Sample records for partial grid e9

  1. Interim Letter Report - Verification Survey of Partial Grid E9, David Witherspoon, Inc. 1630 Site Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.C. Weaver

    2008-06-12

    Conduct verification surveys of available grids at the DWI 1630 in Knoxville, Tennessee. A representative with the Independent Environmental Assessment and Verification (IEAV) team from ORISE conducted a verification survey of a partial area within Grid E9.

  2. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  3. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  4. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  5. The development of an advanced vertical discretisation scheme for a regional ocean model

    NASA Astrophysics Data System (ADS)

    Bruciaferri, Diego; Shapiro, Georgy; Wobus, Fred

    2017-04-01

    When designing an ocean model, the choice of the vertical coordinate system must be pursued very carefully (Griffies et al., 2000); especially in those regional areas where local multi-scale processes interact with large-scale oceanographic features. Three main vertical coordinates are usually used in ocean modelling, namely the geopotential, terrain-following and isopycnic, but each one presents its own limitations and strengths. In the last decades, much research has been spent to investigate and develop hybrid approaches able to combine the advantages of each vertical coordinate system but minimising their disadvantages. Here we propose the hybrid s-s-z vertical discretisation scheme, an advanced version of the approach used by Shapiro et al. (2013). In our new scheme, the vertical domain is divided into three zones: in the upper and middle zones use s-coordinates while the deeper zone uses z-levels. The s-s-z vertical grid is introduced into the NEMO (Nucleus for European Modelling of the Ocean) model code and we compare the model skill of our new vertical discretisation scheme with the NEMO vertical grid using z-levels with partial steps through a set of idealized numerical experiments for which analytical solutions or theoretical models exist. Modelling results demonstrate that the magnitude of spurious currents arising from the horizontal pressure gradient errors are of the same order (10 ^ -3 m/s ) both with z-partial steps or with s-s-z vertical grids for the conditions favourable for the geopotential grids ( horizontal initial density levels). For a number of more realistic conditions representing a general cyclonic circulation in the sea, the new discretisation scheme produces smaller spurious currents and hence is more accurate than the z-level approach. Moreover, the enhanced capability of the s-s-z scheme to reproduce dense water cascades as compared to the z-partial steps grid is shown. Finally, we show how the new s-s-z grid can be useful to improve lateral sub-grid-physics parametrisation in ocean model with s-levels. References: Griffies, S. M., Boning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., Hirst, A., Treguier, A.-M., and Webb, D., 2000. Developments in Ocean Climate Modelling, Ocean Modelling, 2, 123-192. Shapiro, G., Luneva, M., Pickering, J., and Storkey, D.: The effect of various vertical discretisation schemes and horizontal diffusion parameterisation on the performance of a 3-D ocean model: the Black Sea case study, Ocean Sci., 9, 377-390, doi:10.5194/os-9-377-2013, 2013.

  6. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  7. Letter Report - Verification Survey of Final Grids at the David Witherspoon, Inc. 1630 Site Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.C. Weaver

    2009-02-17

    Conduct verification surveys of grids at the DWI 1630 Site in Knoxville, Tennessee. The independent verification team (IVT) from ORISE, conducted verification activities in whole and partial grids, as completed by BJC. ORISE site activities included gamma surface scans and soil sampling within 33 grids; G11 through G14; H11 through H15; X14, X15, X19, and X21; J13 through J15 and J17 through J21; K7 through K9 and K13 through K15; L13 through L15; and M14 through M16

  8. Wide-angle display-type retarding field analyzer with high energy and angular resolutions

    NASA Astrophysics Data System (ADS)

    Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro

    2017-12-01

    Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.

  9. [Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China].

    PubMed

    Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng

    2016-10-01

    Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.

  10. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  11. Advanced Concepts for Composite Structure Joints and Attachment Fittings. Volume 2. Design Guide

    DTIC Science & Technology

    1981-11-01

    500 3CC000 .loo 310- GRID 11040 100 M250 30.0000 .0 3311- GRID 11041 100 .2OO 15.COCO .5000 332- GRID 13042 ILO .2500 15.0000 .4000 313- GRID 11043...b~ l ( 115K -. 1 2 It e l t 1 1 A N A I 1 1 CARO 1 L~uNI 4 ... * ’ * 9.. 6 . p. . . 0 h0t- 91’ S 193 1001% 109 1016 402- SPl 9 123 10004 10006

  12. DE-FG02-04ER25606 Identity Federation and Policy Management Guide: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, Marty, A

    The goal of this 3-year project was to facilitate a more productive dynamic matching between resource providers and resource consumers in Grid environments by explicitly specifying policies. There were broadly two problems being addressed by this project. First, there was a lack of an Open Grid Services Architecture (OGSA)-compliant mechanism for expressing, storing and retrieving user policies and Virtual Organization (VO) policies. Second, there was a lack of tools to resolve and enforce policies in the Open Services Grid Architecture. To address these problems, our overall approach in this project was to make all policies explicit (e.g., virtual organization policies,more » resource provider policies, resource consumer policies), thereby facilitating policy matching and policy negotiation. Policies defined on a per-user basis were created, held, and updated in MyPolMan, thereby providing a Grid user to centralize (where appropriate) and manage his/her policies. Organizationally, the corresponding service was VOPolMan, in which the policies of the Virtual Organization are expressed, managed, and dynamically consulted. Overall, we successfully defined, prototyped, and evaluated policy-based resource management and access control for OGSA-based Grids. This DOE project partially supported 17 peer-reviewed publications on a number of different topics: General security for Grids, credential management, Web services/OGSA/OGSI, policy-based grid authorization (for remote execution and for access to information), policy-directed Grid data movement/placement, policies for large-scale virtual organizations, and large-scale policy-aware grid architectures. In addition to supporting the PI, this project partially supported the training of 5 PhD students.« less

  13. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  14. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  15. Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.

  16. Interim Letter Report - Verification Survey of Partial Grids H19, J21, J22, X20, and X21 at the David Witherspoon, Inc. 1630 Site, Knoxville Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.C. Weaver

    2008-03-19

    Conduct verification surveys of available grids at the David Witherspoon Incorporated 1630 Site (DWI 1630) in Knoxville, Tennessee. The IVT conducted verification activities of partial grids H19, J21, J22, X20, and X21.

  17. A semi-direct procedure using a local relaxation factor and its application to an internal flow problem

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1984-01-01

    Generally, fast direct solvers are not directly applicable to a nonseparable elliptic partial differential equation. This limitation, however, is circumvented by a semi-direct procedure, i.e., an iterative procedure using fast direct solvers. An efficient semi-direct procedure which is easy to implement and applicable to a variety of boundary conditions is presented. The current procedure also possesses other highly desirable properties, i.e.: (1) the convergence rate does not decrease with an increase of grid cell aspect ratio, and (2) the convergence rate is estimated using the coefficients of the partial differential equation being solved.

  18. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  19. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  20. Multiscale Simulations of Magnetic Island Coalescence

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.

  1. Optimal management of stationary lithium-ion battery system in electricity distribution grids

    NASA Astrophysics Data System (ADS)

    Purvins, Arturs; Sumner, Mark

    2013-11-01

    The present article proposes an optimal battery system management model in distribution grids for stationary applications. The main purpose of the management model is to maximise the utilisation of distributed renewable energy resources in distribution grids, preventing situations of reverse power flow in the distribution transformer. Secondly, battery management ensures efficient battery utilisation: charging at off-peak prices and discharging at peak prices when possible. This gives the battery system a shorter payback time. Management of the system requires predictions of residual distribution grid demand (i.e. demand minus renewable energy generation) and electricity price curves (e.g. for 24 h in advance). Results of a hypothetical study in Great Britain in 2020 show that the battery can contribute significantly to storing renewable energy surplus in distribution grids while being highly utilised. In a distribution grid with 25 households and an installed 8.9 kW wind turbine, a battery system with rated power of 8.9 kW and battery capacity of 100 kWh can store 7 MWh of 8 MWh wind energy surplus annually. Annual battery utilisation reaches 235 cycles in per unit values, where one unit is a full charge-depleting cycle depth of a new battery (80% of 100 kWh).

  2. Impact of the 2017 Solar Eclipse on Smart Grid

    NASA Astrophysics Data System (ADS)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  3. Impact of the 2017 Solar Eclipse on the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Reda, Ibrahim M; Andreas, Afshin M

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid usersmore » with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.« less

  4. Constrained CVT meshes and a comparison of triangular mesh generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoa; Burkardt, John; Gunzburger, Max

    2009-01-01

    Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulatingmore » planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presentsmore » algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.« less

  6. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  7. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sam, F. Laurent M.; Dabera, G. Dinesha M. R.; Lai, Khue T.; Mills, Christopher A.; Rozanski, Lynn J.; Silva, S. Ravi P.

    2014-08-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m-2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m-2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.

  8. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  9. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1987-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  10. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  11. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  12. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  13. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  14. Acoustic wave simulation using an overset grid for the global monitoring system

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  15. LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis

    DTIC Science & Technology

    2016-05-23

    LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High

  16. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations

    PubMed Central

    Mitchell, William F.

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355

  17. The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.

    PubMed

    Mitchell, William F

    1998-01-01

    Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.

  18. Emissions & Generation Resource Integrated Database (eGRID), eGRID2012

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes. eGRID2012 Version 1.0 is the eighth edition of eGRID, which contains the complete release of year 2009 data, as well as year 2007, 2005, and 2004 data. For year 2009 data, all the data are contained in a single Microsoft Excel workbook, which contains boiler, generator, plant, state, power control area, eGRID subregion, NERC region, U.S. total and grid gross loss factor tabs. Full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are also released in this edition. The fourth edition of eGRID, eGRID2002 Version 2.01, containing year 1996 through 2000 data is located on the eGRID Archive page (http://www.epa.gov/cleanenergy/energy-resources/egrid/archive.html). The current edition of eGRID and the archived edition of eGRID contain the following years of data: 1996 - 2000, 2004, 2005, and 2007. eGRID has no other years of data.

  19. Emissions & Generation Resource Integrated Database (eGRID), eGRID2002 (with years 1996 - 2000 data)

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, nitrous oxide, and mercury; emissions rates; net generation; resource mix; and many other attributes. eGRID2002 (years 1996 through 2000 data) contains 16 Excel spreadsheets and the Technical Support Document, as well as the eGRID Data Browser, User's Manual, and Readme file. Archived eGRID data can be viewed as spreadsheets or by using the eGRID Data Browser. The eGRID spreadsheets can be manipulated by data users and enables users to view all the data underlying eGRID. The eGRID Data Browser enables users to view key data using powerful search features. Note that the eGRID Data Browser will not run on a Mac-based machine without Windows emulation.

  20. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  1. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  2. WPS mediation: An approach to process geospatial data on different computing backends

    NASA Astrophysics Data System (ADS)

    Giuliani, Gregory; Nativi, Stefano; Lehmann, Anthony; Ray, Nicolas

    2012-10-01

    The OGC Web Processing Service (WPS) specification allows generating information by processing distributed geospatial data made available through Spatial Data Infrastructures (SDIs). However, current SDIs have limited analytical capacities and various problems emerge when trying to use them in data and computing-intensive domains such as environmental sciences. These problems are usually not or only partially solvable using single computing resources. Therefore, the Geographic Information (GI) community is trying to benefit from the superior storage and computing capabilities offered by distributed computing (e.g., Grids, Clouds) related methods and technologies. Currently, there is no commonly agreed approach to grid-enable WPS. No implementation allows one to seamlessly execute a geoprocessing calculation following user requirements on different computing backends, ranging from a stand-alone GIS server up to computer clusters and large Grid infrastructures. Considering this issue, this paper presents a proof of concept by mediating different geospatial and Grid software packages, and by proposing an extension of WPS specification through two optional parameters. The applicability of this approach will be demonstrated using a Normalized Difference Vegetation Index (NDVI) mediated WPS process, highlighting benefits, and issues that need to be further investigated to improve performances.

  3. SU-E-P-30: Clinical Applications of Spatially Fractionated Radiation Therapy (GRID) Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Liang, X; Penagaricano, J

    2015-06-15

    Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply-seated and cannot be safely treated with LINAC-GRID.« less

  4. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  5. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  6. Argonne National Laboratory Smart Grid Technology Interactive Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  7. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema

    Ted Bohn

    2017-12-09

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  8. Application of a Navier-Stokes Solver to the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Biedron, Robert T.; Whitlock, Mark

    1995-01-01

    A computational study was performed to determine the predictive capability of a Reynolds averaged Navier-Stokes code (CFL3D) for two-dimensional and three-dimensional multielement high-lift systems. Three configurations were analyzed: a three-element airfoil, a wing with a full span flap and a wing with a partial span flap. In order to accurately model these complex geometries, two different multizonal structured grid techniques were employed. For the airfoil and full span wing configurations, a chimera or overset grid technique was used. The results of the airfoil analysis illustrated that although the absolute values of lift were somewhat in error, the code was able to predict reasonably well the variation with Reynolds number and flap position. The full span flap analysis demonstrated good agreement with experimental surface pressure data over the wing and flap. Multiblock patched grids were used to model the partial span flap wing. A modification to an existing patched- grid algorithm was required to analyze the configuration as modeled. Comparisons with experimental data were very good, indicating the applicability of the patched-grid technique to analyses of these complex geometries.

  9. Collaboration on Development and Validation of the AMSR-E Snow Water Equivalent Algorithm

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard L.

    2000-01-01

    The National Snow and Ice Data Center (NSIDC) has produced a global SMMR and SSM/I Level 3 Brightness Temperature data set in the Equal Area Scalable Earth (EASE) Grid for the period 1978 to 2000. Processing of current data is-ongoing. The EASE-Grid passive microwave data sets are appropriate for algorithm development and validation prior to the launch of AMSR-E. Having the lower frequency channels of SMMR (6.6 and 10.7 GHz) and the higher frequency channels of SSM/I (85.5 GHz) in the same format will facilitate the preliminary development of applications which could potentially make use of similar frequencies from AMSR-E (6.9, 10.7, 89.0 GHz).

  10. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  11. Thermal detection of single e-h pairs in a biased silicon crystal detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romani, R. K.; Brink, P. L.; Cabrera, B.

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less

  12. Thermal detection of single e-h pairs in a biased silicon crystal detector

    DOE PAGES

    Romani, R. K.; Brink, P. L.; Cabrera, B.; ...

    2018-01-23

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less

  13. Thermal detection of single e-h pairs in a biased silicon crystal detector

    NASA Astrophysics Data System (ADS)

    Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.

    2018-01-01

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.

  14. Numerical simulation of three dimensional transonic flows

    NASA Technical Reports Server (NTRS)

    Sahu, Jubaraj; Steger, Joseph L.

    1987-01-01

    The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.

  15. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  16. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  17. Emission & Generation Resource Integrated Database (eGRID)

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.

  18. Using a Mobile Device "App" and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields.

    PubMed

    Laamrani, Ahmed; Pardo Lara, Renato; Berg, Aaron A; Branson, Dave; Joosse, Pamela

    2018-02-27

    Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as "app" method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph-grid and script methods (R² = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by -6.3% and -10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., -5.3% vs. -7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming.

  19. e-Science and its implications.

    PubMed

    Hey, Tony; Trefethen, Anne

    2003-08-15

    After a definition of e-science and the Grid, the paper begins with an overview of the technological context of Grid developments. NASA's Information Power Grid is described as an early example of a 'prototype production Grid'. The discussion of e-science and the Grid is then set in the context of the UK e-Science Programme and is illustrated with reference to some UK e-science projects in science, engineering and medicine. The Open Standards approach to Grid middleware adopted by the community in the Global Grid Forum is described and compared with community-based standardization processes used for the Internet, MPI, Linux and the Web. Some implications of the imminent data deluge that will arise from the new generation of e-science experiments in terms of archiving and curation are then considered. The paper concludes with remarks about social and technological issues posed by Grid-enabled 'collaboratories' in both scientific and commercial contexts.

  20. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less

  1. Dynamic grid refinement for partial differential equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.

  2. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  3. Grid generation in three dimensions by Poisson equations with control of cell size and skewness at boundary surfaces

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1983-01-01

    An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.

  4. Grid commerce, market-driven G-negotiation, and Grid resource management.

    PubMed

    Sim, Kwang Mong

    2006-12-01

    Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since Grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for Grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a Grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a Grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring Grid resources under high Grid loadings.

  5. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  6. Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1978-01-01

    Sputtering erosion of the upstream side of the molybdenum screen grid by discharge chamber ions in mercury bombardment thrusters was considered. Data which revealed that the screen grid erosion was very sensitive to the partial pressure of certain background gases in the space simulation vacuum facility were presented along with results of tests conducted to evaluate this effect. It is shown from estimates of the screen grid erosion in space that adequate lifetime for proposed missions exists.

  7. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  8. Time-partitioning simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  9. Model Uncertainty Quantification Methods For Data Assimilation In Partially Observed Multi-Scale Systems

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; van Leeuwen, P. J.

    2017-12-01

    Model Uncertainty Quantification remains one of the central challenges of effective Data Assimilation (DA) in complex partially observed non-linear systems. Stochastic parameterization methods have been proposed in recent years as a means of capturing the uncertainty associated with unresolved sub-grid scale processes. Such approaches generally require some knowledge of the true sub-grid scale process or rely on full observations of the larger scale resolved process. We present a methodology for estimating the statistics of sub-grid scale processes using only partial observations of the resolved process. It finds model error realisations over a training period by minimizing their conditional variance, constrained by available observations. Special is that these realisations are binned conditioned on the previous model state during the minimization process, allowing for the recovery of complex error structures. The efficacy of the approach is demonstrated through numerical experiments on the multi-scale Lorenz 96' model. We consider different parameterizations of the model with both small and large time scale separations between slow and fast variables. Results are compared to two existing methods for accounting for model uncertainty in DA and shown to provide improved analyses and forecasts.

  10. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  11. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  12. A Tutorial on Creating a Grid Cell Land Cover Data File from Remote Sensing Data.

    DTIC Science & Technology

    1985-06-01

    Creating a Grid Cell Land Cover Data File from Remote Sensing Data Gary E. Ford, Doreen L Meyer, and V. Ralph Algazi Signal and Image Processing Laboratory... L 1. INTRODUCTION Spatial data management systems, also known as geographic information systems, pro- vide powerful, practical tools for the...erosion [8]. Other -... ..... .. . . .. . . -5- 60 Z 0"C. 0 0. , ...- 9L> c 0 o o ( L - 0- 0.0a c 0 4- b. 0 ~ CL*~ C 0 .CL x 0 I" .- -J oo : -. 0 a a Z 0Z I1

  13. Emissions & Generation Resource Integrated Database (eGRID), eGRID2010

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes.eGRID2010 contains the complete release of year 2007 data, as well as years 2005 and 2004 data. Excel spreadsheets, full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are included in this data set. The Archived data in eGRID2002 contain years 1996 through 2000 data.For year 2007 data, the first Microsoft Excel workbook, Plant, contains boiler, generator, and plant spreadsheets. The second Microsoft Excel workbook, Aggregation, contains aggregated data by state, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. total levels. The third Microsoft Excel workbook, ImportExport, contains state import-export data, as well as U.S. generation and consumption data for years 2007, 2005, and 2004. For eGRID data for years 2005 and 2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data.

  14. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  15. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  16. Using a Mobile Device “App” and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields

    PubMed Central

    Laamrani, Ahmed; Branson, Dave; Joosse, Pamela

    2018-01-01

    Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as “app” method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph–grid and script methods (R2 = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by −6.3% and −10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., −5.3% vs. −7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming. PMID:29495497

  17. A Multilevel Algorithm for the Solution of Second Order Elliptic Differential Equations on Sparse Grids

    NASA Technical Reports Server (NTRS)

    Pflaum, Christoph

    1996-01-01

    A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.

  18. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, Edward T.

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  19. Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2003-01-01

    A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.

  20. A Cellular Automata Approach to Computer Vision and Image Processing.

    DTIC Science & Technology

    1980-09-01

    the ACM, vol. 15, no. 9, pp. 827-837. [ Duda and Hart] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973...Center TR-738, 1979. [Farley] Arthur M. Farley and Andrzej Proskurowski, "Gossiping in Grid Graphs", University of Oregon Computer Science Department CS-TR

  1. Smart Grid Maturity Model: SGMM Model Definition. Version 1.2

    DTIC Science & Technology

    2011-09-01

    electricity (e.g., solar power and wind) to be connected to the grid. If this were the case, any excess generated electricity would flow onto the grid, and... solar panels to the grid or electric vehicles to the grid. CUST-4.7 A common residential customer experience has been integrated. This experience is...individual devices (e.g., appliances) has been deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This

  2. Numerical Grid Generation and Potential Airfoil Analysis and Design

    DTIC Science & Technology

    1988-01-01

    Gauss- Seidel , SOR and ADI iterative methods e JACOBI METHOD In the Jacobi method each new value of a function is computed entirely from old values...preceding iteration and adding the inhomogeneous (boundary condition) term. * GAUSS- SEIDEL METHOD When we compute I in a Jacobi method, we have already...Gauss- Seidel method. Sufficient condition for p convergence of the Gauss- Seidel method is diagonal-dominance of [A].9W e SUCESSIVE OVER-RELAXATION (SOR

  3. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  4. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  5. GreenView and GreenLand Applications Development on SEE-GRID Infrastructure

    NASA Astrophysics Data System (ADS)

    Mihon, Danut; Bacu, Victor; Gorgan, Dorian; Mészáros, Róbert; Gelybó, Györgyi; Stefanut, Teodor

    2010-05-01

    The GreenView and GreenLand applications [1] have been developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) FP7 project co-funded by the European Commission [2]. The development of environment applications is a challenge for Grid technologies and software development methodologies. This presentation exemplifies the development of the GreenView and GreenLand applications over the SEE-GRID infrastructure by the Grid Application Development Methodology [3]. Today's environmental applications are used in vary domains of Earth Science such as meteorology, ground and atmospheric pollution, ground metal detection or weather prediction. These applications run on satellite images (e.g. Landsat, MERIS, MODIS, etc.) and the accuracy of output results depends mostly of the quality of these images. The main drawback of such environmental applications regards the need of computation power and storage power (some images are almost 1GB in size), in order to process such a large data volume. Actually, almost applications requiring high computation resources have approached the migration onto the Grid infrastructure. This infrastructure offers the computing power by running the atomic application components on different Grid nodes in sequential or parallel mode. The middleware used between the Grid infrastructure and client applications is ESIP (Environment Oriented Satellite Image Processing Platform), which is based on gProcess platform [4]. In its current format, gProcess is used for launching new processes on the Grid nodes, but also for monitoring the execution status of these processes. This presentation highlights two case studies of Grid based environmental applications, GreenView and GreenLand [5]. GreenView is used in correlation with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images and meteorological datasets, in order to produce pseudo colored temperature and vegetation maps for different geographical CEE (Central Eastern Europe) regions. On the other hand, GreenLand is used for generating maps for different vegetation indexes (e.g. NDVI, EVI, SAVI, GEMI) based on Landsat satellite images. Both applications are using interpolation and random value generation algorithms, but also specific formulas for computing vegetation index values. The GreenView and GreenLand applications have been experimented over the SEE-GRID infrastructure and the performance evaluation is reported in [6]. The improvement of the execution time (obtained through a better parallelization of jobs), the extension of geographical areas to other parts of the Earth, and new user interaction techniques on spatial data and large set of satellite images are the goals of the future work. References [1] GreenView application on Wiki, http://wiki.egee-see.org/index.php/GreenView [2] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [3] Gorgan D., Stefanut T., Bâcu V., Mihon D., Grid based Environment Application Development Methodology, SCICOM, 7th International Conference on "Large-Scale Scientific Computations", 4-8 June, 2009, Sozopol, Bulgaria, (To be published by Springer), (2009). [4] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [5] Mihon D., Bacu V., Stefanut T., Gorgan D., "Grid Based Environment Application Development - GreenView Application". ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27 Aug, 2009 Cluj-Napoca. Published by IEEE Computer Press, pp. 275-282 (2009). [6] Danut Mihon, Victor Bacu, Dorian Gorgan, Róbert Mészáros, Györgyi Gelybó, Teodor Stefanut, Practical Considerations on the GreenView Application Development and Execution over SEE-GRID. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 167-175 (2009).

  6. Effects of Grid Resolution on Modeled Air Pollutant Concentrations Due to Emissions from Large Point Sources: Case Study during KORUS-AQ 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Ju, H.; Bae, C.; Kim, B. U.; Kim, H. C.; Kim, S.

    2017-12-01

    Large point sources in the Chungnam area received a nation-wide attention in South Korea because the area is located southwest of the Seoul Metropolitan Area whose population is over 22 million and the summertime prevalent winds in the area is northeastward. Therefore, emissions from the large point sources in the Chungnam area were one of the major observation targets during the KORUS-AQ 2016 including aircraft measurements. In general, horizontal grid resolutions of eulerian photochemical models have profound effects on estimated air pollutant concentrations. It is due to the formulation of grid models; that is, emissions in a grid cell will be assumed to be mixed well under planetary boundary layers regardless of grid cell sizes. In this study, we performed series of simulations with the Comprehensive Air Quality Model with eXetension (CAMx). For 9-km and 3-km simulations, we used meteorological fields obtained from the Weather Research and Forecast model while utilizing the "Flexi-nesting" option in the CAMx for the 1-km simulation. In "Flexi-nesting" mode, CAMx interpolates or assigns model inputs from the immediate parent grid. We compared modeled concentrations with ground observation data as well as aircraft measurements to quantify variations of model bias and error depending on horizontal grid resolutions.

  7. Emissions & Generation Resource Integrated Database (eGRID) Questions and Answers

    EPA Pesticide Factsheets

    eGRID is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. eGRID is based on available plant-specific data for all U.S. electricity generating plants that report data.

  8. Applications of multigrid software in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.

    1992-01-01

    Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.

  9. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box

    PubMed Central

    Matowo, Nancy S.; Koekemoer, Lizette L.; Moore, Sarah J.; Mmbando, Arnold S.; Mapua, Salum A.; Coetzee, Maureen; Okumu, Fredros O.

    2016-01-01

    Background On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs) are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes. Methods An odour-baited device, the Mosquito Landing Box (MLB), was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6×9.6×4.5m), to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs. Results Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05). The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold. Conclusion The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where outdoor transmission is significant. PMID:26789733

  10. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  11. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  12. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  13. Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.

    2017-01-01

    A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.

  14. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  15. Multigrid Methods

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in numerical solution of certain types of partial differential equations by rapidly converging sequences of operations on supporting grids that range from very fine to very coarse are presented.

  16. Physical properties of solar chromospheric plages. III - Models based on Ca II and Mg II observations

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.; Linsky, J. L.

    1978-01-01

    Solar plages are modeled using observations of both the Ca II K and the Mg II h and k lines. A partial-redistribution approach is employed for calculating the line profiles on the basis of a grid of five model chromospheres. The computed integrated emission intensities for the five atmospheric models are compared with observations of six regions on the sun as well as with models of active-chromosphere stars. It is concluded that the basic plage model grid proposed by Shine and Linsky (1974) is still valid when the Mg II lines are included in the analysis and the Ca II and Mg II lines are analyzed using partial-redistribution diagnostics.

  17. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1986-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid points are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  18. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, H.

    1984-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  19. Web service module for access to g-Lite

    NASA Astrophysics Data System (ADS)

    Goranova, R.; Goranov, G.

    2012-10-01

    G-Lite is a lightweight grid middleware for grid computing installed on all clusters of the European Grid Infrastructure (EGI). The middleware is partially service-oriented and does not provide well-defined Web services for job management. The existing Web services in the environment cannot be directly used by grid users for building service compositions in the EGI. In this article we present a module of well-defined Web services for job management in the EGI. We describe the architecture of the module and the design of the developed Web services. The presented Web services are composable and can participate in service compositions (workflows). An example of usage of the module with tools for service compositions in g-Lite is shown.

  20. E-Science and Grids in Europe

    NASA Astrophysics Data System (ADS)

    Hey, Tony

    2002-08-01

    After defining what is meant by the term 'e-Science', this talk will survey the activity on e-Science and Grids in Europe. The two largest initiatives in Europe are the European Commission's portfolio of Grid projects and the UK e-Science program. The EU under its R Framework Program are funding nearly twenty Grid projects in a wide variety of application areas. These projects are in varying stages of maturity and this talk will focus on a subset that have most significant progress. These include the EU DataGrid project led by CERN and two projects - EuroGrid and Grip - that evolved from the German national Unicore project. A summary of the other EU Grid projects will be included. The UK e-Science initiative is a 180M program entirely focused on e-Science applications requiring resource sharing, a virtual organization and a Grid infrastructure. The UK program is unique for three reasons: (1) the program covers all areas of science and engineering; (2) all of the funding is devoted to Grid application and middleware development and not to funding major hardware platforms; and (3) there is an explicit connection with industry to produce robust and secure industrial-strength versions of Grid middleware that could be used in business-critical applications. A part of the funding, around 50M, but requiring an additional 'matching' $30M from industry in collaborative projects, forms the UK e-Science 'Core Program'. It is the responsibility of the Core Program to identify and support a set of generic middleware requirements that have emerged from a requirements analysis of the e-Science application projects. This has led to a much more data-centric vision for 'the Grid' in the UK in which access to HPC facilities forms only one element. More important for the UK projects are issues such as enabling access and federation of scientific data held in files, relational databases and other archives. Automatic annotation of data generated by high throughput experiments with XML-based metadata is seen as a key step towards developing higher-level Grid services for information retrieval and knowledge discovery. The talk will conclude with a survey of other Grid initiatives across Europe and look at possible future European projects.

  1. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  2. An FPGA Architecture for Extracting Real-Time Zernike Coefficients from Measured Phase Gradients

    NASA Astrophysics Data System (ADS)

    Moser, Steven; Lee, Peter; Podoleanu, Adrian

    2015-04-01

    Zernike modes are commonly used in adaptive optics systems to represent optical wavefronts. However, real-time calculation of Zernike modes is time consuming due to two factors: the large factorial components in the radial polynomials used to define them and the large inverse matrix calculation needed for the linear fit. This paper presents an efficient parallel method for calculating Zernike coefficients from phase gradients produced by a Shack-Hartman sensor and its real-time implementation using an FPGA by pre-calculation and storage of subsections of the large inverse matrix. The architecture exploits symmetries within the Zernike modes to achieve a significant reduction in memory requirements and a speed-up of 2.9 when compared to published results utilising a 2D-FFT method for a grid size of 8×8. Analysis of processor element internal word length requirements show that 24-bit precision in precalculated values of the Zernike mode partial derivatives ensures less than 0.5% error per Zernike coefficient and an overall error of <1%. The design has been synthesized on a Xilinx Spartan-6 XC6SLX45 FPGA. The resource utilisation on this device is <3% of slice registers, <15% of slice LUTs, and approximately 48% of available DSP blocks independent of the Shack-Hartmann grid size. Block RAM usage is <16% for Shack-Hartmann grid sizes up to 32×32.

  3. Evaluating Connectivity between Marine Protected Areas Using CODAR High-Frequency Radar

    DTIC Science & Technology

    2010-06-01

    SMCA/SMR, (6) Big Creek SMCA/SMR, (7) Piedras Blancas SMCA/SMR, (8) Cambria SMCA/White Rock SMCA, (9) Pt. Buchon SMCA/SMR, and (10) Vandenberg SMR...52 grid- points, (7) Piedras Blancas 47 grid-points, (8) Cambria 20 grid-points, (9) Pt. Buchon 45 grid- points, and (10) the Vandenberg MPA had 62...COLUMN HEADERS. Back-projected from: (Sorted north- to-south) Año Nuevo Soquel Canyon Portuguese Ledge Point Lobos Point Sur Big Creek Piedras

  4. Privacy protection in HealthGrid: distributing encryption management over the VO.

    PubMed

    Torres, Erik; de Alfonso, Carlos; Blanquer, Ignacio; Hernández, Vicente

    2006-01-01

    Grid technologies have proven to be very successful in tackling challenging problems in which data access and processing is a bottleneck. Notwithstanding the benefits that Grid technologies could have in Health applications, privacy leakages of current DataGrid technologies due to the sharing of data in VOs and the use of remote resources, compromise its widespreading. Privacy control for Grid technology has become a key requirement for the adoption of Grids in the Healthcare sector. Encrypted storage of confidential data effectively reduces the risk of disclosure. A self-enforcing scheme for encrypted data storage can be achieved by combining Grid security systems with distributed key management and classical cryptography techniques. Virtual Organizations, as the main unit of user management in Grid, can provide a way to organize key sharing, access control lists and secure encryption management. This paper provides programming models and discusses the value, costs and behavior of such a system implemented on top of one of the latest Grid middlewares. This work is partially funded by the Spanish Ministry of Science and Technology in the frame of the project Investigación y Desarrollo de Servicios GRID: Aplicación a Modelos Cliente-Servidor, Colaborativos y de Alta Productividad, with reference TIC2003-01318.

  5. e-Human Grid Ecology - understanding and approaching the inverse tragedy of the commons in the e-Grid society.

    PubMed

    Knoch, Tobias A; Baumgärtner, Volkmar; de Zeeuw, Luc V; Grosveld, Frank G; Egger, Kurt

    2009-01-01

    With ever-new technologies emerging also the amount of information to be stored and processed is growing exponentially and is believed to be always at the limit. In contrast, however, huge resources are available in the IT sector alike e.g. the renewable energy sector, which are often even not at all used. This under-usage bares any rational especially in the IT sector where e.g. virtualisation and grid approaches could be fast implemented due to the great technical and fast turnover opportunities. Here, we describe this obvious paradox for the first time as the Inverse Tragedy of the Commons, in contrast to the Classical Tragedy of the Commons where resources are overexploited. From this perspective the grid IT sector attempting to share resources for better efficiency, reveals two challenges leading to the heart of the paradox: i) From a macro perspective all grid infrastructures involve not only mere technical solutions but also dominantly all of the autopoietic social sub-systems ranging from religion to policy. ii) On the micro level the individual players and their psychology and risk behaviour are of major importance for acting within the macro autopoietic framework. Thus, the challenges of grid implementation are similar to those of e.g. climate protection. This is well described by the classic Human Ecology triangle and our extension to a rectangle: invironment-individual-society-environment. Extension of this classical interdisciplinary field of basic and applied research to an e-Human Grid Ecology rational, allows the Inverse Tragedy of the Commons of the grid sector to be understood and approached better and implies obvious guidelines in the day-to-day management for grid and other (networked) resources, which is of importance for many fields with similar paradoxes as in (e-)society.

  6. Improvements to the gridding of precipitation data across Europe under the E-OBS scheme

    NASA Astrophysics Data System (ADS)

    Cornes, Richard; van den Besselaar, Else; Jones, Phil; van der Schrier, Gerard; Verver, Ge

    2016-04-01

    Gridded precipitation data are a valuable resource for analyzing past variations and trends in the hydroclimate. Such data also provide a reference against which model simulations may be driven, compared and/or adjusted. The E-OBS precipitation dataset is widely used for such analyses across Europe, and is particularly valuable since it provides a spatially complete, daily field across the European domain. In this analysis, improvements to the E-OBS precipitation dataset will be presented that aim to provide a more reliable estimate of grid-box precipitation values, particularly in mountainous areas and in regions with a relative sparsity of input station data. The established three-stage E-OBS gridding scheme is retained, whereby monthly precipitation totals are gridded using a thin-plate spline; daily anomalies are gridded using indicator kriging; and the final dataset is produced by multiplying the two grids. The current analysis focuses on improving the monthly thin-plate spline, which has overall control on the final daily dataset. The results from different techniques are compared and the influence on the final daily data is assessed by comparing the data against gridded country-wide datasets produced by various National Meteorological Services

  7. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  8. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 1: One-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    An algorithm for solving a large class of two- and three-dimensional nonseparable elliptic partial differential equations (PDE's) is developed and tested. It uses a modified D'Yakanov-Gunn iterative procedure in which the relaxation factor is grid-point dependent. It is easy to implement and applicable to a variety of boundary conditions. It is also computationally efficient, as indicated by the results of numerical comparisons with other established methods. Furthermore, the current algorithm has the advantage of possessing two important properties which the traditional iterative methods lack; that is: (1) the convergence rate is relatively insensitive to grid-cell size and aspect ratio, and (2) the convergence rate can be easily estimated by using the coefficient of the PDE being solved.

  9. Stable multi-domain spectral penalty methods for fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  10. Modeling flow at the nozzle of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Chow, Alan S.; Jin, Kang-Ren

    1991-01-01

    The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.

  11. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723

  12. Simulations of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method

    NASA Astrophysics Data System (ADS)

    Chaouat, Bruno

    2012-04-01

    The partially integrated transport modeling (PITM) method [B. Chaouat and R. Schiestel, "A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005), 10.1063/1.1928607; R. Schiestel and A. Dejoan, "Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005), 10.1007/s00162-004-0155-z; B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgridscale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3; B. Chaouat and R. Schiestel, "Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations," Int. J. Heat Fluid Flow 30, 602 (2009), 10.1016/j.ijheatfluidflow.2009.02.021] viewed as a continuous approach for hybrid RANS/LES (Reynolds averaged Navier-Stoke equations/large eddy simulations) simulations with seamless coupling between RANS and LES regions is used to derive a subfilter scale stress model in the framework of second-moment closure applicable in a rotating frame of reference. This present subfilter scale model is based on the transport equations for the subfilter stresses and the dissipation rate and appears well appropriate for simulating unsteady flows on relatively coarse grids or flows with strong departure from spectral equilibrium because the cutoff wave number can be located almost anywhere inside the spectrum energy. According to the spectral theory developed in the wave number space [B. Chaouat and R. Schiestel, "From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform," Theor. Comput. Fluid Dyn. 21, 201 (2007), 10.1007/s00162-007-0044-3], the coefficients used in this model are no longer constants but they are some analytical functions of a dimensionless parameter controlling the spectral distribution of turbulence. The pressure-strain correlation term encompassed in this model is inspired from the nonlinear SSG model [C. G. Speziale, S. Sarkar, and T. B. Gatski, "Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach," J. Fluid Mech. 227, 245 (1991), 10.1017/S0022112091000101] developed initially for homogeneous rotating flows in RANS methodology. It is modeled in system rotation using the principle of objectivity. Its modeling is especially extended in a low Reynolds number version for handling non-homogeneous wall flows. The present subfilter scale stress model is then used for simulating large scales of rotating turbulent flows on coarse and medium grids at moderate, medium, and high rotation rates. It is also applied to perform a simulation on a refined grid at the highest rotation rate. As a result, it is found that the PITM simulations reproduce fairly well the mean features of rotating channel flows allowing a drastic reduction of the computational cost in comparison with the one required for performing highly resolved LES. Overall, the mean velocities and turbulent stresses are found to be in good agreement with the data of highly resolved LES [E. Lamballais, O. Metais, and M. Lesieur, "Spectral-dynamic model for large-eddy simulations of turbulent rotating flow," Theor. Comput. Fluid Dyn. 12, 149 (1998)]. The anisotropy character of the flow resulting from the rotation effects is also well reproduced in accordance with the reference data. Moreover, the PITM2 simulations performed on the medium grid predict qualitatively well the three-dimensional flow structures as well as the longitudinal roll cells which appear in the anticyclonic wall-region of the rotating flows. As expected, the PITM3 simulation performed on the refined grid reverts to highly resolved LES. The present model based on a rational formulation appears to be an interesting candidate for tackling a large variety of engineering flows subjected to rotation.

  13. Fincke smiles at the camera as he holds a partially eaten apple during Expedition 9

    NASA Image and Video Library

    2004-10-14

    ISS009-E-28931 (16 October 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, enjoys eating a fresh apple in the Zvezda Service Module of the International Space Station (ISS).

  14. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less

  15. Approach to sustainable e-Infrastructures - The case of the Latin American Grid

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Diacovo, Ramon; Brasileiro, Francisco; Carvalho, Diego; Dutra, Inês; Faerman, Marcio; Gavillet, Philippe; Hoeger, Herbert; Lopez Pourailly, Maria Jose; Marechal, Bernard; Garcia, Rafael Mayo; Neumann Ciuffo, Leandro; Ramos Pollan, Paul; Scardaci, Diego; Stanton, Michael

    2010-05-01

    The EELA (E-Infrastructure shared between Europe and Latin America) and EELA-2 (E-science grid facility for Europe and Latin America) projects, co-funded by the European Commission under FP6 and FP7, respectively, have been successful in building a high capacity, production-quality, scalable Grid Facility for a wide spectrum of applications (e.g. Earth & Life Sciences, High energy physics, etc.) from several European and Latin American User Communities. This paper presents the 4-year experience of EELA and EELA-2 in: • Providing each Member Institution the unique opportunity to benefit of a huge distributed computing platform for its research activities, in particular through initiatives such as OurGrid which proposes a so-called Opportunistic Grid Computing well adapted to small and medium Research Laboratories such as most of those of Latin America and Africa; • Developing a realistic strategy to ensure the long-term continuity of the e-Infrastructure in the Latin American continent, beyond the term of the EELA-2 project, in association with CLARA and collaborating with EGI. Previous interactions between EELA and African Grid members at events such as the IST Africa'07, 08 and 09, the International Conference on Open Access'08 and EuroAfriCa-ICT'08, to which EELA and EELA-2 contributed, have shown that the e-Infrastructure situation in Africa compares well with the Latin American one. This means that African Grids are likely to face the same problems that EELA and EELA-2 experienced, especially in getting the necessary User and Decision Makers support to create NGIs and, later, a possible continent-wide African Grid Initiative (AGI). The hope is that the EELA-2 endeavour towards sustainability as described in this presentation could help the progress of African Grids.

  16. Open Burn/Open Detonation Dispersion Model (OBODM) User’s Guide. Volume I. User’s Instructions

    DTIC Science & Technology

    1998-02-01

    Fuel/Expl6sives Data Base File OBODFUEL.OBD ...... 51 4.9 SIGMAPLOT File Format and Contents ...... .............. .. 106 4.10 Grid Coordinates and...135.2 0.9391 0 2.95E-07 trans-2-Butene 125.0 1.1830 0 1.97E-07 Propellant, PBXN -110 1000 0 44 1,2,4-Trimethylbenzene 120.2 0.8758 0 4.25E-07 1,2,4...Calculation height, if applicable 106 The solution data follow and depend on the output options selected. The following record group is written only if N

  17. TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE

    NASA Technical Reports Server (NTRS)

    Vu, B. T.

    1994-01-01

    TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.

  18. The Grid as a healthcare provision tool.

    PubMed

    Hernández, V; Blanquer, I

    2005-01-01

    This paper presents a survey on HealthGrid technologies, describing the current status of Grid and eHealth and analyzing them in the medium-term future. The objective is to analyze the key points, barriers and driving forces for the take-up of HealthGrids. The article considers the procedures from other Grid disciplines such as high energy physics or biomolecular engineering and discusses the differences with respect to healthcare. It analyzes the status of the basic technology, the needs of the eHealth environment and the successes of current projects in health and other relevant disciplines. Information and communication technology (ICT) in healthcare is a promising area for the use of the Grid. There are many driving forces that are fostering the application of the secure, pervasive, ubiquitous and transparent access to information and computing resources that Grid technologies can provide. However, there are many barriers that must be solved. Many technical problems that arise in eHealth (standardization of data, federation of databases, content-based knowledge extraction, and management of personal data ...) can be solved with Grid technologies. The article presents the development of successful and demonstrative applications as the key for the take-up of HealthGrids, where short-term future medical applications will surely be biocomputing-oriented, and the future of Grid technologies on medical imaging seems promising. Finally, exploitation of HealthGrid is analyzed considering the curve of the adoption of ICT solutions and the definition of business models, which are far more complex than in other e-business technologies such ASP.

  19. Characterizing the digital radiography system in terms of effective detective quantum efficiency and CDRAD measurement

    NASA Astrophysics Data System (ADS)

    Yalcin, A.; Olgar, T.

    2018-07-01

    The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.

  20. [Analysis of expectations on the nurse's leadership in the light of Grid's theories].

    PubMed

    Trevizan, M A; Mendes, I A; Hayashida, M; Galvão, C M; Cury, S R

    2001-01-01

    Based on the understanding that leadership is a fundamental resource for nurses in health institutions, the aim of the authors was to analyze, under the light of Blake & Mouton's Grid Theories, the expectations of the Nursing team regarding nurse's leadership. The analysis was based on four investigations performed in different contexts of Brazilian Nursing and data were collected through the application of the "Grid & Leadership in Nursing Instrument" developed by Trevizan. Results show that the subjects prefer the Grid style 9.9. The authors discuss the results and emphasize the need for the development of leadership in Nursing.

  1. Application of numerical grid generation for improved CFD analysis of multiphase screw machines

    NASA Astrophysics Data System (ADS)

    Rane, S.; Kovačević, A.

    2017-08-01

    Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.

  2. gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid

    NASA Astrophysics Data System (ADS)

    Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana

    2010-05-01

    The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows on the Grid infrastructure. In addition, this web service monitors the execution and generates statistical data that are important to evaluate performances and to optimize execution. The Viewer Web Service allows access to input and output data. To prove and to validate the utility of the gProcess and ESIP platforms there were developed the GreenView and GreenLand applications. The GreenView related functionality includes the refinement of some meteorological data such as temperature, and the calibration of the satellite images based on field measurements. The GreenLand application performs the classification of the satellite images by using a set of vegetation indices. The gProcess and ESIP platforms are used as well in GiSHEO project [8] to support the processing of Earth Observation data over the Grid in eGLE (GiSHEO eLearning Environment). Experiments of performance assessment were conducted and they have revealed that the workflow-based execution could improve the execution time of a satellite image processing algorithm [9]. It is not a reliable solution to execute all the workflow nodes on different machines. The execution of some nodes can be more time consuming and they will be performed in a longer time than other nodes. The total execution time will be affected because some nodes will slow down the execution. It is important to correctly balance the workflow nodes. Based on some optimization strategy the workflow nodes can be grouped horizontally, vertically or in a hybrid approach. In this way, those operators will be executed on one machine and also the data transfer between workflow nodes will be lower. The dynamic nature of the Grid infrastructure makes it more exposed to the occurrence of failures. These failures can occur at worker node, services availability, storage element, etc. Currently gProcess has support for some basic error prevention and error management solutions. In future, some more advanced error prevention and management solutions will be integrated in the gProcess platform. References [1] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [2] Bacu V., Stefanut T., Rodila D., Gorgan D., Process Description Graph Composition by gProcess Platform. HiPerGRID - 3rd International Workshop on High Performance Grid Middleware, 28 May, Bucharest. Proceedings of CSCS-17 Conference, Vol.2., ISSN 2066-4451, pp. 423-430, (2009). [3] ESIP Platform, http://wiki.egee-see.org/index.php/JRA1_Commonalities [4] Gorgan D., Bacu V., Rodila D., Pop Fl., Petcu D., Experiments on ESIP - Environment oriented Satellite Data Processing Platform. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 157-166 (2009). [5] Radu, A., Bacu, V., Gorgan, D., Diagrammatic Description of Satellite Image Processing Workflow. Workshop on Grid Computing Applications Development (GridCAD) at the SYNASC Symposium, 28 September 2007, Timisoara, IEEE Computer Press, ISBN 0-7695-3078-8, 2007, pp. 341-348 (2007). [6] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [7] Rodila D., Bacu V., Gorgan D., Integration of Satellite Image Operators as Workflows in the gProcess Application. Proceedings of ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27-29 Aug, 2009 Cluj-Napoca. ISBN: 978-1-4244-5007-7, pp. 355-358 (2009). [8] GiSHEO consortium, Project site, http://gisheo.info.uvt.ro [9] Bacu V., Gorgan D., Graph Based Evaluation of Satellite Imagery Processing over Grid. ISPDC 2008 - 7th International Symposium on Parallel and Distributed Computing, July 1-5, 2008, Krakow, Poland. IEEE Computer Society 2008, ISBN: 978-0-7695-3472-5, pp. 147-154.

  3. 75 FR 39919 - Information Systems, Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... export controls applicable to information systems equipment and technology. Wednesday, July 28 Public Session 1. Welcome and Introductions. 2. Working Group Reports. 3. Smart Grid. 4. Civil Satellite...

  4. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  5. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time

    USGS Publications Warehouse

    Warner, John C.; Geyer, W. Rockwell; Arango, Herman G.

    2010-01-01

    We investigate the processes that influence residence time in a partially mixed estuary using a three-dimensional circulation model. The complex geometry of the study region is not optimal for a structured grid model and so we developed a new method of grid connectivity. This involves a novel approach that allows an unlimited number of individual grids to be combined in an efficient manner to produce a composite grid. We then implemented this new method into the numerical Regional Ocean Modeling System (ROMS) and developed a composite grid of the Hudson River estuary region to investigate the residence time of a passive tracer. Results show that the residence time is a strong function of the time of release (spring vs. neap tide), the along-channel location, and the initial vertical placement. During neap tides there is a maximum in residence time near the bottom of the estuary at the mid-salt intrusion length. During spring tides the residence time is primarily a function of along-channel location and does not exhibit a strong vertical variability. This model study of residence time illustrates the utility of the grid connectivity method for circulation and dispersion studies in regions of complex geometry.

  6. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates

    PubMed Central

    Baker, Zachary; Schumer, Molly; Haba, Yuki; Bashkirova, Lisa; Holland, Chris; Rosenthal, Gil G; Przeworski, Molly

    2017-01-01

    Studies of highly diverged species have revealed two mechanisms by which meiotic recombination is directed to the genome—through PRDM9 binding or by targeting promoter-like features—that lead to dramatically different evolutionary dynamics of hotspots. Here, we identify PRDM9 orthologs from genome and transcriptome data in 225 species. We find the complete PRDM9 ortholog across distantly related vertebrates but, despite this broad conservation, infer a minimum of six partial and three complete losses. Strikingly, taxa carrying the complete ortholog of PRDM9 are precisely those with rapid evolution of its predicted binding affinity, suggesting that all domains are necessary for directing recombination. Indeed, as we show, swordtail fish carrying only a partial but conserved ortholog share recombination properties with PRDM9 knock-outs. DOI: http://dx.doi.org/10.7554/eLife.24133.001 PMID:28590247

  7. A principle of economy predicts the functional architecture of grid cells

    PubMed Central

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-01-01

    Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. DOI: http://dx.doi.org/10.7554/eLife.08362.001 PMID:26335200

  8. A Green Urban Mobility System Solution from the EU Ingrid project

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Screnci, Adamo; Romeo, Marco

    With a mandate to reach 20/20/20 targets, new strategies are now focusing on the increased use of electricity to power transportation. Particularly in major urban areas of the EU, capillary use of electric vehicles are being encouraged, however, as these vehicles will be powered by the grid, there is always the risk that load peaks will occur. This work is just one of several being developed as part of the 23.9 MLN Euros INGRID European project started in July 2012, which combines solid-state high-density hydrogen storage systems with advanced ICT technologies for distribution grids. One possible solution which has been designed, is an off-grid utility to store renewable electricity captured from wind/solar sources and a re-charging point for full battery electric cars. This work shows the preliminary financial assessment of two business models for the Park-for-Recharging concept to promote green e-mobility as a more convenient and economical means of by-car transport.

  9. Implementation of the Baldwin-Barth turbulence model into the ZETA code and its diagnosis. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Low, Scott L.

    1993-01-01

    The Baldwin-Barth turbulence model was implemented into Zeta, a time-accurate, zonal, integro-differential code for incompressible laminar and turbulent flows. The implementation procedure is patterned after the model subroutine in ARC2D. The results of ZETA with the Baldwin-Barth turbulence model were compared with experimental data, with ZETA using Baldwin-Lomax model, and with ARC2D using the Baldwin-Barth model. The Baldwin-Barth model subroutine was tested by inputting an ARC2D velocity solution of an NACA-0012 airfoil at R(sub e) = 3.9 x 10(exp 6) and alpha = 5 deg. The resultant turbulent viscosity and Reynolds stresses compared favorably with the original data. For the same grid having grid points inside the laminar sublayer, which is necessary due to the one-equation nature of the model, ZETA however predicts early separation. It was found that the current ZETA has problem with such a fine grid. Further work is in progress to solve this problem.

  10. Localization with Sparse Acoustic Sensor Network Using UAVs as Information-Seeking Data Mules

    DTIC Science & Technology

    2013-05-01

    technique to differentiate among several sources. 2.2. AoA Estimation AoA Models. The kth of NAOA AoA sensors produces an angular measurement modeled...squares sense. θ̂ = arg min φ 3∑ i=1 ( ̂τi0 − eTφ ri )2 (9) The minimization was done by gridding the one-dimensional angular space and finding the optimum...Latitude E5500 laptop running FreeBSD and custom Java applications to process and store the raw audio signals. Power Source: The laptop was powered for an

  11. Grid of Supergiant B[e] Models from HDUST Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Carciofi, A. C.

    2012-12-01

    By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.

  12. Mapping implicit spectral methods to distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Vanrosendale, John

    1991-01-01

    Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.

  13. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  14. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  15. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  16. A Virtual Reality System for PTCD Simulation Using Direct Visuo-Haptic Rendering of Partially Segmented Image Data.

    PubMed

    Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz

    2016-01-01

    This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.

  17. Creating a Network Model for the Integration of a Dynamic and Static Supervisory Control and Data Acquisition (SCADA) Test Environment

    DTIC Science & Technology

    2011-03-01

    they can continue to leverage these capabilities (building Smart Grid infrastructure and providing Internet connectivity to every home ) while ensuring...21  Figure 9. Smart Grid Interoperability .............................................................................. 22  Figure 10. Smart ...Grid Integration .................................................................................... 24  Figure 11. National Smart Grid Initiatives

  18. A comparative technoeconomic analysis of renewable hydrogen production using solar energy

    DOE PAGES

    Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.; ...

    2016-05-26

    A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H 2 day -1 (3.65 kilotons per year) was performed to assess the economics of each technology, and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems, differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems, differentiated by the degree of grid connectivity (unconnected and grid supplemented), were analyzed. In each case, a base-case system that used established designs and materials was compared to prospective systems thatmore » might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8%, the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H 2 per year were 205 dollars MM (293 dollars per m 2 of solar collection area (m S -2 ), 14.7 W H2,P -1) and 260 dollars MM ($371 m S -2, 18.8 dollars W H2,P -1 ), respectively. The untaxed, plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg -1 and 12.1 dollars kg -1 for the base-case PEC and PV-E systems, respectively. The 10× concentrated PEC base-case system capital cost was 160 dollars MM (428 dollars m S -2, 11.5 dollars W H2,P -1) and for an efficiency of 20% the LCH was 9.2 kg -1 . Likewise, the grid supplemented base-case PV-E system capital cost was 66 dollars MM (441 dollars m S -2, 11.5 dollars W H2,P -1 ), and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61%, respectively, the LCH was 6.1 dollars kg -1 . As a benchmark, a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh -1 , the LCH was $5.5 kg -1 . A sensitivity analysis indicated that, relative to the base-case, increases in the system efficiency could effect the greatest cost reductions for all systems, due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically, a cost of CO 2 greater than ~$800 dollars (ton CO 2 ) -1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ -1 ($1.39 (kg H 2 ) -1). A comparison with low CO 2 and CO 2 -neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO 2 -neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO 2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen, but many, as yet unmet, challenges include catalytic efficiency and selectivity, and CO 2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production, but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO 2 reduction are even greater.« less

  19. A comparative technoeconomic analysis of renewable hydrogen production using solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.

    A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H 2 day -1 (3.65 kilotons per year) was performed to assess the economics of each technology, and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems, differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems, differentiated by the degree of grid connectivity (unconnected and grid supplemented), were analyzed. In each case, a base-case system that used established designs and materials was compared to prospective systems thatmore » might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8%, the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H 2 per year were 205 dollars MM (293 dollars per m 2 of solar collection area (m S -2 ), 14.7 W H2,P -1) and 260 dollars MM ($371 m S -2, 18.8 dollars W H2,P -1 ), respectively. The untaxed, plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg -1 and 12.1 dollars kg -1 for the base-case PEC and PV-E systems, respectively. The 10× concentrated PEC base-case system capital cost was 160 dollars MM (428 dollars m S -2, 11.5 dollars W H2,P -1) and for an efficiency of 20% the LCH was 9.2 kg -1 . Likewise, the grid supplemented base-case PV-E system capital cost was 66 dollars MM (441 dollars m S -2, 11.5 dollars W H2,P -1 ), and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61%, respectively, the LCH was 6.1 dollars kg -1 . As a benchmark, a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh -1 , the LCH was $5.5 kg -1 . A sensitivity analysis indicated that, relative to the base-case, increases in the system efficiency could effect the greatest cost reductions for all systems, due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically, a cost of CO 2 greater than ~$800 dollars (ton CO 2 ) -1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ -1 ($1.39 (kg H 2 ) -1). A comparison with low CO 2 and CO 2 -neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO 2 -neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO 2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen, but many, as yet unmet, challenges include catalytic efficiency and selectivity, and CO 2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production, but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO 2 reduction are even greater.« less

  20. Comparison of two U.S. power-plant carbon dioxide emissions data sets

    USGS Publications Warehouse

    Ackerman, K.V.; Sundquist, E.T.

    2008-01-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  1. Evaluation of Partial Transection versus Synovial Debridement of the ACL as Novel Canine Models for Management of ACL Injuries.

    PubMed

    Bozynski, Chantelle C; Kuroki, Keiichi; Stannard, James P; Smith, Patrick A; Stoker, Aaron M; Cook, Cristi R; Cook, James L

    2015-10-01

    A major hurdle in investigating important clinical questions in knee ligament treatment is a lack of valid translational animal models. This study characterizes the effects of partial transection versus synovial debridement of the anterior (cranial) cruciate ligament (ACL) in dogs. A total of 27 adult purpose-bred research hounds underwent surgery and were assessed over the following 8 weeks. Dogs were randomized into the following three ACL status groups: sham control (n = 9), intact ACL with synovial debridement (exposed ACL) (n = 9), and partial transection of the ACL (partial tear ACL) (n = 9). Dogs in the exposed ACL group and partial tear ACL group had significantly (p < 0.05) more severe lameness, pain, effusion, reduced function, and reduced comfortable range of motion compared with controls, with the partial tear ACL group being most severely affected. More severe ACL and whole-joint pathology, and radiographic scores for osteoarthritis were present in the partial tear ACL group compared with exposed and/or sham control group. On the basis of these findings, biologic components of ACL injury (exposed ACL) played a role in whole-joint inflammation, but the clinical and pathological effects were more severe when both biologic and biomechanical components were present (i.e., partial tear ACL). These novel canine models were successfully developed to evaluate partial transection versus synovial debridement of the ACL and these models will be used to evaluate treatment options for acute management of ACL injuries. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Interim Letter Report - Verification Survey of 19 Grids in the Lester Flat Area, David Witherspoon Inc. 1630 Site Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.C. Weaver

    2008-10-17

    Perform verification surveys of 19 available grids located in the Lester Flat Area at the Davod Witherspoon Site. The survey grids included E11, E12, E13, F11, F12, F13, F14, F15, G15, G16, G17, H16, H17, H18, X16, X17, X18, K16, and J16.

  3. Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals

    NASA Astrophysics Data System (ADS)

    Raadik, Taavi; Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M.; Ernits, K.; Bleuse, J.

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu2ZnSnS4 (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be ET (PO) =65±9 meV for partially ordered and ET (PD) =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers' recombination dynamics at low temperature.

  4. SU-C-209-03: Anti-Scatter Grid-Line Artifact Minimization for Removing the Grid Lines for Three Different Grids Used with a High Resolution CMOS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, R; Bednarek, D; Rudin, S

    Purpose: Demonstrate the effectiveness of an anti-scatter grid artifact minimization method by removing the grid-line artifacts for three different grids when used with a high resolution CMOS detector. Method: Three different stationary x-ray grids were used with a high resolution CMOS x-ray detector (Dexela 1207, 75 µm pixels, sensitivity area 11.5cm × 6.5cm) to image a simulated artery block phantom (Nuclear Associates, Stenosis/Aneurysm Artery Block 76–705) combined with a frontal head phantom used as the scattering source. The x-ray parameters were 98kVp, 200mA, and 16ms for all grids. With all the three grids, two images were acquired: the first formore » a scatter-less flat field including the grid and the second of the object with the grid which may still have some scatter transmission. Because scatter has a low spatial frequency distribution, it was represented by an estimated constant value as an initial approximation and subtracted from the image of the object with grid before dividing by an average frame of the grid flat-field with no scatter. The constant value was iteratively changed to minimize residual grid-line artifact. This artifact minimization process was used for all the three grids. Results: Anti-scatter grid lines artifacts were successfully eliminated in all the three final images taken with the three different grids. The image contrast and CNR were also compared before and after the correction, and also compared with those from the image of the object when no grid was used. The corrected images showed an increase in CNR of approximately 28%, 33% and 25% for the three grids, as compared to the images when no grid at all was used. Conclusion: Anti-scatter grid-artifact minimization works effectively irrespective of the specifications of the grid when it is used with a high spatial resolution detector. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  5. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2018-06-07

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  6. Some effects of horizontal discretization on linear baroclinic and symmetric instabilities

    NASA Astrophysics Data System (ADS)

    Barham, William; Bachman, Scott; Grooms, Ian

    2018-05-01

    The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.

  7. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  8. Improvements in sub-grid, microphysics averages using quadrature based approaches

    NASA Astrophysics Data System (ADS)

    Chowdhary, K.; Debusschere, B.; Larson, V. E.

    2013-12-01

    Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.

  9. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  10. User's guide to PMESH: A grid-generation program for single-rotation and counterrotation advanced turboprops

    NASA Technical Reports Server (NTRS)

    Warsi, Saif A.

    1989-01-01

    A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.

  11. Automated airplane surface generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitablemore » for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.« less

  12. Grid adaption for hypersonic flow

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.; Smith, Robert E.

    1987-01-01

    The methods of grid adaption are reviewed and a method is developed with the capability of adaption to several flow variables. This method is based on a variational approach and is an algebraic method which does not require the solution of partial differential equations. Also the method has been formulated in such a way that there is no need for any matrix inversion. The method is used in conjunction with the calculation of hypersonic flow over a blunt nose body. The equations of motion are the compressible Navier-Stokes equations where all viscous terms are retained. They are solved by the MacCormack time-splitting method. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.

  13. 15 MW HArdware-in-the-loop Grid Simulation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigas, Nikolaos; Fox, John Curtiss; Collins, Randy

    2014-10-31

    The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at themore » Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA hardware that allows for communication between the key real-time interfaces and reduces the latency between these interfaces to acceptable levels for HIL experiments.« less

  14. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  15. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  16. Development of a Flexible Framework for Hypersonic Navier-Stoke Space Shuttle Orbiter Meshes

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.

    2004-01-01

    A flexible framework constructing block structured volume grids for hypersonic Navier-Strokes flow simulations was developed for the analysis of the Shuttle Orbiter Columbia. The development of the framework, which was partially basedon the requirements of the primary flow solvers used resulted in an ability to directly correlate solutions contributed by participating groups on a common surface mesh. A foundation was built through the assessment of differences between differnt solvers, which provided confidence for independent assessment of other damage scenarios by team members. The framework draws on the experience of NASA Langley and NASA Ames Research Centers in structured grid generation, and consists of a grid generation, and consist of a grid generation process implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (ACAI) team, Ames developing the surface grids that described the computational volume about the Orbiter, and Langley improving grid quality of Ames generated data and constructing the final computational volume grids. Distributing the work among the participant in th ACAI team resulted in significantl less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand of for five new meshes to explore new damage scenarios within an aggressive time-line.

  17. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  18. Further Improvement in 3DGRAPE

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2004-01-01

    3DGRAPE/AL:V2 denotes version 2 of the Three-Dimensional Grids About Anything by Poisson's Equation with Upgrades from Ames and Langley computer program. The preceding version, 3DGRAPE/AL, was described in Improved 3DGRAPE (ARC-14069) NASA Tech Briefs, Vol. 21, No. 5 (May 1997), page 66. These programs are so named because they generate volume grids by iteratively solving Poisson's Equation in three dimensions. The grids generated by the various versions of 3DGRAPE have been used in computational fluid dynamics (CFD). The main novel feature of 3DGRAPE/AL:V2 is the incorporation of an optional scheme in which anisotropic Lagrange-based trans-finite interpolation (ALBTFI) is coupled with exponential decay functions to compute and blend interior source terms. In the input to 3DGRAPE/AL:V2 the user can specify whether or not to invoke ALBTFI in combination with exponential-decay controls, angles, and cell size for controlling the character of grid lines. Of the known programs that solve elliptic partial differential equations for generating grids, 3DGRAPE/AL:V2 is the only code that offers a combination of speed and versatility with most options for controlling the densities and other characteristics of grids for CFD.

  19. PDEs on moving surfaces via the closest point method and a modified grid based particle method

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ruuth, S. J.

    2016-05-01

    Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.

  20. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  1. Use of hyperbolic partial differential equations to generate body fitted coordinates

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Sorenson, R. L.

    1980-01-01

    The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.

  2. iss032e025592

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025592 (9 Sept. 2012) --- Partially obstructed by the HTV-3 (H-II Transfer Vehicle) of the Japan Aerospace Exploration Agency (JAXA), Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the Cupola of the International Space Station. At the time of the photo Leslie was centered near 33.4 degrees north latitude and 62.1degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14

  3. iss032e025610

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025610 (9 Sept. 2012) --- Partially obstructed by two Russian spacecraft in the foreground, Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the International Space Station. At the time of the photo, Leslie was centered near 33.4 degrees north latitude and 62.1 degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14 miles per hour with winds of 60 miles per hour.

  4. Using Taxonomic Indexing Trees to Efficiently Retrieve SCORM-Compliant Documents in e-Learning Grids

    ERIC Educational Resources Information Center

    Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung

    2008-01-01

    With the flourishing development of e-Learning, more and more SCORM-compliant teaching materials are developed by institutes and individuals in different sites. In addition, the e-Learning grid is emerging as an infrastructure to enhance traditional e-Learning systems. Therefore, information retrieval schemes supporting SCORM-compliant documents…

  5. Software for C1 interpolation

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1977-01-01

    The problem of mathematically defining a smooth surface, passing through a finite set of given points is studied. Literature relating to the problem is briefly reviewed. An algorithm is described that first constructs a triangular grid in the (x,y) domain, and first partial derivatives at the modal points are estimated. Interpolation in the triangular cells using a method that gives C sup.1 continuity overall is examined. Performance of software implementing the algorithm is discussed. Theoretical results are presented that provide valuable guidance in the development of algorithms for constructing triangular grids.

  6. Finding the proper methodology for geodiversity assessment: a recent approach in Brazil and Portugal

    NASA Astrophysics Data System (ADS)

    Pereira, D.; Santos, L.; Silva, J.; Pereira, P.; Brilha, J.; França, J.; Rodrigues, C.

    2012-04-01

    Quantification of geodiversity is a quite new topic. A first set of assessment methodologies was developed during the last years, although with no fully satisfactory results. This is mainly because the whole concept of geodiversity does not tend to be considered, but also because the results are difficult to apply practically. Several major key-points remain unsolved, including the criteria to be used, the scale-factor to be dealt with, the influence of the size of the area under analysis in the type of criteria and indicators, and the graphic presentation of the results. A methodology for the quantitative assessment of geodiversity was defined and tested at various scales. It was applied to the Xingu River Basin, Amazon, Brazil (about 510,000 km2), Paraná state, Brazil (about 200,000 km2), and Portugal mainland (about 89,000 km2). This method is intended to assess all geodiversity components and to avoid overrating any particular component, such as lithology or relief, a common weakness of other methods. The method is based on the overlay of a grid over different maps at scales that range according to the areas under analysis, with the final Geodiversity Index being the sum of five partial indexes calculated on the grid. The partial indexes represent the main components of geodiversity, namely geology (stratigraphy and lithology), geomorphology, palaeontology and soils. Another partial index covers singular occurrences of geodiversity, such precious stones and metals, energy and industrial minerals, mineral waters and springs. Partial indexes were calculated using GIS software by counting all the occurrences present in the selected maps for each grid square. The Geodiversity Index can take the form of a GIS automatically generated isoline map, allowing an easy interpretation by those without or with little geological background. The map can be used as a tool in land-use planning, particularly in identifying priority areas for conservation, management and use of natural resources.

  7. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  9. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  10. Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.

    2008-08-01

    We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.

  11. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  12. The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging.

    PubMed

    Tal, Assaf; Kirov, Ivan I; Grossman, Robert I; Gonen, Oded

    2012-12-01

    Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance. Copyright © 2012 John Wiley & Sons, Ltd.

  13. HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time

    DTIC Science & Technology

    1976-04-01

    ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for

  14. Wiki-Based Rapid Prototyping for Teaching-Material Design in E-Learning Grids

    ERIC Educational Resources Information Center

    Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung

    2008-01-01

    Grid computing environments with abundant resources can support innovative e-Learning applications, and are promising platforms for e-Learning. To support individualized and adaptive learning, teachers are encouraged to develop various teaching materials according to different requirements. However, traditional methodologies for designing teaching…

  15. Comparative outcomes and assessment of trifecta in 500 robotic and laparoscopic partial nephrectomy cases: a single surgeon experience.

    PubMed

    Khalifeh, Ali; Autorino, Riccardo; Hillyer, Shahab P; Laydner, Humberto; Eyraud, Remi; Panumatrassamee, Kamol; Long, Jean-Alexandre; Kaouk, Jihad H

    2013-04-01

    We report a comparative analysis of a large series of laparoscopic and robotic partial nephrectomies performed by a high volume single surgeon at a tertiary care institution. We retrospectively reviewed the medical charts of 500 patients treated with minimally invasive partial nephrectomy by a single surgeon between March 2002 and February 2012. Demographic and perioperative data were collected and statistically analyzed. R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to the collecting system or sinus in mm, anterior/posterior and location relative to polar lines) nephrometry score was used to score tumors. Those scored as moderate and high complexity were designated as complex. Trifecta was defined as a combination of warm ischemia time less than 25 minutes, negative surgical margins and no perioperative complications. Two groups were identified, including 261 patients with robotic and 231 with laparoscopic partial nephrectomy. Demographics were similar in the groups. The robotic group was significantly more morbid (Charlson comorbidity index 3.75 vs 1.26), included more complex tumors (R.E.N.A.L. score 5.98 vs 7.2), and had lower operative (169.9 vs 191.7 minutes) and warm ischemia (17.9 vs 25.2 minutes) time, intraoperative (2.6% vs 5.6%, each p <0.001) and postoperative (24.53% vs 32.03%, p = 0.004) complications, and positive margin rate (2.9% vs 5.6%, p <0.001). Thus, a higher overall trifecta rate was observed for robotic partial nephrectomy (58.7% vs 31.6%, p <0.001). The laparoscopic group had longer followup (3.43 vs 1.51 years, p <0.001) and no significant difference in postoperative changes in renal function. Main study limitations were the retrospective nature, arbitrary definition of trifecta and shorter followup in the RPN group. Our large comparative analysis shows that robotic partial nephrectomy offers a wider range of indications, better operative outcomes and lower perioperative morbidity than laparoscopic partial nephrectomy. Overall, the quest for trifecta seems to be better accomplished by robotic partial nephrectomy, which is likely to become the new standard for minimally invasive partial nephrectomy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories

    NASA Astrophysics Data System (ADS)

    van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.

    2018-04-01

    Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.

  17. SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE

    NASA Technical Reports Server (NTRS)

    Davies, C. B.

    1994-01-01

    SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.

  18. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less

  19. ICT-infrastructures for hydrometeorology science and natural disaster societal impact assessment: the DRIHMS project

    NASA Astrophysics Data System (ADS)

    Parodi, A.; Craig, G. C.; Clematis, A.; Kranzlmueller, D.; Schiffers, M.; Morando, M.; Rebora, N.; Trasforini, E.; D'Agostino, D.; Keil, K.

    2010-09-01

    Hydrometeorological science has made strong progress over the last decade at the European and worldwide level: new modeling tools, post processing methodologies and observational data and corresponding ICT (Information and Communication Technology) technologies are available. Recent European efforts in developing a platform for e-Science, such as EGEE (Enabling Grids for E-sciencE), SEEGRID-SCI (South East Europe GRID e-Infrastructure for regional e-Science), and the German C3-Grid, have demonstrated their abilities to provide an ideal basis for the sharing of complex hydrometeorological data sets and tools. Despite these early initiatives, however, the awareness of the potential of the Grid technology as a catalyst for future hydrometeorological research is still low and both the adoption and the exploitation have astonishingly been slow, not only within individual EC member states, but also on a European scale. With this background in mind and the fact that European ICT-infrastructures are in the progress of transferring to a sustainable and permanent service utility as underlined by the European Grid Initiative (EGI) and the Partnership for Advanced Computing in Europe (PRACE), the Distributed Research Infrastructure for Hydro-Meteorology Study (DRIHMS, co-Founded by the EC under the 7th Framework Programme) project has been initiated. The goal of DRIHMS is the promotion of the Grids in particular and e-Infrastructures in general within the European hydrometeorological research (HMR) community through the diffusion of a Grid platform for e-collaboration in this earth science sector: the idea is to further boost European research excellence and competitiveness in the fields of hydrometeorological research and Grid research by bridging the gaps between these two scientific communities. Furthermore the project is intended to transfer the results to areas beyond the strict hydrometeorology science as a support for the assessment of the effects of extreme hydrometeorological events on society and for the development of the tools improving the adaptation and resilience of society to the challenges of climate change. This paper will be devoted to provide an overview of DRIHMS ideas and to present the results of the DRIHMS HMR and ICT surveys.

  20. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.

  1. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  2. Grid adaption for bluff bodies

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.

    1986-01-01

    Methods of grid adaptation are reviewed and a method is developed with the capability of adaptation to several flow variables. This method is based on a variational approach and is an algebraic method which does not require the solution of partial differential equations. Also the method was formulated in such a way that there is no need for any matrix inversion. The method is used in conjunction with the calculation of hypersonic flow over a blunt nose. The equations of motion are the compressible Navier-Stokes equations where all viscous terms are retained. They are solved by the MacCormack time-splitting method and a movie was produced which shows simulataneously the transient behavior of the solution and the grid adaptation. The results are compared with the experimental and other numerical results.

  3. A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Plavcová, Eva

    2010-12-01

    The study compares daily maximum (Tmax) and minimum (Tmin) temperatures in two data sets interpolated from irregularly spaced meteorological stations to a regular grid: the European gridded data set (E-OBS), produced from a relatively sparse network of stations available in the European Climate Assessment and Dataset (ECA&D) project, and a data set gridded onto the same grid from a high-density network of stations in the Czech Republic (GriSt). We show that large differences exist between the two gridded data sets, particularly for Tmin. The errors tend to be larger in tails of the distributions. In winter, temperatures below the 10% quantile of Tmin, which is still far from the very tail of the distribution, are too warm by almost 2°C in E-OBS on average. A large bias is found also for the diurnal temperature range. Comparison with simple average series from stations in two regions reveals that differences between GriSt and the station averages are minor relative to differences between E-OBS and either of the two data sets. The large deviations between the two gridded data sets affect conclusions concerning validation of temperature characteristics in regional climate model (RCM) simulations. The bias of the E-OBS data set and limitations with respect to its applicability for evaluating RCMs stem primarily from (1) insufficient density of information from station observations used for the interpolation, including the fact that the stations available may not be representative for a wider area, and (2) inconsistency between the radii of the areal average values in high-resolution RCMs and E-OBS. Further increases in the amount and quality of station data available within ECA&D and used in the E-OBS data set are essentially needed for more reliable validation of climate models against recent climate on a continental scale.

  4. Recommended aquifer grid resolution for E-Area PA revision transport simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.

    This memorandum addresses portions of Section 3.5.2 of SRNL (2016) by recommending horizontal and vertical grid resolution for aquifer transport, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.

  5. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Pleva, Ed; Ha, Tam T

    2012-06-12

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less

  6. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    NASA Astrophysics Data System (ADS)

    Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.

    2012-06-01

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.

  7. Computational Methods for Complex Flowfields

    DTIC Science & Technology

    1989-07-05

    This treatment is easily every ohrgi ie(i.9.Telclyfns el a extedd fo a-D knds pinerfces. Ths reuatemen rost e belong to either an unembedded or an...leading edge region is embedded in both directions. The downstream region between the two shear layers remains unembedded . Comparison of the grid and...A2 are unembedded coarse cells with vertical dimensions twice those of cells As, A4. It is clear that an evaluation for example, of the viscous

  8. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  9. Smart grid integration of small-scale trigeneration systems

    NASA Astrophysics Data System (ADS)

    Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay

    2017-12-01

    This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.

  10. The Managerial Grid; Key Orientations for Achieving Production through People.

    ERIC Educational Resources Information Center

    Blake, Robert R; Mouton, Jane S.

    The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…

  11. Unit Planning Grids for Visual Arts--Grade 9-12 Advanced.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover.

    This planning grid for teaching visual arts (advanced) in grades 9-12 in Delaware outlines the following six standards for students to complete: (1) students will select and use form, media, techniques, and processes to create works of art and communicate meaning; (2) students will create ways to use visual, spatial, and temporal concepts in…

  12. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

    NASA Astrophysics Data System (ADS)

    Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo

    2004-03-01

    A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.

  13. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  14. Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.

  15. SU-E-J-81: Beveled Needle Tip Detection Error in Ultrasound-Guided Prostate Brachytherapy.

    PubMed

    Leu, S; Ruiz, B; Podder, T

    2012-06-01

    To quantify the needle tip detection errors in ultrasound images due to bevel-tip orientation in relation to the location on template grid. Transrectal ultrasound (TRUS) system (BK Medical) with physical template grid and 18-gauge bevel-tip (20-deg beveled angle) brachytherapy needle (Bard Medical, Covington, GA) were used. The TRUS was set at 6.5MHz in water phantom at 40°C and measurements were taken with 50% and 100% TRUS gains. Needles were oriented with bevel-tip facing up (0-degree) and inserted through template grid-holes. Reference needle depths were measured when needle tip image intensity was bright enough for potentially consistent readings. High-resolution digital vernier caliper was used to measure needle depth. Needle bevel-tip orientation was then changed to bevel down (by rotating 180-degree) and needle depth was adjusted by retracting so that the needle-tip image intensity appeared similar to when the needle bevel-tip was at 0-degree orientation. Clinically relevant locations were considered for needle placement on the template grids (1st row to 9th row, and 'a-f' columns). For 50% TRUS gain, bevel tip detection errors/differences were 0.69±0.30mm (1st row) to 3.23±0.22mm (9th row) and 0.78±0.71mm (1st row) to 4.14±0.56mm (9th row) in columns 'a' and 'D', respectively. The corresponding errors for 100% TRUS gain were 0.57±0.25mm to 5.24±0.36mm and 0.84±0.30mm to 4.2±0.20mm in columns 'a' and 'D', respectively. These errors/differences varied linearly for grid-hole locations on the rows and columns in between, smaller to large depending on distance from the TRUS probe. Observed no effect of gains (50% vs. 100%) along 'D' column, which was directly above the TRUS probe. Experiment results revealed that the beveled needle tip orientation could significantly impact the detection accuracy of the needle tips, based on which the seeds might be delivered. These errors may lead to considerable dosimetric deviations in prostate brachytherapy seed implantation. © 2012 American Association of Physicists in Medicine.

  16. Unit Planning Grids for Music: Grade 9-12 Advanced.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover.

    This unit planning grid outlines the expectations of Delaware high school students for advanced music studies. The grid identifies nine standards for music: (1) students will sing, independently and with others, a varied repertoire of music; (2) students will perform on instruments, independently and with others, a varied repertoire of music; (3)…

  17. Unit Planning Grids for Music: Grade 9-12 Basic.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover.

    This unit planning grid outlines the expectations of Delaware high school students for basic music studies. The grid identifies nine standards for music: (1) students will sing, independently and with others, a varied repertoire of music; (2) students will perform on instruments, independently and with others, a varied repertoire of music; (3)…

  18. Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation

    DTIC Science & Technology

    2010-09-01

    adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvagnini, Elena; Bosmans, Hilde; Marshall, Nicholas W.

    Purpose: The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d′) calculated using a standard nonprewhitened observer with eye filter.Methods: The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: amore » geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d′ were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d′ using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra.Results: The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm{sup −1} ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm{sup −1} varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d′ based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA, the FOMs indicated Mo/Mo (grid out) as optimal while W/Rh (grid in) was the optimal configuration at 40, 60, and 70 mm PMMA. For the Hologic, the FOMs pointed to W/Rh (grid in) at 20 and 40 mm of PMMA while W/Ag (grid in) gave the highest FOM at 60 and 70 mm PMMA. Finally, DQE at 1 mm{sup −1} averaged for the four beam qualities studied was 0.44 ± 0.02 and 0.55 ± 0.03 for the Siemens and Hologic detectors, respectively, indicating only a small influence of energy on detector DQE.Conclusions: Both the DQE and eDQE data showed only a small sensitivity to T/F setting for these two systems. The eDQE showed clear preferences in terms of scatter reduction, being highest for the grid-in geometry for PMMA thicknesses of 40 mm and above. The SdNR and d′ based figures of merit, which contain additional weighting for contrast and dose, pointed to specific T/F settings for both systems.« less

  20. SLGRID: spectral synthesis software in the grid

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Sánchez, S.; Verdes-Montenegro, L.

    2011-11-01

    SLGRID (http://www.e-ciencia.es/wiki/index.php/Slgrid) is a pilot project proposed by the e-Science Initiative of Andalusia (eCA) and supported by the Spanish e-Science Network in the frame of the European Grid Initiative (EGI). The aim of the project was to adapt the spectral synthesis software Starlight (Cid-Fernandes et al. 2005) to the Grid infrastructure. Starlight is used to estimate the underlying stellar populations (their ages and metallicities) using an optical spectrum, hence, it is possible to obtain a clean nebular spectrum that can be used for the diagnostic of the presence of an Active Galactic Nucleus (Sabater et al. 2008, 2009). The typical serial execution of the code for big samples of galaxies made it ideal to be integrated into the Grid. We obtain an improvement on the computational time of order N, being N the number of nodes available in the Grid. In a real case we obtained our results in 3 hours with SLGRID instead of the 60 days spent using Starlight in a PC. The code has already been ported to the Grid. The first tests were made within the e-CA infrastrusture and, later, itwas tested and improved with the colaboration of the CETA-CIEMAT. The SLGRID project has been recently renewed. In a future it is planned to adapt the code for the reduction of data from Integral Field Units where each dataset is composed of hundreds of spectra. Electronic version of the poster at http://www.iaa.es/~jsm/SEA2010

  1. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. iss032e025597

    NASA Image and Video Library

    2012-09-09

    ISS032-E-025597 (9 Sept. 2012) --- Partially obstructed by the HTV-3 (H-II Transfer Vehicle) of the Japan Aerospace Exploration Agency (JAXA), Tropical Storm Leslie is clearly seen in the Atlantic Ocean on Sept. 9, 2012, as photographed by one of the Expedition 32 crew members aboard the Cupola of the International Space Station. At the time of the photo Leslie was centered near 33.4 degrees north latitude and 62.1degrees west longitude (approximately 175 miles east-northeast of Bermuda) moving northward at 14 miles per hour with winds of 60 miles per hour.

  3. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    PubMed

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

  4. Numerical grid generation techniques. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art in topology and flow geometry is presented. Solution techniques for partial differential equations are reviewed and included developments in coordinate transformations, conformal mapping, and invariant imbeddings. Applications of these techniques in fluid mechanics, flow geometry, boundary value problems, and fluidics are presented.

  5. ICT-based hydrometeorology science and natural disaster societal impact assessment

    NASA Astrophysics Data System (ADS)

    Parodi, A.; Clematis, A.; Craig, G. C.; Kranzmueller, D.

    2009-09-01

    In the Lisbon strategy, the 2005 European Council identified knowledge and innovation as the engines of sustainable growth and stated that it is essential to build a fully inclusive information society. In parallel, the World Conference on Disaster Reduction (Hyogo, 2005), defined among its thematic priorities the improvement of international cooperation in hydrometeorology research activities. This was recently confirmed at the joint press conference of the Center for Research on Epidemiology of Disasters (CRED) with the United Nations International Strategy for Disaster Reduction (UNISDR) Secretariat, held on January 2009, where it was noted that flood and storm events are among the natural disasters that most impact human life. Hydrometeorological science has made strong progress over the last decade at the European and worldwide level: new modelling tools, post processing methodologies and observational data are available. Recent European efforts in developing a platform for e-science, like EGEE (Enabling Grids for E-sciencE), SEE-GRID-SCI (South East Europe GRID e-Infrastructure for regional e-Science), and the German C3-Grid, provide an ideal basis for the sharing of complex hydrometeorological data sets and tools. Despite these early initiatives, however, the awareness of the potential of the Grid technology as a catalyst for future hydrometeorological research is still low and both the adoption and the exploitation have astonishingly been slow, not only within individual EC member states, but also on a European scale. With this background in mind, the goal of the Distributed Research Infrastructure for Hydro-Meteorology Study (DRIHMS) project is the promotion of the Grid culture within the European hydrometeorological research community through the diffusion of a Grid platform for e-collaboration in this earth science sector: the idea is to further boost European research excellence and competitiveness in the fields of hydrometeorological research and Grid research by bridging the gaps between these two scientific communities. Furthermore the project is intended to transfer the results to areas beyond the strict hydrometeorology science as a support for the assessment of the effects of extreme hydrometeorological events on society and for the development of the tools improving the adaptation and resilience of society to the challenges of climate change.

  6. A Semantic Grid Oriented to E-Tourism

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Ming

    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

  7. Synergy Between Archives, VO, and the Grid at ESAC

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Alvarez, R.; Gabriel, C.; Osuna, P.; Ott, S.

    2011-07-01

    Over the years, in support to the Science Operations Centers at ESAC, we have set up two Grid infrastructures. These have been built: 1) to facilitate daily research for scientists at ESAC, 2) to provide high computing capabilities for project data processing pipelines (e.g., Herschel), 3) to support science operations activities (e.g., calibration monitoring). Furthermore, closer collaboration between the science archives, the Virtual Observatory (VO) and data processing activities has led to an other Grid use case: the Remote Interface to XMM-Newton SAS Analysis (RISA). This web service-based system allows users to launch SAS tasks transparently to the GRID, save results on http-based storage and visualize them through VO tools. This paper presents real and operational use cases of Grid usages in these contexts

  8. Towards Dynamic Service Level Agreement Negotiation:An Approach Based on WS-Agreement

    NASA Astrophysics Data System (ADS)

    Pichot, Antoine; Wäldrich, Oliver; Ziegler, Wolfgang; Wieder, Philipp

    In Grid, e-Science and e-Business environments, Service Level Agreements are often used to establish frameworks for the delivery of services between service providers and the organisations hosting the researchers. While this high level SLAs define the overall quality of the services, it is desirable for the end-user to have dedicated service quality also for individual services like the orchestration of resources necessary for composed services. Grid level scheduling services typically are responsible for the orchestration and co-ordination of resources in the Grid. Co-allocation e.g. requires the Grid level scheduler to co-ordinate resource management systems located in different domains. As the site autonomy has to be respected negotiation is the only way to achieve the intended co-ordination. SLAs emerged as a new way to negotiate and manage usage of resources in the Grid and are already adopted by a number of management systems. Therefore, it is natural to look for ways to adopt SLAs for Grid level scheduling. In order to do this, efficient and flexible protocols are needed, which support dynamic negotiation and creation of SLAs. In this paper we propose and discuss extensions to the WS-Agreement protocol addressing these issues.

  9. Atmospheric Science using CRISM EPF Sequences

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Arvidson, R.; Smith, M. D.; Murchie, S. L.; McGuire, P. C.

    2006-12-01

    Near the end of September 2006, the MRO/CRISM (Compact Reconnaissance Imaging Spectrometer for Mars; Murchie et al., 2006, JGR, in press.) will acquire its first observations of Mars. MRO's Primary Science Phase beginning in early November. One of CRISM's investigations is characterization of seasonal variations in dust and ice aerosols and trace gases using a systematic, global grid of hyperspectral measurements of emission phase functions (EPFs) acquired repetitively throughout the Martian year. EPFs will also be obtained as part of each of approximately 5000 "targeted" observations of surface geologic features. EPF measurements allow accurate determination of column abundances of water vapor, CO, dust and ice aerosols, and their seasonal variations (e.g., Clancy et al., 2003, 108(E9), 5098). EPFs are measured using eleven superimposed images within which the slit field-of-view is swept across a target point on the Martian surface. When EPFs are taken as part of a global grid, 10x spatial pixel binning will be used in all of the images, providing data at 150-200 m/pixel. In the targeted observations, the central image will be obtained at either full resolution or with 2x binning (15-38 m/pixel). In all cases, hyperspectral data (545 wavelengths) will be taken during each of the 11 superimposed scans. There are two types of global EPF grids, one with better temporal sampling and one with better spatial sampling of the atmosphere. The "atmospheric monitoring campaign" consists one Martian day of pole-to-pole EPF's every ~9°\\ of solar longitude (Ls). There is sufficient time for 8 EPFs in an orbit, one approximately every 22°\\ of latitude. Alternate orbits (projected onto the planet) are offset in latitude by about 11°\\ north or south to increase latitudinal resolution. Longitude spacing between the orbits is about 27°. The "seasonal change campaign" occurs approximately every ~36°\\ of Ls. A grid similar to that executed during the atmospheric monitoring campaign is taken on 3 non-contiguous days over about 2 weeks, to provide a higher spatial density grid (longitude spacing about 10°) to monitor seasonal changes in surface material spectral properties, especially absorption and desorption of H2O. Every 3 orbits projected on the planet, the EPFs are offset by 0°, +8°, and -8°\\ north or south to increase latitudinal resolution. Our presentation will discuss several aspects of the atmospheric analyses (optical depths, radiative properties, radiative transfer methodology) to be performed using the early-mission EPFs, with the primary focus being those EPFs planned for the end of September.

  10. An infrastructure for the integration of geoscience instruments and sensors on the Grid

    NASA Astrophysics Data System (ADS)

    Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.

    2009-04-01

    The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV). In this paper i) we define the need for integration of instrumentation in the Grid, ii) we introduce the solution of the Instrument Element, iii) we demonstrate a suitable end-user web portal for accessing Grid resources, iv) we describe from the Grid-technological point of view the process of the integration to the Grid of two advanced environmental monitoring devices. References [1] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, "Experiences with GRIA—Industrial Applications on a Web Services Grid," e-Science and Grid Computing, First International Conference on e-Science and Grid Computing, 2005, pp. 98-105. [2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets," Journal of Network and Computer Applications, vol. 23, 2000, pp. 187-200. [3] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data management and transfer in high-performance computational grid environments," Parallel Computing, vol. 28, 2002, pp. 749-771. [4] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: A New Grid component that Enables the Control of Remote Instrumentation," Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, IEEE Computer Society Washington, DC, USA, 2006. [5] R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano, F. Asnicar, and M. Prica, "A Web-based Tool for Collaborative Access to Scientific Instruments in Cyberinfrastructures." 1 The DORII project is supported by the European Commission within the 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-213110. URL: http://www.dorii.eu 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. URL: http://www.ogs.trieste.it

  11. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.

    PubMed

    Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos

    2013-09-01

    To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  12. Study of the semileptonic charm decays D0→π-e+νe, D+→π0e+νe, D0→K-e+νe, and D+→ Kmacr 0e+νe

    NASA Astrophysics Data System (ADS)

    Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Severini, H.; Dytman, S. A.; Love, W.; Savinov, V.; Aquines, O.; Li, Z.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Coan, T. E.; Gao, Y. S.; Liu, F.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Redjimi, R.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Csorna, S. E.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Briere, R. A.; Brock, I.; Chen, J.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ecklund, K. M.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Weinberger, M.; Athar, S. B.; Patel, R.; Potlia, V.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Sedlack, C.; Selen, M.; White, E. J.; Wiss, J.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Gong, D. T.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.

    2008-06-01

    Using a sample of 1.8 million D Dmacr mesons collected at the ψ(3770) with the CLEO-c detector, we study the semileptonic decays D0→π-e+νe, D+→π0e+νe, D0→K-e+νe, and D+→ Kmacr 0e+νe. For the total branching fractions we find B(D0→π-e+νe)=0.299(11)(9)%, B(D+→π0e+νe)=0.373(22)(13)%, B(D0→K-e+νe)=3.56(3)(9)%, and B(D+→ Kmacr 0e+νe)=8.53(13)(23)%, where the first error is statistical and the second systematic. In addition, form factors are studied through fits to the partial branching fractions obtained in five q2 ranges. By combining our results with recent unquenched lattice calculations, we obtain |Vcd|=0.217(9)(4)(23) and |Vcs|=1.015(10)(11)(106), where the final error is theoretical.

  13. Using adaptive grid in modeling rocket nozzle flow

    NASA Technical Reports Server (NTRS)

    Chow, Alan S.; Jin, Kang-Ren

    1992-01-01

    The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.

  14. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  15. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  16. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations.

    PubMed

    Saltiel, Philippe; d'Avella, Andrea; Tresch, Matthew C; Wyler, Kuno; Bizzi, Emilio

    2017-01-01

    The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumatsu, S; Iwase, K; Shimizu, Y

    Purpose: The exposure index (EI) proposed by the International Electrotechnical Commission (IEC) 62494-1 is expected to be utilized as a standard dose index by every manufacturer. The IEC recommended the usage of RQA5 for the EI. However, X-ray beam qualities, particularly in clinical practices, vary depending on the examination objects and exposure conditions, including usage of anti-scatter grids. We investigated the effects of the X-ray beam qualities other than RQA5 on the EI. Methods: The Xray beam qualities of RQA3, 5, 7, and 9 in IEC 61267 Ed. 1.0 were adopted in a computed radiography system. A uniform exposure withoutmore » objects was performed to measure the exposure indicators (S values) and air kerma (K). The relational equations between the S values and K were derived for the determination of the EI values. The EI values for RQA3, 7, and 9 were compared to those for RQA5 at the fixed S values of 100, 200, 400, and 600. Finally, the half-value layers (HVLs) using four grids (ratio 6:1, 8:1, 10:1, and 12:1) for the RQA5 X-ray were compared to those with RQA3–9. Results: The EI values for RQA3, 7, and 9 were up to 35.3%, 11.8%, and 38.7% higher, respectively, than that for RQA5 at the S value of 600. The HVLs without grids and with various grids for RQA5 were 6.85 mm Al. and in the range of 6.94–7.29 mm Al. (ΔHVL: up to 0.44 mm Al.), respectively. This variation in the HVLs with grids was smaller than that observed for RQA3–9 (ΔHVL: 2.0–7.5 mm Al.). Conclusion: Although the usage of grids may not greatly affect the EI, the X-ray beam quality for the determination of the EI cannot be ignored in the clinical evaluation of the dose index.« less

  18. Research and Deployment a Hospital Open Software Platform for e-Health on the Grid System at VAST/IAMI

    NASA Astrophysics Data System (ADS)

    van Tuyet, Dao; Tuan, Ngo Anh; van Lang, Tran

    Grid computing has been an increasing topic in recent years. It attracts the attention of many scientists from many fields. As a result, many Grid systems have been built for serving people's demands. At present, many tools for developing the Grid systems such as Globus, gLite, Unicore still developed incessantly. Especially, gLite - the Grid Middleware - was developed by the Europe Community scientific in recent years. Constant growth of Grid technology opened the way for new opportunities in term of information and data exchange in a secure and collaborative context. These new opportunities can be exploited to offer physicians new telemedicine services in order to improve their collaborative capacities. Our platform gives physicians an easy method to use telemedicine environment to manage and share patient's information (such as electronic medical record, images formatted DICOM) between remote locations. This paper presents the Grid Infrastructure based on gLite; some main components of gLite; the challenge scenario in which new applications can be developed to improve collaborative work between scientists; the process of deploying Hospital Open software Platform for E-health (HOPE) on the Grid.

  19. Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus.

    PubMed

    Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2018-07-01

    Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts. Copyright © 2018 American Society for Microbiology.

  20. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  1. Cyberinfrastructure for End-to-End Environmental Explorations

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Kumar, S.; Song, C.; Zhao, L.; Govindaraju, R.; Niyogi, D.

    2007-12-01

    The design and implementation of a cyberinfrastructure for End-to-End Environmental Exploration (C4E4) is presented. The C4E4 framework addresses the need for an integrated data/computation platform for studying broad environmental impacts by combining heterogeneous data resources with state-of-the-art modeling and visualization tools. With Purdue being a TeraGrid Resource Provider, C4E4 builds on top of the Purdue TeraGrid data management system and Grid resources, and integrates them through a service-oriented workflow system. It allows researchers to construct environmental workflows for data discovery, access, transformation, modeling, and visualization. Using the C4E4 framework, we have implemented an end-to-end SWAT simulation and analysis workflow that connects our TeraGrid data and computation resources. It enables researchers to conduct comprehensive studies on the impact of land management practices in the St. Joseph watershed using data from various sources in hydrologic, atmospheric, agricultural, and other related disciplines.

  2. Reynolds-Averaged Navier-Stokes Simulations of Two Partial-Span Flap Wing Experiments

    NASA Technical Reports Server (NTRS)

    Takalluk, M. A.; Laflin, Kelly R.

    1998-01-01

    Structured Reynolds Averaged Navier-Stokes simulations of two partial-span flap wing experiments were performed. The high-lift aerodynamic and aeroacoustic wind-tunnel experiments were conducted at both the NASA Ames 7-by 10-Foot Wind Tunnel and at the NASA Langley Quiet Flow Facility. The purpose of these tests was to accurately document the acoustic and aerodynamic characteristics associated with the principle airframe noise sources, including flap side-edge noise. Specific measurements were taken that can be used to validate analytic and computational models of the noise sources and associated aerodynamic for configurations and conditions approximating flight for transport aircraft. The numerical results are used to both calibrate a widely used CFD code, CFL3D, and to obtain details of flap side-edge flow features not discernible from experimental observations. Both experimental set-ups were numerically modeled by using multiple block structured grids. Various turbulence models, grid block-interface interaction methods and grid topologies were implemented. Numerical results of both simulations are in excellent agreement with experimental measurements and flow visualization observations. The flow field in the flap-edge region was adequately resolved to discern some crucial information about the flow physics and to substantiate the merger of the two vortical structures. As a result of these investigations, airframe noise modelers have proposed various simplified models which use the results obtained from the steady-state computations as input.

  3. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid.

    PubMed

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-06-17

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely "archipelago micro-grid (MG)", which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  4. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid

    PubMed Central

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-01-01

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO2 emissions and operation costs in UCS and LCS. PMID:27322281

  5. Calculations of Flowfield About Indented Nosetips,

    DTIC Science & Technology

    1982-08-23

    agreement is good. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAOE(ft,. Date E -t. , - NSWC TR 82-286 FOREWORD A finite difference computer program has been...Specific heat at constant pressure and volume respectively e Total energy per unit volume E ,F,H,R,S,T Functions of U AHT, HT Error in total enthalpy and...total enthalpy respectively ijGrid index in E and n directions respectively SI Identity matrix J,K Maximum grid point in E and n directions respectively

  6. Validation of EOS Aqua AMSR Sea Ice Products for East Antarctica

    NASA Technical Reports Server (NTRS)

    Massom, Rob; Lytle, Vicky; Allison, Ian; Worby, Tony; Markus, Thorsten; Scambos, Ted; Haran, Terry; Enomoto, Hiro; Tateyama, Kazu; Pfaffling, Andi

    2004-01-01

    This paper presents results from AMSR-E validation activities during a collaborative international cruise onboard the RV Aurora Australis to the East Antarctic sea ice zone (64-65 deg.S, 110-120 deg.E) in the early Austral spring of 2003. The validation strategy entailed an IS-day survey of the statistical characteristics of sea ice and snowcover over a Lagrangian grid 100 x 50 km in size (demarcated by 9 drifting ice beacons) i.e. at a scale representative of Ah4SR pixels. Ice conditions ranged h m consolidated first-year ice to a large polynya offshore from Casey Base. Data sets collected include: snow depth and snow-ice interface temperatures on 24 (?) randomly-selected floes in grid cells within a 10 x 50 km area (using helicopters); detailed snow and ice measurements at 13 dedicated ice stations, one of which lasted for 4 days; time-series measurements of snow temperature and thickness at selected sites; 8 aerial photography and thermal-IR radiometer flights; other satellite products (SAR, AVHRR, MODIS, MISR, ASTER and Envisat MERIS); ice drift data; and ancillary meteorological (ship-based, meteorological buoys, twice-daily radiosondes). These data are applied to a validation of standard AMSR-E ice concentration, snowcover thickness and ice-temperature products. In addition, a validation is carried out of ice-surface skin temperature products h m the NOAA AVHRR and EOS MODIS datasets.

  7. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  8. Optimization of exposure parameters for pediatric chest x-ray imaging

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Kim, Hee-Joung

    2012-03-01

    The pediatric patients are more susceptible to the effects of ionizing radiation than adults. Pediatric patients are smaller, more radiosensitive than adult patients and many cannot stand unassisted. Their characteristics affect the method of imaging projection and how dose is optimized. The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kV in 10 kV increments at the focus-to-detector distance of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at same effective dose. The results showed that the eDQE was largest at 60 kVp without and with an anti-scatter grid. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing focus-to-detector distance because of the greater effective modulation transfer function (eMTF) with the lower focal spot blurring. In conclusion, for pediatric patients, the amount of scattered radiation is less, and the amount of grid attenuation increased unnecessary radiation dose.

  9. IGI (the Italian Grid initiative) and its impact on the Astrophysics community

    NASA Astrophysics Data System (ADS)

    Pasian, F.; Vuerli, C.; Taffoni, G.

    IGI - the Association for the Italian Grid Infrastructure - has been established as a consortium of 14 different national institutions to provide long term sustainability to the Italian Grid. Its formal predecessor, the Grid.it project, has come to a close in 2006; to extend the benefits of this project, IGI has taken over and acts as the national coordinator for the different sectors of the Italian e-Infrastructure present in EGEE. IGI plans to support activities in a vast range of scientificdisciplines - e.g. Physics, Astrophysics, Biology, Health, Chemistry, Geophysics, Economy, Finance - and any possible extensions to other sectors such as Civil Protection, e-Learning, dissemination in Universities and secondary schools. Among these, the Astrophysics community is active as a user, by porting applications of various kinds, but also as a resource provider in terms of computing power and storage, and as middleware developer.

  10. 26 CFR 1.514(c)-2 - Permitted allocations under section 514(c)(9)(E).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (ii) Limitation on chargebacks of partial allocations. (3) Minimum gain chargebacks attributable to nonrecourse deductions. (4) Minimum gain chargebacks attributable to distribution of nonrecourse debt proceeds. (i) Chargebacks disregarded until allocations made. (ii) Certain minimum gain chargebacks related to...

  11. 26 CFR 1.514(c)-2 - Permitted allocations under section 514(c)(9)(E).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (ii) Limitation on chargebacks of partial allocations. (3) Minimum gain chargebacks attributable to nonrecourse deductions. (4) Minimum gain chargebacks attributable to distribution of nonrecourse debt proceeds. (i) Chargebacks disregarded until allocations made. (ii) Certain minimum gain chargebacks related to...

  12. 26 CFR 1.514(c)-2 - Permitted allocations under section 514(c)(9)(E).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (ii) Limitation on chargebacks of partial allocations. (3) Minimum gain chargebacks attributable to nonrecourse deductions. (4) Minimum gain chargebacks attributable to distribution of nonrecourse debt proceeds. (i) Chargebacks disregarded until allocations made. (ii) Certain minimum gain chargebacks related to...

  13. 26 CFR 1.514(c)-2 - Permitted allocations under section 514(c)(9)(E).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (ii) Limitation on chargebacks of partial allocations. (3) Minimum gain chargebacks attributable to nonrecourse deductions. (4) Minimum gain chargebacks attributable to distribution of nonrecourse debt proceeds. (i) Chargebacks disregarded until allocations made. (ii) Certain minimum gain chargebacks related to...

  14. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  15. AL-1576, an aldose reductase inhibitor (ARI), did not prevent the decrease of norepinephrine turnover in diabetic rats.

    PubMed

    Yen, T T; Fuller, R W; Broderick, C L; Hemrick-Luecke, S K; Perry, K W

    1988-08-01

    ONO-2235 [(E)-3-carboxymethyl-5-[(2E)-2-methyl-3-phenyl-propenylidene]rhodanine], an ARI, was reported to prevent significantly the decrease of norepinephrine (NE) turnover in three tissues of streptozotocin (STZ)-diabetic rats (1). To examine whether the partial restoration of NE turnover by ONO-2235 is related to its ARI activity, the effect of another ARI, AL-1576 [spiro(2,7-difluoro-9H-fluoren-9, 4'-imidazoline)-2'5'-dione], on NE turnover in STZ rats was investigated. STZ caused an accumulation of sorbitol in the lens and decreased NE turnover in interscapular brown adipose tissue (IBAT), heart and pancreas. AL-1576 totally prevented the accumulation of sorbitol in the lens but had no effect on the decreased NE turnover in all three tissues. These results suggest that the partial prevention of NE turnover decrease by ONO-2235 may not have been mediated by its ARI activity.

  16. European Society for Pediatric Gastroenterology Hepatology and Nutrition's Educational Offer and the Training Syllabus.

    PubMed

    Maglione, Marco; Finizio, Daniela; Veres, Gabor; Pop, Tudor L; Continisio, Grazia I; Papadopoulou, Alexandra; Guarino, Alfredo

    2017-11-01

    The basic knowledge necessary for a European pediatric gastroenterologist/hepatologist/nutritionist is set-out in the training syllabus (TS) of the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN). We retrospectively compared the topics covered in ESPGHAN's training events between 2013 and 2016 with the basic knowledge TS items. Thirty-six initiatives including e-learning were identified. Twelve (33%) courses focused on gastroenterology, 9 (25%) on hepatology, and 10 (28%) on nutrition. Five (14%) courses covered >1 field and were classified "General." The initiatives covered 12 of 57 (21%) TS items; 31 of 57 items (54%) were partially covered; and 14 of 57 (25%) not covered. Five of 9 e-learning courses covered gastroenterology topics, whereas none covered hepatology topics. ESPGHAN's 3-year educational offer partially met the training needs listed in the TS. A coordinated educational program covering all TS items would harmonize training within Europe and would provide trainees with a professional portfolio for employment purposes.

  17. Numerical Investigation on Absorption Enhancement of Black Carbon Aerosols Partially Coated With Nonabsorbing Organics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin

    2018-01-01

    This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (Eab) of polydisperse BC aggregates partially coated by organics, which is calculated by the exact multiple-sphere T-matrix method. The coated volume fraction of BC plays a substantial role in determining the absorption enhancement of partially coated BC aggregates, which typically have an Eab in the range of 1.0-2.0 with a larger value for larger coated volume fraction of BC as the shell/core ratio, BC geometry, and size distribution are fixed. The shell/core ratio, BC geometry, and size distribution have little impact on the Eab of coated BC with small coated volume fraction of BC, while they become significant for large coated volume fraction of BC. The Eab of partially coated BC particles can be slightly less than 1.0 for the large BC in the accumulation mode exhibiting large shell/core ratio and small coated volume fraction of BC, indicating that the absorption shows even slight decrease relative to uncoated BC particles. For partially coated BC aggregates in the accumulation and coarse modes, the refractive index uncertainties of BC result in the Eab differences of less than 9% and 2%, respectively, while those of organics can induce larger variations with the maximum differences up to 22% and 18%, respectively. Our study indicates that accounting for particle coating microphysics, particularly the coated volume fraction of BC, can potentially help to understand the differences in observations of largely variable absorption enhancements over various regions.

  18. NCAR global model topography generation software for unstructured grids

    NASA Astrophysics Data System (ADS)

    Lauritzen, P. H.; Bacmeister, J. T.; Callaghan, P. F.; Taylor, M. A.

    2015-06-01

    It is the purpose of this paper to document the NCAR global model topography generation software for unstructured grids. Given a model grid, the software computes the fraction of the grid box covered by land, the gridbox mean elevation, and associated sub-grid scale variances commonly used for gravity wave and turbulent mountain stress parameterizations. The software supports regular latitude-longitude grids as well as unstructured grids; e.g. icosahedral, Voronoi, cubed-sphere and variable resolution grids. As an example application and in the spirit of documenting model development, exploratory simulations illustrating the impacts of topographic smoothing with the NCAR-DOE CESM (Community Earth System Model) CAM5.2-SE (Community Atmosphere Model version 5.2 - Spectral Elements dynamical core) are shown.

  19. Efficacy of Electrocuting Devices to Catch Tsetse Flies (Glossinidae) and Other Diptera

    PubMed Central

    Vale, Glyn A.; Hargrove, John W.; Cullis, N. Alan; Chamisa, Andrew; Torr, Stephen J.

    2015-01-01

    Background The behaviour of insect vectors has an important bearing on the epidemiology of the diseases they transmit, and on the opportunities for vector control. Two sorts of electrocuting device have been particularly useful for studying the behaviour of tsetse flies (Glossina spp), the vectors of the trypanosomes that cause sleeping sickness in humans and nagana in livestock. Such devices consist of grids on netting (E-net) to catch tsetse in flight, or on cloth (E-cloth) to catch alighting flies. Catches are most meaningful when the devices catch as many as possible of the flies potentially available to them, and when the proportion caught is known. There have been conflicting indications for the catching efficiency, depending on whether the assessments were made by the naked eye or assisted by video recordings. Methodology/Principal Findings Using grids of 0.5m2 in Zimbabwe, we developed catch methods of studying the efficiency of E-nets and E-cloth for tsetse, using improved transformers to supply the grids with electrical pulses of ~40kV. At energies per pulse of 35–215mJ, the efficiency was enhanced by reducing the pulse interval from 3200 to 1ms. Efficiency was low at 35mJ per pulse, but there seemed no benefit of increasing the energy beyond 70mJ. Catches at E-nets declined when the fine netting normally used became either coarser or much finer, and increased when the grid frame was moved from 2.5cm to 27.5cm from the grid. Data for muscoids and tabanids were roughly comparable to those for tsetse. Conclusion/Significance The catch method of studying efficiency is useful for supplementing and extending video methods. Specifications are suggested for E-nets and E-cloth that are ~95% efficient and suitable for estimating the absolute numbers of available flies. Grids that are less efficient, but more economical, are recommended for studies of relative numbers available to various baits. PMID:26505202

  20. Efficacy of Electrocuting Devices to Catch Tsetse Flies (Glossinidae) and Other Diptera.

    PubMed

    Vale, Glyn A; Hargrove, John W; Cullis, N Alan; Chamisa, Andrew; Torr, Stephen J

    2015-10-01

    The behaviour of insect vectors has an important bearing on the epidemiology of the diseases they transmit, and on the opportunities for vector control. Two sorts of electrocuting device have been particularly useful for studying the behaviour of tsetse flies (Glossina spp), the vectors of the trypanosomes that cause sleeping sickness in humans and nagana in livestock. Such devices consist of grids on netting (E-net) to catch tsetse in flight, or on cloth (E-cloth) to catch alighting flies. Catches are most meaningful when the devices catch as many as possible of the flies potentially available to them, and when the proportion caught is known. There have been conflicting indications for the catching efficiency, depending on whether the assessments were made by the naked eye or assisted by video recordings. Using grids of 0.5m2 in Zimbabwe, we developed catch methods of studying the efficiency of E-nets and E-cloth for tsetse, using improved transformers to supply the grids with electrical pulses of ~40kV. At energies per pulse of 35-215mJ, the efficiency was enhanced by reducing the pulse interval from 3200 to 1ms. Efficiency was low at 35mJ per pulse, but there seemed no benefit of increasing the energy beyond 70mJ. Catches at E-nets declined when the fine netting normally used became either coarser or much finer, and increased when the grid frame was moved from 2.5cm to 27.5cm from the grid. Data for muscoids and tabanids were roughly comparable to those for tsetse. The catch method of studying efficiency is useful for supplementing and extending video methods. Specifications are suggested for E-nets and E-cloth that are ~95% efficient and suitable for estimating the absolute numbers of available flies. Grids that are less efficient, but more economical, are recommended for studies of relative numbers available to various baits.

  1. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  2. Climate Controls on Tree Growth in the Western Mediterranean

    NASA Technical Reports Server (NTRS)

    Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Kerchouche, Dalila; Slimani, Said; Ilmen, Rachid; Hasnaoui, Fouad; Guibal, Frederic; Canarerim Hesys Hykui; Sanchez-Salguero, Raul; hide

    2017-01-01

    The first large-scale network of tree-ring chronologies from the western Mediterranean (WM; 32 deg N-43 deg N, 10 deg W-17 deg E) is described and analyzed to identify the seasonal climatic signal in indices of annual ring width. Correlation and rotated empirical orthogonal function analyses are applied to 85 tree-ring series and corresponding gridded climate data to assess the climate signal embedded in the network. Chronologies range in length from 80 to 1129 years. Monthly correlations and partial correlations show overall positive associations for Pinus halepensis (PIHA) and Cedrus atlantica (CDAT) with winter (December-February) and spring (March-May) precipitation across this network. In both seasons, the precipitation correlation with PIHA is stronger, while CDAT chronologies tend to be longer. A combination of positive correlations between growth and winter-summer precipitation and negative partial correlations with growing season temperatures suggests that chronologies in at least part of the network reflect soil moisture and the integrated effects of precipitation and evapotranspiration signal. The range of climate response observed across this network reflects a combination of both species and geographic influences. Western Moroccan chronologies have the strongest association with the North Atlantic Oscillation.

  3. Contributions to HiLiftPW-3 Using Structured, Overset Grid Methods

    NASA Technical Reports Server (NTRS)

    Coder, James G.; Pulliam, Thomas H.; Jensen, James C.

    2018-01-01

    The High-Lift Common Research Model (HL-CRM) and the JAXA Standard Model (JSM) were analyzed computationally using both the OVERFLOW and LAVA codes for the third AIAA High-Lift Prediction Workshop. Geometry descriptions and the test cases simulated are described. With the HL-CRM, the effects of surface smoothness during grid projection and the effect of partially sealing a flap gap were studied. Grid refinement studies were performed at two angles of attack using both codes. For the JSM, simulations were performed with and without the nacelle/pylon. Without the nacelle/pylon, evidence of multiple solutions was observed when a quadratic constitutive relation is used in the turbulence modeling; however, using time-accurate simulation seemed to alleviate this issue. With the nacelle/pylon, no evidence of multiple solutions was observed. Laminar-turbulent transition modeling was applied to both JSM configuration, and had an overall favorable impact on the lift predictions.

  4. Unweighted least squares phase unwrapping by means of multigrid techniques

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  5. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  6. Balancing Conflicting Requirements for Grid and Particle Decomposition in Continuum-Lagrangian Solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Grout, Ray

    2015-10-30

    The load balancing strategies for hybrid solvers that involve grid based partial differential equation solution coupled with particle tracking are presented in this paper. A typical Message Passing Interface (MPI) based parallelization of grid based solves are done using a spatial domain decomposition while particle tracking is primarily done using either of the two techniques. One of the techniques is to distribute the particles to MPI ranks to whose grid they belong to while the other is to share the particles equally among all ranks, irrespective of their spatial location. The former technique provides spatial locality for field interpolation butmore » cannot assure load balance in terms of number of particles, which is achieved by the latter. The two techniques are compared for a case of particle tracking in a homogeneous isotropic turbulence box as well as a turbulent jet case. We performed a strong scaling study for more than 32,000 cores, which results in particle densities representative of anticipated exascale machines. The use of alternative implementations of MPI collectives and efficient load equalization strategies are studied to reduce data communication overheads.« less

  7. Boundary condition identification for a grid model by experimental and numerical dynamic analysis

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Devitis, John; Mazzotti, Matteo; Bartoli, Ivan; Moon, Franklin; Sjoblom, Kurt; Aktan, Emin

    2015-04-01

    There is a growing need to characterize unknown foundations and assess substructures in existing bridges. It is becoming an important issue for the serviceability and safety of bridges as well as for the possibility of partial reuse of existing infrastructures. Within this broader contest, this paper investigates the possibility of identifying, locating and quantifying changes of boundary conditions, by leveraging a simply supported grid structure with a composite deck. Multi-reference impact tests are operated for the grid model and modification of one supporting bearing is done by replacing a steel cylindrical roller with a roller of compliant material. Impact based modal analysis provide global modal parameters such as damped natural frequencies, mode shapes and flexibility matrix that are used as indicators of boundary condition changes. An updating process combining a hybrid optimization algorithm and the finite element software suit ABAQUS is presented in this paper. The updated ABAQUS model of the grid that simulates the supporting bearing with springs is used to detect and quantify the change of the boundary conditions.

  8. Code Calibration Applied to the TCA High-Lift Model in the 14 x 22 Wind Tunnel (Simulation With and Without Model Post-Mount)

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    1999-01-01

    The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).

  9. Time-stable overset grid method for hyperbolic problems using summation-by-parts operators

    NASA Astrophysics Data System (ADS)

    Sharan, Nek; Pantano, Carlos; Bodony, Daniel J.

    2018-05-01

    A provably time-stable method for solving hyperbolic partial differential equations arising in fluid dynamics on overset grids is presented in this paper. The method uses interface treatments based on the simultaneous approximation term (SAT) penalty method and derivative approximations that satisfy the summation-by-parts (SBP) property. Time-stability is proven using energy arguments in a norm that naturally relaxes to the standard diagonal norm when the overlap reduces to a traditional multiblock arrangement. The proposed overset interface closures are time-stable for arbitrary overlap arrangements. The information between grids is transferred using Lagrangian interpolation applied to the incoming characteristics, although other interpolation schemes could also be used. The conservation properties of the method are analyzed. Several one-, two-, and three-dimensional, linear and non-linear numerical examples are presented to confirm the stability and accuracy of the method. A performance comparison between the proposed SAT-based interface treatment and the commonly-used approach of injecting the interpolated data onto each grid is performed to highlight the efficacy of the SAT method.

  10. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  11. Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects.

    PubMed

    Su, Daniel; Greenberg, Andrew; Simonson, Joseph L; Teng, Christopher C; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul

    2016-04-01

    To investigate the efficacy of the Amsler grid test in detecting central visual field (VF) defects in glaucoma. Prospective, cross-sectional study. Patients with glaucoma with reliable Humphrey 10-2 Swedish Interactive Threshold Algorithm standard VF on the date of enrollment or within the previous 3 months. Amsler grid tests were performed for each eye and were considered "abnormal" if there was any perceived scotoma with missing or blurry grid lines within the central 10 degrees ("Amsler grid scotoma"). An abnormal 10-2 VF was defined as ≥3 adjacent points at P < 0.01 with at least 1 point at P < 0.005 in the same hemifield on the pattern deviation plot. Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area were calculated with the 10-2 VF as the clinical reference standard. Among eyes with an abnormal 10-2 VF, regression analyses were performed between the Amsler grid scotoma area and the 10-2 VF parameters (mean deviation [MD], scotoma extent [number of test points with P < 0.01 in total deviation map] and scotoma mean depth [mean sensitivity of test points with P < 0.01 in total deviation map]). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area. A total of 106 eyes (53 patients) were included (mean ± standard deviation age, 24-2 MD and 10-2 MD = 66±12 years, -9.61±8.64 decibels [dB] and -9.75±9.00 dB, respectively). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid test were 68%, 92%, 97%, and 46%, respectively. Sensitivity was 40% in eyes with 10-2 MD better than -6 dB, 58% in eyes with 10-2 MD between -12 and -6 dB, and 92% in eyes with 10-2 MD worse than -12 dB. The area under the receiver operating characteristic curve of the Amsler grid scotoma area was 0.810 (95% confidence interval, 0.723-0.880, P < 0.001). The Amsler grid scotoma area had the strongest relationship with 10-2 MD (quadratic R(2)=0.681), followed by 10-2 scotoma extent (quadratic R(2)=0.611) and 10-2 scotoma mean depth (quadratic R(2)=0.299) (all P < 0.001). The Amsler grid can be used to screen for moderate to severe central vision loss from glaucoma. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  12. Earth observation

    NASA Image and Video Library

    2014-09-06

    ISS040-E-124198 (6 Sept. 2014) --- Puget Sound is partly reflecting the sun in this detailed image taken by an Expedition 40 crew member on the International Space Station. Patterns of boat wakes are prominent in the sun’s partial reflection zone. The difference between the boat wakes in this view relates to the speed of the boat and the particular patterns (of several) that happen to be captured in the specific light reflection angles at the time the image was taken. The land areas show parts of Seattle. The darkest areas with rectangular grids are suburbs richly covered with trees. The broadly gray zones of the central city (bottom center) are brighter where structures are lower, as in the harbor zone (Harbor Island), and darker where the shadows of high-rise buildings downtown cast black shadows. Interstate Highway 5 bisects downtown.

  13. Using Unsupervised Learning to Unlock the Potential of Hydrologic Similarity

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Newman, A. J.

    2017-12-01

    By clustering environmental data into representative hydrologic response units (HRUs), hydrologic similarity aims to harness the covariance between a system's physical environment and its hydrologic response to create reduced-order models. This is the primary approach through which sub-grid hydrologic processes are represented in large-scale models (e.g., Earth System Models). Although the possibilities of hydrologic similarity are extensive, its practical implementations have been limited to 1-d bins of oversimplistic metrics of hydrologic response (e.g., topographic index)—this is a missed opportunity. In this presentation we will show how unsupervised learning is unlocking the potential of hydrologic similarity; clustering methods enable generalized frameworks to effectively and efficiently harness the petabytes of global environmental data to robustly characterize sub-grid heterogeneity in large-scale models. To illustrate the potential that unsupervised learning has towards advancing hydrologic similarity, we introduce a hierarchical clustering algorithm (HCA) that clusters very high resolution (30-100 meters) elevation, soil, climate, and land cover data to assemble a domain's representative HRUs. These HRUs are then used to parameterize the sub-grid heterogeneity in land surface models; for this study we use the GFDL LM4 model—the land component of the GFDL Earth System Model. To explore HCA and its impacts on the hydrologic system we use a ¼ grid cell in southeastern California as a test site. HCA is used to construct an ensemble of 9 different HRU configurations—each configuration has a different number of HRUs; for each ensemble member LM4 is run between 2002 and 2014 with a 26 year spinup. The analysis of the ensemble of model simulations show that: 1) clustering the high-dimensional environmental data space leads to a robust representation of the role of the physical environment in the coupled water, energy, and carbon cycles at a relatively low number of HRUs; 2) the reduced-order model with around 300 HRUs effectively reproduces the fully distributed model simulation (30 meters) with less than 1/1000 of computational expense; 3) assigning each grid cell of the fully distributed grid to an HRU via HCA enables novel visualization methods for large-scale models—this has significant implications for how these models are applied and evaluated. We will conclude by outlining the potential that this work has within operational prediction systems including numerical weather prediction, Earth System models, and Early Warning systems.

  14. Advanced Computing Architectures for Cognitive Processing

    DTIC Science & Technology

    2009-07-01

    Evolution ................................................................................. 20  Figure 9: Logic diagram smart block-based neuron...48  Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid

  15. Sustainable Data Evolution Technology for Power Grid Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially othermore » applications in power grid operation and planning.« less

  16. Efficient radiative transfer methods for continuum and line transfer in large three-dimensional models

    NASA Astrophysics Data System (ADS)

    Juvela, Mika J.

    The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc, =500 cm-3) was based a MHD simulation carried out on a regular grid (Juvela & Padoan, 2005). For computed line intensities an accuracy of 10% was still reached when the number of individual cells (and the run time) was reduced by a factor of ten. This illustrates how, as long as cloud is not extremely optically thick, most of the emission comes from a small sub-volume. It is also worth noting that while errors are ~10% for any given point they are much smaller when compared with intensity variations. In particular, calculations on hierarchical grid recovered the spatial power spectrum of line emission with very good accuracy. Monte Carlo codes are used widely in both continuum and line transfer calculations. Like any lambda iteration schemes these suffer from slow convergence when models are optically thick. In line transfer Accelerated Monte Carlo methods (AMC) present a partial solution to this problem (Juvela & Padoan, 2000; Hogerheijde & van der Tak, 2000). AMC methods can be used similarly in continuum calculations to speed up the computation of dust temperatures (Juvela, 2005). The sampling problems associated with high optical depths can be solved with weighted sampling and the handling of models with τV ~ 1000 is perfectly feasible. Transiently heated small dust grains pose another problem because the calculation of their temperature distribution is very time consuming. However, a 3D model will contain thousands of cells at very similar conditions. If dust temperature distributions are calculated only once for such a set an approximate solution can be found in a much shorter time time. (Juvela & Padoan, 2003; see Figure 2a). MHD simulations with Automatic Mesh Refinement (AMR) techniques present an exciting development for the modelling of interstellar clouds. Cloud models consist of a hierarchy of grids with different grid steps and the ratio between the cloud size and the smallest resolution elements can be 106 or even larger. We are currently working on radiative transfer codes (line and continuum) that could be used efficiently on such grids (see Figure 2b). The radiative transfer problem can be solved relatively independently on each of the sub-grids. This means that the use of convergence acceleration methods can be limited to those sub-grids where they are needed and, on the other hand, parallelization of the code is straightforward.

  17. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  18. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  19. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 2: Quasi-geostrophic Rossby modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia-gravity modes on a midlatitude f plane.The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.

  20. An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration

    DTIC Science & Technology

    2012-03-01

    temperature sensor [6] . . . . . . . . . . . . . . 14 9 Two different digital temperature sensor placement algorithms: (a) Grid placement (b) Optimal...create a grid over the FPGA. While this method works reasonably well, it requires many sensors, some of which are unnecessary. The optimal placement, on...temperature sensor placement algorithms: (a) Grid placement (b) Optimal Placement [7] 16 2.4 Summary Integrated circuits’ sensitivity to temperatures has

  1. A principle of economy predicts the functional architecture of grid cells.

    PubMed

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-09-03

    Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths.

  2. Factorial inferential grid grouping and representativeness analysis for a systematic selection of representative grids

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao

    2017-08-01

    A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widesott, Lamberto; Lomax, Antony J.; Schwarz, Marco

    Purpose: To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam. Methods: The authors vary the {sigma} of the initial Gaussian size of the spot, from {sigma}{sub x} = {sigma}{sub y} = 3 mm to {sigma}{sub x} = {sigma}{sub y} = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, {Delta}x and {Delta}y, is optimized on themore » spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis. Results: For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. {sigma} {<=} 5 mm is required for tumor volumes with low dose and {sigma}{<=} 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Beams with {sigma} > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as {sigma} = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of {sigma}, while there is loss of high dose PTV coverage for {sigma} > 5 mm. The best grids have a spacing of 6, 7, 8, 9, and 12 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Conclusions: The maximum acceptable proton pencil beam {sigma} depends on the volume treated, the protocol of delivery, and optimization of the plan. For the clinical cases, protocol and optimization used in this analysis, acceptable {sigma}s are {<=} 4 mm for the head and neck tumor, {<=} 3 mm for the prostate tumor and {<=} 6 mm for the malignant pleural mesothelioma. One can apply the same procedure used in this analysis when given a ''class'' of patients, a {sigma} and a clinical protocol to determine the optimal grid spacing.« less

  4. Analytical Computation of Effective Grid Parameters for the Finite-Difference Seismic Waveform Modeling With the PREM, IASP91, SP6, and AK135

    NASA Astrophysics Data System (ADS)

    Toyokuni, G.; Takenaka, H.

    2007-12-01

    We propose a method to obtain effective grid parameters for the finite-difference (FD) method with standard Earth models using analytical ways. In spite of the broad use of the heterogeneous FD formulation for seismic waveform modeling, accurate treatment of material discontinuities inside the grid cells has been a serious problem for many years. One possible way to solve this problem is to introduce effective grid elastic moduli and densities (effective parameters) calculated by the volume harmonic averaging of elastic moduli and volume arithmetic averaging of density in grid cells. This scheme enables us to put a material discontinuity into an arbitrary position in the spatial grids. Most of the methods used for synthetic seismogram calculation today receives the blessing of the standard Earth models, such as the PREM, IASP91, SP6, and AK135, represented as functions of normalized radius. For the FD computation of seismic waveform with such models, we first need accurate treatment of material discontinuities in radius. This study provides a numerical scheme for analytical calculations of the effective parameters for an arbitrary spatial grids in radial direction as to these major four standard Earth models making the best use of their functional features. This scheme can analytically obtain the integral volume averages through partial fraction decompositions (PFDs) and integral formulae. We have developed a FORTRAN subroutine to perform the computations, which is opened to utilization in a large variety of FD schemes ranging from 1-D to 3-D, with conventional- and staggered-grids. In the presentation, we show some numerical examples displaying the accuracy of the FD synthetics simulated with the analytical effective parameters.

  5. Boosting CSP Production with Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less

  6. FitEM2EM—Tools for Low Resolution Study of Macromolecular Assembly and Dynamics

    PubMed Central

    Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam

    2008-01-01

    Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top. PMID:18974836

  7. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  8. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    NASA Astrophysics Data System (ADS)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  9. 78 FR 19149 - Small Generator Interconnection Agreements and Procedures; Supplemental Notice of Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., National Grid (Edison Electric Institute) [rtarr8] Michael Sheehan, P.E., Keyes, Fox & Wiedman L.L.P... Association of Regulatory Utility Commissioners [rtarr8] Sky Stanfield, Attorney, Keyes, Fox & Wiedman L.L.P... Policy, National Grid (Edison Electric Institute) [rtarr8] Michael Sheehan, P.E., Keyes, Fox & Wiedman L...

  10. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  11. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Colin J.; Carr, Paul D.; Kim, Hye-Kyung

    2006-07-01

    The metallo-glycerophosphodiesterase from E. aerogenes (GpdQ) has been cloned, expressed in E. coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme and subsequent optimization of these conditions led to crystals. The metallo-glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) has been cloned, expressed in Escherichia coli and purified. Initial screening of crystallization conditions for this enzyme resulted in the identification of needles from one condition in a sodium malonate grid screen. Removal of the metals from the enzyme andmore » subsequent optimization of these conditions led to crystals that diffracted to 2.9 Å and belonged to space group P2{sub 1}3, with unit-cell parameter a = 164.1 Å. Self-rotation function analysis and V{sub M} calculations indicated that the asymmetric unit contains two copies of the monomeric enzyme, corresponding to a solvent content of 79%. It is intended to determine the structure of this protein utilizing SAD phasing from transition metals or molecular replacement.« less

  12. A Study of Multigrid Preconditioners Using Eigensystem Analysis

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Swanson, R. C.

    2005-01-01

    The convergence properties of numerical schemes for partial differential equations are studied by examining the eigensystem of the discrete operator. This method of analysis is very general, and allows the effects of boundary conditions and grid nonuniformities to be examined directly. Algorithms for the Laplace equation and a two equation model hyperbolic system are examined.

  13. Carpet: Adaptive Mesh Refinement for the Cactus Framework

    NASA Astrophysics Data System (ADS)

    Schnetter, Erik; Hawley, Scott; Hawke, Ian

    2016-11-01

    Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.

  14. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  15. Aerodynamic forces and flows of the full and partial clap-fling motions in insects

    PubMed Central

    Sun, Mao

    2017-01-01

    Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier–Stokes equations in moving overset grids. The Reynolds number is set to 20, relevant to the tiny flying insects. The following has been shown: (1) During the clap phase, the wings clap together and create a high pressure region in the closing gap between wings, greatly increasing the positive pressure on the lower surface of wing, while pressure on the upper surface is almost unchanged by the interaction; during the fling phase, the wings fling apart and create a low pressure region in the opening gap between wings, greatly increasing the suction pressure on the upper surface of wing, while pressure on the lower surface is almost unchanged by the interaction; (2) The interference effect between wings is most severe at the end of clap phase and the start of the fling phase: two sharp force peaks (8–9 times larger than that of the one-winged case) are generated. But the total force peaks are manifested mostly as drag and barely as lift of the wing, owing to the vertical orientation of the wing section; (3) The wing–wing interaction effect in the partial clap-fling case is much weaker than that in the full clap-fling case, avoiding the generation of huge drag. Compared with a single wing flapping with the same motion, mean lift in the partial case is enhanced by 12% without suffering any efficiency degradation, indicating that partial clap-fling is a more practical choice for tiny insects to employ. PMID:28289562

  16. Data privacy considerations in Intensive Care Grids.

    PubMed

    Luna, Jesus; Dikaiakos, Marios D; Kyprianou, Theodoros; Bilas, Angelos; Marazakis, Manolis

    2008-01-01

    Novel eHealth systems are being designed to provide a citizen-centered health system, however the even demanding need for computing and data resources has required the adoption of Grid technologies. In most of the cases, this novel Health Grid requires not only conveying patient's personal data through public networks, but also storing it into shared resources out of the hospital premises. These features introduce new security concerns, in particular related with privacy. In this paper we survey current legal and technological approaches that have been taken to protect a patient's personal data into eHealth systems, with a particular focus in Intensive Care Grids. However, thanks to a security analysis applied over the Intensive Care Grid system (ICGrid) we show that these security mechanisms are not enough to provide a comprehensive solution, mainly because the data-at-rest is still vulnerable to attacks coming from untrusted Storage Elements where an attacker may directly access them. To cope with these issues, we propose a new privacy-oriented protocol which uses a combination of encryption and fragmentation to improve data's assurance while keeping compatibility with current legislations and Health Grid security mechanisms.

  17. Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat.

    PubMed

    Bell, J A; Griinari, J M; Kennelly, J J

    2006-02-01

    Conjugated linoleic acid (CLA) refers to a mixture of conjugated octadecadienoic acids of predominantly ruminant origin. The main isomer in bovine milk fat is the cis-9, trans-11 CLA. Interest in CLA increased after the discovery of its health-promoting properties, including potent anticarcinogenic activity. Two experiments were conducted to evaluate dietary strategies aimed at increasing the concentration of CLA in bovine milk fat. Both experiments were organized as a randomized complete block design with a repeated measures treatment structure. In Experiment 1, 28 Holstein cows received either a control diet or one of 3 treatments for a period of 2 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a dry matter (DM) basis, fed as a total mixed ration (TMR). The concentrate was partially replaced in the treatment groups with 24 ppm of monensin (MON), 6% of DM safflower oil (SAFF), or 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M). Average cis-9, trans-11 CLA levels in milk fat after 2 wk of feeding were 0.45, 0.52, 3.36, and 5.15% of total fatty acids for control, MON, SAFF, and SAFF/M, respectively. In Experiment 2, 62 Holstein cows received either a control diet or one of 5 treatment diets for a period of 9 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a DM basis, fed as a TMR. The concentrate was partially replaced in the treatment groups with 6% of DM safflower oil (SAFF), 6% of DM safflower oil plus 150 IU of vitamin E/kg of DM (SAFF/E), 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M), 6% of DM safflower oil plus 24 ppm of monensin plus 150 IU of vitamin E/kg of DM (SAFF/ME), or 6% of DM flaxseed oil plus 150 IU of vitamin E/kg of DM (FLAX/E). Average cis-9, trans-11 CLA levels during the treatment period were 0.68, 4.12, 3.48, 4.55, 4.75, and 2.80% of total fatty acids for control, SAFF, SAFF/E, SAFF/M, SAFF/ME, and FLAX/E, respectively. The combination of safflower oil with monensin was particularly effective at increasing milk fat CLA. The addition of vitamin E to the diet partially prevented the depression in milk fat associated with oilseed feeding, but had no significant effect on the concentration of CLA in milk.

  18. The effect of a hay grid feeder on feed consumption and measurement of the gastric pH using an intragastric electrode device in horses: a preliminary report.

    PubMed

    Aristizabal, F; Nieto, J; Yamout, S; Snyder, J

    2014-07-01

    Obesity and gastric ulceration are highly prevalent in horses. Management modifications for preventing squamous gastric ulceration include frequent feeding and free access to pasture; however, these practices may predispose horses to obesity. To compare the percentage of hay consumed, intragastric pH and horse activity between feeding from the ground and a hay grid feeder. Crossover experimental study. A pH electrode was inserted into the stomach to record the intragastric pH for 48 h. Horses received 1% of their body weight in grass hay twice a day. Horses were assigned to be fed from the ground or a commercial hay grid feeder for 24 h and then switched to the opposite protocol for an additional 24 h. Horses were continuously video-recorded and the percentage of time spent eating or drinking, walking or standing, and lying down were calculated. Two point data were compared by paired t test and pH over time was compared by repeated measures ANOVA. Horses consumed significantly greater amounts of grass hay when fed on the ground compared with a hay grid feeder (n = 9; P<0.001). There were no significant differences between the groups for mean intragastric pH values (n = 6; P = 0.97), mean intragastric pH over time (n = 6; P = 0.45) the length of time the pH was below 4.0 (n = 6; P = 0.54), and the percentage of time horses spent eating or drinking (n = 9; P = 0.52), walking or standing (n = 9; P = 0.3), or lying down (n = 9; P = 0.4). Within each group horses spent more time eating during the day compared with the night (n = 9; hay grid feeder P = 0.003; ground feeding P = 0.007). The hay grid feeder studied may be used to reduce the amount of hay ingested by horses without reducing the time horses spend eating. © 2013 EVJ Ltd.

  19. 76 FR 4662 - Partial Grant of Clean Air Act Waiver Application Submitted by Growth Energy To Increase the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... docket. \\8\\ See 44 FR 12244 (February 23, 1979). \\9\\ See Waiver Decision on Application of E.I. DuPont de Nemours and Company (DuPont), 46 FR 6124 (February 28, 1983). For EPA to grant a waiver, the available...

  20. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  1. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  2. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  3. Transformer partial discharge monitoring based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Tong, Xinglin; Zhu, Xiaolong

    2014-06-01

    The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.

  4. On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models

    NASA Astrophysics Data System (ADS)

    Xu, S.; Wang, B.; Liu, J.

    2015-10-01

    In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.

  5. Influence of Partial Solar Eclipse 2016 on the surface gravity acceleration using photogate sensor on Kater's reversible pendulum

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Saepuzaman, D.; Sholihat, F. N.; Ramayanti, S.; Setyadin, A. H.; Ferahenki, A. R.; Samsudin, A.; Utama, J. A.; Susanti, H.; Kirana, K. H.

    2016-11-01

    This study was conducted to determine the Earth's surface gravitational acceleration (g) prior to, during, and after a partial solar eclipse. Data was collected in Basic Physics Laboratory Universitas Pendidikan Indonesia, Bandung with coordinates S 6°51'48", E 107°35'40" for three days on March 8 - 10, 2016, in time interval measurement from 6 a.m. to 9 a.m. This research used a standard pendulum, Kater's reversible pendulum, which deviated less than 3° so that the motion can be regarded harmonics oscillation. The period of pendulum oscillation motion is measured by a light sensor (photogate sensor) with accuracy until 10-13 seconds. The data analysis shows that there is small difference value of gravity acceleration at the Earth's surface from three days of observation, i.e. in the order of 10-3 ms-2. It means, there is a changes in the Earth's surface gravitational acceleration (g) due to the partial solar eclipse but not significant.

  6. Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase.

    PubMed

    Montenegro, María F; Moral-Naranjo, María T; Muñoz-Delgado, Encarnación; Campoy, Francisco J; Vidal, Cecilio J

    2009-04-01

    Besides esterase activity, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze o-nitroacetanilides through aryl acylamidase activity. We have reported that BuChE tetramers and monomers of human blood plasma differ in o-nitroacetanilide (ONA) hydrolysis. The homology in quaternary structure and folding of subunits in the prevalent BuChE species (G4(H)) of human plasma and AChE forms of fetal bovine serum prompted us to study the esterase and amidase activities of fetal bovine serum AChE. The k(cat)/K(m) values for acetylthiocholine (ATCh), ONA and its trifluoro derivative N-(2-nitrophenyl)-trifluoroacetamide (F-ONA) were 398 x 10(6) M(-1) min(-1), 0.8 x 10(6) M(-1) min(-1), and 17.5 x 10(6) M(-1) min(-1), respectively. The lack of inhibition of amidase activity at high F-ONA concentrations makes it unlikely that there is a role for the peripheral anionic site (PAS) in F-ONA degradation, but the inhibition of ATCh, ONA and F-ONA hydrolysis by the PAS ligand fasciculin-2 points to the transit of o-nitroacetalinides near the PAS on their way to the active site. Sedimentation analysis confirmed substrate hydrolysis by tetrameric 10.9S AChE. As compared with esterase activity, amidase activity was less sensitive to guanidine hydrochloride. This reagent led to the formation of 9.3S tetramers with partially unfolded subunits. Their capacity to hydrolyze ATCh and F-ONA revealed that, despite the conformational change, the active site architecture and functionality of AChE were partially retained.

  7. Simulation of the June 11, 2010, flood along the Little Missouri River near Langley, Arkansas, using a hydrologic model coupled to a hydraulic model

    USGS Publications Warehouse

    Westerman, Drew A.; Clark, Brian R.

    2013-01-01

    The results from the precipitation-runoff hydrologic model, the one-dimensional unsteady-state hydraulic model, and a separate two-dimensional model developed as part of a coincident study, each complement the other in terms of streamflow timing, water-surface elevations, and velocities propagated by the June 11, 2010, flood event. The simulated grids for water depth and stream velocity from each model were directly compared by subtracting the one-dimensional hydraulic model grid from the two-dimensional model grid. The absolute mean difference for the simulated water depth was 0.9 foot. Additionally, the absolute mean difference for the simulated stream velocity was 1.9 feet per second.

  8. CHARACTERISTICS OF THE CRUSTAL MAGMA BODY IN THE 2005-2006 ERUPTION AREA AT 9°50'N ON THE EAST PACIFIC RISE FROM 3D MULTI-CHANNEL SEISMIC DATA

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Marjanovic, M.; Aghaei, O.; Xu, M.; Han, S.; Stowe, L.

    2009-12-01

    In the summer of 2008 a large 3D multi-channel seismic dataset (expedition MGL0812) was collected over the 9°50’N Integrated Study Site at the East Pacific Rise, providing insight into the architecture of the magmatic system and its relationship with hydrothermal activity and volcanic/dyking events associated with the 2005-06 eruption. The main area of 3D coverage is located between 9°42’N and 9°57’N, spanning ~28km along-axis, and was acquired along 94 (1 partial) prime lines shot across-axis and each ~24km-long. Pre-processing of the data acquired in this area is now well under way, with significant efforts targeted at amplitude spike removal. Current work focuses on setting up the 3D processing sequence up to the stack stage for a small group of inlines (axis-perpendicular grid lines spaced 37.5m apart) located over the “bull’s eye” site at 9°50’N, a sequence that will subsequently be applied to the whole dataset. At the meeting we will present stacked and migrated sections - inlines, crosslines, time slices - obtained through 3D processing. We will discuss results focusing on the characteristics of the axial magma body, whose detailed structure and along-axis segmentation will be resolved by the 3D data.

  9. Notes on Accuracy of Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Truncation-error analysis is a reliable tool in predicting convergence rates of discretization errors on regular smooth grids. However, it is often misleading in application to finite-volume discretization schemes on irregular (e.g., unstructured) grids. Convergence of truncation errors severely degrades on general irregular grids; a design-order convergence can be achieved only on grids with a certain degree of geometric regularity. Such degradation of truncation-error convergence does not necessarily imply a lower-order convergence of discretization errors. In these notes, irregular-grid computations demonstrate that the design-order discretization-error convergence can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all.

  10. Anti-inflammatory effects of vitamin E on adjuvant-induced arthritis in rats.

    PubMed

    Rossato, Mateus Fortes; Hoffmeister, Carin; Tonello, Raquel; de Oliveira Ferreira, Ana Paula; Ferreira, Juliano

    2015-04-01

    Vitamin E (vit-E) is a lipophilic antioxidant, and its anti-inflammatory activity is still not full characterized. Thus, our goal was to investigate the anti-inflammatory effect of repeated vit-E treatment in the arthritis induced by the intraplantar injection of complete Freund's adjuvant (CFA). We observed an increase in arthritis scores, interleukin-1β and H2O2 levels, neutrophil and macrophage infiltration, thermal hyperalgesia, mechanical allodynia, and loss of function induced by intraplantar CFA injection. These effects were unaltered after 1 day, partially reversed after 3 days, and inhibited after 9 days after vit-E treatment. Furthermore, the concentration of vit-E was reduced and that of tumor necrosis factor-alpha was increased in the CFA-injected paw. Both effects were reversed from 1 to 9 days after vit-E treatment. However, vit-E treatment did not alter CFA-induced edema at any time. Thus, vit-E treatment produced an anti-inflammatory effect of slow onset in CFA, which demonstrates a disease-modifying drug profile.

  11. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  12. New results of GridPix TPCs

    NASA Astrophysics Data System (ADS)

    van der Graaf, Harry

    2009-07-01

    The Gossip detector, being a GridPix TPC equipped with a thin layer of gas, is a promising alternative for Si tracking detectors. In addition, GridPix would be an interesting way to read out the gaseous phase volume of bi-phase Liquid Xe cryostats of v-less double beta decay and rare event (i.e. WIMP) search experiments.

  13. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the installed nacelles to be determined. Isolated nacelle mm were made at M=0.9 and M=1.1 for both the supersonic and transonic nozzle settings. AU of the isolated nacelle cases were run at alpha=0. Full configuration runs were to be made at Mach numbers of 0.9, 1.1, and 2.4 (the same as the wing/body and isolated nacelles). Both the isolated nacelles and installed nacelles were run with inlet conditions designed to give zero spillage. This was to be done in order to isolate the boattail effects as much as possible. Full configuration runs with the supersonic nozzles were completed for M=0.9 and 1.1 at a=4.0 and 6.0 (4 runs total) and with the transonic nozzles at M=0.9 and 1.1 at a=2.0, 4.0 and 6.0 (6 runs total). Drag breakdowns were completed for the M=0.9 and M= 1.1 showing favorable interference drag for both cases.

  14. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.

  15. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 1: Nonhydrostatic inertia-gravity modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.

  16. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  17. Comprehensive evaluation of power grid projects' investment benefits under the reform of transmission and distribution price

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng

    2017-03-01

    On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.

  18. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  19. Reference evapotranspiration from coarse-scale and dynamically downscaled data in complex terrain: Sensitivity to interpolation and resolution

    NASA Astrophysics Data System (ADS)

    Strong, Courtenay; Khatri, Krishna B.; Kochanski, Adam K.; Lewis, Clayton S.; Allen, L. Niel

    2017-05-01

    The main objective of this study was to investigate whether dynamically downscaled high resolution (4-km) climate data from the Weather Research and Forecasting (WRF) model provide physically meaningful additional information for reference evapotranspiration (E) calculation compared to the recently published GridET framework that uses interpolation from coarser-scale simulations run at 32-km resolution. The analysis focuses on complex terrain of Utah in the western United States for years 1985-2010, and comparisons were made statewide with supplemental analyses specifically for regions with irrigated agriculture. E was calculated using the standardized equation and procedures proposed by the American Society of Civil Engineers from hourly data, and climate inputs from WRF and GridET were debiased relative to the same set of observations. For annual mean values, E from WRF (EW) and E from GridET (EG) both agreed well with E derived from observations (r2 = 0.95, bias < 2 mm). Domain-wide, EW and EG were well correlated spatially (r2 = 0.89), however local differences ΔE =EW -EG were as large as +439 mm year-1 (+26%) in some locations, and ΔE averaged +36 mm year-1. After linearly removing the effects of contrasts in solar radiation and wind speed, which are characteristically less reliable under downscaling in complex terrain, approximately half the residual variance was accounted for by contrasts in temperature and humidity between GridET and WRF. These contrasts stemmed from GridET interpolating using an assumed lapse rate of Γ = 6.5 K km-1, whereas WRF produced a thermodynamically-driven lapse rate closer to 5 K km-1 as observed in mountainous terrain. The primary conclusions are that observed lapse rates in complex terrain differ markedly from the commonly assumed Γ = 6.5 K km-1, these lapse rates can be realistically resolved via dynamical downscaling, and use of constant Γ produces differences in E of order as large as 102 mm year-1.

  20. Matilda: A mass filtered nanocluster source

    NASA Astrophysics Data System (ADS)

    Kwon, Gihan

    Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.

  1. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  2. Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Hristov, A. N.; Harper, M.; Meinen, R.; Day, R.; Lopes, J.; Ott, T.; Venkatesh, A.

    2017-12-01

    In this analysis we used a spatially-explicit, bottom-up approach, based on animal inventories, feed intake, and feed intake-based emission factors to estimate county-level enteric (cattle) and manure (cattle, swine, and poultry) livestock methane emissions for the contiguous United States. Combined enteric and manure emissions were highest for counties in California's Central Valley. Overall, this analysis yielded total livestock methane emissions (8,916 Gg/yr; lower and upper bounds of 6,423 and 11,840 Gg/yr, respectively) for 2012 that are comparable to the current USEPA estimates for 2012 (9,295 Gg/yr) and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory (8,728 Gg/yr), used previously in a number of top-down studies. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR. As an example, methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. Thespatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

  3. Adaptive mesh refinement for characteristic grids

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-05-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.

  4. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  5. Local Earthquakes Tomography in the Southern Tyrrhenian Region (Italy): Geophysical and Petrological Inferences on Subducting Lithosphere

    NASA Astrophysics Data System (ADS)

    Calo, M.; Dorbath, C.; Luzio, D.; Rotolo, S. G.; D'Anna, G.

    2007-12-01

    The Calabrian Arc, Southern Italy, is characterised by the subduction of the Ionian lithosphere -since Middle Miocene- beneath the Tyrrhenian basin. The related Benioff zone is seismically active to a depth > 500 km. The tomoDD code [Zhang and Thurber, 2003] was adopted to perform the tomography, using a set of 2463 earthquakes located in the window 14°30' E - 17°E and 37°N - 41°N, and recorded by seismic networks of the INGV in the period 1981-2005. Several inversions were performed using different selections of absolute and differential data obtained varying the maximum RMS and the threshold of the inter-event distance. Various synthetic and experimental tests were executed to evaluate the resolution and stability of the tomographic inversion. The inversions carried out for the synthetic and the restoration-resolution test [Zhao et al., 1992] were repeated several times with the same procedure used in the inversion of experimental data. The lack of bias in the models, related to the different grid- node positions, was tested performing inversions rotating, translating and deforming the original grid. To evaluate the dependence on the initial model, several inversions were also done using different 1D and 3D models simulating slab features. Finally, 35 models resulting from the inversions were synthesized in an average model obtained by interpolating each velocity model into a fixed grid. Each velocity value interpolated was weighted with a corresponding DWS (Derivative Weight Sum) resulting thus a Weighted Average Velocity model. The highly resolved sections through the average Vp, Vs and Vp/Vs models allowed us to image several relevant features of the structure of the subducting Ionian slab and of the Southern Tyrrhenian mantle: -the hypocenters are localized in the NW dipping fast area (Vp>8.2 km/s), 50-60 km thick, most likely composed litospheric mantle. Just below, an aseismic low Vp zone (6.6 - 7.7 km/s) 20-25 km thick, is assigned to the partially hydrated (serpentinized) harzburgite. The relation between the decrease of Vp with increasing serpentinization in peridotites [Christensen, 2004] suggests that a Vp of 7.0 km/s can be achieved with a 30-40 vol % of serpentinization. The serpentinized harzburgite, which should coincide with the inner (i.e. colder) portion of the suducting slab, disappears at a depth of 230-250 km, closely corresponding to the experimentally determined maximum pressure stability of antigorite-chlorite assemblages in hydrous peridotites [ca. 8.0 GPa, Schmidt and Poli, 1998; Fumagalli and Poli, 2005]. The vanishing of the low-velocity region with increasing depth could thus be ascribed to the dehydration of the peridotite-serpentinite to less hydrous high pressure phases (e.g. the phase A) , whose seismic characteristics are akin to anhydrous lherzolite [Hacker et al., 2003]. Some other interesting features imaged in the tomography are instead related to the roots of the volcanism of the area (Aeolian islands): two vertically elongated low-velocity areas (Vp ≤ 7.0 km/s) and high Vp/Vs ratios (>1.85) characterize the mantle domains beneath Stromboli and Marsili volcanoes, reaching a maximum depth of 180 km. We relate these low-Vp, Vs and high Vp/Vs bodies to accumulation of significant amounts of mantle partial melts.

  6. High-resolution subgrid models: background, grid generation, and implementation

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  7. Parallel Visualization of Large-Scale Aerodynamics Calculations: A Case Study on the Cray T3E

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Crockett, Thomas W.

    1999-01-01

    This paper reports the performance of a parallel volume rendering algorithm for visualizing a large-scale, unstructured-grid dataset produced by a three-dimensional aerodynamics simulation. This dataset, containing over 18 million tetrahedra, allows us to extend our performance results to a problem which is more than 30 times larger than the one we examined previously. This high resolution dataset also allows us to see fine, three-dimensional features in the flow field. All our tests were performed on the Silicon Graphics Inc. (SGI)/Cray T3E operated by NASA's Goddard Space Flight Center. Using 511 processors, a rendering rate of almost 9 million tetrahedra/second was achieved with a parallel overhead of 26%.

  8. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkul, R; Nejaiman, S; Pokhrel, D

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic themore » range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. For 18MV, 56% and 18% of all measured-values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. Conclusion: Reliable Skin-dose calculations by TPS can be very difficult due to steep dose-gradient and inaccurate beam-modelling in buildup region.Our results showed that Eclipse over-estimates surface-dose.Impact of grid-size is also significant,surface-dose increased up to 40% from 1mm to 2.5mm,however, 1mm calculated-values closely agrees with measurements. Due to large uncertnities in skin-dose predictions from TPS, outmost caution must be exercised when skin dose is evaluated,a sufficiently smaller grid-size(1mm)can improve the accuracy and MOSFETs can be used for verification.« less

  9. Control and prediction for blackouts caused by frequency collapse in smart grids.

    PubMed

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  10. Control and prediction for blackouts caused by frequency collapse in smart grids

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  11. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  12. 75 FR 49921 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Electric Company submits tariff filing per 35.13(a)(2)(iii) Attachment Q 2.0.0 to be effective 9/1/ 2010... Numbers: ER10-2154-000. Applicants: National Grid Glenwood Energy Center LLC. Description: National Grid Glenwood Energy Center LLC submits tariff filing [[Page 49922

  13. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  14. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    NASA Astrophysics Data System (ADS)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  15. Parallel Grid Manipulations in Earth Science Calculations

    NASA Technical Reports Server (NTRS)

    Sawyer, W.; Lucchesi, R.; daSilva, A.; Takacs, L. L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center is moving its data assimilation system to massively parallel computing platforms. This parallel implementation of GEOS DAS will be used in the DAO's normal activities, which include reanalysis of data, and operational support for flight missions. Key components of GEOS DAS, including the gridpoint-based general circulation model and a data analysis system, are currently being parallelized. The parallelization of GEOS DAS is also one of the HPCC Grand Challenge Projects. The GEOS-DAS software employs several distinct grids. Some examples are: an observation grid- an unstructured grid of points at which observed or measured physical quantities from instruments or satellites are associated- a highly-structured latitude-longitude grid of points spanning the earth at given latitude-longitude coordinates at which prognostic quantities are determined, and a computational lat-lon grid in which the pole has been moved to a different location to avoid computational instabilities. Each of these grids has a different structure and number of constituent points. In spite of that, there are numerous interactions between the grids, e.g., values on one grid must be interpolated to another, or, in other cases, grids need to be redistributed on the underlying parallel platform. The DAO has designed a parallel integrated library for grid manipulations (PILGRIM) to support the needed grid interactions with maximum efficiency. It offers a flexible interface to generate new grids, define transformations between grids and apply them. Basic communication is currently MPI, however the interfaces defined here could conceivably be implemented with other message-passing libraries, e.g., Cray SHMEM, or with shared-memory constructs. The library is written in Fortran 90. First performance results indicate that even difficult problems, such as above-mentioned pole rotation- a sparse interpolation with little data locality between the physical lat-lon grid and a pole rotated computational grid- can be solved efficiently and at the GFlop/s rates needed to solve tomorrow's high resolution earth science models. In the subsequent presentation we will discuss the design and implementation of PILGRIM as well as a number of the problems it is required to solve. Some conclusions will be drawn about the potential performance of the overall earth science models on the supercomputer platforms foreseen for these problems.

  16. Evaluation of automated global mapping of Reference Soil Groups of WRB2015

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria

    2017-04-01

    SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992

  17. Glycosylation of Cblns attenuates their receptor binding.

    PubMed

    Rong, Yongqi; Bansal, Parmil K; Wei, Peng; Guo, Hong; Correia, Kristen; Parris, Jennifer; Morgan, James I

    2018-05-18

    Cbln1 is the prototype of a family (Cbln1-Cbln4) of secreted glycoproteins and is essential for normal synapse structure and function in cerebellum by bridging presynaptic Nrxn to postsynaptic Grid2. Here we report the effects of glycosylation on the in vitro receptor binding properties of Cblns. Cbln1, 2 and 4 harbor two N-linked glycosylation sites, one at the N-terminus is in a region implicated in Nrxn binding and the second is in the C1q domain, a region involved in Grid2 binding. Mutation (asparagine to glutamine) of the N-terminal site, increased neurexin binding whereas mutation of the C1q site markedly increased Grid2 binding. These mutations did not influence subunit composition of Cbln trimeric complexes (mediated through the C1q domain) nor their assembly into hexamers (mediated by the N-terminal region). Therefore, glycosylation likely masks the receptor binding interfaces of Cblns. As Cbln4 has undetectable Grid2 binding in vitro we assessed whether transgenic expression of wild type Cbln4 or its glycosylation mutants rescued the Cbln1-null phenotype in vivo. Cbln4 partially rescued and both glycosylation mutants completely rescued ataxia in cbln1-null mice. Thus Cbln4 has intrinsic Grid2 binding that is attenuated by glycosylation, and glycosylation mutants exhibit gain of function in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Numerical pricing of options using high-order compact finite difference schemes

    NASA Astrophysics Data System (ADS)

    Tangman, D. Y.; Gopaul, A.; Bhuruth, M.

    2008-09-01

    We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black-Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.

  19. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  20. On non-parametric maximum likelihood estimation of the bivariate survivor function.

    PubMed

    Prentice, R L

    The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.

  1. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  2. The Effect of Rician Fading and Partial-Band Interference on Noise- Normalized Fast Frequency-Hopped MFSK Receivers

    DTIC Science & Technology

    1994-03-01

    FSK 16. PmCI coot 17. SECURITY CLASSWsAI1OW IL SICUURW CLA$SIICATION SECURITY CLASSIICATION 20. LIMIATION Of ABSTRACT CW REPOW ? OF TiNS PAU OF ...hop k of a symbol when partial-band interference is present is obtained from (11) and the linear transformation of random variables given by (3) as...from (13) and the transformation of random variables indicated by (9) as [16] fzwjm(zwik) = f cTak!X. (Xmk, = ZmkOkI17) f~(0,kdo . -- (,.U(zk’ )fE2

  3. Complications and results of subdural grid electrode implantation in epilepsy surgery.

    PubMed

    Lee, W S; Lee, J K; Lee, S A; Kang, J K; Ko, T S

    2000-11-01

    We assessed the risk of delayed subdural hematoma and other complications associated with subdural grid implantation. Forty-nine patients underwent subdural grid implantation with/without subdural strips or depth electrodes from January 1994 to August 1998. To identify the risk associated with subdural grid implantation, a retrospective review of all patients' medical records and radiological studies was performed. The major complications of 50 subdural grid electrode implantations were as follows: four cases (7.8%) of delayed subdural hematoma at the site of the subdural grid, requiring emergency operation; two cases (3.9%) of infection; one case (2.0%) of epidural hematoma; and one case (2.0%) of brain swelling. After subdural hematoma removal, the electrodes were left in place. CCTV monitoring and cortical stimulation studies were continued thereafter. No delayed subdural hematoma has occurred since routine placement of subdural drains was begun. In our experience the worst complication of subdural grid implantation has been delayed subdural hematoma. Placement of subdural drains and close observation may be helpful to prevent this serious complication.

  4. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  5. Efficient polymer light-emitting diode with air-stable aluminum cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbaszadeh, D.; Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven; Wetzelaer, G. A. H.

    2016-03-07

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlO{sub x}) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtainedmore » by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlO{sub x} cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlO{sub x} into the emissive layer. PLEDs with an AlO{sub x} cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.« less

  6. Molecular characterization of Echinococcus granulosus isolates from Bulgarian human cystic echinococcosis patients.

    PubMed

    Marinova, Irina; Spiliotis, Markus; Wang, Junhua; Muhtarov, Marin; Chaligiannis, Ilias; Sotiraki, Smaro; Rainova, Iskra; Gottstein, Bruno; Boubaker, Ghalia

    2017-03-01

    Although cystic echinococcosis (CE) is highly endemic in Bulgaria, there is still scarce information about species and/or genotypes of the Echinococcus granulosus complex that infect humans. Our study tackled the genetic diversity of E. granulosus complex in a cohort of 30 Bulgarian CE patients. Ten animal E. granulosus isolates from neighboring Greece were additionally included. Specimens were comparatively analyzed for partial sequences of five mitochondrial (mt) (cox I, nad I, rrnS, rrnL, and atp6) and three nuclear (nc) genes (act II, hbx 2, and ef-1α) using a PCR-sequencing approach. All 30 Bulgarian isolates were identified as E. granulosus sensu stricto (s.s.) and were showing identical sequences for each of the three examined partial nc gene markers. Based upon concatenated sequences from partial mtDNA markers, we detected 10 haplotypes: 6 haplotypes (H1-H6) clustering with E. granulosus s.s. (G1) and 4 haplotypes (H9-H13) grouping with E. granulosus s.s. (G3), with H1 and H10 being the most frequent in Bulgarian patients. The haplotypes H1, H4, and H11 were also present in Greek hydatid cyst samples of animal origin. In conclusion, E. granulosus s.s. (G1 and G3 genotypes) is the only causative agent found so far to cause human CE in Bulgaria. However, further studies including larger sample sizes and other additional geographic regions in Bulgaria will have to be performed to confirm our results.

  7. Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1980-01-01

    A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).

  8. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies

    NASA Astrophysics Data System (ADS)

    Davis, Sean M.; Rosenlof, Karen H.; Hassler, Birgit; Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry; Fujiwara, Masatomo; Damadeo, Robert

    2016-09-01

    In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.

  9. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids

    NASA Astrophysics Data System (ADS)

    Forbes, Kevin F.; St. Cyr, O. C.

    2008-10-01

    This study uses local (ground-based) magnetometer data as a proxy for geomagnetically induced currents (GICs) to address whether there is a space weather/electricity market relationship in 12 geographically disparate power grids: Eirgrid, the power grid that serves the Republic of Ireland; Scottish and Southern Electricity, the power grid that served northern Scotland until April 2005; Scottish Power, the power grid that served southern Scotland until April 2005; the power grid that serves the Czech Republic; E.ON Netz, the transmission system operator in central Germany; the power grid in England and Wales; the power grid in New Zealand; the power grid that serves the vast proportion of the population in Australia; ISO New England, the power grid that serves New England; PJM, a power grid that over the sample period served all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia; NYISO, the power grid that serves New York State; and the power grid in the Netherlands. This study tests the hypothesis that GIC levels (proxied by the time variation of local magnetic field measurements (dH/dt)) and electricity grid conditions are related using Pearson's chi-squared statistic. The metrics of power grid conditions include measures of electricity market imbalances, energy losses, congestion costs, and actions by system operators to restore grid stability. The results of the analysis indicate that real-time market conditions in these power grids are statistically related with the GIC proxy.

  10. The GENIUS Grid Portal and robot certificates: a new tool for e-Science

    PubMed Central

    Barbera, Roberto; Donvito, Giacinto; Falzone, Alberto; La Rocca, Giuseppe; Milanesi, Luciano; Maggi, Giorgio Pietro; Vicario, Saverio

    2009-01-01

    Background Grid technology is the computing model which allows users to share a wide pletora of distributed computational resources regardless of their geographical location. Up to now, the high security policy requested in order to access distributed computing resources has been a rather big limiting factor when trying to broaden the usage of Grids into a wide community of users. Grid security is indeed based on the Public Key Infrastructure (PKI) of X.509 certificates and the procedure to get and manage those certificates is unfortunately not straightforward. A first step to make Grids more appealing for new users has recently been achieved with the adoption of robot certificates. Methods Robot certificates have recently been introduced to perform automated tasks on Grids on behalf of users. They are extremely useful for instance to automate grid service monitoring, data processing production, distributed data collection systems. Basically these certificates can be used to identify a person responsible for an unattended service or process acting as client and/or server. Robot certificates can be installed on a smart card and used behind a portal by everyone interested in running the related applications in a Grid environment using a user-friendly graphic interface. In this work, the GENIUS Grid Portal, powered by EnginFrame, has been extended in order to support the new authentication based on the adoption of these robot certificates. Results The work carried out and reported in this manuscript is particularly relevant for all users who are not familiar with personal digital certificates and the technical aspects of the Grid Security Infrastructure (GSI). The valuable benefits introduced by robot certificates in e-Science can so be extended to users belonging to several scientific domains, providing an asset in raising Grid awareness to a wide number of potential users. Conclusion The adoption of Grid portals extended with robot certificates, can really contribute to creating transparent access to computational resources of Grid Infrastructures, enhancing the spread of this new paradigm in researchers' working life to address new global scientific challenges. The evaluated solution can of course be extended to other portals, applications and scientific communities. PMID:19534747

  11. The GENIUS Grid Portal and robot certificates: a new tool for e-Science.

    PubMed

    Barbera, Roberto; Donvito, Giacinto; Falzone, Alberto; La Rocca, Giuseppe; Milanesi, Luciano; Maggi, Giorgio Pietro; Vicario, Saverio

    2009-06-16

    Grid technology is the computing model which allows users to share a wide pletora of distributed computational resources regardless of their geographical location. Up to now, the high security policy requested in order to access distributed computing resources has been a rather big limiting factor when trying to broaden the usage of Grids into a wide community of users. Grid security is indeed based on the Public Key Infrastructure (PKI) of X.509 certificates and the procedure to get and manage those certificates is unfortunately not straightforward. A first step to make Grids more appealing for new users has recently been achieved with the adoption of robot certificates. Robot certificates have recently been introduced to perform automated tasks on Grids on behalf of users. They are extremely useful for instance to automate grid service monitoring, data processing production, distributed data collection systems. Basically these certificates can be used to identify a person responsible for an unattended service or process acting as client and/or server. Robot certificates can be installed on a smart card and used behind a portal by everyone interested in running the related applications in a Grid environment using a user-friendly graphic interface. In this work, the GENIUS Grid Portal, powered by EnginFrame, has been extended in order to support the new authentication based on the adoption of these robot certificates. The work carried out and reported in this manuscript is particularly relevant for all users who are not familiar with personal digital certificates and the technical aspects of the Grid Security Infrastructure (GSI). The valuable benefits introduced by robot certificates in e-Science can so be extended to users belonging to several scientific domains, providing an asset in raising Grid awareness to a wide number of potential users. The adoption of Grid portals extended with robot certificates, can really contribute to creating transparent access to computational resources of Grid Infrastructures, enhancing the spread of this new paradigm in researchers' working life to address new global scientific challenges. The evaluated solution can of course be extended to other portals, applications and scientific communities.

  12. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  13. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 1: Nonhydrostatic inertia–gravity modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less

  14. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2018-05-30

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  15. Demonstrating the Superiority of the FCB Grid as a Tool for Students To Write Effective Advertising Strategy.

    ERIC Educational Resources Information Center

    Yssel, Johan C.

    Although the FCB (Foote, Cone, & Belding) grid was never intended to serve as an educational tool, it can be applied successfully in advertising classes to address the three areas that S. E. Moriarty considers to be the minimum for writing strategy. To demonstrate the superiority of the FCB grid as a pedagogical tool, a study analyzed…

  16. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less

  17. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  18. Estimated tetrachloroethylene (C2Cl4) emissions for 1992 2014 in China and a high resolution gridded emission in 2010

    NASA Astrophysics Data System (ADS)

    Bie, P.; Li, Z.; Hu, J.

    2016-12-01

    Estimated tetrachloroethylene (C2Cl4) emissions for 1992 2014 in China and a high resolution gridded emission in 2010 Pengju Bie1, Zhifang Li1, Jianxin Hu1,*1Collaborative Innovation Center for Regional Environmental Quality, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China *Corresponding author E-mail: jianxin@pku.edu.cnTel: 86-10-62756593 Fax: 86-10-62760755 Evaluating the contribution from tetrachloroethylene (C2Cl4, PCE) to stratospheric halogen loading requires the knowledge of the spatial and temporal variability of emissions, and thus the tropospheric degradation and removal. And the short atmospheric lifetime (90 days) leads to a large regional variability. This study estimated the emissions of China from 1992 to 2014, based on emission functions and aggregated information given reasonable uncertainties. Results show that the emissions increased from 5.3(3.8 7.0) Gg to 176.9(131.2 232.1) Gg with a moderate growth rate of 17.3%/yr during 1992 2014. More than 97.3% of emissions stemmed from solvents sector. Considering the GDP data availability and the comparable estimate to that of top-down method in 2010, we developed a gridded emission inventory on a 0.5°×0.5° latitude-longitude grid of this year. Due to the more advanced social-economic conditions and more intensive industrial establishment, greater PCE emissions were observed to originate from East China, especially for Jiangsu and Zhejiang provinces, and Beijing-Tianjin-Hebei region and Pearl River Delta (PRD) region.

  19. Adaptive refinement tools for tetrahedral unstructured grids

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)

    2011-01-01

    An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.

  20. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficiency was higher for configurations with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configurations but had limited improvement on scatter-induced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration), resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation). Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configurations in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficial (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter. PMID:23635285

  1. The Effect of Patient and Surgical Characteristics on Renal Function After Partial Nephrectomy.

    PubMed

    Winer, Andrew G; Zabor, Emily C; Vacchio, Michael J; Hakimi, A Ari; Russo, Paul; Coleman, Jonathan A; Jaimes, Edgar A

    2018-06-01

    The purpose of the study was to identify patient and disease characteristics that have an adverse effect on renal function after partial nephrectomy. We conducted a retrospective review of 387 patients who underwent partial nephrectomy for renal tumors between 2006 and 2014. A line plot with a locally weighted scatterplot smoothing was generated to visually assess renal function over time. Univariable and multivariable longitudinal regression analyses incorporated a random intercept and slope to evaluate the association between patient and disease characteristics with renal function after surgery. Median age was 60 years and most patients were male (255 patients [65.9%]) and white (343 patients [88.6%]). In univariable analysis, advanced age at surgery, larger tumor size, male sex, longer ischemia time, history of smoking, and hypertension were significantly associated with lower preoperative estimated glomerular filtration rate (eGFR). In multivariable analysis, independent predictors of reduced renal function after surgery included advanced age, lower preoperative eGFR, and longer ischemia time. Length of time from surgery was strongly associated with improvement in renal function among all patients. Independent predictors of postoperative decline in renal function include advanced age, lower preoperative eGFR, and longer ischemia time. A substantial number of subjects had recovery in renal function over time after surgery, which continued past the 12-month mark. These findings suggest that patients who undergo partial nephrectomy can experience long-term improvement in renal function. This improvement is most pronounced among younger patients with higher preoperative eGFR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    NASA Astrophysics Data System (ADS)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  3. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  4. Surface debris inventory at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.

    1992-08-01

    An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less

  5. Surface debris inventory at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.

    1992-08-01

    An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less

  6. [Research of λ-cyhalothrin affect synaptic development in hippocampus by interfering with estrogen action].

    PubMed

    Zhang, Long; Wang, Qunan; Xia, Xin; Li, Nian; Yang, Chengwei

    2015-08-01

    To explore the effects of λ-cyhalothrin on hippocampus by interfering with estrogen. The healthy female ICR mice of postnatal 28 days were random divided into 12 groups, 4 of those were sham-operation include control, λ-cyhalothrin (LCT, 3.0 µg/g), Letrozole (Let, 1.0 µg/g), and LCT (3.0 µg/g)+Let (1.0 µg/g); and the last 8 were ovariectomized include OVX, Estradiol (E2, 10.0 µg/g), LCT, Let, E2+LCT, E2+Let, LCT+Let, E2+LCT+Let. 10 mice in every group received drugs by intraperitoneal injection for 2 days. Then half of every group initiate the ethological test (open field test and Morris water maze) 24 h later. The last half animals were sacrificed to made frozen section for immunofluorescent assay of postsynaptic density protein 95 (PSD95). In ethological test, campared with Sham, OVX can lengthen incubation period in the first grid and to get on the platform (P < 0.05); campared with OVX, OVX+E2 can increase the total numbers of through grid and shorten the incubation period to get on the platform (P < 0.05); campared with OVX+E2, OVX+E2+LCT can reduce the number of grid and standing, lengthen incubation period to the platform (P < 0.05); campared with Sham, Sham+LCT can lengthen incubation period to the platform of Sham mice (P < 0.05), but campared with OVX, OVX+LCT can shoten incubation period in the first grid and to get on the platform in OVX mice (P < 0.05); campared with Sham+Let, Sham+LCT+Let can lengthen incubation period in the first grid, reduce the the number of grid and standing (P < 0.05). In the Immunohistochemical fluorescence experiment we find that, campared with Sham, OVX can reduce the expression of PSD95 in CA1,CA3 and DG (P < 0.05); however campared with OVX, E2 or LCT can both inhibit the effect of OVX (P < 0.05); campared with Sham, Sham+LCT can reduce the expression of PSD95, the same result when OVX+E2+LCT campared with OVX+E2 (P < 0.05); campared with OVX+E2+Let, OVX+E2+LCT+Let can reduce the expression of PSD95 in CA3 (P < 0.05); campared with OVX+Let, OVX+LCT+Let can increase the expression of PSD95 in DG (P < 0.05). When few estrogen exist in the body, LCT can show estrogen-like action to promote hippocampal synaptic development; but when circulating estrogen exist, LCT can inhibit synaptic development by interfering estrogen.

  7. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  8. The footprint of atmospheric turbulence in power grid frequency measurements

    NASA Astrophysics Data System (ADS)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (< 1 \\text{s}) that are below the activation time of frequency control. Our results are in accordance with previous numerical studies of self-organized synchronization in power grids under intermittent perturbation and give rise to new challenges for a stable operation of future power grids fed by a high share of renewable generation.

  9. Chromosomal aberrations in Sigmodon hispidus from a Superfund site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, B.; McBee, K.; Lochmiller, R.

    1995-12-31

    Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the referencemore » grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids.« less

  10. Sex Variations in Youth Anxiety Symptoms: Effects of Pubertal Development and Gender Role Orientation

    ERIC Educational Resources Information Center

    Carter, Rona; Silverman, Wendy K.; Jaccard, James

    2011-01-01

    This study evaluated whether pubertal development and gender role orientation (i.e., masculinity and femininity) can partially explain sex variations in youth anxiety symptoms among clinic-referred anxious youth (N = 175; ages 9-13 years; 74% Hispanic; 48% female). Using youth and parent ratings of youth anxiety symptoms, structural equation…

  11. Resistive-Type Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Martini, L.; Bocchi, M.; Angeli, G.

    Among the wide range of High-Temperature Superconducting (HTS) materials presently known Bismuth Strontium Calcium Copper Oxide (BSCCO) is a very suitable candidate for power applications either at low temperature (e.g. <30K) at any field or at high temperature (e.g. 77K) in self-field conditions. This is due to several advantages of BSCCO from an electrical, thermal, mechanical and economic point of view. In particular, BSCCO has been proven to be particularly suitable for hybrid current leads and HTS cables. However, BSCCO-based Superconducting Fault Current Limiter (SFCL) applications have been an important issue within the Ricerca sul Sistema Energetico (RSE) S.p.A. R&D portfolio in the last decade. The SFCL project, funded in the framework of a R&D national project, started focusing on a preliminary single-phase device, which was submitted to dielectric and short-circuit current testing. The first success paved the way for the finalization of the remaining two phases and the final result was a three-phase resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes that was installed in the S. Dionigi substation, belonging to the Italian utility A2A Reti Elettriche S.p.A. (A2A), in the Milan MV distribution grid. The in-field activity lasted for more than two years, demonstrating the SFCL capability to cope with the grid in every-day operating conditions. Moreover, at the end of the experimentation, the SFCL device was able to perform a true limitation during a three-phase fault, thereby becoming one of the first SFCL devices in the world (the first in Italy) installed in a real grid and to have limited a real short-circuit current.

  12. SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less

  13. Environmental DNA as a ‘Snapshot’ of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan

    PubMed Central

    Takahashi, Kohji; Sawada, Hideki; Murakami, Hiroaki; Tsuji, Satsuki; Hashizume, Hiroki; Kubonaga, Shou; Horiuchi, Tomoya; Hongo, Masamichi; Nishida, Jo; Okugawa, Yuta; Fujiwara, Ayaka; Fukuda, Miho; Hidaka, Shunsuke; Suzuki, Keita W.; Miya, Masaki; Araki, Hitoshi; Yamanaka, Hiroki; Maruyama, Atsushi; Miyashita, Kazushi; Masuda, Reiji; Minamoto, Toshifumi; Kondoh, Michio

    2016-01-01

    Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R2 value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10–150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a ‘snapshot’ of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA. PMID:26933889

  14. Recent enhancements to the GRIDGEN structured grid generation system

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Chawner, John R.

    1992-01-01

    Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D.

  15. Atomistic Simulations of Surface Cross-Slip Nucleation in Face-Centered Cubic Nickel and Copper (Postprint)

    DTIC Science & Technology

    2013-02-15

    molecular dynamics code, LAMMPS [9], developed at Sandia National Laboratory. The simulation cell is a rectangular parallelepiped, with the z-axis...with assigned energies within LAMMPs of greater than 4.42 eV (Ni) or 3.52 eV (Cu) (the energy of atoms in the stacking fault region), the partial...molecular dynamics code LAMMPS , which was developed at Sandia National Laboratory by Dr. Steve Plimpton and co-workers. This work was supported by the

  16. Ground state of the time-independent Gross Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Dion, Claude M.; Cancès, Eric

    2007-11-01

    We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid. Program summaryProgram title: GPODA Catalogue identifier: ADZN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5339 No. of bytes in distributed program, including test data, etc.: 19 426 Distribution format: tar.gz Programming language: Fortran 90 Computer: ANY (Compilers under which the program has been tested: Absoft Pro Fortran, The Portland Group Fortran 90/95 compiler, Intel Fortran Compiler) RAM: From <1 MB in 1D to ˜10 MB for a large 3D grid Classification: 2.7, 4.9 External routines: LAPACK, BLAS, DFFTPACK Nature of problem: The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is obtained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463]. The GPE is a nonlinear Schrödinger-like equation, including here a confining potential. The stationary state of a BEC is obtained by finding the ground state of the time-independent GPE, i.e., the order parameter that minimizes the energy. In addition to the standard three-dimensional GPE, tight traps can lead to effective two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered. Solution method: The ground state of the time-independent of the GPE is calculated using the Optimal Damping Algorithm [E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82]. Two sets of programs are given, using either a spectral representation of the order parameter [C.M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706], suitable for a (quasi) harmonic trapping potential, or by discretizing the order parameter on a spatial grid. Running time: From seconds in 1D to a few hours for large 3D grids

  17. SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan: Hodge, Bri-Mathias

    This presentation provides a Smart-DS project overview and status update for the ARPA-e GRID DATA program meeting 2017, including distribution systems, models, and scenarios, as well as opportunities for GRID DATA collaborations.

  18. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  19. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2017-12-09

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    PubMed

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  1. 75 FR 76453 - CAlifornians for Renewable Energy, Inc., (CARE), and Barbara Durkin v. National Grid, Cape Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-9-000] CAlifornians for Renewable Energy, Inc., (CARE), and Barbara Durkin v. National Grid, Cape Wind, and the Massachusetts...), CAlifornians for Renewable Energy, Inc. (CARE) and Barbara Durkin (Complainants) filed a complaint against...

  2. 50 CFR Figure 13 to Part 223 - Single Grid Hard TED Escape Opening

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Single Grid Hard TED Escape Opening 13 Figure 13 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt...

  3. 6th Annual Earth System Grid Federation Face to Face Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.

    The Sixth Annual Face-to-Face (F2F) Conference of the Earth System Grid Federation (ESGF), a global consortium of international government agencies, institutions, and companies dedicated to the creation, management, analysis, and distribution of extreme-scale scientific data, was held December 5–9, 2016, in Washington, D.C.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk

    The core vision of the smart grid concept is the realization of reliable two-­way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-­grid GOOSE messages with IEC-­61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less

  5. Grid computing technology for hydrological applications

    NASA Astrophysics Data System (ADS)

    Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.

    2011-06-01

    SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.

  6. TRANEXAMIC ACID ACTION ON LIVER REGENERATION AFTER PARTIAL HEPATECTOMY: EXPERIMENTAL MODEL IN RATS.

    PubMed

    Sobral, Felipe Antonio; Daga, Henrique; Rasera, Henrique Nogueira; Pinheiro, Matheus da Rocha; Cella, Igor Furlan; Morais, Igor Henrique; Marques, Luciana de Oliveira; Collaço, Luiz Martins

    2016-01-01

    Different lesions may affect the liver resulting in harmful stimuli. Some therapeutic procedures to treat those injuries depend on liver regeneration to increase functional capacity of this organ. Evaluate the effects of tranexamic acid on liver regeneration after partial hepatectomy in rats. 40 rats (Rattus norvegicus albinus, Rodentia mammalia) of Wistar-UP lineage were randomly divided into two groups named control (CT) and tranexamic acid (ATX), with 20 rats in each. Both groups were subdivided, according to liver regeneration time of 32 h or seven days after the rats had been operated. The organ regeneration was evaluated through weight and histology, stained with HE and PCNA. The average animal weight of ATX and CT 7 days groups before surgery were 411.2 g and 432.7 g, and 371.3 g and 392.9 g after the regeneration time, respectively. The average number of mitotic cells stained with HE for the ATX and CT 7 days groups were 33.7 and 32.6 mitosis, and 14.5 and 14.9 for the ATX and CT 32 h groups, respectively. When stained with proliferating cell nuclear antigen, the numbers of mitotic cells counted were 849.7 for the ATX 7 days, 301.8 for the CT 7 days groups, 814.2 for the ATX 32 hand 848.1 for the CT 32 h groups. Tranexamic acid was effective in liver regeneration, but in longer period after partial hepatectomy. Muitas são as injúrias que acometem o fígado e levam a estímulo lesivo. Alguns procedimentos terapêuticos para tratamento dessas lesões dependem da regeneração hepática para aumentar a sua capacidade funcional. Avaliar o efeito do ácido tranexâmico na regeneração hepática após hepatectomia parcial em ratos. Foram utilizados 40 ratos (Rattus norvegicus albinus, Rodentia mammalia) convencionais da linhagem Wistar-UP. Foram divididos aleatoriamente em dois grupos de 20: grupo controle (CT) e grupo ácido tranexâmico (ATX). Cada um deles foi divido em dois subgrupos para avaliar a regeneração hepática no tempo de 32 h e 7 dias do pós-operatório. A regeneração do órgão foi avaliada quanto ao peso e histologia, sendo esta última por hematoxilina-eosina e antígeno nuclear de proliferação celular. A média dos pesos dos animais dos grupos ATX 7 dias e CT 7 dias no pré-operatório foram de 411,2 g e 432,7 g, respectivamente, e após a regeneração foram de 371,3 g e 392,9 g. As médias das taxas de mitose coradas por HE dos dois grupos em 7 dias foram de 33,7 e 32,6 mitoses, respectivamente, e de 14,5 e 14,9 mitoses para os grupos ATX e CT 32 h. A contagem de células por antígeno nuclear de proliferação celular mostrou valores de 849,7 para o grupo ATX 7 dias e 301,8 para o CT 7 dias; 814,2 para o grupo ATX 32 h e 848,1 para o CT 32 h. O ácido tranexâmico mostrou-se efetivo na regeneração hepática somente em período mais longo de observação após hepatectomia parcial.

  7. SEE-GRID eInfrastructure for Regional eScience

    NASA Astrophysics Data System (ADS)

    Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel

    In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure compatible with European developments, and empowering the scientists in the region in equal participation in the use of pan- European infrastructures, is materializing through the above initiatives. This model has a number of concrete operational and organizational guidelines which can be adapted to help e-Infrastructure developments in other world regions. In this paper we review the most important developments and contributions by the SEEGRID- SCI project.

  8. STAMMEX high resolution gridded daily precipitation dataset over Germany: a new potential for regional precipitation climate research

    NASA Astrophysics Data System (ADS)

    Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel

    2014-05-01

    We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present numerous application of the STAMMEX grids spanning from case studies of the major Central European floods to long-term changes in different precipitation statistics, including those accounting for the alternation of dry and wet periods and precipitation intensities associated with prolonged rainy episodes.

  9. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  10. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  11. Parallelization Issues and Particle-In Codes.

    NASA Astrophysics Data System (ADS)

    Elster, Anne Cathrine

    1994-01-01

    "Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on the simulation may lead to further improvements. For example, in the case of mean particle drift, it is often advantageous to partition the grid primarily along the direction of the drift. The particle-in-cell codes for this study were tested using physical parameters, which lead to predictable phenomena including plasma oscillations and two-stream instabilities. An overview of the most central references related to parallel particle codes is also given.

  12. A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Ralph C.; Fleming, Scott W.; Gordon, Karl D.

    The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli and Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanzmore » and Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T {sub eff} = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope . Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.« less

  13. A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions

    NASA Astrophysics Data System (ADS)

    Bohlin, Ralph C.; Mészáros, Szabolcs; Fleming, Scott W.; Gordon, Karl D.; Koekemoer, Anton M.; Kovács, József

    2017-05-01

    The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli & Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz & Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T eff = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope. Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

  14. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  16. Comparison of the Defense Meteorological Satellite Program (DMSP) and the NOAA Polar-Orbiting Operational Environmental Satellite (POES) Program,

    DTIC Science & Technology

    1985-10-01

    grid points on 1 /20 lat /long meshI 4 c. SST global scale analysis ( 1 or 100 km lat /long grid) .. d. SST climatic scale analysis (50 or 500 km lat ...long grid) e. SST monthly means (2 1 /20 or 250 km lat /long grid) 3. Analog Sea Surface Temperature Product Set ’-%". V" " a. GOSSTCOMP charts - weekly...Mercator contour charts, each a ., 500 by 500 lat /long segment, 1 °C contour interval b. Regional charts - set of three charts covering the U.S

  17. Effects of Land Surface Heterogeneity on Simulated Boundary-Layer Structures from the LES to the Mesoscale

    NASA Astrophysics Data System (ADS)

    Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens

    2017-04-01

    Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.

  18. A Two-Stage Procedure Toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Girimaji, Sharath S.

    2004-01-01

    The main objective of this article is to introduce and to show the implementation of a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS) and other hybrid models. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The first step is to solve the unsteady or steady Reynolds Averaged Navier-Stokes (URANS/RANS) equations. From this preprocessing step, the turbulence length-scale field is obtained. This is then used to compute the characteristic length-scale ratio between the turbulence scale and the grid spacing. Based on this ratio, we can assess the finest scale resolution that a given grid for a given flow can support. Along with other additional criteria, we are able to analytically identify the appropriate hybrid solver resolution for different regions of the flow. This procedure removes the grid dependency issue that affects the results produced by different hybrid procedures in solving unsteady flows. The formulation, implementation methodology, and validation example are presented. We implemented this capability in a production Computational Fluid Dynamics (CFD) code, PAB3D, for the simulation of unsteady flows.

  19. 9.9 Sales Grid Style Produces Results

    ERIC Educational Resources Information Center

    Blake, Robert R.; Mouton, Jane Srygley

    1970-01-01

    Selling effectiveness experiments have provided evidence that solution selling (problem solving) produces far better results than formula selling (sales technique oriented), hard sell, people-oriented selling, or order taking. (PT)

  20. Position Papers for the First Workshop on Principles and Practice of Constraint Programming Held in Newport, Rhode Island on April 28-30, 1993

    DTIC Science & Technology

    1993-04-30

    There are alternative methods to MBB’s, based on decomposition of space into disjoint cells. These include uniform grid method [Fr84], quadtree-based...space. The IIn grid and quadtree methods there is a trade off between the resolution of the cells (and thus quantity of the cells) and the effectiveness...Mathematics, 13, pp. 221-229, 1983. 9 IFr84] W.R. Franklin, Adaptive grids for geometric operations, Cartographica 21, 2 g 3, pp. 160-167, 1984. (Gun87

  1. Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    USGS Publications Warehouse

    Kraus, Richard T.; Holbrook, Christopher; Vandergoot, Christopher; Stewart, Taylor R.; Faust, Matthew D.; Watkinson, Douglas A.; Charles, Colin; Pegg, Mark; Enders, Eva C.; Krueger, Charles C.

    2018-01-01

    Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g., at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design.We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement, and habitat use. Performance of variably-spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle standard deviation: 5–30 degrees); (2) variable tag transmission intervals along each track (nominal delay: 15–300 seconds); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1500 m). From simulations, we quantified i) time between successive detections on any receiver (detection time), ii) time between successive detections on different receivers (transit time), and iii) distance between successive detections on different receivers (transit distance).In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km grid spacing, 5.7 days at 7 km, and 15.2 days at 25 km; for the 1500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km, and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio, and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted.By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids.

  2. Food Self-Sufficiency across scales: How local can we go?

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-04-01

    "Think global, act local" is a phrase often used in sustainability debates. Here, we explore the potential of regions to go for local supply in context of sustainable food consumption considering both the present state and the plausible future scenarios. We analyze data on the gridded crop calories production, the gridded livestock calories production, the gridded feed calories use and the gridded food calories consumption in 5' resolution. We derived these gridded data from various sources: Global Agro-ecological Zone (GAEZ v3.0), Gridded Livestock of the World (GLW), FAOSTAT, and Global Rural-Urban Mapping Project (GRUMP). For scenarios analysis, we considered changes in population, dietary patterns and possibility of obtaining the maximum potential yield. We investigate the food self-sufficiency multiple spatial scales. We start from the 5' resolution (i.e. around 10 km x 10 km in the equator) and look at 8 levels of aggregation ranging from the plausible lowest administrative level to the continental level. Results for the different spatial scales show that about 1.9 billion people live in the area of 5' resolution where enough calories can be produced to sustain their food consumption and the feed used. On the country level, about 4.4 billion population can be sustained without international food trade. For about 1 billion population from Asia and Africa, there is a need for cross-continental food trade. However, if we were able to achieve the maximum potential crop yield, about 2.6 billion population can be sustained within their living area of 5' resolution. Furthermore, Africa and Asia could be food self-sufficient by achieving their maximum potential crop yield and only round 630 million populations would be dependent on the international food trade. However, the food self-sufficiency status might differ under consideration of the future change in population, dietary patterns and climatic conditions. We provide an initial approach for investigating the regional and the local potential to address food security across multiple spatial scales. We identify the areas where one can depend more on local/regional products as a transition path towards sustainable consumption and production.

  3. On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data

    NASA Astrophysics Data System (ADS)

    Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei

    2014-01-01

    Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.

  4. Training Aids for Basic Combat Skills: Developing Map-Reading Skills

    DTIC Science & Technology

    2011-03-01

    types of training aids were developed for determining grid coordinates. Each training aid consisted of a set of self-study flashcards . One set of... flashcards contained scaled sections of topological maps and asked the Soldiers to find map features based on grid coordinates or to provide the grid...coordinates for a given map feature. The reverse of each flashcard provided feedback (i.e., correct answers and rationale to help the Soldier

  5. SU-F-T-508: A Collimator-Based 3-Dimensional Grid Therapy Technique in a Small Animal Radiation Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, J; Kong, V; Zhang, H

    Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D gridmore » therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.« less

  6. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and data acquisition [SCADA] system), which provides one sample of measurement every 2 to 5 seconds. Because PMUs provide more measurement data samples, PMU can improve electric grid reliability and observability. (Abstract shortened by UMI.)

  7. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    PubMed

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  8. A fast 1-D detector for imaging and time resolved SAXS experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.

    1999-02-01

    A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.

  9. Numerical simulation of rough-surface aerodynamics

    NASA Astrophysics Data System (ADS)

    Chi, Xingkai

    Computational fluid dynamics (CFD) simulations of flow over surfaces with roughness in which the details of the surface geometry must be resolved pose major challenges. The objective of this study is to address these challenges through two important engineering problems, where roughness play a critical role---flow over airfoils with accrued ice and flow and heat transfer over turbine blade surfaces roughened by erosion and/or deposition. CFD simulations of iced airfoils face two major challenges. The first is how to generate high-quality single- and multi-block structured grids for highly convoluted convex and concave surface geometries with multiple scales. In this study, two methods were developed for the generation of high-quality grids for such geometries. The method developed for single-block grids involves generating a grid about the clean airfoil, carving out a portion of that grid about the airfoil, replacing that portion with a grid that accounts for the accrued ice geometry, and performing elliptic smoothing. The method developed for multi-block grids involves a transition-layer grid to ensure jaggedness in the ice geometry does not propagate into the domain. It also involves a "thick" wrap-around grid about the ice to ensure grid lines clustered next to solid surfaces do not propagate as streaks of tightly packed grid lines into the domain along block boundaries. For multi-block grids, this study also developed blocking topologies that ensure solutions to multi-block grids converge to steady state as quickly as single-block grids. The second major challenge in CFD simulations of iced airfoils is not knowing when it will predict reliably because of uncertainties in the turbulence modeling. In this study, the effects of turbulence models in predicting lift, drag, and moment coefficients were examined for airfoils with rime ice (i.e., ice with jaggedness only) and with glaze ice (i.e., ice with multiple protruding horns and surface jaggedness) as a function of angle of attack. In this examination, three different CFD codes---WIND, FLUENT, and PowerFLOW were used to examine a variety of turbulence models, including Spalart-Allmaras, RNG k-epsilon, shear-stress transport, v2-f, and differential Reynolds stress with and without non-equilibrium wall functions. The accuracy of the CFD predictions was evaluated by comparing grid-independent solutions with measured experimental data. Results obtained show CFD with WIND and FLUENT to predict the aerodynamics of airfoils with rime ice reliably up to near stall for all turbulence models investigated. (Abstract shortened by UMI.)

  10. Electric vehicle battery durability and reliability under electric utility grid operations.

    DOT National Transportation Integrated Search

    2017-05-01

    Battery degradation is extremely important to EV technologies and is a function of several : factors, such as electrode chemistries, operating temperatures, and usage profiles (i.e. vehicle only : vs. vehicle-to-grid (V2G) applications). The goal of ...

  11. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.

  12. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  13. High Maneuverability Airframe: Investigation of Fin and Canard Sizing for Optimum Maneuverability

    DTIC Science & Technology

    2014-09-01

    overset grids (unified- grid); 5) total variation diminishing discretization based on a new multidimensional interpolation framework; 6) Riemann solvers to...Aerodynamics .........................................................................................3 3.1.1 Solver ...describes the methodology used for the simulations. 3.1.1 Solver The double-precision solver of a commercially available code, CFD ++ v12.1.1, 9

  14. Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo

    2010-05-01

    In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an integration on existing solutions. More specifically, the Open Geospatial Consortium (OGC) Web Services (OWS) specifications play a fundamental role in geospatial information sharing (e.g. in INSPIRE Implementing Rules, GEOSS architecture, GMES Services, etc.). On the Grid side, the gLite middleware, developed in the European EGEE (Enabling Grids for E-sciencE) Projects, is widely spread in Europe and beyond, proving its high scalability and it is one of the middleware chosen for the future European Grid Infrastructure (EGI) initiative. Therefore the convergence between OWS and gLite technologies would be desirable for a seamless access to the Grid capabilities through OWS-compliant systems. Anyway, to achieve this harmonization there are some obstacles to overcome. Firstly, a semantics mismatch must be addressed: gLite handle low-level (e.g. close to the machine) concepts like "file", "data", "instruments", "job", etc., while geo-information services handle higher-level (closer to the human) concepts like "coverage", "observation", "measurement", "model", etc. Secondly, an architectural mismatch must be addressed: OWS implements a Web Service-Oriented-Architecture which is stateless, synchronous and with no embedded security (which is demanded to other specs), while gLite implements the Grid paradigm in an architecture which is stateful, asynchronous (even not fully event-based) and with strong embedded security (based on the VO paradigm). In recent years many initiatives and projects have worked out possible approaches for implementing Grid-enabled OWSs. Just to mention some: (i) in 2007 the OGC has signed a Memorandum of Understanding with the Open Grid Forum, "a community of users, developers, and vendors leading the global standardization effort for grid computing."; (ii) the OGC identified "WPS Profiles - Conflation; and Grid processing" as one of the tasks in the Geo Processing Workflow theme of the OWS Phase 6 (OWS-6); (iii) several national, European and international projects investigated different aspects of this integration, developing demonstrators and Proof-of-Concepts; In this context, "gLite enablement of OpenGeospatial Web Services" (G-OWS) is an initiative started in 2008 by the European CYCLOPS, GENESI-DR, and DORII Projects Consortia in order to collect/coordinate experiences on the enablement of OWS on top of the gLite middleware [GOWS]. Currently G-OWS counts ten member organizations from Europe and beyond, and four European Projects involved. It broadened its scope to the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Its operational objectives are the following: i) to contribute to the OGC-OGF initiative; ii) to release a reference implementation as standard gLite APIs (under the gLite software license); iii) to release a reference model (including procedures and guidelines) for OWS Grid-ification, as far as gLite is concerned; iv) to foster and promote the formation of consortiums for participation to projects/initiatives aimed at building Grid-enabled SDIs To achieve this objectives G-OWS bases its activities on two main guiding principles: a) the adoption of a service-oriented architecture based on the information modelling approach, and b) standardization as a means of achieving interoperability (i.e. adoption of standards from ISO TC211, OGC OWS, OGF). In the first year of activity G-OWS has designed a general architectural framework stemming from the FP6 CYCLOPS studies and enriched by the outcomes of other projects and initiatives involved (i.e. FP7 GENESI-DR, FP7 DORII, AIST GeoGrid, etc.). Some proof-of-concepts have been developed to demonstrate the flexibility and scalability of such architectural framework. The G-OWS WG developed implementations of gLite-enabled Web Coverage Service (WCS) and Web Processing Service (WPS), and an implementation of a Shibboleth authentication for gLite-enabled OWS in order to evaluate the possible integration of Web and Grid security models. The presentation will aim to communicate the G-OWS organization, activities, future plans and means to involve the ESSI community. References [Berners-Lee 1996] T. Berners-Lee, "WWW: Past, present, and future". IEEE Computer, 29(10), Oct. 1996, pp. 69-77. [Foster 2001] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid. The International Journal ofHigh Performance Computing Applications", 15(3):200-222, Fall 2001 [GOWS] G-OWS WG, https://www.g-ows.org/, accessed: 15 January 2010

  15. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  16. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  17. Reservoir property grids improve with geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, J.

    1993-09-01

    Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resultingmore » grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.« less

  18. Simulating Virtual Terminal Area Weather Data Bases for Use in the Wake Vortex Avoidance System (Wake VAS) Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the research project, sounding datasets were generated for the region surrounding 9 major airports, including Dallas, TX, Boston, MA, New York, NY, Chicago, IL, St. Louis, MO, Atlanta, GA, Miami, FL, San Francico, CA, and Los Angeles, CA. The numerical simulation of winter and summer environments during which no instrument flight rule impact was occurring at these 9 terminals was performed using the most contemporary version of the Terminal Area PBL Prediction System (TAPPS) model nested from 36 km to 6 km to 1 km horizontal resolution and very detailed vertical resolution in the planetary boundary layer. The soundings from the 1 km model were archived at 30 minute time intervals for a 24 hour period and the vertical dependent variables as well as derived quantities, i.e., 3-dimensional wind components, temperatures, pressures, mixing ratios, turbulence kinetic energy and eddy dissipation rates were then interpolated to 5 m vertical resolution up to 1000 m elevation above ground level. After partial validation against field experiment datasets for Dallas as well as larger scale and much coarser resolution observations at the other 8 airports, these sounding datasets were sent to NASA for use in the Virtual Air Space and Modeling program. The application of these datasets being to determine representative airport weather environments to diagnose the response of simulated wake vortices to realistic atmospheric environments. These virtual datasets are based on large scale observed atmospheric initial conditions that are dynamically interpolated in space and time. The 1 km nested-grid simulated datasets providing a very coarse and highly smoothed representation of airport environment meteorological conditions. Details concerning the airport surface forcing are virtually absent from these simulated datasets although the observed background atmospheric processes have been compared to the simulated fields and the fields were found to accurately replicate the flows surrounding the airport where coarse verification data were available as well as where airport scale datasets were available.

  19. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin

    This fact sheet overviews the Greening the Grid India grid integration study. The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India'smore » RE targets and identify actions that may be favorable for integration.« less

  20. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    NASA Astrophysics Data System (ADS)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  1. An algebraic homotopy method for generating quasi-three-dimensional grids for high-speed configurations

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.

  2. Coarsening of three-dimensional structured and unstructured grids for subsurface flow

    NASA Astrophysics Data System (ADS)

    Aarnes, Jørg Espen; Hauge, Vera Louise; Efendiev, Yalchin

    2007-11-01

    We present a generic, semi-automated algorithm for generating non-uniform coarse grids for modeling subsurface flow. The method is applicable to arbitrary grids and does not impose smoothness constraints on the coarse grid. One therefore avoids conventional smoothing procedures that are commonly used to ensure that the grids obtained with standard coarsening procedures are not too rough. The coarsening algorithm is very simple and essentially involves only two parameters that specify the level of coarsening. Consequently the algorithm allows the user to specify the simulation grid dynamically to fit available computer resources, and, e.g., use the original geomodel as input for flow simulations. This is of great importance since coarse grid-generation is normally the most time-consuming part of an upscaling phase, and therefore the main obstacle that has prevented simulation workflows with user-defined resolution. We apply the coarsening algorithm to a series of two-phase flow problems on both structured (Cartesian) and unstructured grids. The numerical results demonstrate that one consistently obtains significantly more accurate results using the proposed non-uniform coarsening strategy than with corresponding uniform coarse grids with roughly the same number of cells.

  3. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  4. Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)

    DTIC Science & Technology

    2009-11-01

    flow patterns for a) experiments of Mitchell et. al ., b) grid G9A4 fully 15-12 turbulent, c) grid G9A4 laminar to turbulent transition at 30% root...tourbillonnaires et en particulier les tourbillons de bord d’attaque subissent une désorganisation soudaine connue sous le nom de rupture du vortex. Ce...attack in the range of –10° to 36°, an amplitude of 5° to 26° and an oscillation frequency of 0.2 to 1.5 Hz. 8) TPI Test Case De Luca et al . tested a

  5. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei

    2014-09-01

    As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.

  6. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A Grid-Free Approach for Plasma Simulations (Grid-Free Plasma Simulation Techniques)

    DTIC Science & Technology

    2007-07-10

    with complex geometry , e.g., space - space at t = 0 and the evolution of the system is obtained by craft thuster plume interactions [1], plasma sensors...position x with velocity v at time t, 4) is the electrostatic potential, qj is the charge on species j, mj is the mass of a particle of species j, p is...description of the Vlasov equation (1) with an efficient grid-free field solver for the

  8. Initial steps towards a production platform for DNA sequence analysis on the grid.

    PubMed

    Luyf, Angela C M; van Schaik, Barbera D C; de Vries, Michel; Baas, Frank; van Kampen, Antoine H C; Olabarriaga, Silvia D

    2010-12-14

    Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users. In this study we reused a platform that was developed in the VL-e project for the analysis of medical images. Data transfer, workflow execution and job monitoring are operated from one graphical interface. We developed workflows for two sequence alignment tools (BLAST and BLAT) as a proof of concept. The analysis time was significantly reduced. All workflows and executables are available for the members of the Dutch Life Science Grid and the VL-e Medical virtual organizations All components are open source and can be transported to other grid infrastructures. The availability of in-house expertise and tools facilitates the usage of grid resources by new users. Our first results indicate that this is a practical, powerful and scalable solution to address the capacity and collaboration issues raised by the deployment of next generation sequencers. We currently adopt this methodology on a daily basis for DNA sequencing and other applications. More information and source code is available via http://www.bioinformaticslaboratory.nl/

  9. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less

  10. Analysis of the relationship between the volumetric soil moisture content and the NDVI from high resolution multi-spectral images for definition of vineyard management zones to improve irrigation

    NASA Astrophysics Data System (ADS)

    Martínez-Casasnovas, J. A.; Ramos, M. C.

    2009-04-01

    As suggested by previous research in the field of precision viticulture, intra-field yield variability is dependent on the variation of soil properties, and in particular the soil moisture content. Since the mapping in detail of this soil property for precision viticulture applications is highly costly, the objective of the present research is to analyse its relationship with the normalised difference vegetation index from high resolution satellite images to the use it in the definition of vineyard zonal management. The final aim is to improve irrigation in commercial vineyard blocks for better management of inputs and to deliver a more homogeneous fruit to the winery. The study was carried out in a vineyard block located in Raimat (NE Spain, Costers del Segre Designation of Origin). This is a semi-arid area with continental Mediterranean climate and a total annual precipitation between 300-400 mm. The vineyard block (4.5 ha) is planted with Syrah vines in a 3x2 m pattern. The vines are irrigated by means of drips under a partial root drying schedule. Initially, the irrigation sectors had a quadrangular distribution, with a size of about 1 ha each. Yield is highly variable within the block, presenting a coefficient of variation of 24.9%. For the measurement of the soil moisture content a regular sampling grid of 30 x 40 m was defined. This represents a sample density of 8 samples ha-1. At the nodes of the grid, TDR (Time Domain Reflectometer) probe tubes were permanently installed up to the 80 cm or up to reaching a contrasting layer. Multi-temporal measures were taken at different depths (each 20 cm) between November 2006 and December 2007. For each date, a map of the variability of the profile soil moisture content was interpolated by means of geostatistical analysis: from the measured values at the grid points the experimental variograms were computed and modelled and global block kriging (10 m squared blocks) undertaken with a grid spacing of 3 m x 3 m. On the other hand, three Quickbird-2 satellite images where acquired and processed to monitor plant vigour. The dates of images acquisition were: 29-07-2004, 13-07-2005 and 13-07-2006. They are within the range of

  11. Pervasive access to MRI bias artifact suppression service on a grid.

    PubMed

    Ardizzone, Edoardo; Gambino, Orazio; Genco, Alessandro; Pirrone, Roberto; Sorce, Salvatore

    2009-01-01

    Bias artifact corrupts MRIs in such a way that the image is afflicted by illumination variations. Some of the authors proposed the exponential entropy-driven homomorphic unsharp masking ( E(2)D-HUM) algorithm that corrects this artifact without any a priori hypothesis about the tissues or the MRI modality. Moreover, E(2)D-HUM does not care about the body part under examination and does not require any particular training task. People who want to use this algorithm, which is Matlab-based, have to set their own computers in order to execute it. Furthermore, they have to be Matlab-skilled to exploit all the features of the algorithm. In this paper, we propose to make such algorithm available as a service on a grid infrastructure, so that people can use it almost from everywhere, in a pervasive fashion, by means of a suitable user interface running on smartphones. The proposed solution allows physicians to use the E(2)D-HUM algorithm (or any other kind of algorithm, given that it is available as a service on the grid), being it remotely executed somewhere in the grid, and the results are sent back to the user's device. This way, physicians do not need to be aware of how to use Matlab to process their images. The pervasive service provision for medical image enhancement is presented, along with some experimental results obtained using smartphones connected to an existing Globus-based grid infrastructure.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.pymore » (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.« less

  13. Energy dependent features of X-ray signals in a GridPix detector

    NASA Astrophysics Data System (ADS)

    Krieger, C.; Kaminski, J.; Vafeiadis, T.; Desch, K.

    2018-06-01

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE / E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  14. Crossflow between subchannels in a 5 x 5 rod-bundle geometry

    NASA Astrophysics Data System (ADS)

    Lee, Jungjin; Park, Hyungmin

    2017-11-01

    In the present study, we experimentally investigate the single-phase (water as a working fluid) flow in a vertical 5 x 5 rod-bundle geometry using a particle image velociemtry, especially focusing on the crossflow phenomena between subchannels. This crossflow phenomena is very important in determining the performance and safety of nuclear power plant. To measure the flow behind the rod, it is made of FEP (Fluorinated Ethylene Propylene) to achieve the index matching. The ratio of pitch between rods and rod diameter is 1.4, and the considered Reynolds number based on a hydraulic diameter of a channel and an axial bulk velocity is 10000. Also, the typical grid spacer is installed periodically along the streamwise direction. Depending on the location of subchannel (e.g., distance to the side wall or grid spacer), the flow (turbulence) statistics show large variations that will be discussed in detail. Furthermore, we will suggest a modified crossflow model that can explain the varying crossflow phenomena more clearly. Supported by NRF Grant (NRF-2016M2B2A9A02945068) of the Korean government.

  15. [The design of Co-Cr-Mo alloy combining the framework with porcelain fused to metal restorations and determination of the mechanical properties].

    PubMed

    Chao, Yong-lie; Lui, Chang-hong; Li, Ning; Yang, Xiao-yu

    2005-02-01

    To investigate a kind of Co-Cr-Mo alloys used for both porcelain fused to metal (PFM) restorations and casting framework of removable partial dentures. The Co-Cr-Mo alloy underwent the design for elementary compositions of the alloys and the production from the raw materials by means of a vacuum melt furnace. The strength, hardness, plasticity and casting ability of the alloy were examined with metal tensile test. Vickers hardness test and grid casting were examined respectively. The microstructure of the Co-Cr-Mo alloy was also inspected by scanning electron microscope and X-ray diffraction analysis. The elementary composition of DA9-4 alloy mainly consisted of Co 54%-67%, Cr 21%-26%, Mo 5%-8%, W 5%-8%, Si 1%-3%, Mn 0.1%-0.25% and trace elements. The yield strength of the alloy was 584 MPa, while the tensile strength was 736 MPa. The coefficient of expansion was 15.0%, the Vickers hardness reached 322, and the casting ratio exibited 100%. The DA9-4 Co-Cr-Mo alloy used for PFM and framework shown in this paper can meet the clinical demands and have reached the objects of the experiment plan.

  16. Integrating proximal soil sensing techniques and terrain indexes to generate 3D maps of soil restrictive layers in the Palouse region, Washington, USA

    NASA Astrophysics Data System (ADS)

    Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.

  17. The Healthgrid White Paper.

    PubMed

    Breton, Vincent; Dean, Kevin; Solomonides, Tony; Blanquer, I; Hernandez, V; Medico, E; Maglaveras, N; Benkner, S; Lonsdale, G; Lloyd, S; Hassan, K; McClatchey, R; Miguet, S; Montagnat, J; Pennec, X; De Neve, W; De Wagter, C; Heeren, G; Maigne, L; Nozaki, K; Taillet, M; Bilofsky, H; Ziegler, R; Hoffman, M; Jones, C; Cannataro, M; Veltri, P; Aloisio, G; Fiore, S; Mirto, M; Chouvarda, I; Koutkias, V; Malousi, A; Lopez, V; Oliveira, I; Sanchez, J P; Martin-Sanchez, F; De Moor, G; Claerhout, B; Herveg, J A M

    2005-01-01

    Over the last four years, a community of researchers working on Grid and High Performance Computing technologies started discussing the barriers and opportunities that grid technologies must face and exploit for the development of health-related applications. This interest lead to the first Healthgrid conference, held in Lyon, France, on January 16th-17th, 2003, with the focus of creating increased awareness about the possibilities and advantages linked to the deployment of grid technologies in health, ultimately targeting the creation of a European/international grid infrastructure for health. The topics of this conference converged with the position of the eHealth division of the European Commission, whose mandate from the Lisbon Meeting was "To develop an intelligent environment that enables ubiquitous management of citizens' health status, and to assist health professionals in coping with some major challenges, risk management and the integration into clinical practice of advances in health knowledge." In this context "Health" involves not only clinical procedures but covers the whole range of information from molecular level (genetic and proteomic information) over cells and tissues, to the individual and finally the population level (social healthcare). Grid technology offers the opportunity to create a common working backbone for all different members of this large "health family" and will hopefully lead to an increased awareness and interoperability among disciplines. The first HealthGrid conference led to the creation of the Healthgrid association, a non-profit research association legally incorporated in France but formed from the broad community of European researchers and institutions sharing expertise in health grids. After the second Healthgrid conference, held in Clermont-Ferrand on January 29th-30th, 2004, the need for a "white paper" on the current status and prospective of health grids was raised. Over fifty experts from different areas of grid technologies, eHealth applications and the medical world were invited to contribute to the preparation of this document.

  18. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    NASA Astrophysics Data System (ADS)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  19. [Comparison of Preferential Hyperacuity Perimeter (PHP) test and Amsler grid test in the diagnosis of different stages of age-related macular degeneration].

    PubMed

    Kampmeier, J; Zorn, M M; Lang, G K; Botros, Y T; Lang, G E

    2006-09-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in people over 65 years of age. A rapid loss of vision occurs especially in cases with choroidal neovascularisation. Early detection of ARMD and timely treatment are mandatory. We have prospectively studied the results of two diagnostic self tests for the early detection of metamorphopsia and scotoma, the PHP test and the Amsler grid test, in different stages of ARMD. Patients with ARMD and best corrected visual acuity of 6/30 or better (Snellen charts) were examined with a standardised protocol, including supervised Amsler grid examination and PHP, a new device for metamorphopsia or scotoma measurement, based on the hyperacuity phenomenon in the central 14 degrees of the visual field. The stages of ARMD were independently graded in a masked fashion by stereoscopic ophthalmoscopy, stereoscopic fundus colour photographs, fluorescein angiography, and OCT. The patients were subdivided into 3 non-neovascular groups [early, late (RPE atrophy > 175 microm) and geographic atrophy], a neovascular group (classic and occult CNV) and an age-matched control group (healthy volunteers). 140 patients, with ages ranging from 50 to 90 years (median 68 years), were included in the study. Best corrected visual acuity ranged from 6/30 to 6/6 with a median of 6/12. 95 patients were diagnosed as non-neovascular ARMD. Thirty eyes had early ARMD (9 were tested positive by the PHP test and 9 by the Amsler grid test), and 50 late ARMD (positive: PHP test 23, Amsler grid test 26). The group with geographic atrophy consisted of 15 eyes (positive: PHP test 13, Amsler grid test 10). Forty-five patients presented with neovascular ARMD (positive: PHP test 38, Amsler grid test 36), 34 volunteers served as control group (positive: PHP test 1, Amsler grid test 5). The PHP and Amsler grid tests revealed comparable results detecting metamorphopsia and scotoma in early ARMD (30 vs. 30 %) and late ARMD (46 vs. 52 %). However, the PHP test more often revealed disease-related functional changes in the groups of geographic atrophy (87 vs. 67 %) and neovascular ARMD (84 vs. 80 %). This implies that the PHP and Amsler grid self tests are useful tools for detection of ARMD and that the PHP test has a greater sensitivity in the groups of geographic atrophy and neovascular AMD.

  20. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  1. Forest resources of southeast Alaska, 2000: results of a single-phase systematic sample.

    Treesearch

    Willem W.S. van Hees

    2003-01-01

    A baseline assessment of forest resources in southeast Alaska was made by using a single-phase, unstratified, systematic-grid sample, with ground plots established at each grid intersection. Ratio-of-means estimators were used to develop population estimates. Forests cover an estimated 48 percent of the 22.9-million-acre southeast Alaska inventory unit. Dominant forest...

  2. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  3. Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago

    2018-02-01

    The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.

  4. Comprehensive evaluation of power grid enterprises' credit rating under the reform of transmission and distribution price

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Wei, Jiaxiang

    2017-03-01

    On March 15, 2015, the central office issued the "Opinions on Further Deepening the Reform of Electric Power System" (in the 2015 No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid enterprises' credit rating under the reform of transmission and distribution price to reduce the impact of the reform on the company's international rating results and the ability to raise funds.

  5. Enhancing Trust in the Smart Grid by Applying a Modified Exponentially Weighted Averages Algorithm

    DTIC Science & Technology

    2012-06-01

    2.1 Power Production and Distribution System . . . . . . . . . . . . . . . . . . . . 14 2.2 Steam Turbine Partial or Full Load Operating Limitations... turbines used for power production are designed to operate at specific frequencies and incur stress related damage when operating at higher or lower...2.2 illustrates the operational limits of a representative steam turbine with the following characteristics as measured in Hertz (Hz) [8]: • The

  6. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  7. A-Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Problems Coupled Through a Boundary with Non-Matching Grids

    DTIC Science & Technology

    2013-08-01

    both MFE and GFV, are often similar in size. As a gross measure of the effect of geometric projection and of the use of quadrature, we also report the...interest MFE ∑(e,ψ) or GFV ∑(e,ψ). Tables 1 and 2 show this using coarse and fine forward solutions. Table 1. The forward problem with solution (4.1) is run...adjoint data components ψu and ψp are constant everywhere and ψξ = 0. adj. grid MFE ∑(e,ψ) ∑MFEi ratio GFV ∑(e,ψ) ∑GFV i ratio 20x20 : 32x32 1.96E−3

  8. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  9. An automatic multigrid method for the solution of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Shapira, Yair; Israeli, Moshe; Sidi, Avram

    1993-01-01

    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  10. Simulations of the DARPA Suboff Submarine Including Self-Propulsion with the E1619 Propeller

    DTIC Science & Technology

    2012-01-01

    and experiments are remarkable, including the maximum velocity in the wake of the 37 blades , the velocity deficit induced by the tip vortices...added to the wake matches the grid size of the fine grids used for the tips of the blades , thus providing a grid of consistent refinement for the...geometry or larger number of blades for the same advance coefficient. These two mechanisms in a marine propeller lead to larger induced wake

  11. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    USDA-ARS?s Scientific Manuscript database

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  12. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less

  13. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  14. Effective DQE (eDQE) and dose to optimize radiographic technical parameters: a survey of pediatric chest X-ray examinations in Korea.

    PubMed

    Park, Hye-Suk; Kim, Ye-Seul; Park, Ok-Seob; Kim, Sang-Tae; Jeon, Chang-Woo; Kim, Hee-Joung

    2014-04-01

    The purpose of this study was to investigate the effect of various technical parameters for dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE). For tube voltages ranging from 40 to 90 kV in 10 kV increments at the focus-to-detector distance (FDD) of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at same effective dose. The eDQE was considerably higher without the use of the grid on equivalent effective dose. This indicates that the reduction of scatter radiation did not compensate for the loss of absorbed effective photons in the grid. The eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF) with lower focal spot blurring. However, most of the major hospitals in Korea employed a short FDD of 100 cm with the grid. The entrance surface air kerma values for the hospitals of this survey exceeded the Korean reference level of 100 μGy. The different reference levels might be appropriate for the same examination conducted on children of different ages. Also, it is necessary to refine the technical parameters to perform pediatric chest examinations.

  15. Integrated Access to Solar Observations With EGSO

    NASA Astrophysics Data System (ADS)

    Csillaghy, A.

    2003-12-01

    {\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests submitted to the grid. The consumer is thus in charge of tasks such as request handling, request composition, data visualization and data caching. The second component, the provider, is dedicated to data providing and processing. It links the grid to individual data providers and data centers. The third component, the broker, collects information about providers and allows consumers to perform the searches on the grid. Each component can exist in multiple instances. This follows a basic grid concept: The failure or unavailability of a single component will not generate a failure of the whole system, as other systems will take over the processing of requests. The architecture relies on a global data model for the semantics. The data model is in some way the brains of the grid. It provides a description of the information entities available within the grid, as well as a description of their relationships. EGSO is now in the development phase. A demonstration (www.egso.org/demo) is provided to get an idea about how the system will function once the project is completed. The demonstration focuses on retrieving data needed to determine the energy released in the solar atmosphere during the impulsive phase of flares. It allows finding simultaneous observations in the visible, UV, Soft X-rays, hard X-rays, gamma-rays, and radio. The types of observations that can be specified are images at high space and time resolutions as well as integrated emission and spectra from a yet limited set of instruments, including the NASA spacecraft TRACE, SOHO, RHESSI, and the ground-based observatories Phoenix-2 in Switzerland and Meudon Observatory in France

  16. Social Relationships, Gender, and Recovery From Mobility Limitation Among Older Americans.

    PubMed

    Latham, Kenzie; Clarke, Philippa J; Pavela, Greg

    2015-09-01

    Evidence suggests social relationships may be important facilitators for recovery from functional impairment, but the extant literature is limited in its measurement of social relationships including an over emphasis on filial social support and a paucity of nationally representative data. Using data from Waves 4-9 (1998-2008) of the Health and Retirement Study (HRS), this research examines the association between social relationships and recovery from severe mobility limitation (i.e., difficulty walking one block or across the room) among older Americans. Using a more nuanced measure of recovery that includes complete and partial recovery, a series of discrete-time event history models with multiple competing recovery outcomes were estimated using multinomial logistic regression. Providing instrumental support to peers increased the odds of complete and partial recovery from severe mobility limitation, net of numerous social, and health factors. Having relatives living nearby decreased the odds of complete recovery, while being engaged in one's neighborhood increased the odds of partial recovery. The influence of partner status on partial and complete recovery varied by gender, whereby partnered men were more likely to experience recovery relative to partnered women. The effect of neighborhood engagement on partial recovery also varied by gender. Disengaged women were the least likely to experience partial recovery compared with any other group. The rehabilitative potential of social relationships has important policy implications. Interventions aimed at encouraging older adults with mobility limitation to be engaged in their neighborhoods and/or provide instrumental support to peers may improve functional health outcomes. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Zero ischemia anatomical partial nephrectomy: a novel approach.

    PubMed

    Gill, Inderbir S; Patil, Mukul B; Abreu, Andre Luis de Castro; Ng, Casey; Cai, Jie; Berger, Andre; Eisenberg, Manuel S; Nakamoto, Masahiko; Ukimura, Osamu; Goh, Alvin C; Thangathurai, Duraiyah; Aron, Monish; Desai, Mihir M

    2012-03-01

    We present a novel concept of zero ischemia anatomical robotic and laparoscopic partial nephrectomy. Our technique primarily involves anatomical vascular microdissection and preemptive control of tumor specific, tertiary or higher order renal arterial branch(es) using neurosurgical aneurysm micro-bulldog clamps. In 58 consecutive patients the majority (70%) had anatomically complex tumors including central (67%), hilar (26%), completely intrarenal (23%), pT1b (18%) and solitary kidney (7%). Data were prospectively collected and analyzed from an institutional review board approved database. Of 58 cases undergoing zero ischemia robotic (15) or laparoscopic (43) partial nephrectomy, 57 (98%) were completed without hilar clamping. Mean tumor size was 3.2 cm, mean ± SD R.E.N.A.L. score 7.0 ± 1.9, C-index 2.9 ± 2.4, operative time 4.4 hours, blood loss 206 cc and hospital stay 3.9 days. There were no intraoperative complications. Postoperative complications (22.8%) were low grade (Clavien grade 1 to 2) in 19.3% and high grade (Clavien grade 3 to 5) in 3.5%. All patients had negative cancer surgical margins (100%). Mean absolute and percent change in preoperative vs 4-month postoperative serum creatinine (0.2 mg/dl, 18%), estimated glomerular filtration rate (-11.4 ml/minute/1.73 m(2), 13%), and ipsilateral kidney function on radionuclide scanning at 6 months (-10%) correlated with mean percent kidney excised intraoperatively (18%). Although 21% of patients received a perioperative blood transfusion, no patient had acute or delayed renal hemorrhage, or lost a kidney. The concept of zero ischemia robotic and laparoscopic partial nephrectomy is presented. This anatomical vascular microdissection of the artery first and then tumor allows even complex tumors to be excised without hilar clamping. Global surgical renal ischemia is unnecessary for the majority of patients undergoing robotic and laparoscopic partial nephrectomy at our institution. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Cyberinfrastructure for high energy physics in Korea

    NASA Astrophysics Data System (ADS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho; High Energy Physics Team

    2010-04-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  19. A finite volume Fokker-Planck collision operator in constants-of-motion coordinates

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Xu, X. Q.; Cohen, B. I.; Cohen, R.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G.; Nevins, W. M.; Rognlien, T.

    2006-04-01

    TEMPEST is a 5D gyrokinetic continuum code for edge plasmas. Constants of motion, namely, the total energy E and the magnetic moment μ, are chosen as coordinate s because of their advantage in minimizing numerical diffusion in advection operato rs. Most existing collision operators are written in other coordinates; using them by interpolating is shown to be less satisfactory in maintaining overall numerical accuracy and conservation. Here we develop a Fokker-Planck collision operator directly in (E,μ) space usin g a finite volume approach. The (E, μ) grid is Cartesian, and the turning point boundary represents a straight line cutting through the grid that separates the ph ysical and non-physical zones. The resulting cut-cells are treated by a cell-mergin g technique to ensure a complete particle conservation. A two dimensional fourth or der reconstruction scheme is devised to achieve good numerical accuracy with modest number of grid points. The new collision operator will be benchmarked by numerical examples.

  20. Simulation studies on multi-mode heat transfer from an open cavity with a flush-mounted discrete heat source

    NASA Astrophysics Data System (ADS)

    Gururaja Rao, C.; Nagabhushana Rao, V.; Krishna Das, C.

    2008-04-01

    Prominent results of a simulation study on conjugate convection with surface radiation from an open cavity with a traversable flush mounted discrete heat source in the left wall are presented in this paper. The open cavity is considered to be of fixed height but with varying spacing between the legs. The position of the heat source is varied along the left leg of the cavity. The governing equations for temperature distribution along the cavity are obtained by making energy balance between heat generated, conducted, convected and radiated. Radiation terms are tackled using radiosity-irradiation formulation, while the view factors, therein, are evaluated using the crossed-string method of Hottel. The resulting non-linear partial differential equations are converted into algebraic form using finite difference formulation and are subsequently solved by Gauss Seidel iterative technique. An optimum grid system comprising 111 grids along the legs of the cavity, with 30 grids in the heat source and 31 grids across the cavity has been used. The effects of various parameters, such as surface emissivity, convection heat transfer coefficient, aspect ratio and thermal conductivity on the important results, including local temperature distribution along the cavity, peak temperature in the left and right legs of the cavity and relative contributions of convection and radiation to heat dissipation in the cavity, are studied in great detail.

  1. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Gujarat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  2. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Tamil Nadu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Tamil Nadu is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  3. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Rajasthan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  4. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Andhra Pradesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  5. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Karnataka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  6. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Regional Study: Maharashtra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K

    This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less

  7. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  8. Privacy protection for HealthGrid applications.

    PubMed

    Claerhout, B; De Moor, G J E

    2005-01-01

    This contribution aims at introducing the problem of privacy protection in e-Health and at describing a number of existing privacy enhancing techniques (PETs). The recognition that privacy constitutes a fundamental right is gradually entering public awareness. Because healthcare-related data are susceptible to being abused for many obvious reasons, public apprehension about privacy has focused on medical data. Public authorities have become convinced of the need to enforce privacy protection and make considerable efforts for promoting through privacy protection legislation the deployment of PETs. Based on the study of the specific features of Grid technology, ways in which PET services could be integrated in the HealthGrid are being analyzed. Grid technology aims at removing barriers between local and remote resources. The privacy and legal issues raised by the HealthGrid are caused by the transparent interchange and processing of sensitive medical information. PET technology has already proven its usefulness for privacy protection in health-related marketing and research data collection. While this paper does not describe market-ready solutions for privacy protection in the HealthGrid, it puts forward several cases in which the Grid may benefit from PETs. Early integration of privacy protection services into the HealthGrid can lead to a synergy that is beneficial for the development of the HealthGrid itself.

  9. Optimal response to attacks on the open science grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunay, M.; Leyffer, S.; Linderoth, J. T.

    2011-01-01

    Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased openness may allow malicious attackers to spread more readily around the grid. We consider how to optimally respond to attacks in open grid environments. To show how and why attacks spread more readily around the grid, we first discuss how collaborations manifest themselves in themore » grids and form the collaboration network graph, and how this collaboration network graph affects the security threat levels of grid participants. We present two mixed-integer program (MIP) models to find the optimal response to attacks in open grid environments, and also calculate the threat level associated with each grid participant. Given an attack scenario, our optimal response model aims to minimize the threat levels at unaffected participants while maximizing the uninterrupted scientific production (continuing collaborations). By adopting some of the collaboration rules (e.g., suspending a collaboration or shutting down a site), the model finds optimal response to subvert an attack scenario.« less

  10. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition

    NASA Technical Reports Server (NTRS)

    Thomas, Almuttil M.; Tiwari, Surendra N.

    1994-01-01

    Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.

  11. A class of reduced-order models in the theory of waves and stability.

    PubMed

    Chapman, C J; Sorokin, S V

    2016-02-01

    This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation.

  12. Impacts of Severe Space Weather on the Electric Grid

    DTIC Science & Technology

    2011-11-01

    toasters, for instance, will tend to slow the generator, as its rotational energy is converted to electrical energy. This signal is then used to provide...dividually to order. Recognizing the vulnerability of the grid to transformer outage, there have been efforts in recent years to provide modular ...that occur during geomagnetic disturbances’ [9], and ’ Multilevels of protection for individual apparatus such as generators, transformers

  13. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  14. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  15. A Generalized Simple Formulation of Convective Adjustment ...

    EPA Pesticide Factsheets

    Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a prescribed value or ad hoc representation of τ is used in most global and regional climate/weather models making it a tunable parameter and yet still resulting in uncertainties in convective precipitation simulations. In this work, a generalized simple formulation of τ for use in any convection parameterization for shallow and deep clouds is developed to reduce convective precipitation biases at different grid spacing. Unlike existing other methods, our new formulation can be used with field campaign measurements to estimate τ as demonstrated by using data from two different special field campaigns. Then, we implemented our formulation into a regional model (WRF) for testing and evaluation. Results indicate that our simple τ formulation can give realistic temporal and spatial variations of τ across continental U.S. as well as grid-scale and subgrid scale precipitation. We also found that as the grid spacing decreases (e.g., from 36 to 4-km grid spacing), grid-scale precipitation dominants over subgrid-scale precipitation. The generalized τ formulation works for various types of atmospheric conditions (e.g., continental clouds due to heating and large-scale forcing over la

  16. A VO-Driven Astronomical Data Grid in China

    NASA Astrophysics Data System (ADS)

    Cui, C.; He, B.; Yang, Y.; Zhao, Y.

    2010-12-01

    With the implementation of many ambitious observation projects, including LAMOST, FAST, and Antarctic observatory at Doom A, observational astronomy in China is stepping into a brand new era with emerging data avalanche. In the era of e-Science, both these cutting-edge projects and traditional astronomy research need much more powerful data management, sharing and interoperability. Based on data-grid concept, taking advantages of the IVOA interoperability technologies, China-VO is developing a VO-driven astronomical data grid environment to enable multi-wavelength science and large database science. In the paper, latest progress and data flow of the LAMOST, architecture of the data grid, and its supports to the VO are discussed.

  17. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  18. [The reduction of the radiation dosage by means of storage phosphor-film radiography compared to a conventional film-screen system with a grid cassette on a skull phantom].

    PubMed

    Heyne, J P; Merbold, H; Sehner, J; Neumann, R; Freesmeyer, M; Jonetz-Mentzel, L; Kaiser, W A

    1999-07-01

    How much can the radiation dose be reduced for skull radiography by using digital luminescence radiography (DLR) compared to a conventional screen film system with a grid cassette? A skull phantom (3M) was x-rayed in anterior-posterior orientation using both a conventional screen film system with grid cassette and DLR (ADC-70, Agfa). The tube current time product (mAs) was diminished gradually while keeping the voltage constant. The surface entrance dose was measured by a sensor of Dosimax (Wellhöfer). Five investigators evaluated the images by characteristic and critical features, spatial resolution and contrast. The surface entrance dose at 73 kV/22 mAs was 0.432 mGy in conventional screen film system and 0.435 mGy in DLR. The images could be evaluated very well down to an average dose of 71% (0.308 mGy; SD 0.050); sufficient images were obtained down to an average dose of 31% (0.136 mGy; SD 0.065). The resolution of the line pairs were reduced down to 2 levels depending on the investigator. Contrast was assessed as being very good to sufficient. The acceptance of the postprocessed images (MUSICA-software) was individually different and resulted in an improvement of the assessment of bone structures and contrast in higher dose ranges only. For the sufficient assessment of a possible fracture/of paranasal sinuses/of measurement of the skull the dose can be reduced to at least 56% (phi 31%; SD 14.9%)/40% (phi 27%; SD 9.3%)/18% (phi 14%; SD 4.4%). Digital radiography allows question-referred exposure parameters with clearly reduced dose, so e.g. for fracture exclusion 73 kV/12.5 mAs and to skull measurement 73 kV/4 mAs.

  19. Crew Earth Observations (CEO) taken during Expedition 9

    NASA Image and Video Library

    2004-06-07

    ISS009-E-10382 (7 June 2004) --- Tucson, Arizona is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). Tucson lies between the forested Catalina Mountains and the Tucson Mountains (dark reddish brown at left). The typical western North American cityscape is a pattern of regular north-south aligned rectangles outlined by major streets set one mile apart. Tucson’s Randolph golf course is the large rectangular dark zone in the image center. The striking contrast between the golf course and its surroundings is due to dense grass cover maintained by frequent watering. The rectangular grid pattern disappears in the small streets of the original city center, situated along the Santa Cruz River (enters the view lower left and exits in the top left corner). Newer and less densely built-up neighborhoods in the foothills of the Catalina Mountains are designed to incorporate natural landscape features, and retain major washes with natural vegetation. This portion of the cityscape seen from space is consequently quite different from the main city grid. The foothills afford views of the city to the south and the mountains to the north and are major areas of development. Large white dots within the urban grid are the reflective rooftops of shopping malls. Tucson enjoys an important position along several major crossroads. Interstate highway I-10, which connects southern California to Florida, appears as a straight line running parallel with the Santa Cruz River northwest from Tucson in the direction of Phoenix. The I-10 traverses a well-marked alluvial fan that extends from the Santa Rita Mountains to the southeast (fine drainage pattern lower center) and exits the view lower right. Highway I-19 is the straight line (lower left) leading south from the city center, between the Santa Cruz River and rectangular spoil heaps of nearby copper mines. The I-19 connects Tucson with Nogales on the Mexican border.

  20. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co-circulating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Modular Approach to Model Oscillating Control Surfaces Using Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Lee, Henry

    2014-01-01

    The use of active controls for rotorcraft is becoming more important for modern aerospace configurations. Efforts to reduce the vibrations of helicopter blades with use of active-controls are in progress. Modeling oscillating control surfaces using the linear aerodynamics theory is well established. However, higher-fidelity methods are needed to account for nonlinear effects, such as those that occur in transonic flow. The aeroelastic responses of a wing with an oscillating control surface, computed using the transonic small perturbation (TSP) theory, have been shown to cause important transonic flow effects such as a reversal of control surface effectiveness that occurs as the shock wave crosses the hinge line. In order to account for flow complexities such as blade-vortex interactions of rotor blades higher-fidelity methods based on the Navier-Stokes equations are used. Reference 6 presents a procedure that uses the Navier-Stokes equations with moving-sheared grids and demonstrates up to 8 degrees of control-surface amplitude, using a single grid. Later, this procedure was extended to accommodate larger amplitudes, based on sliding grid zones. The sheared grid method implemented in EulerlNavier-Stokes-based aeroelastic code ENS AERO was successfully applied to active control design by industry. Recently there are several papers that present results for oscillating control surface using Reynolds Averaged Navier-Stokes (RANS) equations. References 9 and 10 report 2-D cases by filling gaps with overset grids. Reference 9 compares integrated forces with the experiment at low oscillating frequencies whereas Ref. 10 reports parametric studies but with no validation. Reference II reports results for a 3D case by modeling the gap region with a deformed grid and compares force results with the experiment only at the mid-span of flap. In Ref. II grid is deformed to match the control surface deflections at the section where the measurements are made. However, there is no indication in Ref. II that the gaps are explicitly modeled as in Ref. 6. Computations using overset grids are reported in Ref. 12 for a case by adding moving control surface to an existing blade but with no validation either with an experiment or another computation.

  2. Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products

    NASA Astrophysics Data System (ADS)

    Shamsudduha, Mohammad; Taylor, Richard G.; Jones, Darren; Longuevergne, Laurent; Owor, Michael; Tindimugaya, Callist

    2017-09-01

    GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8-4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.

  3. Grid-based HPC astrophysical applications at INAF Catania.

    NASA Astrophysics Data System (ADS)

    Costa, A.; Calanducci, A.; Becciani, U.; Capuzzo Dolcetta, R.

    The research activity on grid area at INAF Catania has been devoted to two main goals: the integration of a multiprocessor supercomputer (IBM SP4) within INFN-GRID middleware and the developing of a web-portal, Astrocomp-G, for the submission of astrophysical jobs into the grid infrastructure. Most of the actual grid implementation infrastructure is based on common hardware, i.e. i386 architecture machines (Intel Celeron, Pentium III, IV, Amd Duron, Athlon) using Linux RedHat OS. We were the first institute to integrate a totally different machine, an IBM SP with RISC architecture and AIX OS, as a powerful Worker Node inside a grid infrastructure. We identified and ported to AIX OS the grid components dealing with job monitoring and execution and properly tuned the Computing Element to delivery jobs into this special Worker Node. For testing purpose we used MARA, an astrophysical application for the analysis of light curve sequences. Astrocomp-G is a user-friendly front end to our grid site. Users who want to submit the astrophysical applications already available in the portal need to own a valid personal X509 certificate in addiction to a username and password released by the grid portal web master. The personal X509 certificate is a prerequisite for the creation of a short or long-term proxy certificate that allows the grid infrastructure services to identify clearly whether the owner of the job has the permissions to use resources and data. X509 and proxy certificates are part of GSI (Grid Security Infrastructure), a standard security tool adopted by all major grid sites around the world.

  4. Regional models of the gravity field from terrestrial gravity data of heterogeneous quality and density

    NASA Astrophysics Data System (ADS)

    Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli

    2014-05-01

    Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.

  5. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2017-03-01

    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  6. Acute meningoencephalitis associated with echovirus 9 infection in Sri Lanka, 2009.

    PubMed

    Danthanarayana, Nayomi; Williams, David T; Williams, Simon Hedley; Thevanesam, Vasanthi; Speers, David J; Fernando, M S S

    2015-12-01

    The aetiology of acute meningoencephalitis in Sri Lankan children and adults is poorly understood. This study was carried out to determine pathogens responsible for meningoencephalitis in Sri Lanka. A hospital-based cross-sectional study was performed using cerebrospinal fluid samples (22 adult and 17 pediatric) collected from August to December 2009 from patients clinically diagnosed with acute meningoencephalitis at two tertiary care hospitals in Sri Lanka. Routine microbiology for bacterial pathogens together with in-house RT-PCR and PCR assays for the detection of dengue viruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, enteroviruses, mumps virus, measles virus, herpes simplex viruses types 1 and 2, and varicella zoster virus were performed. Bacterial pathogens were not isolated from any patient specimens. However, from nine of the paediatric patients aged 1 month to 10 years (mean age 5.2 years) echovirus 9 (E-9; family Picornaviridae, genus Enterovirus,species Enterovirus B ) was detected by RT-PCR. All nine patients presented with fever, six had headache, and seven had vomiting. Neck stiffness indicating meningitis was present in six of the patients. Phylogenetic analysis of partial VP1 and VP4-VP2 genes showed these E-9 strains to be most closely related to E-9 strains detected in CSF from Korea and France in 2005 and 2006. The remaining patients were negative for all other viruses tested. E-9 was the most common cause of acute meningoencephalitis in the tested paediatric population from Sri Lanka in 2009, which likely reflects circulation of this E-9 strain between Europe and Asia over several years. © 2015 Wiley Periodicals, Inc.

  7. MELTING AND PURIFICATION OF URANIUM

    DOEpatents

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  8. Technical Report Series on Global Modeling and Data Assimilation. Volume 16; Filtering Techniques on a Stretched Grid General Circulation Model

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Sawyer, William; Suarez, Max J. (Editor); Fox-Rabinowitz, Michael S.

    1999-01-01

    This report documents the techniques used to filter quantities on a stretched grid general circulation model. Standard high-latitude filtering techniques (e.g., using an FFT (Fast Fourier Transformations) to decompose and filter unstable harmonics at selected latitudes) applied on a stretched grid are shown to produce significant distortions of the prognostic state when used to control instabilities near the pole. A new filtering technique is developed which accurately accounts for the non-uniform grid by computing the eigenvectors and eigenfrequencies associated with the stretching. A filter function, constructed to selectively damp those modes whose associated eigenfrequencies exceed some critical value, is used to construct a set of grid-spaced weights which are shown to effectively filter without distortion. Both offline and GCM (General Circulation Model) experiments are shown using the new filtering technique. Finally, a brief examination is also made on the impact of applying the Shapiro filter on the stretched grid.

  9. Framing of grid cells within and beyond navigation boundaries

    PubMed Central

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  10. Operating a production pilot factory serving several scientific domains

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.

    2011-12-01

    Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.

  11. Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids

    NASA Astrophysics Data System (ADS)

    Babqi, Abdulrahman Jamal

    This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.

  12. Repertory Grid As a Means to Compare and Contrast Developmental Theorists

    ERIC Educational Resources Information Center

    Mayo, Joseph A.

    2004-01-01

    This article reports on the use of a repertory grid as a tool for studying conceptual systems in line with Kelly's (1955) personal construct theory. Using 7-point construct continua, students rated the positions of major developmental theorists on various bipolar constructs (e.g., nature-nurture, continuity-discontinuity) representing salient…

  13. Edgeware Security Risk Management: A Three Essay Thesis on Cloud, Virtualization and Wireless Grid Vulnerabilities

    ERIC Educational Resources Information Center

    Brooks, Tyson T.

    2013-01-01

    This thesis identifies three essays which contribute to the foundational understanding of the vulnerabilities and risk towards potentially implementing wireless grid Edgeware technology in a virtualized cloud environment. Since communication networks and devices are subject to becoming the target of exploitation by hackers (e.g. individuals who…

  14. Performance evaluation of cognitive radio in advanced metering infrastructure communication

    NASA Astrophysics Data System (ADS)

    Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md

    2016-03-01

    Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.

  15. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale

    PubMed Central

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  16. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    PubMed

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.

  17. Analysis of lightning field changes produced by Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Koshak, William John

    1991-01-01

    A new method is introduced for inferring the charges deposited in a lightning flash. Lightning-caused field changes (delta E's) are described by a more general volume charge distribution than is defined on a large cartesian grid system centered above the measuring networks. It is shown that a linear system of equations can be used to relate delta E's at the ground to the values of charge on this grid. It is possible to apply more general physical constraints to the charge solutions, and it is possible to access the information content of the delta E data. Computer-simulated delta E inversions show that the location and symmetry of the charge retrievals are usually consistent with the known test sources.

  18. Infant and dyadic assessment in early community-based screening for autism spectrum disorder with the PREAUT grid

    PubMed Central

    Crespin, Graciela; Laznik, Marie-Christine; Cherif Idrissi El Ganouni, Oussama; Sarradet, Jean-Louis; Bauby, Colette; Dandres, Anne-Marie; Ruiz, Emeline; Bursztejn, Claude; Xavier, Jean; Falissard, Bruno; Bodeau, Nicolas; Cohen, David; Saint-Georges, Catherine

    2017-01-01

    Background The need for early treatment of autism spectrum disorders (ASD) necessitates early screening. Very few tools have been prospectively tested with infants of less than 12 months of age. The PREAUT grid is based on dyadic assessment through interaction and shared emotion and showed good metrics for predicting ASD in very-high-risk infants with West syndrome. Methods We assessed the ability of the PREAUT grid to predict ASD in low-risk individuals by prospectively following and screening 12,179 infants with the PREAUT grid at four (PREAUT-4) and nine (PREAUT-9) months of age. A sample of 4,835 toddlers completed the Checklist for Autism in Toddlers (CHAT) at 24 months (CHAT-24) of age. Children who were positive at one screening (N = 100) were proposed a clinical assessment (including the Children Autism Rating Scale, a Developmental Quotient, and an ICD-10-based clinical diagnosis if appropriate) in the third year of life. A randomly selected sample of 1,100 individuals who were negative at all screenings was followed by the PMI team from three to five years of age to identify prospective false negative cases. The clinical outcome was available for 45% (N = 45) of positive children and 52.6% (N = 579) of negative children. Results Of the 100 children who screened positive, 45 received a diagnosis at follow-up. Among those receiving a diagnosis, 22 were healthy, 10 were diagnosed with ASD, seven with intellectual disability (ID), and six had another developmental disorder. Thus, 50% of infants positive at one screening subsequently received a neurodevelopmental diagnosis. The PREAUT grid scores were significantly associated with medium and high ASD risk status on the CHAT at 24 months (odds ratio of 12.1 (95%CI: 3.0–36.8), p < 0.001, at four months and 38.1 (95%CI: 3.65–220.3), p < 0.001, at nine months). Sensitivity (Se), specificity, negative predictive values, and positive predictive values (PPVs) for PREAUT at four or nine months, and CHAT at 24 months, were similar [PREAUT-4: Se = 16.0 to 20.6%, PPV = 25.4 to 26.3%; PREAUT-9: Se = 30.5 to 41.2%, PPV = 20.2 to 36.4%; and CHAT-24: Se = 33.9 to 41.5%, PPV = 27.3 to 25.9%]. The repeated use of the screening instruments increased the Se but not PPV estimates [PREAUT and CHAT combined: Se = 67.9 to 77.7%, PPV = 19.0 to 28.0%]. Conclusions The PREAUT grid can contribute to very early detection of ASD and its combination with the CHAT may improve the early diagnosis of ASD and other neurodevelopmental disorders. PMID:29216234

  19. Infant and dyadic assessment in early community-based screening for autism spectrum disorder with the PREAUT grid.

    PubMed

    Olliac, Bertrand; Crespin, Graciela; Laznik, Marie-Christine; Cherif Idrissi El Ganouni, Oussama; Sarradet, Jean-Louis; Bauby, Colette; Dandres, Anne-Marie; Ruiz, Emeline; Bursztejn, Claude; Xavier, Jean; Falissard, Bruno; Bodeau, Nicolas; Cohen, David; Saint-Georges, Catherine

    2017-01-01

    The need for early treatment of autism spectrum disorders (ASD) necessitates early screening. Very few tools have been prospectively tested with infants of less than 12 months of age. The PREAUT grid is based on dyadic assessment through interaction and shared emotion and showed good metrics for predicting ASD in very-high-risk infants with West syndrome. We assessed the ability of the PREAUT grid to predict ASD in low-risk individuals by prospectively following and screening 12,179 infants with the PREAUT grid at four (PREAUT-4) and nine (PREAUT-9) months of age. A sample of 4,835 toddlers completed the Checklist for Autism in Toddlers (CHAT) at 24 months (CHAT-24) of age. Children who were positive at one screening (N = 100) were proposed a clinical assessment (including the Children Autism Rating Scale, a Developmental Quotient, and an ICD-10-based clinical diagnosis if appropriate) in the third year of life. A randomly selected sample of 1,100 individuals who were negative at all screenings was followed by the PMI team from three to five years of age to identify prospective false negative cases. The clinical outcome was available for 45% (N = 45) of positive children and 52.6% (N = 579) of negative children. Of the 100 children who screened positive, 45 received a diagnosis at follow-up. Among those receiving a diagnosis, 22 were healthy, 10 were diagnosed with ASD, seven with intellectual disability (ID), and six had another developmental disorder. Thus, 50% of infants positive at one screening subsequently received a neurodevelopmental diagnosis. The PREAUT grid scores were significantly associated with medium and high ASD risk status on the CHAT at 24 months (odds ratio of 12.1 (95%CI: 3.0-36.8), p < 0.001, at four months and 38.1 (95%CI: 3.65-220.3), p < 0.001, at nine months). Sensitivity (Se), specificity, negative predictive values, and positive predictive values (PPVs) for PREAUT at four or nine months, and CHAT at 24 months, were similar [PREAUT-4: Se = 16.0 to 20.6%, PPV = 25.4 to 26.3%; PREAUT-9: Se = 30.5 to 41.2%, PPV = 20.2 to 36.4%; and CHAT-24: Se = 33.9 to 41.5%, PPV = 27.3 to 25.9%]. The repeated use of the screening instruments increased the Se but not PPV estimates [PREAUT and CHAT combined: Se = 67.9 to 77.7%, PPV = 19.0 to 28.0%]. The PREAUT grid can contribute to very early detection of ASD and its combination with the CHAT may improve the early diagnosis of ASD and other neurodevelopmental disorders.

  20. Borrego springs microgrid demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades – beginning with its innovations in automation and control technologies in the 1980s and 1990s, through its most recent Smart Meter deployment and re-engineering of operational processes enabled by new software applications in its OpEx 20/20 (Operational Excellence with a 20/20 Vision) program. SDG&E’s Smart Grid deployment efforts have been consistently acknowledged by industry observers. SDG&E’s commitment and progress has been recognized by IDC Energy Insights and Intelligent Utility Magazine as the nation’s “Most Intelligent Utility” for three consecutive years, winning this award eachmore » year since its inception. SDG&E also received the “Top Ten Utility” award for excellence in Smart Grid development from GreenTech Media.« less

  1. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively working with our Early Adopters to finalize content and format of this new, consistently-processed high-quality satellite passive microwave ESDR.

  2. Probabilistically Bounded Staleness for Practical Partial Quorums

    DTIC Science & Technology

    2012-01-03

    probability of non-intersection be- tween any two quorums decreases. To the best of our knowledge , probabilistic quorums have only been used to study the...Practice In practice, many distributed data management systems use quo- rums as a replication mechanism. Amazon’s Dynamo [21] is the progenitor of a...Abbadi. Resilient logical structures for efficient management of replicated data. In VLDB 1992. [9] D. Agrawal and A. E. Abbadi. The tree quorum

  3. Widespread extreme drought events in Iberia and their relationship with North Atlantic moisture flux deficit

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Montero, Irene; Russo, Ana; Gouveia, Célia; Ramos, Alexandre M.; Trigo, Ricardo M.

    2015-04-01

    Droughts represent one of the most frequent climatic extreme events on the Iberian Peninsula, often with widespread negative ecological and environmental impacts, resulting in major socio-economic damages such as large decreases in hydroelectricity and agricultural productions or increasing forest fire risk. Unlike other weather driven extreme events, droughts duration could be from few months to several years. Here we employ a recently developed climatic drought index, the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010a), based on the simultaneous use of precipitation and temperature fields. This index holds the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment (Vicente-Serrano et al., 2010a). In this study the SPEI was computed using the Climatic Research Unit (CRU) TS3.21 High Resolution Gridded Data (0.5°) for the period 1901-2012. At this resolution the study region of Iberian Peninsula corresponds to a square of 30x30 grid pixels. The CRU Potential Evapotranspiration (PET) was used, through the Penmann-Monteith equation and the log-logistic probability distribution. This formulation allows a very good fit to the series of differences between precipitation and PET (Vicente-Serrano et al., 2010b), using monthly averages of daily maximum and minimum temperature data and also monthly precipitation records. The parameters were estimated by means of the L-moment method. The application of multi-scalar indices to the high-resolution datasets allows identifying whether the Iberian Peninsula is in hydric stress and also whether drought is installed. Based on the gridded SPEI datasets, spanning from 1901 to 2012, obtained for timescales 6, 12, 18 and 24 months, an objective method is applied for ranking the most extensive extreme drought events that occurred on the Iberian Peninsula. This objective method is based on the evaluation of the drought's magnitude, which is obtained after considering the area affected - defined by SPEI values over a certain threshold (in this case SPEI < -1.28) - as well as its intensity in each grid point. Different rankings are presented for the different timescales considering both the entire Iberian Peninsula and Portugal. Furthermore we used the NCEP/NCAR reanalysis in the 1948-2012 period, namely, the geopotential height, temperature, wind and specific humidity fields at all pressure levels and mean sea level pressure (MSLP) and total column water vapour (TCWV) for the Euro-Atlantic sector (60° W to 40° E, 20° N to 70° N) at full temporal (six hourly) and spatial (2.5° regular horizontal grid) resolutions available as well as the globally gridded monthly precipitation products of the Global Precipitation Climatology Centre (GPCC), to analyse the large-scale conditions associated with the most extreme droughts in Iberia. Results show that during these drought periods there is a clear moisture deficit over the region, with permanent negative anomalies of TCWV. Additionally, in these occasions, the zonal moisture transport is more intense over the northern Atlantic and less intense on the subtropics while the meridional moisture transport is intensified, in accordance with the barotropic structure of HGT anomalies. Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. (2010a). A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index - SPEI. Journal of Climate, 23, 1696-1718. Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., and El Kenawy, A. (2010b). A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11, 1033-1043 Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).

  4. Aerodynamics and Aeroacoustics of Rotorcraft (l’ Aerodynamique et l’ aeroacoustique des aeronefs a voilure tournante).

    DTIC Science & Technology

    1995-08-01

    R.T.N. Chen: A survey of nonuniform 22) R.Houwink, A.E.P.Veldman: steady and inflow models for rotorcraft flight unsteady separated flow computations for...grid with con- see [17]). Because of the cylindrical nature of the stant grid sizes. If an arbitrary nonuniform grid is flow of a hovering rotor an O-H...research distributed around the blade section (figure 4) within a lairing at DRA Bedford on the DRA’s Aeromechanics Lynx Control which extends from 80

  5. Transverse and Quantum Effects in Light Control by Light; (A) Parallel Beams: Pump Dynamics for Three Level Superfluorescence; and (B) Counterflow Beams: An Algorithm for Transverse, Full Transient Effects in Optical Bi-Stability in a Fabryperot Cavity.

    DTIC Science & Technology

    1983-01-01

    The resolution of the compu- and also leads to an expression for "dz,"*. tational grid is thereby defined according to e the actual requirements of...computational economy are achieved simultaneously by redistributing the computational grid points according to the physical requirements of the problem...computational Eulerian grid points according to implemented using a two-dimensionl time- the physical requirements of the nonlinear dependent finite

  6. Marine Physics: Internal-Surface Wave Interaction and Microstructure Measurement Program

    DTIC Science & Technology

    1974-12-31

    Stabilized Free-Fall Vehicles" 2. "On the Decay of Grid Generated Turbulence in Stratified Salt Water" Figure 1 Figure 2 Figure 3 Figure 4 Page 6 6...Ju.IJic.l modelling shows this vehicle to be stable ^h^iting tilts of less than 10-2 radians under fall into VTra e u Lving at 20 cm/sec. For...Fim^vm scaled according to an overall Froude number U/LN, scaling the vertical wake width, where U is the grid speed, L the mesh size of the grid

  7. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  8. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    NASA Astrophysics Data System (ADS)

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  9. A computing method for spatial accessibility based on grid partition

    NASA Astrophysics Data System (ADS)

    Ma, Linbing; Zhang, Xinchang

    2007-06-01

    An accessibility computing method and process based on grid partition was put forward in the paper. As two important factors impacting on traffic, density of road network and relative spatial resistance for difference land use was integrated into computing traffic cost in each grid. A* algorithms was inducted to searching optimum traffic cost of grids path, a detailed searching process and definition of heuristic evaluation function was described in the paper. Therefore, the method can be implemented more simply and its data source is obtained more easily. Moreover, by changing heuristic searching information, more reasonable computing result can be obtained. For confirming our research, a software package was developed with C# language under ArcEngine9 environment. Applying the computing method, a case study on accessibility of business districts in Guangzhou city was carried out.

  10. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model.

    PubMed

    Yao, Xiao; Carlson, Deborah; Sun, Yuxiao; Ma, Lisha; Wolf, Steven E; Minei, Joseph P; Zang, Qun S

    2015-01-01

    We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL-1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL-1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis.

  11. Gold Nanoparticle Contrast Agents in Mammography: A Feasibility Study

    DTIC Science & Technology

    2008-08-01

    grid and allowed to dry for 6 hours prior to imaging. The grid was then imaged using a high-resolution transmission electron microscopy, and the...9. Lasfargues EY , Coutinho WG, Redfield ES. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. Journal of National...tissue [14]. These probes have also been used to track immune-stimulating cells implanted into cancer patients for treatment purposes. Targeted contrast

  12. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the L ∞ and L 2 errors. Some of the best results are obtained in the present work when the interface is C 1 or Lipschitz continuous and the solution is C 2 continuous.

  13. On the uncertainties associated with using gridded rainfall data as a proxy for observed

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.

    2011-09-01

    Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods)? This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia (SA) initially using gridded data as the source of rainfall input and then gauged rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged or point data. Rather the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.

  14. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    NASA Astrophysics Data System (ADS)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which represents a 2 to 5-fold increase in efficiency. The 5 km grid reduces the number of model executions further to 1024. However, over the first 25 km the 5 km grid produces errors of up to 13.8 dB when compared to the highly accurate but inefficient 1 km grid. The newly developed adaptive grid generates much smaller errors of less than 0.5 dB while demonstrating high computational efficiency. Our results show that the adaptive grid provides the ability to retain the accuracy of noise level predictions and improve the efficiency of the modelling process. This can help safeguard sensitive marine ecosystems from noise pollution by improving the underwater noise predictions that inform management activities. References Shapiro, G., Chen, F., Thain, R., 2014. The Effect of Ocean Fronts on Acoustic Wave Propagation in a Shallow Sea, Journal of Marine System, 139: 217 - 226. http://dx.doi.org/10.1016/j.jmarsys.2014.06.007.

  15. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, Robert

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less

  16. Genetic characterization of human hydatid cysts shows coinfection by Echinococcus canadensis G7 and Echinococcus granulosus sensu stricto G1 in Argentina.

    PubMed

    Debiaggi, María Florencia; Soriano, Silvia Viviana; Pierangeli, Nora Beatriz; Lazzarini, Lorena Evelina; Pianciola, Luis Alfredo; Mazzeo, Melina Leonor; Moguillansky, Sergio; Farjat, Juan Angel Basualdo

    2017-09-01

    Human cystic echinococcosis caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is a highly endemic disease in the province of Neuquén, Patagonia, Argentina. Human infections with E. granulosus sensu stricto (s.s.) G1 and Echinococcus canadensis G6 were reported in Neuquén in previous studies, whereas four genotypes were identified in livestock: G1, G3, G6, and G7. The aim of this study was to identify the genotypes of E. granulosus s.l. isolates from humans of Neuquén province, Patagonia, Argentina, through the 2005-2014 period. Twenty six hydatid cysts were obtained from 21 patients. The most frequent locations were the liver and lungs. Single cysts were observed in 81.0% of patients, and combined infection of liver and lungs was detected in 9.5% of cases. Partial sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes identified the presence of E. granulosus s.s. G1 (n = 11; 42.3%) including three different partial sequences; E. canadensis G6 (n = 14; 53.8%) and E. canadensis G7 (n = 1; 3.9%). Coinfection with G1 and G7 genotypes was detected in one patient who harbored three liver cysts. Most of the liver cysts corresponded to G1 and G6 genotypes. This study presents the first report in the Americas of a human infection with E. canadensis G7 and the second worldwide report of a coinfection with two different species and genotypes of E. granulosus s.l in humans. The molecular diversity of this parasite should be considered to redesign or improve the control program strategies in endemic regions.

  17. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  18. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA).

    PubMed

    Ramella, Martina; Boccafoschi, Francesca; Bellofatto, Kevin; Md, Antonia Follenzi; Fusaro, Luca; Boldorini, Renzo; Casella, Francesco; Porta, Carla; Settembrini, Piergiorgio; Cannas, Mario

    2017-01-01

    Progression of abdominal aortic aneurysm (AAA) is typified by chronic inflammation and extracellular matrix (ECM) degradation of the aortic wall. Vascular inflammation involves complex interactions among inflammatory cells, endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and ECM. Although vascular endothelium and medial neoangiogenesis play a key role in AAA, the molecular mechanisms underlying their involvement are only partially understood. In AAA biopsies, we found increased MMP-9, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which correlated with massive medial neo-angiogenesis (C4d positive staining). In this study, we developed an in vitro model in order to characterize the role of endothelial matrix metalloproteinase-9 (e-MMP-9) as a potential trigger of medial disruption and in the inflammatory response bridging between ECs and vSMC. Lentiviral-mediated silencing of e-MMP-9 through RNA interference inhibited TNF-alpha-mediated activation of NF-κB in EA.hy926 human endothelial cells. In addition, EA.hy926 cells void of MMP-9 failed to migrate in a 3D matrix. Moreover, silenced EA.hy926 affected vSMC behavior in terms of matrix remodeling. In fact, also MMP-9 in vSMC resulted inhibited when endothelial MMP-9 was suppressed.

  19. Analysis of the Harrier forebody/inlet design using computational techniques

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen

    1993-01-01

    Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.

  20. Evaluation of simplified stream-aquifer depletion models for water rights administration

    USGS Publications Warehouse

    Sophocleous, Marios; Koussis, Antonis; Martin, J.L.; Perkins, S.P.

    1995-01-01

    We assess the predictive accuracy of Glover's (1974) stream-aquifer analytical solutions, which are commonly used in administering water rights, and evaluate the impact of the assumed idealizations on administrative and management decisions. To achieve these objectives, we evaluate the predictive capabilities of the Glover stream-aquifer depletion model against the MODFLOW numerical standard, which, unlike the analytical model, can handle increasing hydrogeologic complexity. We rank-order and quantify the relative importance of the various assumptions on which the analytical model is based, the three most important being: (1) streambed clogging as quantified by streambed-aquifer hydraulic conductivity contrast; (2) degree of stream partial penetration; and (3) aquifer heterogeneity. These three factors relate directly to the multidimensional nature of the aquifer flow conditions. From these considerations, future efforts to reduce the uncertainty in stream depletion-related administrative decisions should primarily address these three factors in characterizing the stream-aquifer process. We also investigate the impact of progressively coarser model grid size on numerically estimating stream leakage and conclude that grid size effects are relatively minor. Therefore, when modeling is required, coarser model grids could be used thus minimizing the input data requirements.

Top