL) contaminants in the subsurface via bioenhanced dissolution, i.e., enhanced mass transfer from the DNAPL to the aqueous phase. Theoretical and experimental analyses predict that a number of interrelated physicochemical processes (e.g., advection and dispersion) and biological factors (e.g., biokinetics and competition) may influence the degree of bioenhancement. This research focused on understanding the interrelated roles that hydrodynamics and ecological interactions among dehalorespiring populations play in determining the distribution of dehalorespiring populations and the impact on bioenhanced dissolution and detoxification. The hypotheses driving this research are that: (1) ecological interactions between different dehalorespiring strains can significantly impact the dissolution rate bioenhancement and extent of dechlorination; and (2) hydrodynamics near the DNAPL pool will affect the outcome of ecological interactions and the potential for bioenhancement and detoxification. These hypotheses were evaluated via a multi-objective modeling and experimental framework focused on quantifying the impact of microbial interactions and hydrodynamics on the dissolution rate bioenhancement and plume detoxification using a model co-culture of Desulfuromonas michiganensis BB1 and Dehalococcoides mccartyi 195. The experiments were performed in a saturated intermediate-scale flow cell (1.2 m), with flow parallel to a tetrachloroethene (PCE) pool. Bioenhancement of PCE dissolution by the two dehalorespirers was evaluated using a steady-state mass balance, and initially resulted in a two- to three-fold increase in the dissolution rate, with cis-dichloroethene (cDCE) as the primary dechlorination product. Quantitative analysis of microbial population distribution and abundance using a 16S rRNA gene-based qPCR approach indicated that Dsm. michiganensis BB1 was the dominant population in the effluent. This was expected based on our previous work characterizing the PCE utilization kinetics of the two populations, and suggests that Dsm. michiganensis BB1 was the dominant population in the aquifer system and controlled PCE dissolution and its bioenhancement. This conclusion is consistent with our numerical modeling predictions for the same conditions, which suggested Dhc. mccartyi 195 had little effect on dissolution and dehalorespiration, but aided detoxification by growing on the cDCE produced by Dsm. michiganensis BB1. Subsequently, the PCE dissolution enhancement increased to six- to seven-fold relative to the abiotic dissolution rate. Quantitative analysis of population distribution and abundance in the porous media and nonreactive tracer studies suggested that microbial growth-induced bioclogging, coupled with inhibition of microbial activity near the DNAPL, resulted in increased flow immediately adjacent to the DNAPL-aqueous interface. The increased flow rate past the DNAPL could explain the observed increase in the PCE dissolution rate and is consistent with our numerical modeling of the system. The research described here is part of a larger project working to improve the fundamental understanding of the impact of hydrodynamics and ecological interactions on DNAPL dissolution rate bioenhancement and plume detoxification. These biotic data build on the baseline abiotic experiments reported in another abstract submitted to Session HS8.1.6.

  18. The efficiency evaluation of in situ remediation performed around the source zone of DNAPL contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Lee, S. H.; Lee, K. K.

    2014-12-01

    The location of DNAPL source and distribution of contaminant plume at an industrial complex, Wonju, Korea, was examined based on the combined results of seasonal impact analysis, historical approach, radon tracer approach, and chemical fingerprinting conducted from 2009 to 2013 (Yang et al., 2013). With regard to the amount of contaminants discharged at this study site, there is no exact information on disposal. Therefore, various remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treatment have been performed to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Also, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The remediation efficiency according to the remediation actions was evaluated by tracing a time-series of plume evolution and estimating the temporal mass discharge at three transects (Source, Transec-1, Transect-2) which was assigned along the groundwater flow path. From results of periodically monitored TCE concentration at main source zone, the TCE level (15.74 mg/L) before the remediation dramatically decreased up to 0.56 mg/L at the end of year 2012 due to the effect of remediation. During the intensive remediation period from 2012 to 2013, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Especially, in case of surfactant flushing test which was conducted to eliminate the residual TCE, the efficiency of surfactant flushing test was evaluated using the recovery rate of chloride ion which was used as tracer. The results for recovery rate of chloride ion show that test wells observed the slow recovery rate represented more effective dissolution of TCE than wells showing the rapid recovery rate. By using the source zone monitoring data and analytical solution, initial dissolved concentration and residual mass of TCE in late 1980s at the main source zone were roughly estimated 150 mg/L and 1000 kg, respectively. These values decreased to 0.45 mg/L and 33.07 kg direct after an intensive remedial action in 2013 and then it expected to be continuously decreased to 0.29 mg/L and 25.41 kg from the end of remedial actions to 2020.

  19. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are associated with multiple flow path connectivity. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase. Response times to TCE concentrations depend on the mode of transport, and region of flow paths.

  20. Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.

    2005-01-01

    The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.

  1. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  2. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    DTIC Science & Technology

    2013-09-01

    Mass in the Rock Matrix. Table 4.8.5.1: Flow and Transport Parameters Used for TCE Dissolution Modeling in Discrete Fracture Approach. Table 4.8.5.2...represent the flow rate over time. Figure 4.8.4.5: The Profile of Estimated Diffusing TCE Front into the Rock Matrix. Figure 4.8.5.1: a) Mesh Used for TCE...fractured rocks . The work of Illman et al. (2009) motivates us to conduct a laboratory fractured rock block experiment in which a large number of pumping

  3. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Formulation design for target delivery of iron nanoparticles to TCE zones.

    PubMed

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  5. Prediction of Bicarbonate Requirements for Enhanced Reductive Bioremediation of Chlorinated Solvent-Contaminated Sites

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D. A.

    2008-12-01

    Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.

  6. Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments

    NASA Astrophysics Data System (ADS)

    Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

    2006-12-01

    SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and is most pronounced in the dechlorination of TCE to DCE.

  7. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards.

    PubMed

    Puigserver, Diana; Herrero, Jofre; Torres, Mònica; Cortés, Amparo; Nijenhuis, Ivonne; Kuntze, Kevin; Parker, Beth L; Carmona, José M

    2016-09-01

    In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).

  8. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  9. Ensemble of Surrogates-based Optimization for Identifying an Optimal Surfactant-enhanced Aquifer Remediation Strategy at Heterogeneous DNAPL-contaminated Sites

    NASA Astrophysics Data System (ADS)

    Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.

    2015-12-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  10. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of calcite in soil, the availability of competing electron acceptors (in particular dissolved sulfates) and the efficiency with which microbes utilize electron donor. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aimed to evaluate and improve enhanced bioremediation of chlorinated solvent source zones.

  11. Simulated transport and biodegradation of chlorinated ethenes in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, Richard M.

    2002-01-01

    Leakage of trichloroethene (TCE) from a neutralization pond at a former manufacturing facility near Niagara Falls, N.Y. during 1950-87 into the Guelph Formation of the Lockport Group, a fractured dolomite aquifer, created a plume of TCE and its metabolites that, by 1990, extended about 4,300 feet south of the facility. A smaller plume of dense, nonaqueous-phase liquids (DNAPL) probably serves as a continuing source of TCE. The presence of the TCE metabolites cis-1,2-dichloroethene (DCE), vinyl chloride (VC), and ethene in the plume, and the results of previous laboratory microcosm studies, indicate that the TCE is being degraded by naturally occurring microorganisms. Biodegradation rates of TCE and its metabolites were estimated through simulation with BIOMOC, a solute-transport model that represents multispecies reactions through Monod kinetics. A fracture zone in the Guelph Formation was represented as a porous medium containing an extensive, 3-foot thick layer with several interconnected fractures; this layer is bounded above and below by subhorizontal stratigraphic contacts. The Monod reaction constants were estimated through nonlinear regression to minimize the difference between computed concentrations of TCE and its metabolites, and the concentrations measured before and during 5 years of pump-and-treat remediation.Transport simulations indicated that, by April 1998, the chlorinated ethene plume had reached a dynamic equilibrium between the rate of TCE dissolution and the rate of removal through pumping and biodegradation. Biodegradation of chlorinated ethenes at the site can be simulated as first-order reactions because the concentrations are generally less than the half-saturation constants estimated for Monod kinetics (320 mg/L for TCE, 10 mg/L for DCE, and 1 mg/L for VC). Computed degradation rates are proportional to the estimated ground-water velocity, which could vary by more than an order magnitude at the site, as indicated by the estimated range of fracture porosity--3 to 0.3 percent. Half-lives corresponding to first-order rate constants estimated for the lower velocity (5 to 15 feet per day) ranged from 21 to 25 days for TCE, 170 to 230 days for DCE, and 18 to 23 days for VC.Chlorinated ethene concentrations of April 1998 were better reproduced when the TCE source was represented as a constant concentration than as a constant flux, because the latter predicted that the plume would dissipate after 5 years of pump-and-treat remediation. This result indicates that the rate of TCE dissolution is not limited by the mass of TCE in the DNAPL plume. Simulation of diffusion by the transport model MOC3D indicated that concentrations of these contaminants within the rock matrix surrounding the fracture zone were relatively unchanged after 5 years of pump-and-treat remediation. The principal sources of uncertainty in the prediction of biodegradation rates and of the fate of chlorinated ethenes at the site are the fracture porosity and DNAPL mass in the aquifer.

  12. In-situ biochemical remediation of chlorinated organic compounds present as DNAPL using vitamin B12 and reduced titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesage, S.; Sorel, D.; Cherry, J.A.

    1995-12-31

    The feasibility of using a biochemical treatment for the cleanup of DNAPL solvents in the saturated zone was tested using an in-situ large vertical column. Laboratory column studies have shown that a mixture of vitamin B12 and titanium citrate pumped through a column containing 100 {mu}L of tetrachloroethene can completely dissolve and degrade the residual to ethene in a few days. A vertical test column, 80 cm in diameter was installed within a sheet-pile cell isolating a portion of aquifer at CFB Borden. An equimolar mixture of tetrachloroethene and 1,1,1-trichloroethane was injected below the water table to form a residualmore » DNAPL. The injection withdrawal system was operated in an upward flow mode over a 2 m height. In order for the reaction to be proceed, the in-situ pH must be greater than 7 and the Eh lower than -480 mV. The redox of the aquifer and the formation of reaction products was monitored on site, through 8 side pods equipped with stainless steel tubing terminated with 40 {mu}m porous cups, installed at different heights in the test column. The volatile products at the withdrawal well were monitored on-line by dynamic headspace analysis/gas chromatography.« less

  13. Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids.

    PubMed

    Damrongsiri, S; Tongcumpou, C; Sabatini, D A

    2013-03-15

    Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Flow Dependence Assessment for Fate and Transport of DNAPL in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2017-12-01

    DNAPLs are a group of organic compounds, which exhibit high fluid density, relatively aqueous solubility, and a high level of toxicity. It is also very persistent and remains in the environment long after been released. Massive production of these compounds, their constant use and poor disposal methods have increased the occurrence of these contaminants in groundwater systems. The physico-chemical properties of DNAPL, combined with the high variation of groundwater flow causes contaminants to behave unpredictably in such aquifer. This research focuses on fate and transport of trichloroethylene (which is one of the most frequent DNAPL found) in a karstified limestone physical model (KLPM) at two different flow rates. The KLPM represents a real case of a saturated confined karst aquifer consisting of a porous limestone block enclosed in a stainless-steel tank with fifteen horizontal sampling ports. After injection of pure TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed volumetrically and analytically with HPLC. Data show pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port. Results from the constructed temporal distributions curves at different spatial locations show spatial variations related to the limestone block heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing is indicative of diffusive transport in the rock matrix and mass transport rates limitations. Although, high flow rates show greater mass removal of TCE by dissolving its NAPL, pure TCE accumulates at all flow rates studied. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase for long periods of time. They also show that fate and transport of contaminants in karst environments is significantly flow dependent.

  15. Cracking of Clay Due to Contact with Waste Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Otero, M.; Ayral, D.; Shipan, J.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Clays are known to crack upon desiccation. Desiccation cracks of up to 3 cm wide have been reported in natural soils. This raises the question if a similar behavior is seen when a dense non-aqueous phase liquids (DNAPL) waste is in contact with clay. The contact with organic liquids causes the clay structure to shrink, leading to the formation of cracks. Moreover, DNAPL waste not only contains the organic liquid solvent but also includes surface-active solutes or surfactants. Such solutes can enhance the interaction of the organic solvents with the clay. This research will assess whether or not contact with chlorinated organic waste causes cracking. In order to evaluate the possibility of cracking in the clay, microcosms have been constructed that mimic aquifer systems, consisting of a saturated layer of sand, a saturated layer of bentonite clay and a 2.5 cm layer of either pure chlorinated solvents or DNAPL waste. The onset of cracking for the microcosm with tetrachloroethylene (PCE) waste as the DNAPL layer occurred after ten days of contact. Similarly, at eight days, cracks were observed in a microcosm containing trichloroethylene (TCE) waste . Forty-four days later, the length and number of cracks have grown considerably; with a total crack length of 50 cm on a surface of 80 cm2 in the microcosm containing PCE waste. On the other hand it took approximately 161 days for the clay layer in the microcosm containing pure PCE to crack. To quantity the degree of cracking, crack maps were developed using the image software, Image J. Characteristics like crack length, crack aperture, and the percentage of total length for a range of apertures were calculated using this software. For example, for the PCE waste microcosm, it was calculated that 3.7% of the crack length had an aperture of 100-300 microns, 15.1% of the crack length had an aperture of 300-500 microns, 29.7% of the crack length had an aperture of 500-700 microns, 40.1% of the crack length had an aperture of 700-900 microns, 6.3% had an aperture of 900-1,100 microns and 5.1% had an aperture of over 1,100 microns. These data suggest that aquitards in the field might crack when in contact with the DNAPL waste. Moreover, it is apparent that the waste contains solutes that accelerate the cracking of the clay layer. Thus, models examining the impact of storage in low permeability layers need to consider the possible impact of cracking.

  16. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous uncovering of information on the source of the coal tar, particularly the coal gasification process it originates from, and on its fate once released in the subsurface, i.e. the nature of the transformations it underwent such as evaporation, water-washing, chemical reactions or biodegradation.

  17. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1,more » 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.« less

  18. Electroosmosis remediation of DNAPLS in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and withmore » very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.« less

  19. The influence of cosolvent and heat on the solubility and reactivity of organophosphorous pesticide DNAPL alkaline hydrolysis.

    PubMed

    Muff, Jens; MacKinnon, Leah; Durant, Neal D; Bennedsen, Lars Frausing; Rügge, Kirsten; Bondgaard, Morten; Pennell, Kurt

    2016-11-01

    The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily parathion (~50 %) and methyl parathion (~15 %) obtained from the Danish Groyne 42 site was used as a contaminant source, and ethanol and propan-2-ol (0, 25, and 50 v/v%) was used as cosolvents in tap water and 0.34 M NaOH. Both cosolvents showed OPP solubility enhancement at 50 v/v% cosolvent content, with slightly higher OPP concentrations reached with propan-2-ol. Data on hydrolysis products did not show a clear trend with respect to alkaline hydrolysis reactivity in the presence of cosolvents. Results indicated that the hydrolysis rate of methyl-parathion (MP3) decreased with addition of cosolvent, whereas the hydrolysis rate of ethyl-parathion (EP3) remained constant, and overall indications were that the hydrolysis reactions were limited by the rate of hydrolysis rather than NAPL dissolution. In addition to cosolvents, the influence of low-temperature heating on ISAH was studied. Increasing reaction temperature from 10 to 30 °C provided an average rate of hydrolysis enhancement by a factor of 1.4-4.8 dependent on the base of calculation. When combining 50 v/v% cosolvent addition and heating to 30 °C, EP3 solubility was significantly enhanced and results for O,O-diethyl-thiophosphoric acid (EP2 acid) showed a significant enhancement of hydrolysis as well. However, this could not be supported by para-nitrophenol (PNP) data indicating the instability of this product in the presence of cosolvent.

  20. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.

  1. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 2. Porous medium simulation examples

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.

    1994-06-01

    This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.

  2. Evaluating Trichloroethylene Degradation Using Differing Nano- and Micro-Scale Iron Particles

    NASA Technical Reports Server (NTRS)

    Berger, Cristina M.; Geiger, Cherie L.; Clausen, Christian A.; Billow, Alexa M.; Quinn, Jacqueline W.; Brooks, Kathleen B.

    2006-01-01

    Trichioroethylene, or TCE, is a central nervous system depressant and possible carcinogen, as well as a persistent groundwater pollutant. TCE exists in the aquifer either as free product in the form of a dense non-aqueous phase liquid (DNAPL) or as a dissolved-phase constituent. It is only slightly soluble in water, so dissolution of the contaminant is a long-term process and in-situ remediation is difficult. To remedy this, NASA and the University of Central Florida developed Emulsified Zero-Valent Iron, or EZVI. The emulsion droplet contains ZVI particles and water encapsulated by an oil/surfactant membrane, and effectively penetrates to degrade DNAPL-phase TCE. To maximize the efficiency of this process, several commercially available ZVIs of radically different particle sizes and morphologies both in emulsion and as neat (unemulsified) metal were evaluated for relative effectiveness at TCE degradation.

  3. Quantify fluid saturation in fractures by light transmission technique and its application

    NASA Astrophysics Data System (ADS)

    Ye, S.; Zhang, Y.; Wu, J.

    2016-12-01

    The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.

  4. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  5. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  6. DNAPL Managements Overview

    DTIC Science & Technology

    2007-04-01

    characterizing groundwater contamination, In: Contaminated Soil (ConSoil), Thomas Telford, Leipzig, Germany , pp. 198-205. Rao, P.S.C. and J.W. Jawitz, 2003...installed to contain contamination, Keens Creek was rerouted to avoid passage through the contaminated site, new trees for phytoremediation and soil

  7. IN-SITU CHEMICAL OXIDATION - DNAPL MASS REDUCTION TECHNOLOGY

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) is a rapidly developing technology used at hazardous waste sites where oxidants and complimentary reagents are injected into the subsurface to transform organic contaminants into less toxic byproducts. This technology is being used at new sites ...

  8. THERMAL TECHNOLOGY TESTED FOR CONTAMINANT RECOVERY

    EPA Science Inventory

    A research project on steam enhanced remediation (SER) for the recovery of dense nonaqueous phase liquid (DNAPL) from fractured limestone has been undertaken at the former Loring Air Force Base Quarry site in Limestone, ME. Participants in the project include the Maine Departmen...

  9. Transport of Organic Solutes in Clay Formations

    EPA Science Inventory

    The research is a pilot investigation for the SERDP (Strategic Environmental Research and Development Program, DoD) founded project, Impact of Clay-DNAPL Interactions on Transport and Storage of Chlorinated Solvents in Low Permeability Zones, from 2010-2012. The report tries to s...

  10. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  11. INVESTIGATION INTO DNAPL TRANSPORT IN FRACTURES USING CENTRIFUGE MODELING. (R825511C004)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  13. EFFECT OF FENTON'S REAGENT ON SUBSURFACE MICROBIOLOGY AND BIODEGRADATION CAPACITY

    EPA Science Inventory

    Microcosm studies were conducted to determine the effect of Fenton's reagent on subsurface microbiology and biodegradation capacity in a DNAPL (PCE/TCE) contaminated aquifer previously treated with the reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatmen...

  14. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    DTIC Science & Technology

    2006-11-01

    efficiency (MTE), which indicates the efficiency of oxidant use, and the volumetric depletion efficiency ( VDE ), which indicates the efficiency of the...indicating better oxidant use. The volumetric depletion efficiency ( VDE ) indicates the effectiveness of the flushing regime, with a higher value

  15. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminantsmore » in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.« less

  16. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin; Zhou, Renjie

    2016-07-01

    Solutions with one-, two-, and three-dimensional arbitrary shape source geometries will be very helpful tools for investigating a variety of contaminant transport problems in the geological media. This study proposed a general method to develop new solutions for solute transport in a saturated, homogeneous aquifer (confined or unconfined) with a constant, unilateral groundwater flow velocity. Several typical source geometries, such as arbitrary line sources, vertical and horizontal patch sources, circular and volumetric sources, were considered. The sources can sit on the upper or lower aquifer boundary to simulate light non-aqueous-phase-liquids (LNAPLs) or dense non-aqueous-phase-liquids (DNAPLs), respectively, or can be located anywhere inside the aquifer. The developed new solutions were tested against previous benchmark solutions under special circumstances and were shown to be robust and accurate. Such solutions can also be used as a starting point for the inverse problem of source zone and source geometry identification in the future. The following findings can be obtained from analyzing the solutions. The source geometry, including shape and orientation, generally played an important role for the concentration profile through the entire transport process. When comparing the inclined line sources with the horizontal line sources, the concentration contours expanded considerably along the vertical direction, and shrank considerably along the groundwater flow direction. A planar source sitting on the upper aquifer boundary (such as a LNAPL pool) would lead to significantly different concentration profiles compared to a planar source positioned in a vertical plane perpendicular to the flow direction. For a volumetric source, its dimension along the groundwater flow direction became less important compared to its other two dimensions.

  17. DENSE NONAQUEOUS PHASE LIQUID (DNAPL) MOVEMENT AND DISTRIBUTION IN CLAY-CONTAINING POROUS MEDIA. (R827120)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. A NEW TWO-PHASE FLOW AND TRANSPORT MODEL WITH INTERPHASE MASS EXCHANGE

    EPA Science Inventory

    The focus of this numerical investigation is on modelling the emplacement and subsequent removal, through dissolution, of a Denser-than-water Non-Aqueous Phase Liquid (DNAPL) in a saturated groundwater system. pecifically the model must address two flow and transport regimes. irs...

  19. ENVIRONMENTAL RESEARCH BRIEF: SURFACTANT-ENHANCED DNAPL REMEDIATION: SURFACTANT SELECTION, HYDRAULIC EFFICIENCY, AND ECONOMIC FACTORS

    EPA Science Inventory

    Chlorinated hydrocarbons are ubiquitous ground water contaminants due to their widespread use as organic solvents and cleaners/degreasers. The immiscibility of chlorinated organis with ground water causes them to exists as nonaqueous phase liquids (NAPLs); this results in their o...

  20. INTEGRATED DEMONSTRATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION WITH SURFACTANT RECOVERY AND REUSE

    EPA Science Inventory

    The demonstration site will be the base dry cleaning facility at Camp Lejeune, North Carolina. Conservative and partitioning tracer tests will be used in conjunction with conventional core and ground-water sampling to characterize the site with respect to DNAPL composition and d...

  1. EZVI Injection Field Test Leads to Pilot-Scale Application

    EPA Science Inventory

    Testing and monitoring of emulsified zero-valent ironTM (EZVI) injections was conducted at Cape Canaveral Air Force Station’s Launch Complex 34, FL, in 2002 to 2005 to evaluate the technology’s efficacy in enhancing in situ dehalogenation of dense nonaqueous-phase liquid (DNAPL) ...

  2. LACK OF FRACTIONATION OF ALDRICH HUMIC ACID DURING TRANSPORT IN DNAPL-CONTAMINATED SEDIMENT. (R826650)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. THE USE OF THE GEOTECHNICAL CENTRIFUGE AS A TOOL TO MODEL DNAPL MIGRATION IN FRACTURES. (R825511C004)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  5. DEMONSTRATION OF BIODEGRADATION OF DENSE, NONAQUEOUS-PHASE LIQUIDS (DNAPL)THROUGH BIOSTIMULATION AND BIOAUGMENTATION AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    Biostimulation involves stimulating indigenous microbial cultures by adding nutrients whereas bioaugmentation involves introducing microbial cultures that are particularly adept at degrading these contaminants into the target aquifer. This demonstration involved biostimulation fo...

  6. Use Of Statistical Tools To Evaluate The Reductive Dechlorination Of High Levels Of TCE In Microcosm Studies

    EPA Science Inventory

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...

  7. SORPTION OF NONIONIC SURFACTANT OLIGOMERS TO SEDIMENT AND PCE DNAPL: EFFECTS ON PCE DISTRIBUTION BETWEEN WATER AND SEDIMENT. (R826650)

    EPA Science Inventory

    Introduction of surfactant mixtures to the subsurface for the purpose of
    surfactant-enhanced aquifer remediation requires consideration of the effects of
    surfactant sorption to sediment and nonaqueous phase liquids. These effects
    include alteration of the solubiliz...

  8. DETERMINING EFFECTIVE INTERFACIAL TENSION AND PREDICTING FINGER SPACING FOR DNAPL PENETRATION INTO WATER-SATURATED POROUS MEDIA. (R826157)

    EPA Science Inventory

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...

  9. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  10. 76 FR 510 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... dense non-aqueous phase liquid (DNAPL) containing organic compounds that slowly dissolve into the ground... controls restricting ground water extraction within the northern 62-acre parcel. Soil Contamination As... preliminary remediation goal (PRG) of 8 mg/kg benzo(a)pyrene (BAP) equivalent had not yet been derived...

  11. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

    2006-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

  12. Dense Nonaqueous Phase Liquids at Former Manufactured Gas Plants: Challenges to Modeling and Remediation

    PubMed Central

    Birak, P.S.; Miller, C.T.

    2008-01-01

    The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266

  13. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  14. Dioxins and furans legacy of lindane manufacture in Sabiñánigo (Spain). The Bailín landfill site case study.

    PubMed

    Gómez-Lavín, Sonia; San Román, María Fresnedo; Ortiz, Inmaculada; Fernández, Jesús; de Miguel, Pedro; Urtiaga, Ane

    2018-05-15

    Lindane (γ-hexachlorocyclohexane) manufacture in Spain generated nearly 200,000tonnes of HCH wastes; near 160,000tonnes were originated by the Inquinosa factory located in Sabiñánigo (northern Spain) and were deposited in unlined landfill sites. This study reports for the first time the content of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/Fs) in non-recycled HCH wastes that had been disposed in the Bailín landfill site in Sabiñánigo. Samples from solid HCH powder residues (white HCH and δ-paste wastes) and the dense non-aqueous phase liquids (DNAPLs), as well as landfill leachates, soil and sediments have been characterized. White HCH wastes exhibited a toxicity of 1488ngWHO-TEQ 2005 ·kg -1 (Σ 17 PCDD/Fs), while δ-paste wastes presented a noticeable higher toxicity (12,094ngWHO-TEQ 2005 ·kg -1 ). Nevertheless, the maximum toxicity value was found for DNAPLs (37,353ngWHO-TEQ 2005 ·L -1 ). Dioxins were predominant in the DNAPL waste whereas furans predominated in the landfill leachates, soil and sediments. However, in solid HCH wastes, PCDD and PCDFs contributed in a similar proportion. The PCDD/Fs congener profiles in landfill leachates, soil and sediments do not resemble the PCDD/Fs profiles found for the HCH wastes. These preliminary results will be of paramount importance in order to estimate the total quantities of PCDD/Fs disposed to the landfill site and to assess the potential mobility of PCDD/Fs, especially to groundwater and landfill leachates. Besides, this information is of great value to design periodical monitoring plans to evaluate the presence of PCDD/Fs in the impacted groundwater and leachates and finally, to evaluate the risk of PCDD/Fs for the environment and human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  16. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  17. Sonic CPT Probing in Support of DNAPL Characterization

    DTIC Science & Technology

    2000-11-21

    directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT

  18. A Guide for Selecting Remedies for Subsurface Releases of Chlorinated Solvents

    DTIC Science & Technology

    2011-03-01

    exception of secondary permeability features (e.g., fractures , root holes, animal burrows), high displacement pressures typically preclude DNAPL from...1 to 40 percent. Fractured media with high matrix porosity are commonly encountered in sedimentary rock (e.g., limestone, dolomite , shale, and...Low Permeability .......... 21 Type III – Granular Media with Moderate to High Heterogeneity ........................ 21 Type IV - Fractured Media

  19. DNAPL MAPPING AND WATER SATURATION MEASUREMENTS IN 2-D MODELS USING LIGHT TRANSMISSION VISUALIZATION (LTV) TECHNIQUE

    EPA Science Inventory

    • LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...

  20. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  1. Edgewood Area - Aberdeen Proving Ground Five-Year Review

    DTIC Science & Technology

    2008-10-01

    27 / 2001 Reduce the contaminant mass in the J-Field surficial aquifer through DNAPL recovery, phytoremediation , and natural processes; Eliminate...exposure to groundwater; and Control off-site contaminant migration from the confined aquifer. Institutional Controls Phytoremediation Monitoring... phytoremediation and natural degradaton processes. 2. Monitoring of MCLs and non-zero MCLGs at points outside of the designated TI Zone. J-Field

  2. Air sparging in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability mediamore » has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.« less

  3. In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong-Seo; Monroe, Matthew E.; Camp, David G.

    2013-02-01

    Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, it has been controversial regarding the sources of such partially tryptic peptides. Herein we investigate the impact of in-source fragmentation on shotgun proteomics using three biological samples, including a standard protein mixture, a mouse brain tissue homogenate, and a mouse plasma sample. Since the in-source fragments of a peptide retain the same elution time with its parent fully tryptic peptide, the partially tryptic peptides from in-source fragmentation can be distinguished from the other partially tryptic peptides by plotting the observed retention times against themore » computationally predicted retention times. Most partially tryptic in-source fragmentation artifacts were misaligned from the linear distribution of fully tryptic peptides. The impact of in-source fragmentation on peptide identifications was clearly significant in a less complex sample such as a standard protein digest, where ~60 % of unique peptides were observed as partially tryptic peptides from in-source fragmentation. In mouse brain or mouse plasma samples, in-source fragmentation contributed to 1-3 % of all identified peptides. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic processing by endogenous proteases in the samples. By filtering out the in-source fragmentation artifacts from the identified partially tryptic or non-tryptic peptides, it is possible to directly survey in-vivo proteolytic processing in biological samples such as blood plasma.« less

  4. DNAPL Dissolution in Bedrock Fractures And Fracture Networks

    DTIC Science & Technology

    2011-06-01

    were filtered through a 0.2 micron filter and then analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). An additional set of sorption...analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). The effluent pH was monitored periodically with pH test strips. Aqueous DHC...liquid EDTA ethylenediaminetetraacetic acid GC gas chromatograph HPLC high-performance liquid chromatography ISCO in situ chemical oxidation

  5. Iron-carbon composites for the remediation of chlorinated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sunkara, Bhanu Kiran

    This research is focused on engineering submicron spherical carbon particles as effective carriers/supports for nanoscale zerovalent iron (NZVI) particles to address the in situ remediation of soil and groundwater chlorinated contaminants. Chlorinated hydrocarbons such as trichloroethylene (TCE) and tetrachloroethylene (PCE) form a class of dense non-aqueous phase liquid (DNAPL) toxic contaminants in soil and groundwater. The in situ injection of NZVI particles to reduce DNAPLs is a potentially simple, cost-effective, and environmentally benign technology that has become a preferred method in the remediation of these compounds. However, unsupported NZVI particles exhibit ferromagnetism leading to particle aggregation and loss in mobility through the subsurface. This work demonstrates two approaches to prepare carbon supported NZVI (iron-carbon composites) particles. The objective is to establish these iron-carbon composites as extremely useful materials for the environmental remediation of chlorinated hydrocarbons and suitable materials for the in situ injection technology. This research also demonstrates that it is possible to vary the placement of iron nanoparticles either on the external surface or within the interior of carbon microspheres using a one-step aerosol-based process. The simple process of modifying iron placement has significant potential applications in heterogeneous catalysis as both the iron and carbon are widely used catalysts and catalyst supports. Furthermore, the aerosol-based process is applied to prepare new class of supported catalytic materials such as carbon-supported palladium nanoparticles for ex situ remediation of contaminated water. The iron-carbon composites developed in this research have multiple functionalities (a) they are reactive and function effectively in reductive dehalogenation (b) they are highly adsorptive thereby bringing the chlorinated compound to the proximity of the reactive sites and also serving as adsorption materials for decontamination (c) they are of the optimal size for transport through sediments (d) they have amphiphilic chemical functionalities that help stabilize them when they reach the DNAPL target zones. Finally, the iron-carbon composite microspheres prepared through aerosol-based process can used for in situ injection technology as the process is conductive to scale-up and the materials are environmentally benign.

  6. Prediction of down-gradient impacts of DNAPL source depletion using tracer techniques: Laboratory and modeling validation

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Basu, N.; Chen, X.

    2007-05-01

    Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.

  7. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements

    NASA Astrophysics Data System (ADS)

    Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.

    2007-06-01

    Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.

  8. Reductions in DNAPL Longevity through Biological Flux Enhancement

    DTIC Science & Technology

    2009-01-01

    3 Phosphorus 2 Calcium 111 Magnesium 11 Sulfur 47 Bioavailable iron 31 Total iron 198 Porosity 0.32 Conductivity 0.97 mmohs cm-1 Organic...acetate, propionate, and lactate were analyzed by filtering aqueous samples (2.7 mL) through a syringe filter (0.22 μm) containing 0.3 M oxalic acid...acid Nitric acid, glycol, peroxides, permanganates Acetone Conc. nitric and sulfuric acids Ammonia, anhydrous Halogens, calcium hypochlorite (bleach

  9. Direct Push Chemical Sensors for DNAPL

    DTIC Science & Technology

    2007-01-01

    System Improvements Problem Solution 1. Insufficient thermal protection Implemented use of microporous insulation . Lab and field tests have shown...screw thread cap with Teflon lined septum. The soil and methanol were mixed by hand and the vial was placed in an insulated cooler on ice until...Teflon lined septum. The vials were stored within an insulated cooler on ice until shipped to Columbia Analytical Services for analysis by U.S. EPA

  10. Remediation of DNAPL Through Sequential In Situ Chemical Oxidation and Bioaugmentation

    DTIC Science & Technology

    2010-06-01

    hydraulic barriers or sinks, as groundwater likely flows toward these surface water bodies and discharges into them. Other hydrologic influences at LC...intentionally. v LIST OF ACRONYMS AND ABBREVIATIONS bgs below ground surface C-C carbon-carbon CCAFB Cape Canaveral Air Force Base CO2...Program SPH six-phase heating TCE trichloroethene USEPA U.S. Environmental Protection Agency USU upper sand unit UT University of Toronto

  11. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navymore » Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.« less

  12. Consideration of Treatment Performance Assessment Metrics for a TCE Source Area Bioremediation (SABRe project)

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Wilson, R. D.

    2009-05-01

    Techniques for optimizing the removal of NAPL mass in source zones have advanced at a more rapid rate than strategies to assess treatment performance. Informed selection of remediation approaches would be easier if measurements of performance were more directly transferable. We developed a number of methods based on data generated from multilevel sampler (MLS) transects to assess the effectiveness of a bioaugmentation/biostimulation trial in a TCE source residing in a terrace gravel aquifer in the East Midlands, UK. In this spatially complex aquifer, treatment inferred from long screen monitoring well data was not as reliable as that from consideration of mass flux changes across transects installed in and downgradient of the source. Falling head tests were conducted in the MLS ports to generate the necessary hydraulic conductivity (K) data. Combining K with concentration provides a mass flux map that allows calculation of mass turnover and an assessment of where in the complex geology the greatest turnover occurred. Five snapshots over a 600-day period indicate a marked reduction in TCE flux, suggesting a significant reduction in DNAPL mass over that expected due to natural processes. However, persistence of daughter products suggested that complete dechlorination did not occur. The MLS fence data also revealed that delivery of both carbon source and pH buffer were not uniform across the test zone. This may have lead to the generation of niches of iron(III) and sulphate reduction as well as methanogenesis, which impacted on dechlorination processes. In the absence of this spatial data, it is difficult to reconcile apparent treatment as indicated in monitoring well data to on-going processes.

  13. Effects of a remedial system and its operation on volatile organic compound-contaminated ground water, Operable Unit 1, Savage Municipal Well Superfund Site, Milford, New Hampshire, 1998-2004

    USGS Publications Warehouse

    Harte, Philip T.

    2006-01-01

    The Savage Municipal Well Superfund site in the Town of Milford, N.H., is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), mostly tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand and gravel layer, but also extends into underlying till and bedrock. The plume has been divided into two areas called Operable Unit 1 (OU1), which contains the primary source area, and Operable Unit 2 (OU2), which is defined as the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1 to contain and capture the dissolved VOC plume. The OU1 remedial system includes a low-permeability barrier wall that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells to contain and remove contaminants. The barrier wall likely penetrates the full thickness of the sand and gravel; in most places, it also penetrates the full thickness of the underlying basal till and sits atop bedrock. Remedial injection and extraction wells have been operating since the spring of 1999 and include a series of interior (inside the barrier wall) injection and extractions wells and exterior (outside the barrier wall) injection and extraction wells. A recharge gallery outside the barrier wall receives the bulk of the treated water and reinjects it into the shallow aquifer. From 1998 to 2004, PCE concentrations decreased by an average of 80 percent at most wells outside the barrier wall. This decrease indicates (1) the barrier wall and interior extraction effectively contained high PCE concentrations inside the wall, (2) other sources of PCE did not appear to be outside of the wall, and (3) ambient ground-water flow in conjunction with the exterior remedial wells effectively remediated most of the dissolved PCE plume outside the wall. The overburden at middle depths (40 to 70 ft below land surface) downgradient from exterior extraction wells showed relatively slow decreases in PCE concentrations compared to other areas outside the barrier wall. Numerical simulation shows extraction caused the formation of a small downgradient slow-velocity zone. Because the ambient ground-water velocities are high (approximately 1 foot per day), temporary termination of extraction at the exterior wells may increase dilution downgradient from the exterior extraction wells. Extraction can also be optimized on the basis of seasonal hydrologic conditions to facilitate exterior well capture from upgradient areas outside of the barrier wall where PCE concentrations are highest. Reductions in concentrations of PCE inside the barrier wall from 1998 to 2003 were minimal near suspected source areas, indicating that the operation of interior remedial wells had not been effective in remediating dissolved PCE or the DNAPL source. Capture of the dissolved PCE plume within the barrier wall by interior extraction wells could be enhanced if operation (injection rates) increased at underutilized interior injection wells, thereby increasing hydraulic gradients.

  14. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts.

    PubMed

    Puigserver, Diana; Cortés, Amparo; Viladevall, Manuel; Nogueras, Xènia; Parker, Beth L; Carmona, José M

    2014-11-01

    This work dealt with the physical and biogeochemical processes that favored the natural attenuation of chloroethene plumes of aged sources located close to influent rivers in the presence of co-contaminants, such as nitrate and sulfate. Two working hypotheses were proposed: i) Reductive dechlorination is increased in areas where the river-aquifer relationship results in the groundwater dilution of electron acceptors, the reduction potential of which exceeds that of specific chloroethenes; ii) zones where silts predominate or where textural changes occur are zones in which biodegradation preferentially takes place. A field site on a Quaternary alluvial aquifer at Torelló, Catalonia (Spain) was selected to validate these hypotheses. This aquifer is adjacent to an influent river, and its redox conditions favor reductive dechlorination. The main findings showed that the low concentrations of nitrate and sulfate due to dilution caused by the input of surface water diminish the competition for electrons between microorganisms that reduce co-contaminants and chloroethenes. Under these conditions, the most bioavailable electron acceptors were PCE and metabolites, which meant that their biodegradation was favored. This led to the possibility of devising remediation strategies based on bioenhancing natural attenuation. The artificial recharge with water that is low in nitrates and sulfates may favor dechlorinating microorganisms if the redox conditions in the mixing water are sufficiently maintained as reducing and if there are nutrients, electron donors and carbon sources necessary for these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Field Demonstration, Optimization, and Rigorous Validation of Peroxygen-Based ISCO for the Remediation of Contaminated Groundwater - CHP Stabilization Protocol

    DTIC Science & Technology

    2014-05-01

    propagations CoCs Contaminants of concern GC Gas chromatography DNAPL Dense nonaqueous phase liquid ISCO In situ chemical oxidation HCA...used for the design and scale-up of air strippers, ion exchange systems, precipitation reactors , and many other treatment processes. Such treatability...studies provide definitive data on system dimensions and reagent dosages using linear or non -linear scale-up. Designing these processes without the

  16. Demonstration of a Fractured Rock Geophysical Toolbox (FRGT) for Characterization and Monitoring of DNAPL Biodegradation in Fractured Rock Aquifers

    DTIC Science & Technology

    2015-09-29

    initial amendment emplacement rather than longterm monitoring of bioremediation . A number of specific developments of cross- borehole ERT imaging...These substrates are commonly used for enhanced bioremediation and are readily available. For time-lapse ERT imaging, it is important that there is a...to remediation professionals and regulators. This includes the following LinkedIn groups: Bioremediation ; Contaminant Transport in Fractured Bedrock

  17. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3more » km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.« less

  18. Phytoscreening as an efficient tool to delineate chlorinated solvent sources at a chlor-alkali facility.

    PubMed

    Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel

    2017-05-01

    Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L -1 . Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Remediation of DNAPL through Sequential In Situ Chemical Oxidation and Bioaugmentation

    DTIC Science & Technology

    2009-04-01

    Specific Electrode Field Field-filtered, ICP - PSC 0.05 mg/L 125 mL plastic nitric acid to pHɚ 28 days cool to 4oC Ion Chromatography 25310 C PSC 0.2...oxidized by MnO2 at a significant rate; however, MnO2 reacted rapidly with oxalic acid ; • Complete dechlorination occurred only in microcosms...controller PLFA phospholipid fatty acid ppb parts per billion PTA pilot test area PVC polyvinyl chloride QAPP quality assurance project plan QA

  20. Improved Understanding of Fenton-like Reactions for the In Situ Remediation of Contaminated Groundwater Including Treatment of Sorbed Contaminants and Destruction of DNAPLs

    DTIC Science & Technology

    2006-04-29

    Dehalogenation of Chlorinated Methanes by Iron Metal.” Environ . Sci. Technol. 28, 2045-2053. McBride, M.B. Environmental Chemistry of Soils; Oxford Press: New...Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides. Environ . Sci. Technol. 2003, 37, 2421-2430 Zhang, Y., Crittenden, J.C...prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does

  1. Analysis of Anion Distributions in the Developing Strata of a Constructed Wetland Used for Chlorinated Ethene Remediation

    DTIC Science & Technology

    2003-03-01

    and landfills. Classified as dense non-aqueous phase liquids (DNAPLs) because of their high density and relatively low solubility in water ...Environmental Protection Agency (EPA) recommendations (U.S. EPA, 1992). Water was purged from the top of the piezometric head, to ensure full...that which is recognized by the EPA as “ low -flow purging,” fresh water within the well screen was hydraulically isolated from any stagnant water in the

  2. Impact of Clay DNAPL Interactions on Transport and Storage of Chlorinated Solvents in Low Permeability Zones

    DTIC Science & Technology

    2015-02-01

    producing cracking, in a time frame on the order of weeks. The hypothesized mechanism is syneresis, involving the sorption of the surfactants from...49 4.0 Determination of Mechanism of Clay Structure Modification 53 ii 4.1 Introduction 53 4.2 Materials and Methods 52 4.2.1. Screening...Spectroscopy (FTIR) Measurements 65 4.3.4. Sorption Experiments 68 4.4 Proposed Mechanism for Basal Spacing Decrease 70 4.5 Conclusions 72 5.0

  3. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    NASA Astrophysics Data System (ADS)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  4. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment.

    PubMed

    Okuda, Nobuyasu; Shimizu, Takaaki; Muratani, Masaru; Terada, Akihiko; Hosomi, Masaaki

    2014-11-01

    To better understand the infiltration performances of high concentration PCB oils (KC-300 and KC-1000 polychlorinated biphenyl (PCB) mixtures), representative dense non-aqueous phase liquid (DNAPL), under both saturated and unsaturated conditions, we conducted experiments on a sand column filled with Toyoura Standard Sand. When PCB oil with the volume comparable to the total porosity in the column was supplied, the residual PCB concentrations under PCB-water conditions were 4.9×10(4)mgkg(-1) in KC-300 and 3.9×10(4)mgkg(-1) in KC-1000. Under PCB-air conditions, residual PCB concentrations were 6.0×10(4)mgkg(-1) and 2.4×10(5)mgkg(-1) in the upper and lower parts for KC-300 and 3.6×10(4)mgkg(-1) and 1.5×10(5)mgkg(-1) in those for KC-1000, respectively, while the rest of the PCBs were infiltrated. On the other hand, when a small amount of PCB oil with the volume far smaller than the total porosity in the column was supplied, the original PCBs were not transported via water permeation. However, lower-chlorinated PCB congeners-e.g., di- or tri-chlorinated biphenyls-preferentially dissolved and were infiltrated from the bottom of the column. These propensities on PCB oil infiltration can be explained in conjunction with the degree of PCB saturation in the sand column. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

    2013-12-01

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time steps. Simulated results showed that the model could successfully reproduce the migration pathways and distribution configuration observed from the laboratory experiment and LT analysis, excepted for a smaller pool height on the lenses, and a lower saturation values in PCE accumulation area due to local heterogeneities. Due to the influence of water flow, the PCE distribution was asymmetrical, and the PCE distribution area, pool height as well as PCE saturation in the accumulation region at right side was much greater. Acknowledge: This work is financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.

  6. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the US Environmental Protection Agency`s (EPA) revised selected remedial actions for certain contaminated soils and groundwater at the J.H. Baxter Superfund Site in Weed, California. EPA concluded that it is not possible to achieve the 1990 ROD (PB91-921489) cleanup standards for groundwater within the DNAPL zone. The remedy consists of the 1990 ROD components plus enhancements, modifications, and additional containment measures as described in this amendment. Actions have also been selected to modify other aspects of the soils remedy previously selected for the site in the 1990 ROD.

  8. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  9. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.

    PubMed

    Ayral-Cinar, Derya; Demond, Avery H

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.

  10. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization.

    PubMed

    Hou, Zeyu; Lu, Wenxi; Xue, Haibo; Lin, Jin

    2017-08-01

    Surrogate-based simulation-optimization technique is an effective approach for optimizing the surfactant enhanced aquifer remediation (SEAR) strategy for clearing DNAPLs. The performance of the surrogate model, which is used to replace the simulation model for the aim of reducing computation burden, is the key of corresponding researches. However, previous researches are generally based on a stand-alone surrogate model, and rarely make efforts to improve the approximation accuracy of the surrogate model to the simulation model sufficiently by combining various methods. In this regard, we present set pair analysis (SPA) as a new method to build ensemble surrogate (ES) model, and conducted a comparative research to select a better ES modeling pattern for the SEAR strategy optimization problems. Surrogate models were developed using radial basis function artificial neural network (RBFANN), support vector regression (SVR), and Kriging. One ES model is assembling RBFANN model, SVR model, and Kriging model using set pair weights according their performance, and the other is assembling several Kriging (the best surrogate modeling method of three) models built with different training sample datasets. Finally, an optimization model, in which the ES model was embedded, was established to obtain the optimal remediation strategy. The results showed the residuals of the outputs between the best ES model and simulation model for 100 testing samples were lower than 1.5%. Using an ES model instead of the simulation model was critical for considerably reducing the computation time of simulation-optimization process and maintaining high computation accuracy simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterizing Long-term Contaminant Mass Discharge and the Relationship Between Reductions in Discharge and Reductions in Mass for DNAPL Source Areas

    PubMed Central

    Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.

    2013-01-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743

  12. Hydrogeological characterization of soil/weathered zone and underlying fractured bedrocks in DNAPL contaminated areas using the electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Kang, E.; Yeo, I.

    2011-12-01

    Flowmeter tests were carried out to characterize hydrogeology at DNAPL contaminated site in Wonju, Korea. Aquifer and slug tests determined hydraulic conductivity of soil/weathered zone and underlying fractured bed rocks to be 2.95×10-6 to 7.11×10-6 m/sec and 9.14×10-7 to 2.59×10-6 m/sec, respectively. Ambient flowmeter tests under natural hydraulic conditions revealed that the inflow and outflow take place through the borehole of soil/weathered zone with a tendency of down flow in the borehole. In particular, the most permeable layer of 22 to 30 m below the surface was found to form a major groundwater flow channel. On the contrary, a slight inflow and outflow was observed in the borehole, and the groundwater that inflows in the bottom section of the fractured bedrock flows up and exits through to the most permeable layer. Hydraulic heads measured at nearby multi-level boreholes confirmed the down flow in the soil/weathered zone and the up flow in fractured bedrocks. It was also revealed that the groundwater flow converges to the most permeable layer. TCE concentration in groundwater was measured at different depths, and in the borehole of the soil/weathered zone, high TCE concentration was found with higher than 10 mg/L near to the water table and decreased to about 6 mg/L with depth. The fractured bedrocks have a relatively constant low TCE concentration through a 20 m thick screen at less than l mg/L. The hydrogeology of the up flow in the soil/weathered zone and the down flow in underlying fractured bedrock leads the groundwater flow, and subsequently TCE plume, mainly to the most permeable layer that also restricts the advective transport of TCE plume to underlying fractured bedrocks. The cross borehole flowmeter test was carried out to find any hydrogeological connection between the soil/weathered zone and underlying fractured bedrocks. When pumping groundwater from the soil/weathered zone, no induced flow by groundwater extraction was observed at the underlying fractured bedrocks, and the hydraulic connection was identified only within the soil/weathered zone. However, when pumping groundwater from the fractured bedrocks, the hydraulic response was observed in the soil/weathered zone rather than another fractured bedrock borehole. Thus, when pump-and-treat is adopted for remediating the dissolved plume of DNAPL, the pumping well should be placed in the soil/weathered zone. Otherwise, the pumping of groundwater from the underlying fractured bedrocks will disperse the TCE plume into underlying fractured bedrocks.

  13. Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site

    USGS Publications Warehouse

    Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.

    2012-01-01

    The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.

  14. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  15. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar O.; Berman, L; Chu, Y.S.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less

  16. 26 CFR 1.911-1 - Partial exclusion for earned income from sources within a foreign country and foreign housing costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sources within a foreign country and foreign housing costs. 1.911-1 Section 1.911-1 Internal Revenue... (CONTINUED) Earned Income of Citizens Or Residents of United States § 1.911-1 Partial exclusion for earned income from sources within a foreign country and foreign housing costs. (a) In general. Section 911...

  17. 26 CFR 1.911-1 - Partial exclusion for earned income from sources within a foreign country and foreign housing costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sources within a foreign country and foreign housing costs. 1.911-1 Section 1.911-1 Internal Revenue... Income of Citizens Or Residents of United States § 1.911-1 Partial exclusion for earned income from sources within a foreign country and foreign housing costs. (a) In general. Section 911 provides that a...

  18. 26 CFR 1.911-1 - Partial exclusion for earned income from sources within a foreign country and foreign housing costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sources within a foreign country and foreign housing costs. 1.911-1 Section 1.911-1 Internal Revenue... (CONTINUED) Earned Income of Citizens Or Residents of United States § 1.911-1 Partial exclusion for earned income from sources within a foreign country and foreign housing costs. (a) In general. Section 911...

  19. 26 CFR 1.911-1 - Partial exclusion for earned income from sources within a foreign country and foreign housing costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sources within a foreign country and foreign housing costs. 1.911-1 Section 1.911-1 Internal Revenue... (CONTINUED) Earned Income of Citizens Or Residents of United States § 1.911-1 Partial exclusion for earned income from sources within a foreign country and foreign housing costs. (a) In general. Section 911...

  20. 75 FR 82429 - Determinations Concerning Need for Error Correction, Partial Approval and Partial Disapproval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ...EPA is correcting its previous full approval of Texas's Clean Air Act (CAA) Prevention of Significant Deterioration (PSD) program to be a partial approval and partial disapproval. The state did not address, or provide adequate legal authority for, the program's application to all pollutants that would become newly subject to regulation in the future, including non-National Ambient Air Quality Standard (NAAQS) pollutants, among them greenhouse gases (GHGs). Further, EPA is promulgating a federal implementation plan (FIP), as required following the partial disapproval, to establish a PSD permitting program in Texas for GHG-emitting sources. EPA is taking this action through interim final rulemaking, effective upon publication, to ensure the availability of a permitting authority-- EPA--in Texas for GHG-emitting sources when they become subject to PSD on January 2, 2011. This will allow those sources to proceed with plans to construct or expand. This rule will expire on April 30, 2011. EPA is also proposing a notice-and-comment rulemaking that mirrors this rulemaking.

  1. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.

    PubMed

    Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana

    2006-11-20

    Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.

  2. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    PubMed

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  4. Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.

    PubMed

    Sommargren, G E; Seppala, L G

    1993-12-01

    A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.

  5. H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus.

    PubMed

    Zumsteg, D; Wennberg, R A; Treyer, V; Buck, A; Wieser, H G

    2005-11-22

    The authors evaluated the feasibility and source localization utility of H2(15)O or 13NH3 PET and low-resolution electromagnetic tomography (LORETA) in three patients with partial status epilepticus (SE). Results were correlated with findings from intraoperative electrocorticographic recordings and surgical outcomes. PET studies of cerebral blood flow and noninvasive source modeling with LORETA using statistical nonparametric mapping provided useful information for localizing the ictal activity in patients with partial SE.

  6. Effect of polarization on the evolution of electromagnetic hollow Gaussian Schell-model beam

    NASA Astrophysics Data System (ADS)

    Long, Xuewen; Lu, Keqing; Zhang, Yuhong; Guo, Jianbang; Li, Kehao

    2011-02-01

    Based on the theory of coherence, an analytical propagation formula for partially polarized and partially coherent hollow Gaussian Schell-model beams (HGSMBs) passing through a paraxial optical system is derived. Furthermore, we show that the degree of polarization of source may affect the evolution of HGSMBs and a tunable dark region may exist. For two special cases of fully coherent and partially coherent δxx = δyy, normalized intensity distributions are independent of the polarization of source.

  7. Surfactant-Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-24

    UTCHEM (Run ISA7m) ¥’\\ ~ 10.000 ·, "’" - - UTCHEM (Run ISA26m) ~ ."Q)E ’-,• ....u ’..c: • ••a • ’ .U ,• •~ 1,000.. U...1401301201101009080 -]’" • Field data - UTCHEM (Run ISA26m) 7060 • • 50403020 • 10 1,00 - 1.20 - 0,20 - 0.00 U • · • ••o ,: ,.. Ii I ;. :::S!0 0 c...Concentrations From EXOI 5.0 4.0 • • • . ----- • I - UTCHEM (Run ISA26m) • Field .. , •- 30 • •.. ~u, ti c I , 0 () « 2.0 , • 0.. I , •

  8. A study of partial coherence for identifying interior noise sources and paths on general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1979-01-01

    The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors.

  9. 78 FR 29292 - Partial Approval and Partial Disapproval of Air Quality State Implementation Plans; Arizona...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Technology (BART) controls for four sources. These sources are Freeport-McMoRan Incorporated (FMMI) Miami... Electric Power Cooperative (AEPCO) Apache Generating Station. However, we are proposing to disapprove other...) The initials BART mean or refer to Best Available Retrofit Technology. (5) The term Class I area...

  10. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  11. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis.

    PubMed

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Lin, Kuang Fei; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m(2) and located in the 2-4 m underground, DNAPL was accumulated at an area of approximately 1,400 m(2) and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between "Fe(2+)" and most CAHs such as "1,1,1-TCA", "1,1-DCA", "1,1-DCE" and "%TCA" were significantly positive (p<0.001), but "%CA" and/or "%VC" was not, and "Cl-" was significantly positive correlated with "1,1-DCA" and "1,1-DCE" (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general.

  12. Inductive sensor performance in partial discharges and noise separation by means of spectral power ratios.

    PubMed

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-02-19

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  13. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  14. 26 CFR 1.911-1 - Partial exclusion for earned income from sources within a foreign country and foreign housing costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... within a foreign country and foreign housing costs. 1.911-1 Section 1.911-1 Internal Revenue INTERNAL...) Earned Income of Citizens Or Residents of United States § 1.911-1 Partial exclusion for earned income from sources within a foreign country and foreign housing costs. (a) In general. Section 911 provides...

  15. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    USGS Publications Warehouse

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  16. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  17. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.

  18. Analytical Solution for Transport with Bimolecular Reactions in Fracture-Matrix Systems with Application to In-Situ Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Arshadi, M.

    2016-12-01

    In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.

  19. 45 CFR 705.13 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exemptions: (1) Appeals, Grievances, and Complaints (staff)—Commission Project, CRC-001. Exempt partially...) Complaints, CRC-003—Exempt partially under 5 U.S.C. 552a(k)(2). The reasons for possibly asserting the... endangering these sources. (3) Commission projects, CRC-004—Partially exempt under 5 U.S.C. 552a(k)(2). The...

  20. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of α-AMINOADIPATE

    PubMed Central

    Chattoo, Bharat B.; Sherman, Fred; Azubalis, Dalia A.; Fjellstedt, Thorsten A.; Mehnert, David; Ogur, Maurice

    1979-01-01

    Normal strains of Saccharomyces cerevisiae do not use α-aminoadipate as a principal nitrogen source. However, α-aminoadipate is utilized as a nitrogen source by lys2 and lys5 strains having complete or partial deficiencies of α-aminoadipate reductase and, to a limited extent, by heterozygous lys2/+ strains. Lys2 mutants were conveniently selected on media containing α-aminoadipate as a nitrogen source, lysine, and other supplements to furnish other possible auxotrophic requirements. The lys2 mutations were obtained in a variety of laboratory strains containing other markers, including other lysine mutations. In addition to the predominant class of lys2 mutants, low frequencies of lys5 mutants and mutants not having any obvious lysine requirement were recovered on α-aminoadipate medium. The mutants not requiring lysine appeared to have mutations at the lys2 locus that caused partial deficiencies of α-aminoadipate reductase. Such partial deficiencies are believed to be sufficiently permissive to allow lysine biosynthesis, but sufficiently restrictive to allow for the utilization of α-aminoadipate. Although it is unknown why partial or complete deficiencies of α-aminoadipate reductase cause utilization of α-aminoadipate as a principal nitrogen source, the use of α-aminoadipate medium has considerable utility as a selective medium for lys2 and lys5 mutants. PMID:17248969

  1. 48 CFR 206.202 - Establishing or maintaining alternative sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Open Competition After Exclusion of Sources 206.202 Establishing or maintaining alternative sources. (a) Agencies may use this authority to totally or partially exclude a particular source from a contract action... maintaining alternative sources. 206.202 Section 206.202 Federal Acquisition Regulations System DEFENSE...

  2. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    PubMed Central

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-01-01

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674

  3. Partially hydrolyzed guar gum as a potential prebiotic source.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Patel, Ami; Shah, Nihir

    2018-06-01

    Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique.

    PubMed

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini

    2018-03-29

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  5. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  6. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Burnett, D. S.

    1992-01-01

    Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.

  7. Event-related potential variations in the encoding and retrieval of different amounts of contextual information.

    PubMed

    Estrada-Manilla, Cinthya; Cansino, Selene

    2012-06-15

    Episodic memory events occur within multidimensional contexts; however, the electrophysiological manifestations associated with processing of more than one context have been rarely investigated. The effect of the amount of context on the ERPs was studied using two single and one double source memory tasks and by comparing full and partial context retrieval within a double source task. The single source tasks elicited waveforms with a larger amplitude during successful encoding and retrieval than the double source task. Compared with the waveforms elicited with a full source response, a partial source response elicited waveforms with a smaller amplitude, probably because the retrieval success for one context was combined with the retrieval attempt processes for the missing source. Comparing the tasks revealed that the larger the amount of contextual information processed, the smaller the amplitude of the ERPs, indicating that greater effort or further control processes were required during double source retrieval. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Partial differential equation-based localization of a monopole source from a circular array.

    PubMed

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  9. Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137

    NASA Astrophysics Data System (ADS)

    Ormerod, L. M.

    1998-06-01

    While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.

  10. Domain-Invariant Partial-Least-Squares Regression.

    PubMed

    Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne

    2018-05-11

    Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.

  11. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis

    PubMed Central

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general. PMID:26565796

  12. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  13. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.

    PubMed

    Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva

    2010-03-01

    This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.

  14. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. © The Author(s) 2016.

  15. Nonuniform Liouville transformers for quasi-homogeneous optical fields. Final technical report, September 25, 1989--January 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.

    1993-03-01

    During the last two decades, there have been dramatic improvements in the development of optical sources. Examples of this development range from semiconductor laser diodes to free electron beam lasers and synchrotron radiation. Before these developments, standards for the measurement of basic optical parameters (quantities) were less demanding. Now, however, there is a fundamental need for new, reliable methods for providing fast quantitative results for a very broad variety of optical systems and sources. This is particularly true for partially coherent optical beams, since all optical sources are either fully or partially spatially coherent (including Lambertian sources). Until now, theremore » has been no satisfactory solution to this problem. During the last two decades, however, the foundations of physical radiometry have been developed by Walther, Wolf and co-workers. By integrating physical optics, statistical optics and conventional radiometry, this body of work provides necessary tools for the evaluation of radiometric quantities for partially coherent optical beams propagating through optical systems. In this program, Physical Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the specific case of generalized energy concentrators called Liouville transformers. We believe that this radiometric approach is necessary to fully characterize any type of optical system since it takes into account the partial coherence of radiation. 90 refs., 57 figs., 4 tabs.« less

  16. Self-imaging of partially coherent light in graded-index media.

    PubMed

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  17. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  18. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  19. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique

    PubMed Central

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; Schurch, Roger; Covolan Ulson, José Alfredo; Bani, Nurul Aini

    2018-01-01

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals. PMID:29596337

  1. An Overview of In-Stu Treatability Studies at Marshall Space Flight Center, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    McElroy, Bill; Keith, Amy; Glasgow, J. K.; Dasappa, Srini; McCaleb, Rebecca (Technical Monitor)

    2001-01-01

    Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama (north-central Alabama), on approximately 1,840 acres near the center of the U.S. Army's Redstone Arsenal (RSA). MSFC is the National Aeronautics and Space Administration's (NASA's) principal propulsion development center. Its scientists, engineers, and support personnel play a major role in the National Space Transportation System by managing space shuttle mission activities, including the microgravity laboratory. In addition, MSFC will be a significant contributor to several of NASA's future programs, including the Reusable Launch Vehicle (X-33), International Space Station, and Advanced X-ray Astrophysics Facility, as well as research on a variety of space science applications. MSFC has been used to develop, test and manufacture space vehicles and components since 1960, when civilian rocketry and missile activities were transferred from RSA to MSFC. In 1994, MSFC was placed on the National Priority List for the management of hazardous waste sites, under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). One requirement of the CERCLA program is to evaluate the nature and extent of environmental contamination resulting from identified CERCLA sites, assess the public health and environmental risks associated with the identified contamination, and identify potential remedial actions. A CERCLA remedial investigation (RI) for the groundwater system has identified at least five major plumes of chlorinated volatile organic compounds (CVOCs) in the groundwater beneath the facility. These plumes are believed to be the result of former management practices at 14 main facility locations (termed "source areas") where CVOCs were released to the subsurface. Trichloroethene (TCE) is the predominant CVOC and is common to all the plumes. Perchloroethene (PCE) also exists in two of the plumes. In addition to TCE and PCE, carbon tetrachloride and 1,1,2,2-tetrachloroethane are contained in one of the plumes. The CVOCs are believed to exist as dense non-aqueous phase liquids (DNAPLs) beneath many of the source areas.

  2. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The conclusions drawn and insights gained from this modeling study will be useful to design improved in-situ enhanced dehalogenation remediation schemes.

  3. Biological degradation of dense nonaqueous phase liquids (DNAPLs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensley, B.; Strong-Gunderson, J.M.; Palumbo, A.V.

    1996-08-01

    In situ bioremediation is a very attractive, safe and efficient method of not only removing, but eliminating hazardous compounds from the environment. However, the quickest and most efficient method of restoring a hazardous waste site would be to link several remediation processes. In situ biodegradation can involve the addition of nutrients, oxygen, electron donors, electron acceptors, organisms or all the above. These amendments can be introduced and coupled to a variety of other technologies such as permeability enhancements, chemical treatments and/or physical processes. In addition to in situ technologies, bioremediation in bioreactors is an efficient tool facilitating mineralization of contaminants.more » Overall, biodegradation has a significant potential to increase the rate of site restoration and decrease overall costs. 37 refs., 2 figs.« less

  4. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  5. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  6. Shared Mycobacterium avium genotypes observed among unlinked clinical and environmental isolates

    EPA Science Inventory

    Our understanding of the sources of Mycobacterium avium infection is partially based on genotypic matching of pathogen isolates from cases and environmental sources. These approaches assume that genotypic identity is rare in isolates from unlinked cases or sources. To test this, ...

  7. Shared Mycobacterium avium genotypes observed among unlinked clinical and environmental isolates*

    EPA Science Inventory

    Our understanding of the sources of Mycobacterium avium infection is partially based on genotypic matching of pathogen isolates from cases and environmental sources. These approaches assume that genotypic identity is rare in isolates from unlinked cases or sources. To test this a...

  8. Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.

    PubMed

    Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu

    2018-03-01

    Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Essential Nursing References.

    ERIC Educational Resources Information Center

    Nursing and Health Care Perspectives, 2000

    2000-01-01

    This partially annotated bibliography contains these categories: abstract sources, archives, audiovisuals, bibliographies, databases, dictionaries, directories, drugs/toxicology/environmental health, grant resources, histories, indexes, Internet resources, reviews, statistical sources, and writers' manuals and guides. A supplement lists Canadian…

  10. Simulation of partially coherent light propagation using parallel computing devices

    NASA Astrophysics Data System (ADS)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  11. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer

    2008-02-01

    We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.

  12. Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions

    NASA Astrophysics Data System (ADS)

    Buddala, Santhoshi Snigdha

    Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.

  13. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  14. 77 FR 1417 - Partial Approval and Partial Disapproval of Air Quality Implementation Plans; California; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... following three rules identified under group 4: 1. Rule 4566--Organic Material Composting Operations... Volatile Organic Compound Regulations--California Department of Pesticide Regulation--submitted August 2... from VOC control requirements, while the CTG for this source category (``Control of Volatile Organic...

  15. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    PubMed

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  16. Partial polarization: a comprehensive student exercise

    NASA Astrophysics Data System (ADS)

    Topasna, Gregory A.; Topasna, Daniela M.

    2015-10-01

    We present a comprehensive student exercise in partial polarization. Students are first introduced to the concept of partial polarization using Fresnel Equations. Next, MATHCAD is used to compute and graph the reflectance for dielectrics materials. The students then design and construct a simple, easy to use collimated light source for their experiment, which is performed on an optical breadboard using optical components typically found in an optics lab above the introductory level. The students obtain reflection data that is compared with their model by a nonlinear least square fit using EXCEL. Sources of error and uncertainty are discussed and students present a final written report. In this one exercise students learn how an experiment is constructed "from the ground up". They gain practical experience on data modeling and analysis, working with optical equipment, machining and construction, and preparing a final presentation.

  17. The Characterization of Military Aircraft Jet Noise Using Near-Field Acoustical Holography Methods

    NASA Astrophysics Data System (ADS)

    Wall, Alan Thomas

    The noise emissions of jets from full-scale engines installed on military aircraft pose a significant hearing loss risk to military personnel. Noise reduction technologies and the development of operational procedures that minimize noise exposure to personnel are enhanced by the accurate characterization of noise sources within a jet. Hence, more than six decades of research have gone into jet noise measurement and prediction. In the past decade, the noise-source visualization tool near-field acoustical holography (NAH) has been applied to jets. NAH fits a weighted set of expansion wave functions, typically planar, cylindrical, or spherical, to measured sound pressures in the field. NAH measurements were made of a jet from an installed engine on a military aircraft. In the present study, the algorithm of statistically optimized NAH (SONAH) is modified to account for the presence of acoustic reflections from the concrete surface over which the jet was measured. The three dimensional field in the jet vicinity is reconstructed, and information about sources is inferred from reconstructions at the boundary of the turbulent jet flow. Then, a partial field decomposition (PFD) is performed, which represents the total field as the superposition of multiple, independent partial fields. This is the most direct attempt to equate partial fields with independent sources in a jet to date.

  18. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  19. Modeling the GPR response of leaking, buried pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, M.H.; Olhoeft, G.R.

    1996-11-01

    Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less

  20. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    PubMed

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  1. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea

    USDA-ARS?s Scientific Manuscript database

    More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...

  2. 40 CFR 63.1256 - Standards: Wastewater.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mg/yr. (B) The wastewater stream contains partially soluble and/or soluble HAP compounds at an annual... wastewater from the PMPU exceeds 0.25 Mg/yr. (C) The wastewater stream contains partially soluble and/or... soluble and/or soluble HAP load in all wastewater from the affected source is greater than 1 Mg/yr. (D...

  3. 40 CFR 63.1256 - Standards: Wastewater.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mg/yr. (B) The wastewater stream contains partially soluble and/or soluble HAP compounds at an annual... wastewater from the PMPU exceeds 0.25 Mg/yr. (C) The wastewater stream contains partially soluble and/or... soluble and/or soluble HAP load in all wastewater from the affected source is greater than 1 Mg/yr. (D...

  4. Prediction of properties and elemental composition of biomass pyrolysis oils by NMR and partial least squares analysis

    USDA-ARS?s Scientific Manuscript database

    Several partial least squares (PLS) models were created correlating various properties and chemical composition measurements with the 1H and 13C NMR spectra of 73 different of pyrolysis bio-oil samples from various biomass sources (crude and intermediate products), finished oils and small molecule s...

  5. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  6. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  7. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System

    PubMed Central

    Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan

    2018-01-01

    Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682

  8. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  9. Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity

    PubMed Central

    Guasch, Laura; Sala, Esther; Mulero, Miquel; Valls, Cristina; Salvadó, Maria Josepa; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2013-01-01

    Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the prevention/treatment of type 2 Diabetes Mellitus. PMID:23405231

  10. Partial and specific source memory for faces associated to other- and self-relevant negative contexts.

    PubMed

    Bell, Raoul; Giang, Trang; Buchner, Axel

    2012-01-01

    Previous research has shown a source memory advantage for faces presented in negative contexts. As yet it remains unclear whether participants remember the specific type of context in which the faces were presented or whether they can only remember that the face was associated with negative valence. In the present study, participants saw faces together with descriptions of two different types of negative behaviour and neutral behaviour. In Experiment 1, we examined whether the participants were able to discriminate between two types of other-relevant negative context information (cheating and disgusting behaviour) in a source memory test. In Experiment 2, we assessed source memory for other-relevant negative (threatening) context information (other-aggressive behaviour) and self-relevant negative context information (self-aggressive behaviour). A multinomial source memory model was used to separately assess partial source memory for the negative valence of the behaviour and specific source memory for the particular type of negative context the face was associated with. In Experiment 1, source memory was specific for the particular type of negative context presented (i.e., cheating or disgusting behaviour). Experiment 2 showed that source memory for other-relevant negative information was more specific than source memory for self-relevant information. Thus, emotional source memory may vary in specificity depending on the degree to which the negative emotional context is perceived as threatening.

  11. Apparatus for generating partially coherent radiation

    DOEpatents

    Naulleau, Patrick P.

    2004-09-28

    The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.

  12. 77 FR 71404 - Notice of Intent to License Government-Owned Inventions; Intent to License on a Partially...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... DEPARTMENT OF DEFENSE Department of the Army Notice of Intent to License Government-Owned Inventions; Intent to License on a Partially-Exclusive Basis AGENCY: Department of the Army, DoD. ACTION..., issued 07/ 28/2009 and entitled ``Radiation source with self-aligning optics,'' U.S. Patent 7,852,469...

  13. Quantitative trait loci from two genotypes of oat (Avena sativa L.) conditioning resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Developing oat cultivars with partial resistance to crown rust would be beneficial for disease management. Two recombinant inbred line (RIL) populations were derived by crossing the susceptible cultivar ‘Provena’ with two partially resistant sources, ‘CDC Boyer’ and breeding line 94197A1-9-2-2-2-5. ...

  14. Environmental Technology Verification: Test Report of Mobile Source Emission Control Devices--Johnson Matthey PCRT2 1000, Version 2, Filter + Diesel Oxidation Catalyst

    EPA Science Inventory

    The Johnson Matthey PCRT2 1000, v.2 system is a partial continuously regenerating technology (PCRT) system that consists of a flow-through partial filter combined with a DOC. The system is designed for low temperature exhaust resulting from intermittent loads from medium and heav...

  15. The Influence of Lithology on the Formation of Reaction Infiltration Instabilities in Mantle Rocks

    NASA Astrophysics Data System (ADS)

    Pec, M.; Holtzman, B. K.; Zimmerman, M. E.; Kohlstedt, D. L.

    2017-12-01

    The formation of oceanic plates requires extraction of large volumes of melt from the mantle. Several lines of evidence suggest that melt extraction is rapid and, therefore, necessitates high-permeability pathways. Such pathways may form as a result of melt-rock reactions. We report the results of a series of Darcy-type experiments designed to study the development of channels due to melt-solid reactions in mantle lithologies. We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high pressure (P = 300 MPa) and high temperatures (T = 1200° or 1250°C) with a controlled pressure gradient (∂P/∂z = 0-100 MPa/mm). To study the influence of lithology on the channel formation, we synthesized partially molten rocks of harzburgitic (40:40:20 Ol - Opx - basalt), wehrlitic (40:40:20 Ol - Cpx - basalt) and lherzolitic (65:25:10 Ol - Opx - Cpx) composition. The melt source was a disk of alkali basalt. In all experiments, irrespective of the exact mineralogy, melt - undersaturated in silica - from the source dissolved pyroxene in the partially molten rock and precipitated olivine ( Fo82), thereby forming a dunite reaction layer at the interface between the source and the partially molten rock. In samples annealed under a small pressure gradient, the reaction layer was roughly planar. However, if the velocity of melt due to porous flow exceeded 0.1 µm/s, the reaction layer locally protruded into the partially molten rock forming finger-like, melt-rich channels in rocks of wehrlitic and harzburgitic composition. The lherzolitic rocks were generally impermeable to the melt except at highest-pressure gradients where a narrow fracture developed, forming a dyke which drained the melt reservoir. Three-dimensional reconstructions using micro-CT images revealed clear differences between the dyke (a narrow, through-going planar feature) and the channels formed by reactive infiltration (multiple sinuous finger-like features). Apparently, the fraction of soluble minerals together with the melt fraction in the partially molten rock control whether dykes or reactive channels develop. Our experiments demonstrate that melt-rock reactions can lead to channelization in mantle lithologies, and the observed lithological transformations broadly agree with those observed in nature

  16. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST/1991

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A revision is presented of MASTERFIT-1987, which it supersedes. Changes during 1988 to 1991 included introduction of the octupole component of solid Earth tides, the NUVEL tectonic motion model, partial derivatives for the precession constant and source position rates, the option to correct for source structure, a refined model for antenna offsets, modeling the unique antenna at Richmond, FL, improved nutation series due to Zhu, Groten, and Reigber, and reintroduction of the old (Woolard) nutation series for simulation purposes. Text describing the relativistic transformations and gravitational contributions to the delay model was also revised in order to reflect the computer code more faithfully.

  17. Monte Carlo modeling of spatial coherence: free-space diffraction

    PubMed Central

    Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.

    2008-01-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  18. Fermentation and chemical treatment of pulp and paper mill sludge

    DOEpatents

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  19. Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding.

    PubMed

    Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E

    2018-05-01

    Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).

  20. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu

    2013-12-02

    The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.

  1. RF induced energy for partially implanted catheters: a computational study

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2018-01-01

    Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553

  2. Accuracy of six elastic impression materials used for complete-arch fixed partial dentures.

    PubMed

    Stauffer, J P; Meyer, J M; Nally, J N

    1976-04-01

    1. The accuracy of four types of impression materials used to make a complete-arch fixed partial denture was evaluated by visual comparison and indirect measurement methods. 2. None of the tested materials allows safe finishing of a complete-arch fixed partial denture on a cast poured from one single master impression. 3. All of the tested materials can be used for impressions for a complete-arch fixed partial denture provided it is not finished on one single cast. Errors can be avoided by making a new impression with the fitted castings in place. Assembly and soldering should be done on the second cast. 4. In making the master fixed partial denture for this study, inaccurate soldering was a problem that was overcome with the use of epoxy glue. Hence, soldering seems to be a major source of inaccuracy for every fixed partial denture.

  3. Isoflavone Retention during Processing, Bioaccessibility, and Transport by Caco-2 Cells: Effects of Source and Amount of Fat in a Soy Soft Pretzel

    PubMed Central

    Simmons, Amber L.; Chitchumroonchokchai, Chureeporn; Vodovotz, Yael; Failla, Mark L.

    2014-01-01

    The impact of source and amount of lipid used to prepare a soy soft pretzel on the bioaccessibility and transport of isoflavones was investigated using the coupled in vitro digestion/Caco-2 human cell model. Pretzels were prepared without or with 2.9 or 6.0% exogenous lipid from either shortening, canola oil, ground almond, or ground hazelnut. The isoflavone backbone structure was stable during pretzel production, although there was partial conversion from malonyl and acetyl glucosides to simple glucosides and aglycones. Endogenous β-glucosidase activity in ground almond facilitated partial conversion of simple glucosides to aglycones during proofing, resulting in a slight decrease in bioaccessibility of isoflavones as compared with other sources of lipid. Amount and source of lipid did not affect bioaccessibility or uptake and metabolism of isoflavones by Caco-2 cells, although transport across the monolayer was greater with the lesser amount of shortening. These results suggest that the isoflavone structure, but not source or amount of lipid in a soy pretzel, may affect bioavailability of isoflavones. PMID:23167916

  4. Diversity Order Analysis of Dual-Hop Relaying with Partial Relay Selection

    NASA Astrophysics Data System (ADS)

    Bao, Vo Nguyen Quoc; Kong, Hyung Yun

    In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.

  5. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or onemore » or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.« less

  6. Thermodynamic analysis of vapor-phase epitaxial growth of GaAsN on Ge

    NASA Astrophysics Data System (ADS)

    Kawano, Jun; Kangawa, Yoshihiro; Ito, Tomonori; Kakimoto, Koichi; Koukitu, Akinori

    2012-03-01

    In this paper, we use thermodynamic analysis to determine how the nitrogen (N) ratio in the source gases affects the solid composition of coherently grown GaAs1-xNx(x˜0.03). The source gases for Ga, As, and N are trimethylgallium ((CH3)3Ga), arsine (AsH3), and ammonia (NH3), respectively. The growth occurs on a Ge substrate, and the analysis includes the stress from the substrate-crystal lattice mismatch. Calculation results indicate that to have just a few percent N incorporation into the grown solid, the V/III ratio in the source gases should be several thousands and the input-gas partial-pressure ratio NH3/(NH3+AsH3) should exceed 0.99. We also find that the lattice mismatch stress from the Ge substrate increases the V/III source-gas ratio required for stable growth, whereas an increase in input Ga partial pressure ratio has the opposite effect.

  7. Valid randomization-based p-values for partially post hoc subgroup analyses.

    PubMed

    Lee, Joseph J; Rubin, Donald B

    2015-10-30

    By 'partially post-hoc' subgroup analyses, we mean analyses that compare existing data from a randomized experiment-from which a subgroup specification is derived-to new, subgroup-only experimental data. We describe a motivating example in which partially post hoc subgroup analyses instigated statistical debate about a medical device's efficacy. We clarify the source of such analyses' invalidity and then propose a randomization-based approach for generating valid posterior predictive p-values for such partially post hoc subgroups. Lastly, we investigate the approach's operating characteristics in a simple illustrative setting through a series of simulations, showing that it can have desirable properties under both null and alternative hypotheses. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Food source provisioning and susceptibility of immature and adult Tribolium castaneum on concrete partially treated with chlorfenapyr (Phantom®)

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted in which adults, pupae, and 4-week-old larvae of Tribolium castaneum (Herbst), the red flour beetle, were exposed separately on concrete arenas partially treated (14.4 % of the total area) with the insecticide chlorfenapyr (Phantom®) at 1.1 g active ingredient/...

  9. Variation in chromosome constitution of the Xiaoyan series partial amphiploids and its relations to stripe rust and stem rust resistance

    USDA-ARS?s Scientific Manuscript database

    In the tertiary gene pool of wheat, tall wheatgrass Thinopyrum ponticum (2n = 10x = 70) is an excellent source of resistance genes against numerous wheat diseases. The creation of wheat-Th. ponticum partial amphiploids is an intermediate step for transferring the useful genes from Th. ponticum to w...

  10. Alcohol intake in relation to diet and obesity in women and men.

    PubMed

    Colditz, G A; Giovannucci, E; Rimm, E B; Stampfer, M J; Rosner, B; Speizer, F E; Gordis, E; Willett, W C

    1991-07-01

    We studied relations between alcohol intake, body mass index, and diet in 89,538 women and 48,493 men in two cohort studies. Total energy increased with alcohol consumption (partial r = 0.11, P less than 0.001), and carbohydrate intake decreased from 153 g/d in abstainers to 131 g/d in women drinking 2.5.0-49.9 g alcohol/d. The decrease in carbohydrate intake was due mainly to decreased sugar consumption with higher alcohol intake (partial r = -0.05, P less than 0.001), reflecting decreased energy consumption from sources excluding alcohol. In men total energy increased with alcohol consumption (partial r = 0.19, P less than 0.001), from 7575.6 (abstainers) to 9821.5 kJ/d (greater than 50 g alcohol/d). Energy intake excluding alcohol varied little with alcohol intake (partial r = 0.003, P = 0.48) but sucrose intake decreased with higher alcohol intake. These data suggest that calories from alcohol were added to energy intake from other sources in men, and that in women, energy from alcohol intake displaced sucrose. The consumption of candy and sugar is inversely related to alcohol intake, raising the possibility that it is related to appetite for alcohol.

  11. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    PubMed

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    NASA Astrophysics Data System (ADS)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  13. Ptychographic imaging with partially coherent plasma EUV sources

    NASA Astrophysics Data System (ADS)

    Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa

    2017-12-01

    We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.

  14. Numerical Modelling of Smouldering Combustion as a Remediation Technology for NAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Macphee, S. L.; Pironi, P.; Gerhard, J. I.; Rein, G.

    2009-05-01

    Smouldering combustion of non-aqueous phase liquids (NAPLs) is a novel concept that has significant potential for the remediation of contaminated industrial sites. Many common NAPLs, including coal tar, solvents, oils and petrochemicals are combustible and capable of generating substantial amounts of heat when burned. Smouldering is a flameless form of combustion in which a condensed phase fuel undergoes surface oxidation reactions within a porous matrix. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating the successful destruction of NAPLs embedded in a porous medium via smouldering. Pironi et al., 2008 (Eos Trans., 89(53), Fall Meet. Suppl. H34C) presented a series of column experiments illustrating the self-sustaining nature of the NAPL smouldering process and examined its sensitivity to a variety of key system parameters. In this work, a numerical model capable of simulating the propagation of a smouldering front in NAPL-contaminated porous media is presented. The model couples the multiphase flow code DNAPL3D-MT [Gerhard and Grant, 2007] with an analytical model for fire propagation [Richards, 1995]. The fire model is modified in this work for smouldering behaviour; in particular, incorporating a correlation of the velocity of the smouldering front to key parameters such as contaminant type, NAPL saturation, water saturation, porous media type and air injection rate developed from the column experiments. NAPL smouldering simulations are then validated against the column experiments. Furthermore, multidimensional simulations provide insight into scaling up the remediation process and are valuable for evaluating process sensitivity at the scales of in situ pilot and field applications.

  15. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  16. Preschoolers' use of reflective properties: identification of reflections on partially transparent surfaces.

    PubMed

    Costanzo, E S; Wittgenstein, K M; Benson, K

    2001-12-01

    This exploratory study extended past studies of children's ability to reference the mirror as a tool in locating the source of reflected images to preschoolers' ability to use the affordances of a transparency. Thirty-six children (3.5 to 5 years old) were shown nonreflected lights and lights reflected on a partially transparent, glassy surface. Children did not spontaneously locate the source of the reflected image. However, they were able to verbally discriminate reflected from nonreflected images following training. These findings indicate that, although preschoolers may not spontaneously use transparencies as a perceptual tool, the ability to distinguish visual differences of reflected from nonreflected images on transparencies is likely within preschool children's developmental capacity.

  17. Crystallographic data processing for free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less

  18. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  19. DESIGN OF AQUIFER REMEDIATION SYSTEMS: (2) Estimating site-specific performance and benefits of partial source removal

    EPA Science Inventory

    A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hyd...

  20. Process to create simulated lunar agglutinate particles

    NASA Technical Reports Server (NTRS)

    Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)

    2011-01-01

    A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.

  1. 76 FR 72700 - Agency Information Collection Activities; Proposed Collections; Comment Request; Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... review programs for new or modified stationary sources of air pollution. In addition, the provisions of... the emissions from the construction and modification of any stationary source of air pollution to.... Partially counteracting these increases, the Flexible Air Permitting Rule had the effect of reducing the...

  2. Inferring the source of evaporated waters using stable H and O isotopes

    EPA Science Inventory

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  3. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prepared in a system that might compromise sterility, the hour of expiration. (ii) If Source Plasma... collection date for each unit in the pool. (5) For Whole Blood, Plasma, Platelets, and partial units of Red... the container label for Source Plasma is not required to list the negative results of serological...

  4. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared in a system that might compromise sterility, the hour of expiration. (ii) If Source Plasma... collection date for each unit in the pool. (5) For Whole Blood, Plasma, Platelets, and partial units of Red... the container label for Source Plasma is not required to list the negative results of serological...

  5. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  6. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the lenses, TCE migrates down again and eventually accumulates at the bottom of the sandbox. The two models of quantification of fluid saturations for water/gas system and water/NAPL system developed in homogenous porous media give comparatively fit results to the observations and can be used to quantify fluid saturations in heterogeneous porous media.

  7. Influence of physical factors and geochemical conditions on groundwater acidification during enhanced reductive dechlorination

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J.

    2010-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, availability of alternative terminal electron acceptors and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. For this reason, research in this area is gaining increasing attention. In previous work (Robinson et al., 2009 407:4560, Sci. Tot. Environ, Robinson and Barry, 2009 24:1332, Environ. Model. & Software, Brovelli et al., 2010, submitted), a detailed geochemical and groundwater flow model able to predict the pH change occurring during reductive dehalogenation was developed. The model accounts for the main processes influencing groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects groundwater pH and dechlorination rates. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For example, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The conclusions drawn and insights gained from this modeling study will be useful to design improved in situ enhanced dehalogenation remediation schemes.

  8. Area estimation using multiyear designs and partial crop identification

    NASA Technical Reports Server (NTRS)

    Sielken, R. L., Jr.

    1984-01-01

    Statistical procedures were developed for large area assessments using both satellite and conventional data. Crop acreages, other ground cover indices, and measures of change were the principal characteristics of interest. These characteristics are capable of being estimated from samples collected possibly from several sources at varying times, with different levels of identification. Multiyear analysis techniques were extended to include partially identified samples; the best current year sampling design corresponding to a given sampling history was determined; weights reflecting the precision or confidence in each observation were identified and utilized, and the variation in estimates incorporating partially identified samples were quantified.

  9. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  10. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Unruh, D. M.; Tatsumoto, M.; Hutchison, R.

    1982-01-01

    Analyses of whole rock and mineral separates from the Nakhla meteorite are carried out by means of Sm-Nd and U-Tn-Pb systematics and by determining their REE, Ba, Sr, Rb, and K concentrations. Results show that the Sm-Nd age of the meteorite is 1.26 + or - 0.7 b.y., while the high initial epsilon(Nd) value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. A three-stage Sm-Nd evolution model is developed and used in combination with LIL element data and estimated partition coefficients in order to test partial melting and fractional crystallization models and to estimate LIL abundances in a possible Nakhla source. The calculations indicate that partial melting of the source followed by extensive fractional crystallization of the partial melt could account for the REE abundances in the Nakhla constituent minerals. It is concluded that the significantly younger age of Nakhla than the youngest lunar rock, the young differentiation age inferred from U-Th-Pb data, and the estimated LIL abundances suggest that this meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars.

  11. Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Zuccarello, Francesco

    2017-09-01

    Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.

  12. Cosine-Gaussian Schell-model sources.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  13. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.

  14. SU-C-16A-04: Dosimetric Validation of a Partially-Shielded Gd-153 Brachytherapy Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Adams, Q; Flynn, R

    Purpose: To demonstrate by measurement that using partially shielded Gd-153 sources for rotating-shield brachytherapy (RSBT) is feasible. RSBT is a potentially superior alternative to conventional high-dose-rate brachytherapy and provides the opportunity to dramatically improve tumor dose conformity for the treatment of, for example, prostate cancer. Methods: A custom-built, stainless steel encapsulated 150 mCi Gd-153 capsule with an outer length of 12.8 mm, outer diameter of 2.10 mm, active length of 9.98 mm, and active diameter of 1.53 mm was used. A partially shielded catheter was constructed with a 500 μm platinum shield and a 500 μm aluminum emission window, bothmore » with 180° azimuthal coverage. An acrylic phantom was constructed to measure the dose distributions from the shielded catheter in the transverse plane using Gafchromic EBT3 films. Film calibration curves were generated from 50, 70, and 100 kVp x-ray beams with NIST-traceable air kerma values to account for energy variation. Results: The transmission ratios of platinum to aluminum shielding at 1 cm off-axis are 7.5% and 7.6% for Monte Carlo (MCNP5) predicted and experimental results, respectively. The predicted/measured relative dose rates at 1 cm, 2 cm and 3 cm off-axis through the Al window were 100%/92.9%, 28.6%/27.0% and 13.8%/12.7%, respectively. Through the Pt shield, the predicted/measured relative dose rates were 7.5%/7.1%, 3.8%/3.0% and 2.4%/1.7%, respectively. Conclusion: Using partially-shielded Gd-153 sources for RSBT is a promising approach to improving brachytherapy dose distributions. The next step in making Gd-153 based RSBT a reality is developing a Gd-153 source that is small enough such that the source, shield, and catheter all fit within a 16 gauge needle, which has a 1.65 mm diameter. University of Iowa Research Foundation.« less

  15. Progress report on the Heavy Ions in Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.

    1993-01-01

    One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.

  16. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, D.M.; Stille, P.; Patchett, P.J.

    1984-02-15

    Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small (< or =10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and Hf-enriched. Calculated source compositions range fromm lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite (< or =3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts revealsmore » that the epsilonHf/epsilonNd ratios of low-Ti mare basalts are much higher than in terrestrial oceanic basalts. The results are qualitatively consistent with the hypothesis that terrestrial basalt sources are partial melt residues whereas mare basalt sources are cumulates. Alternatively, the results may imply that the terrestrial mantle has evolved in two (or more) stages of evolution, and that the net effect was depletion of the mantle during the first approx.1-3 b.y. followed by enrichment during the last 1-2 b.y.; or simply that there is a difference in Lu-Hf crystal-liquid partitioning (relative to Sm-Nd) between the lunar and terrestrial mantles.« less

  17. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  18. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-09

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

  19. Toward the Development of a Theory of Bereavement Guilt: Sources of Guilt in Bereaved Parents.

    ERIC Educational Resources Information Center

    Miles, Margaret Shandor; Demi, Alice Sterner

    1984-01-01

    Identifies five sources of guilt in bereaved parents: cultural role, death causation, moral, survivor, and recovery guilt. A pilot study of 28 bereaved parents provided partial support for the model and suggested an additional category: grief guilt. Rationalizing and sharing were the most common guilt-ameliorating strategies. (JAC)

  20. Accreting Compact Object at the Center of the Supernova Remnant RCW 103.

    NASA Astrophysics Data System (ADS)

    Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.

    2002-05-01

    We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.

  1. ShiftNMFk 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Boian S.; Vesselinov, Velimir V.; Stanev, Valentin

    The ShiftNMFk1.2 code, or as we call it, GreenNMFk, represents a hybrid algorithm combining unsupervised adaptive machine learning and Green's function inverse method. GreenNMFk allows an efficient and high performance de-mixing and feature extraction of a multitude of nonnegative signals that change their shape propagating through the medium. The signals are mixed and recorded by a network of uncorrelated sensors. The code couples Non-negative Matrix Factorization (NMF) and inverse-analysis Green's functions method. GreenNMF synergistically performs decomposition of the recorded mixtures, finds the number of the unknown sources and uses the Green's function of the governing partial differential equation to identifymore » the unknown sources and their charecteristics. GreenNMF can be applied directly to any problem controlled by a known partial-differential parabolic equation where mixtures of an unknown number of sources are measured at multiple locations. Full GreenNMFk method is a subject LANL U.S. Patent application S133364.000 August, 2017. The ShiftNMFk 1.2 version here is a toy version of this method that can work with a limited number of unknown sources (4 or less).« less

  2. Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering. [jet aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.

    1976-01-01

    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.

  3. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources

    DTIC Science & Technology

    2012-02-09

    different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16

  4. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.

  5. Autothermal hydrogen storage and delivery systems

    DOEpatents

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  6. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip

    NASA Astrophysics Data System (ADS)

    Chamkha, A. J.; Rashad, A. M.; Mansour, M. A.; Armaghani, T.; Ghalambaz, M.

    2017-05-01

    In this work, the effects of the presence of a heat sink and a heat source and their lengths and locations and the entropy generation on MHD mixed convection flow and heat transfer in a porous enclosure filled with a Cu-water nanofluid in the presence of partial slip effect are investigated numerically. Both the lid driven vertical walls of the cavity are thermally insulated and are moving with constant and equal speeds in their own plane and the effect of partial slip is imposed on these walls. A segment of the bottom wall is considered as a heat source meanwhile a heat sink is placed on the upper wall of cavity. There are heated and cold parts placed on the bottom and upper walls, respectively, while the remaining parts are thermally insulated. Entropy generation and local heat transfer according to different values of the governing parameters are presented in detail. It is found that the addition of nanoparticles decreases the convective heat transfer inside the porous cavity at all ranges of the heat sink and source lengths. The results for the effects of the magnetic field show that the average Nusselt number decreases considerably upon the enhancement of the Hartmann number. Also, adding nanoparticles to a pure fluid leads to increasing the entropy generation for all values of D for λl=-λr = 1 .

  7. Method of making AlInSb by metal-organic chemical vapor deposition

    DOEpatents

    Biefeld, Robert M.; Allerman, Andrew A.; Baucom, Kevin C.

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  8. A Preliminary Assessment of Google Scholar as a Source of EAP Students' Research Materials

    ERIC Educational Resources Information Center

    Helms-Park, Rena; Radia, Pavlina; Stapleton, Paul

    2007-01-01

    While the use of a search engine to find secondary sources is now a commonplace practice among undergraduate writers, recent studies show that students' online searches often lead to materials that are wholly or partially unsuitable for academic purposes. Accordingly, this project set out to determine whether using a more specialized search…

  9. What do we really know about the health effects of natural sources of trans fatty acids?

    USDA-ARS?s Scientific Manuscript database

    While the food industry remains actively engaged in the development of alternatives for partially hydrogenated vegetable oils in order to reduce intake of trans fatty acids, intake of these fatty acids from natural sources remains as a small part of our diet. The question remains, are there differ...

  10. A Decision Analysis Tool for the Source Selection Process

    DTIC Science & Technology

    2006-03-01

    THE SOURCE SELECTION PROCESS THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of...Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of...the Requirements for the Degree of Master of Science in Engineering Management John R. Trumm, BS Captain, USAF March 2006

  11. The partial coherence modulation transfer function in testing lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  12. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  13. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  14. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    NASA Astrophysics Data System (ADS)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  15. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  16. Partial sick leave--review of its use, effects and feasibility in the Nordic countries.

    PubMed

    Kausto, Johanna; Miranda, Helena; Martimo, Kari-Pekka; Viikari-Juntura, Eira

    2008-08-01

    Partial sick leave and partial sickness benefits are currently available in Sweden, Norway, Denmark, and Finland. The literature was reviewed to determine their use, describe their recipients, find evidence of their effects, and explore attitudes towards and experiences with their use. Eight databases were searched. National sickness absence statistics and other relevant sources were also reviewed. Of the sickness benefits, partial benefits accounted for approximately one-fifth in Norway, less than 10% in Denmark, and over a third in Sweden. In Finland, partial sick leave was seldom used during the first year (2007) of benefit availability. Few peer-reviewed studies on its effects were identified, and scientific evidence was scarce. Its acceptance was good in all four countries. Most of the recipients were women and over 45 years of age. Studies of its feasibility seem congruent in reporting hindrances due to inflexible work arrangements and poor collaboration between actors. More research and more rigorous study designs are needed to determine whether partial sick leave is feasible and beneficial in keeping those with reduced work ability in worklife.

  17. Hamiltonian surface charges using external sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troessaert, Cédric, E-mail: troessaert@cecs.cl

    2016-05-15

    In this work, we interpret part of the boundary conditions as external sources in order to partially solve the integrability problem present in the computation of surface charges associated to gauge symmetries in the hamiltonian formalism. We start by describing the hamiltonian structure of external symmetries preserving the action up to a transformation of the external sources of the theory. We then extend these results to the computation of surface charges for field theories with non-trivial boundary conditions.

  18. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Huang, Fang; Wang, Zaicong; Zhang, Xingchao; Yu, Huimin

    2017-08-01

    To investigate the behavior of Cu isotopes during partial melting and melt percolation in the mantle, we have analyzed Cu isotopic compositions of a suite of well-characterized Paleozoic peridotites from the Balmuccia and Baldissero massifs in the Ivrea-Verbano Zone (IVZ, Northern Italy). Our results show that fresh lherzolites and harzburgites have a large variation of δ65Cu ranging from -0.133 to 0.379‰, which are negatively correlated with Al2O3 contents as well as incompatible platinum-group (e.g., Pd) and chalcophile element (e.g., Cu, S, Se, and Te) contents. The high δ65Cu can be explained by Cu isotope fractionation during partial melting of a sulfide-bearing peridotite source, with the light isotope (63Cu) preferentially entering the melts. The low δ65Cu can be attributed to precipitation of sulfides enriched in 63Cu during sulfur-saturated melt percolation. Replacive dunites from the Balmuccia massif display high δ65Cu from 0.544 to 0.610‰ with lower Re, Pd, S, Se, and Te contents and lower Pd/Ir ratios relative to lherzolites, which may result from dissolution of sulfides during interactions between S-undersaturated melts and lherzolites at high melt/rock ratios. Thus, our results suggest that partial melting and melt percolation largely account for the Cu isotopic heterogeneity of the upper mantle. The correlation between δ65Cu and Cu contents of the lherzolites and harzburgites was used to model Cu isotope fractionation during partial melting of a sulfide-bearing peridotite, because Cu is predominantly hosted in sulfide. The modelling results indicate an isotope fractionation factor of αmelt-peridotite = 0.99980-0.99965 (i.e., 103lnαmelt-peridotite = -0.20 to -0.35‰). In order to explain the Cu isotopic systematics of komatiites and mid-ocean ridge basalts reported previously, the estimated αmelt-peridotite was used to simulate Cu isotopic variations in melts generated by variable degrees of mantle melting. The results suggest that high degrees (>25%) of partial melting extracts nearly all source Cu and it cannot produce Cu isotope fractionation in komatiites relative to their mantle source, and that sulfide segregation during magma evolution have modified Cu isotopic compositions of mid-ocean ridge basalts.

  19. Additive Partial Least Squares for efficient modelling of independent variance sources demonstrated on practical case studies.

    PubMed

    Luoma, Pekka; Natschläger, Thomas; Malli, Birgit; Pawliczek, Marcin; Brandstetter, Markus

    2018-05-12

    A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

Top