Science.gov

Sample records for partial molar entropy

  1. Molar heat capacity and entropy of calcium metal

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Chase, M.W.

    1997-01-01

    The heat capacity of calcium has been measured at 85 mean temperatures between T ??? 8 K and T ??? 369 K using an adiabatically-shielded calorimeter in an intermittent heating mode. At T = 298.15 K, the recommended values for the molar heat capacity, molar entropy, and molar enthalpy increment referred to T = 0 are (25.77 ?? 0.08) J??K-1??mol-1, (42.90 ?? 0.11) J??K-1??mol-1, and (5811 ?? 12) J??mol-1, respectively. The uncertainties are twice the standard deviation of the mean. ?? 1997 Academic Press Limited.

  2. Partial molar quantity of an intensive mother function.

    PubMed

    Koga, Yoshikata

    2012-09-28

    A new formal definition is given to the partial molar quantity of a component i for an intensive mother function. We perturb the entire system by increasing the amount of the target component by δn(i) keeping others constant and measure the response of the system in terms of an intensive mother function, Φ, δΦ. We then define its partial molar quantity of the ith component, φ(i), as φ(i) = [δΦ∕{δn(i)∕(N + δn(i))

  3. Ethanol sorption and partial molar volume in cellulose acetate films

    SciTech Connect

    Bolton, B.A.; Kint, S.; Bailey, G.F.; Scherer, J.R.

    1986-03-13

    The absorption characteristics of cellulose acetate (CA398) and cellulose triacetate membranes for ethanol vapor were determined by integrated optical techniques. Changes in the refractive index and film thicknesses are used to calculate the ethanol concentration within the membrane, to calculate the partial molar volume of sorbed ethanol as a function of ethanol concentration, and to estimate the average void volume of the dry film. The refractive index is shown to be very sensitive to the available void space within the membrane. The average total void space for the films considered here was less than 1% of the dry polymer volume. 22 references, 6 figures, 1 table.

  4. Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy

    PubMed Central

    Jouny, Christophe C.; Bergey, Gregory K.

    2011-01-01

    Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526

  5. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  6. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  7. Maximum entropy principle and partial probability weighted moments

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pandey, M. D.; Xie, W. C.

    2012-05-01

    Maximum entropy principle (MaxEnt) is usually used for estimating the probability density function under specified moment constraints. The density function is then integrated to obtain the cumulative distribution function, which needs to be inverted to obtain a quantile corresponding to some specified probability. In such analysis, consideration of higher ordermoments is important for accurate modelling of the distribution tail. There are three drawbacks for this conventional methodology: (1) Estimates of higher order (>2) moments from a small sample of data tend to be highly biased; (2) It can merely cope with problems with complete or noncensored samples; (3) Only probability weighted moments of integer orders have been utilized. These difficulties inevitably induce bias and inaccuracy of the resultant quantile estimates and therefore have been the main impediments to the application of the MaxEnt Principle in extreme quantile estimation. This paper attempts to overcome these problems and presents a distribution free method for estimating the quantile function of a non-negative randomvariable using the principle of maximum partial entropy subject to constraints of the partial probability weighted moments estimated from censored sample. The main contributions include: (1) New concepts, i.e., partial entropy, fractional partial probability weighted moments, and partial Kullback-Leibler measure are elegantly defined; (2) Maximum entropy principle is re-formulated to be constrained by fractional partial probability weighted moments; (3) New distribution free quantile functions are derived. Numerical analyses are performed to assess the accuracy of extreme value estimates computed from censored samples.

  8. Combinatorial entropy and phase diagram of partially ordered ice phases.

    PubMed

    Macdowell, Luis G; Sanz, Eduardo; Vega, Carlos; Abascal, José Luis F

    2004-11-22

    A close analytical estimate for the combinatorial entropy of partially ordered ice phases is presented. The expression obtained is very general, as it can be used for any ice phase obeying the Bernal-Fowler rules. The only input required is a number of crystallographic parameters, and the experimentally observed proton site occupancies. For fully disordered phases such as hexagonal ice, it recovers the result deduced by Pauling, while for fully ordered ice it is found to vanish. Although the space groups determined for ice I, VI, and VII require random proton site occupancies, it is found that such random allocation of protons does not necessarily imply random orientational disorder. The theoretical estimate for the combinatorial entropy is employed together with free energy calculations in order to obtain the phase diagram of ice from 0 to 10 GPa. Overall qualitative agreement with experiment is found for the TIP4P model of water. An accurate estimate of the combinatorial entropy is found to play an important role in determining the stability of partially ordered ice phases, such as ice III and ice V.

  9. Partial moment entropy approximation to radiative heat transfer

    SciTech Connect

    Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de

    2006-10-10

    We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.

  10. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    SciTech Connect

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  11. Association between the presence of a partially erupted mandibular third molar and the existence of caries in the distal of the second molars.

    PubMed

    Falci, S G M; de Castro, C R; Santos, R C; de Souza Lima, L D; Ramos-Jorge, M L; Botelho, A M; Dos Santos, C R R

    2012-10-01

    The objective of this study was to verify, using periapical radiographs, whether a partially erupted mandibular third molar is a factor in the presence of dental caries on the distal surface of the adjacent second molar. Two-forty six high quality periapical radiographs were selected, each showing a partially erupted mandibular third molar. The variables analyzed were: tooth number; gender; age; radiographic presence of caries on the distal surface of the adjacent molar; Pell and Gregory classification; Winter classification; angulation and distance between the second and mandibular third molar. The examiners were previously calibrated to collect data (kappa statistics from 0.87 to 1.0). The prevalence rate of caries on the distal surface of the second molar was 13.4%. In the logistical multivariate regression analysis, the angulation (OR=8.5; IC95%: 1.7-43.8; p=0.011) and the gender (OR=3.3; IC95%: 1.4-7.7; p=0.005) remained statistically significant after an age adjustment was made. The results indicate that the presence of a partially erupted mandibular third molar with an angulation of 31 degrees or more, is a risk factor for caries on the distal surface of the mandibular second molars.

  12. Effect of fluoride varnish on caries prevention of partially erupted of permanent molar in high caries risk.

    PubMed

    Suwansingha, Orawan; Rirattanapong, Praphasri

    2012-05-01

    The objective of this study was to measure the effectiveness of fluoride varnish as a public health intervention to prevent caries on partially erupted first and second permanent molars among 6-11 year old children at high risk for caries. In a six-month clinical trial, 105 children were randomly divided into a fluoride varnish (Duraphat) group (117 molars) or a control group (117 molars). The chi-square test used to compare caries occurrence in each group with a 95% level of confidence (p<0.05) at the intervals of 3 months. Compared to control, fluoride varnish resulted in 79% and 77.5% caries reduction in partially erupted permanent molars at 3 and 6 months, respectively. There were statistically significant differences in caries progression between the groups at 3 and 6 months. Fluoride varnish significantly reduced carious lesions in partially erupted molars at six months among high caries risk children.

  13. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    SciTech Connect

    Williams, Steven M.; Ashbaugh, Henry S.

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  14. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  15. Molar Pregnancy

    MedlinePlus

    ... cysts. In a complete molar pregnancy, there's no embryo or normal placental tissue. In a partial molar pregnancy, there's an abnormal embryo and possibly some normal placental tissue. The embryo ...

  16. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    SciTech Connect

    Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.; Miller, Benjamin T.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-02-14

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

  17. Thermodynamic studies of aqueous solutions of 2,2,2-cryptand at 298.15 K: enthalpy-entropy compensation, partial entropies, and complexation with K+ ions.

    PubMed

    Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J

    2013-12-19

    The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand

  18. How big is the hydrated electron? Thermodynamics of electron solvation and its partial molar volume

    NASA Astrophysics Data System (ADS)

    Bartels, David

    2015-03-01

    Several models for the hydrated electron solvation structure have been proposed, which all can do a reasonable job of reproducing the room temperature optical spectrum. As Larsen, Glover and Schwartz demonstrated, tweaking the electron-water pseudopotential can completely change the structure from a cavity to a non-cavity geometry. Deciding between the competing models then requires comparison with other observables. The resonance Raman spectrum and the temperature dependence of the optical spectrum can be cited as evidence in favor of a non-cavity structure. In the present work we will re-examine the thermodynamics of hydration. In particular, we will present new experimental and simulation results for the partial molar volume, which can bear directly on the cavity vs. non-cavity controversy. DMB is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE- FC02-04ER1553.

  19. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

    SciTech Connect

    Schnell, Sondre K.; Skorpa, Ragnhild; Bedeaux, Dick; Kjelstrup, Signe; Vlugt, Thijs J. H.; Simon, Jean-Marc

    2014-10-14

    We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.

  20. Sealing versus partial caries removal in primary molars: a randomized clinical trial

    PubMed Central

    2014-01-01

    Background The resin-based pit and fissure sealant is considered a successful tool in caries prevention, however there is a growing evidence of its use in controlling already established caries in posterior teeth. The aim of this clinical trial is to verify the efficacy of pit and fissure sealants in arresting dentinal caries lesions compared to partial excavation and restorative treatment in primary molar teeth. Methods Thirty six patients with occlusal cavitated primary molar reaching outer half of dentin were selected. The patients were randomly allocated into two groups: sealant application (experimental group – n = 17) and restoration with composite resin (control group – n = 19). Clinical and radiograph evaluation were performed after 6, 12 and 18 months. The chi-square test was used to verify the distribution of characteristics variables of the sample among the groups. The survival rate of treatments was evaluated using Kaplan–Meier survival and log-rank test. Fisher’s Exact and logistic regression tests were calculated in each evaluation period (α = 5%). Results The control group showed significantly better clinical survival after 18 months (p = 0.0025). In both groups, no caries progression was registered on the radiographic evaluations. Conclusions Sealing had similar efficacy in the arrestment of caries progression of cavitated occlusal lesions compared to partial excavation of the lesions, even though the frequency of re-treatments was significantly higher in sealed lesions. Trial registration Registro Brasileiro de Ensaios Clínicos (ReBEC): RBR-9kkv53 PMID:24884684

  1. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    PubMed

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  2. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide.

  3. Partial molar volumes and viscous properties of glycine-aqueous urea solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ban, A. R.; Tawde, P. D.; Sawale, R. T.

    2015-07-01

    Density (ρ) and viscosity (η) of glycine ( c = 0.02-0.22 mol dm-3) in aqueous urea ( c = 0.5, 1.5, and 3.0 mol dm-3) solutions were measured at 298.15 K. Experimental density data has been used to calculate apparent molar volumes (φv) of glycine in aqueous and aqueous-urea solutions at 298.15 K. The dependence of apparent molar volumes on concentration of glycine was fitted to the Massons relation and apparent molar volume of glycine at infinite dilution (partial molar volume, φ{v/0}) was determined graphically. The partial molar volumes of transfer (Δtrφ{v/0}) of glycine at infinite dilution from pure water to aqueous-urea solutions at 298.15 K were calculated and interpreted in terms of various interactions and structural fittings in studied solutions. The relative viscosity data has been analyzed by Jones-Dole relation and viscosity B-coefficients were determined graphically. Viscosity B-coefficient of transfer (Δ B) was also calculated and compared with Δtrφ{v/0}.

  4. Determination of conformational entropy of fully and partially folded conformations of holo- and apomyoglobin.

    PubMed

    Stadler, Andreas M; Koza, Michael Marek; Fitter, Jörg

    2015-01-08

    Holo- and apomyoglobin can be stabilized in native folded, partially folded molten globules (MGs) and denatured states depending on the solvent composition. Although the protein has been studied as a model system in the field of protein folding, little is known about the internal dynamics of the different structural conformations on the picosecond time scale. In a comparative experimental study we investigated the correlation between protein folding and dynamics on the picosecond time scale using incoherent quasielastic neutron scattering (QENS). The measured mean square displacements (MSDs) of conformational motions depend significantly on the secondary structure content of the protein, whereas the correlation times of the observed internal dynamics were found to be similar irrespective of the degree of folding. The conformational entropy difference ΔSconf between the folded conformations and the acid denatured state could be determined from the measured MSDs and was compared to the entropy difference ΔS obtained from thermodynamic parameters reported in the literature. The observed difference between ΔS and ΔSconf was attributed to the entropy difference ΔShydr of dynamically disordered water molecules of the hydration shell. The entropy content of the hydration water is significantly larger in the native folded proteins than in the partially folded MGs. We demonstrate the potential of incoherent neutron scattering for the investigation of the role of conformational dynamics in protein folding.

  5. Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone.

    PubMed

    Koga, Yoshikata; Sebe, Fumie; Minami, Takamasa; Otake, Keiko; Saitow, Ken-ichi; Nishikawa, Keiko

    2009-09-03

    We study the mixing schemes or the molecular processes occurring in aqueous acetonitrile (ACN) and acetone (ACT) by near-infrared spectroscopy (NIR). Both solutions (any other aqueous solutions) are not free from strong and complex intermolecular interactions. To tackle such a many-body problem, we first use the concept of the excess molar absorptivity, epsilonE, which is a function of solute mole fraction in addition to that of wavenumber, nu. The plots of epsilonE calculated from NIR spectra for both aqueous solutions against nu showed two clearly separated bands at 5020 and 5230 cm(-1); the former showed negative and the latter positive peaks. At zero and unity mole fractions of solute, epsilonE is identically zero independent of nu. Similar to the thermodynamic excess functions, both negative and positive bands grow in size from zero to the minimum (or the maximum) and back to zero, as the mole fraction varies from 0 to 1. Since the negative band's nu-locus coincides with the NIR spectrum of ice, and the positive with that of liquid H(2)O, we suggest that on addition of solute the "ice-likeness" decreases and the "liquid-likeness" increases, reminiscent of the two-mixture model for liquid H(2)O. The modes of these variations, however, are qualitatively different between ACN-H(2)O and ACT-H(2)O. The former ACN is known to act as a hydrophobe and ACT as a hydrophile from our previous thermodynamic studies. To see the difference more clearly, we introduced and calculated the excess partial molar absorptivity of ACN and ACT, epsilon(E)(N) and epsilon(E)(T), respectively. The mole fraction dependences of epsilon(E)(N) and epsilon(E)(T) show qualitatively different behavior and are consistent with the detailed mixing schemes elucidated by our earlier differential thermodynamic studies. Furthermore, we found in the H(2)O-rich region that the effect of hydrophobic ACN is acted on the negative band at 5020 cm(-1), while that of hydrophilic ACT is on the positive high

  6. Separation and partial purification of acid phosphates of the enamel organ of rat molars.

    PubMed

    Anderson, T R; Toverud, S U; Yung, R C; Hanks, M H; Palik, J F

    1982-01-01

    At least two types of acid phosphatases with markedly different properties were separated from the enamel organ of rat molar tooth buds. One enzyme (A) bound weakly to the CM-cellulose column and was eluted with a combined linear salt and pH gradient; another enzyme (B) bound strongly to the column and was eluted with a second linear salt gradient at constant pH. Enzyme A was identified as a phosphomonoester hydrolase (3.1.3.2) similar to the lysosomal enzyme of soft tissues and the tartrate-sensitive enzyme of bone. Enzyme B did not hydrolyse aliphatic monophosphate ester substrates but, like enzyme A, it did split the aryl monophosphate ester substrate, para-nitrophenylphosphate, as well as the phosphate esters of casein and the acid anhydride substrates, ATP and inorganic pyrophosphate. This enzyme is similar to the low molecular weight tartrate-resistant acid phosphatases of bone and soft tissues.

  7. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values.

  8. Studies of Partial Molar Volumes of Some Narcotic-Analgesic Drugs in Aqueous-Alcoholic Mixtures at 25°C

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Chauhan, S.; Syal, V. K.; Chauhan, M. S.

    2008-04-01

    Partial molar volumes of the drugs Parvon Spas, Parvon Forte, Tramacip, and Parvodex in aqueous mixtures of methanol (MeOH), ethanol (EtOH), and propan-1-ol (1-PrOH) have been determined. The data have been evaluated using the Masson equation. The parameters, apparent molar volumes {(φ_v)}, partial molar volumes {(φ_v0)}, and S v values (experimental slopes) have been interpreted in terms of solute solvent interactions. In addition, these studies have also been extended to determine the effect of these drugs on the solvation behavior of an electrolyte (sodium chloride), a surfactant (sodium dodecyl sulfate), and a non-electrolyte (sucrose). It can be inferred from these studies that all drug cations can be regarded as structure makers/promoters due to hydrophobic hydration. Furthermore, the results are correlated to understand the solution behavior of drugs in aqueous-alcoholic systems, as a function of the nature of the alcohol and solutes.

  9. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. 1. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions

    SciTech Connect

    Plyasunov, A.V.; O'Connell, J.P.; Wood, R.H.

    2000-02-01

    A semitheoretical expression for partial molar volumes at infinite dilution of aqueous nonelectrolyte solutes has been developed employing the collection of properties from fluctuation solution theory for use over wide ranges of temperature and pressure. The form of the solution expression was suggested by a comparison of solute/solvent and solvent/solvent direct correlations function integrals (DCFI). The selection of solvent density and compressibility as model variables provides a correct description in the critical region while second virial coefficients have been used to give a rigorous expression in the low density region. The formulation has been integrated to obtain analytic expressions for thermodynamic properties of hydration at supercritical temperatures. The equation is limited to solutes for which B{sub 12} (the second cross virial coefficient between water and a solute molecule) is known or can be estimated. Regression of the three remaining parameters gives good correlations of the available experimental data. A strategy for estimating these parameters allows prediction from readily available data.

  10. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  11. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  12. Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salts using the van Krevelen group contribution method.

    PubMed

    Barra, J; Peña, M A; Bustamante, P

    2000-04-01

    The aim of this study is to propose, for the first time, a set of group molar constants for sodium to calculate the partial solubility parameters of sodium salts. The values were estimated using the few experimental partial solubility parameters of acid/sodium salt series available either from the literature (benzoic acid/Na, ibuprofen acid/Na, diclofenac Na) or determined in this work (salicylic acid/Na, p-aminobenzoic acid/Na, diclofenac), the group contribution method of van Krevelen to calculate the partial parameters of the acids, and three reasonable hypothesis. The experimental method used is a modification of the extended Hansen approach based on a regression analysis of the solubility mole fraction of the drug lnX(2) against models including three- or four-partial solubility parameters of a series of pure solvents ranging from non-polar (heptane) to highly polar (water). The modified method combined with the four-parameter model provided the best results for both acids and sodium derivatives. The replacement of the acidic proton by sodium increased the dipolar and basic partial solubility parameters, whereas the dispersion parameter remained unaltered, thus increasing the overall total solubility parameter of the salt. The proposed group molar constants of sodium are consistent with the experimental results as sodium has a relatively low London dispersion molar constant (identical to that of -OH), a very high Keesom dipolar molar constant (identical to that of -NO(2), two times larger than that of -OH), and a very high hydrogen bonding molar constant (identical to that of -OH). The proposed values are: F((Na)d)=270 (J cm(3))(1/2) mol(-1); F((Na)p)=1030 (J cm(3))(1/2) mol(-1); U((Na)h)=17000 J mol(-1). Like the constants for the other groups, the group molar constants proposed for sodium are certainly not the exact values. However, they are believed to be a fair approximation of the impact of sodium on the partial solubility parameters and, therefore, can

  13. Entropy Evolution in the Magnetic Phases of Partially Frustrated CePdAl

    NASA Astrophysics Data System (ADS)

    Lucas, S.; Grube, K.; Huang, C.-L.; Sakai, A.; Wunderlich, S.; Green, E. L.; Wosnitza, J.; Fritsch, V.; Gegenwart, P.; Stockert, O.; v. Löhneysen, H.

    2017-03-01

    In the heavy-fermion metal CePdAl, long-range antiferromagnetic order coexists with geometric frustration of one-third of the Ce moments. At low temperatures, the Kondo effect tends to screen the frustrated moments. We use magnetic fields B to suppress the Kondo screening and study the magnetic phase diagram and the evolution of the entropy with B employing thermodynamic probes. We estimate the frustration by introducing a definition of the frustration parameter based on the enhanced entropy, a fundamental feature of frustrated systems. In the field range where the Kondo screening is suppressed, the liberated moments tend to maximize the magnetic entropy and strongly enhance the frustration. Based on our experiments, this field range may be a promising candidate to search for a quantum spin liquid.

  14. Magnetic entropy change in amorphous and partially crystallized Fe-Mo-Cu-B alloy

    NASA Astrophysics Data System (ADS)

    Świerczek, Jan; Kupczyk, Anna

    2015-07-01

    Microstructure of the amorphous Fe76Mo10Cu1B13 ribbons in the as-quenched state and after the annealing at 723 K for 0.5 h is studied by transmission electron microscopy and Mössbauer spectroscopy. In the as-cast state α-Fe medium range ordered (MRO) regions are revealed and become the nuclei of crystalline grains. Nanograins 6 nm in the average diameter are observed in the sample subjected to the heat treatment. Mössbauer spectrum at 300 K of the annealed sample is decomposed into three subspectra ascribed to the amorphous paramagnetic and ferromagnetic phases and interface. At room temperature nanograins do not contribute to the spectra in the form of a single sextet due to magnetic relaxations. At 77 K the single sextet can be evidently introduced and its hyperfine parameters indicate the existence of the α-Fe(Mo) crystalline phase. The Curie point (TC) of the amorphous phase in the annealed samples shifts from 277 K in the as-cast state to 320 K after the annealing. The maximum of the magnetic entropy change (- ΔSM) in the as-quenched state occurs at temperature around TC of the amorphous phase and distinctly decreases after the annealing and shifts towards higher temperature but lower than TC of the amorphous remainder. - ΔSM in the superparamagnetic temperature range, i.e. above the Curie temperature of the amorphous phase obeys the phenomenological relation: - ΔSM = a(T)Bm / T + b B.m 2 / (T - Θ) 2 . The excellent | ΔSM | × Bm-2 = f(Bm-1) linear dependences for both, as-quenched and annealed samples are observed.

  15. Partial molar volumes of some alpha-amino acids in aqueous sodium acetate solutions at 308.15 K.

    PubMed

    Wang, J; Yan, Z; Zhuo, K; Lu, J

    1999-08-30

    The apparent molar volumes V(2,phi) have been determined for glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg(-1) sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V(0)(2,phi) for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, Delta(t)V(0), of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V(0)(2,phi) and Delta(t)V(0) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH(3)(+), COO(-)), CH(2) group and other alkyl chains of the amino acids to V(0)(2,phi) and Delta(t)V(0). The results show that V(0)(2,phi) values for (NH(3)(+), COO(-)) groups increase with sodium acetate concentration, and those for CH(2) are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the co-sphere overlap model.

  16. The impact of oxygen nonstoichiometry upon partial molar thermodynamic quantities in PrBaCo{sub 2}O{sub 5+δ}

    SciTech Connect

    Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.

    2014-05-01

    The coulometric titration data are utilized in order to calculate changes of oxygen partial entropy and enthalpy in PrBaCo{sub 2}O{sub 5+δ} with variations of oxygen content and temperature. The thermodynamic equilibrium of the cobaltite with the ambient gas phase is analyzed based on the interface of oxygen exchange and oxidation, and the intrinsic reaction of thermal excitation of Co{sup 3+} cations. The partial thermodynamic functions of the movable oxygen in PrBaCo{sub 2}O{sub 5+δ} are shown to be interrelated with the thermodynamic parameters of the defect formation reactions. The existence of a band gap of about 0.4 eV in the electronic spectrum of the cobaltite follows from a favorable comparison of the calculated and experimental dependencies of the partial thermodynamic functions of the movable oxygen. - Graphical abstract: Partial thermodynamic functions of movable oxygen in PrBaCo{sub 2}O{sub 5+δ}. - Highlights: • Thermodynamic functions of oxygen in PrBaCo{sub 2}O{sub 5+δ} are obtained from pO{sub 2}–T–δ diagram. • The defect model is developed to describe changes in thermodynamic functions. • Thermodynamic analysis gives evidence to a band gap in PrBaCo{sub 2}O{sub 5+δ}.

  17. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  18. The Partial Molar Volume and Thermal Expansivity of Fe2O3 in Alkali Silicate Liquids: Evidence for the Average Coordination of Fe3+

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Lange, R.

    2003-12-01

    Ferric iron is an important component in magmatic liquids, especially in those formed at subduction zones. Although it has long been known that Fe3+ occurs in four-, five- and six-fold coordination in crystalline compounds, only recently have all three Fe3+ coordination sites been confirmed in silicate glasses utilizing XANES spectroscopy at the Fe K-edge (Farges et al., 2003). Because the density of a magmatic liquid is largely determined by the geometrical packing of its network-forming cations (e.g., Si4+, Al3+, Ti4+, and Fe3+), the capacity of Fe3+ to undergo composition-induced coordination change affects the partial molar volume of the Fe2O3 component, which must be known to calculate how the ferric-ferrous ratio in magmatic liquids changes with pressure. Previous work has shown that the partial molar volume of Fe2O3 (VFe2O3) varies between calcic vs. sodic silicate melts (Mo et al., 1982; Dingwell and Brearley, 1988; Dingwell et al., 1988). The purpose of this study is to extend the data set in order to search for systematic variations in VFe2O3 with melt composition. High temperature (867-1534° C) density measurements were performed on eleven liquids in the Na2O-Fe2O3-FeO-SiO2 (NFS) system and five liquids in the K2O-Fe2O3-FeO-SiO2 (KFS) system using Pt double-bob Archimedean method. The ferric-ferrous ratio in the sodic and potassic liquids at each temperature of density measurement were calculated from the experimentally calibrated models of Lange and Carmichael (1989) and Tangeman et al. (2001) respectively. Compositions range (in mol%) from 4-18 Fe2O3, 0-3 FeO, 12-39 Na2O, 25-37 K2O, and 43-78 SiO2. Our density data are consistent with those of Dingwell et al. (1988) on similar sodic liquids. Our results indicate that for all five KFS liquids and for eight of eleven NFS liquids, the partial molar volume of the Fe2O3 component is a constant (41.57 ñ 0.14 cm3/mol) and exhibits zero thermal expansivity (similar to that for the SiO2 component). This value

  19. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute

  20. Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality

    PubMed Central

    Hu, Yanzhu; Ai, Xinbo

    2016-01-01

    Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153

  1. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition

    PubMed Central

    Hayashi, Tomohiko; Oshima, Hiraku; Mashima, Tsukasa; Nagata, Takashi; Katahira, Masato; Kinoshita, Masahiro

    2014-01-01

    It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12–P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12–P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12–water and P16–water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules. PMID:24803670

  2. Physical entropy and the senses.

    PubMed

    Norwich, Kenneth H

    2005-01-01

    With reference to two specific modalities of sensation, the taste of saltiness of chloride salts, and the loudness of steady tones, it is shown that the laws of sensation (logarithmic and power laws) are expressions of the entropy per mole of the stimulus. That is, the laws of sensation are linear functions of molar entropy. In partial verification of this hypothesis, we are able to derive an approximate value for the gas constant, a fundamental physical constant, directly from psychophysical measurements. The significance of our observation lies in the linking of the phenomenon of "sensation" directly to a physical measure. It suggests that if the laws of physics are universal, the laws of sensation and perception are similarly universal. It also connects the sensation of a simple, steady physical signal with the molecular structure of the signal: the greater the number of microstates or complexions of the stimulus signal, the greater the magnitude of the sensation (saltiness or loudness). The hypothesis is currently tested on two sensory modalities.

  3. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  4. Melt densities in the CaO-FeO-Fe 2O 3-SiO 2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts

    NASA Astrophysics Data System (ADS)

    Dingwell, Donald B.; Brearley, Mark

    1988-12-01

    The densities of 10 melts in the CaO-FeO-Fe 2O 3-SiO 2 system were determined in equilibrium with air, in the temperature range of 1200 to 1550°C, using the double-bob Archimedean technique. Melt compositions range from 6 to 58 wt% SiO 2, 14 to 76 wt% Fe 2O 3 and 10 to 46 wt% CaO. The ferric-ferrous ratios of glasses drop-quenched from loop fusion equilibration experiments were determined by 57Fe Mössbauer spectroscopy. Melt densities range from 2.689 to 3.618 gm/cm 3 with a mean standard deviation from replicate experiments of 0.15%. Least-squares regressions of molar volume versus molar composition have been performed and the root mean squared deviation shows that a linear combination of partial molar volumes for the oxide components (CaO, FeO, Fe 2O 3 and SiO 2) cannot describe the data set within experimental error. Instead, the inclusion of excess terms in CaFe 3+ and CaSi (product terms using the oxides) is required to yield a fit that describes the experimental data within error. The nonlinear compositional-dependence of the molar volumes of melts in this system can be explained by structural considerations of the roles of Ca and Fe 3+. The volume behavior of melts in this system is significantly different from that in the Na 2O-FeO-Fe 2O 3-SiO 2 system, consistent with the proposal that a proportion of Fe 3+ in melts in the CaO-FeO-Fe 2O 3-SiO 2 system is not tetrahedrally-coordinated by oxygen, which is supported by differences in 57Fe Mössbauer spectra of glasses. Specifically, this study confirms that the 57Fe Mössbauer spectra exhibit an area asymmetry and higher values of isomer shift of the ferric doublet that vary systematically with composition and temperature (this study; Dingwell and Virgo, 1987, 1988). These observations are consistent with a number of other lines of evidence ( e.g., homogeneous redox equilibria, Dickenson and Hess, 1986; viscosity, Dingwell and Virgo, 1987,1988). Two species of ferric iron, varying in proportions with

  5. A Molar Pregnancy within the Fallopian Tube

    PubMed Central

    Dawson, Charlotte; Nascu, Patricia; Rouse, Tyler

    2016-01-01

    Background. Discussion of the incidence of molar pregnancy and ectopic pregnancy. Role of salpingostomy and special considerations for postoperative care. Case. The patient is a 29-year-old G7P4 who presented with vaginal bleeding in the first trimester and was initially thought to have a spontaneous abortion. Ultrasound was performed due to ongoing symptoms and an adnexal mass was noted. She underwent uncomplicated salpingostomy and was later found to have a partial molar ectopic pregnancy. Conclusion. This case illustrates the rare occurrence of a molar ectopic pregnancy. There was no indication of molar pregnancy preoperatively and this case highlights the importance of submitting and reviewing pathological specimens. PMID:28044117

  6. Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation

    NASA Astrophysics Data System (ADS)

    Bin, Fu; Jie, Han

    2016-02-01

    Magnetic properties and magnetic entropy changes of La(Fe1-xMnx)11.5Si1.5Hy compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm (1 atm = 1.01325 × 105 Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe0.99Mn0.01)11.5Si1.5H1.61 is -11.5 J/kg. The suitable Curie temperature and large value of ΔSm make it an attractive potential candidate for the room temperature magnetic refrigeration application. Projct supported by the Science and Technology Development Fund of Higher Education of Tianjin, China (Grant No. 20130301) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 14JCQNJC4000).

  7. First permanent molars with molar incisor hypomineralisation.

    PubMed

    Fitzpatrick, Laura; O'Connell, Anne

    2007-01-01

    Molar incisor hypomineralisation (MIH) is a common enamel defect presenting in the first permanent molars (FPM) and permanent incisors. This article presents the clinical findings and management considerations for the FPM with MIH to the general practitioner. The various treatment options are described with emphasis placed on early diagnosis as the most important prognostic factor.

  8. Density and sound speed measurements on model basalt (An-Di-Hd) liquids at one bar: New constraints on the partial molar volume and compressibility of the FeO component

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Lange, Rebecca A.; Ai, Yuhui

    2014-02-01

    Density and sound speed measurements were obtained over a wide range of temperature for three model basalt liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system. High-temperature (1585-1838 K) double-bob density measurements were combined with low-temperature (943-930 K) measurements at the limiting fictive temperature for each sample to provide liquid volume data over a temperature interval of ∼900 K. In addition, relaxed sound speeds were obtained with a frequency sweep acoustic interferometer from 1665-1876 K. An ideal mixing model for molar volume, thermal expansivity, and isothermal compressibility recovers the new data from this study and leads to the following fitted values (±2σ) at 1723 K for VbarFeO (12.86±0.32 cm/mol), ∂VbarFeO/∂T((3.69±1.16)×10-3 cm/mol-K) and βbarT,FeO((4.72±0.46)×10-2 GPa). These volumetric properties for the FeO component are estimated to reflect Fe2+ in an average coordination of 5.7 (±0.2), based on the relationship between VbarFeO and Fe2+ coordination derived by a comparison to mineral molar volumes (Guo et al., 2013). Application of these volumetric data to a calculation of the pressure dependence of the Fe-Mg exchange reaction between orthopyroxene and basaltic liquid results in a small decrease in Fe-MgKD with pressure. In contrast, partial melting experiments of peridotite show a small increase in Fe-MgKD(opx-liq) with pressure (e.g., Walter, 1998). This difference in the pressure dependence is proposed to reflect the role of alkalis in reducing the average coordination number of Fe2+ toward five compared to the alkali-free model basalt compositions in this study, thus changing the volume and compressibility of the FeO liquid component. The results from this study may be most appropriately applied to lunar basalts, which are impoverished in alkalis.

  9. Deciduous molar hypomineralization and molar incisor hypomineralization.

    PubMed

    Elfrink, M E C; ten Cate, J M; Jaddoe, V W V; Hofman, A; Moll, H A; Veerkamp, J S J

    2012-06-01

    This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop during a period similar to that of second primary molars, with possible comparable risk factors for hypomineralization. Children with DMH have a greater risk of developing MIH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6,161 children (49.8% girls; mean age 74.3 mos, SD ± 5.8). First permanent molars and second primary molars were scored with respect to DMH or MIH. The prevalence of DMH and MIH was 9.0% and 8.7% at child level, and 4.0% and 5.4% at tooth level. The Odds Ratio for MIH based on DMH was 4.4 (95% CI, 3.1-6.4). The relationship between the occurrence of DMH and MIH suggests a shared cause and indicates that, clinically, DMH can be used as a predictor for MIH.

  10. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)

    USGS Publications Warehouse

    Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.

    1985-01-01

    The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.

  11. Current management of molar pregnancy.

    PubMed

    Hancock, Barry W; Tidy, John A

    2002-05-01

    Molar pregnancy remains an uncommon and still not fully understood disorder. The clinical presentation has changed over recent decades. In developed countries complete moles are now usually diagnosed early (on clinical and/or ultrasound scan criteria) so that the more severe clinical presentations are much less commonly seen. The important differences between complete and partial moles and their risk factors are now well recognized. Common protocols for managing persistent gestational trophoblastic disease are being derived, and molecular genetic studies are advancing our understanding of molar pregnancy and its sequelae. Cure rates approaching 100% should now be the rule rather than the exception. There is a strong case for formal registration and monitoring of all cases through specialist centers.

  12. Molar incisor hypomineralization.

    PubMed

    Mahoney, Erin

    2012-04-01

    Molar Incisor Hypomineralization (MIH) is a common condition in New Zealand children and children around the world and can result in a significant defect in first permanent molars. This condition inevitably leads to a large amount of dental treatment for young children and may even result in the removal of their first permanent molars. This lecture will outline the understanding of the physical properties of these teeth and provide an evidence based review of the treatment options for affected teeth.

  13. Dissipation, interaction, and relative entropy.

    PubMed

    Gaveau, B; Granger, L; Moreau, M; Schulman, L S

    2014-03-01

    Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (also called the Kullback-Leibler divergence). The processes considered are general time evolutions in both classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. As an application, the relative entropy is related to transport coefficients.

  14. ["Molar-incisor hypomineralization"].

    PubMed

    Kellerhoff, Nadja-Marina; Lussi, Adrian

    2004-01-01

    Hypocalcification of the enamel is the most common developmental disorder observed in teeth. The prevalence of this kind of hypomineralisation is about 10-19%. These molars are often referred to as cheese molars, because the lesions clinically resemble cheese in color and consistency. Other descriptions are: idiopathic enamel hypomineralisation in the permanent first molars, idiopathic enamel opacities in the permanent first molars, non fluoride enamel hypomineralisation in the permanent first molars, non-endemic mottling of enamel in the permanent first molars. Molar-Incisor Hypomineralisation is today the proposed expression for this disease. Occlusal surfaces of the first permanent molar are most commonly affected. The lesions are more frequent in the upper jaw than in the lower jaw. The incisors are affected to a lesser degree than the molars. Several aetiological factors can cause these defects. Some studies show a relation between intake of dioxins via mother's milk after prolonged breast feeding and developmental defects of the child's teeth. Because the ameloblasts are very sensitive to oxygen supply, complications involving oxygen shortages during birth or respiratory diseases such as asthma or bronchitis and pneumonia are discussed as further aetiological factors. Renal insufficiency, hypoparothyroidism, diarrhoea, malabsorption and malnutrition and high-fever diseases can be other reasons for the occurrence of these defects. Defective enamel can be a locus of lowered resistance for caries. Histologically there are areas of porosity of varying degrees. The affected teeth can be very sensitive to air, cold, warm and mechanical stimuli. Toothbrushing may create toothache in these teeth. We therefore suggest that these patients receive intensified prevention with fluoride varnish, a fissure sealing, GIZ, composits, stainless steel crowns or implants. In some cases an interdisciplinary approach with an orthodontist can result in the extraction of the molars

  15. Absolute entropy and free energy of fluids using the hypothetical scanning method. II. Transition probabilities from canonical Monte Carlo simulations of partial systems

    NASA Astrophysics Data System (ADS)

    White, Ronald P.; Meirovitch, Hagai

    2003-12-01

    A variant of the hypothetical scanning (HS) method for calculating the absolute entropy and free energy of fluids is developed, as applied to systems of Lennard-Jones atoms (liquid argon). As in the preceding paper (Paper I), a probability Pi approximating the Boltzmann probability of system configuration i, is calculated with a reconstruction procedure based on adding the atoms gradually to an initially empty volume, where they are placed in their positions at i; in this process the volume is divided into cubic cells, which are visited layer-by-layer, line-by-line. At each step a transition probability (TP) is calculated and the product of all the TPs leads to Pi. At step k, k-1 cells have already been treated, where among them Nk are occupied by an atom. A canonical metropolis Monte Carlo (MC) simulation is carried out over a portion of the still unvisited (future) volume thus providing an approximate representation of the N-Nk as yet untreated (future) atoms. The TP of target cell k is determined from the number of visits of future atoms to this cell during the simulation. This MC version of HS, called HSMC, is based on a relatively small number of efficiency parameters; their number does not grow and their values are not changed as the number of the treated future atoms is increased (i.e., as the approximation improves); therefore, implementing HSMC for a relatively large number of future atoms (up to 40 in this study) is straightforward. Indeed, excellent results have been obtained for the free energy and the entropy.

  16. Entropy of Mixing of Distinguishable Particles

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  17. Entropy, materials, and posterity

    USGS Publications Warehouse

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  18. Upper entropy axioms and lower entropy axioms

    SciTech Connect

    Guo, Jin-Li Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  19. Correct Expressions of Enthalpy of Mixing and Excess Entropy from MIVM and Their Simplified Forms

    NASA Astrophysics Data System (ADS)

    Tao, Dong-Ping

    2016-02-01

    In this work, the author pointed out that empirically to compare the molecular interaction volume model (MIVM) with thermodynamic definition of excess Gibbs energy would result in the incorrect expressions of enthalpy of mixing and excess entropy. The correct expressions of molar and partial molar enthalpies of mixing and excess entropies from the MIVM are consistent thermodynamically and are suggested for replacing their past incorrect ones. The simplification of Z i = Z = 10 is verified to be feasible by the average errors of fitting in the binary liquid alloys M-P (M = Cr, Fe, and Mn) and of predicting in the ternary liquid alloys Fe-Cr-P and Fe-Mn-P by using two coordination numbers of phosphorus Z P = 3.04 and Z P = 8.96. Further, their simplified forms are proposed for predicting easily thermodynamic properties of a multicomponent liquid system and are preliminarily tested to be coordinated mutually in the binary liquid alloys Au-Cu, Cd-Zn, Ca-Zn, and Ni-Pb.

  20. Angle Class II, subdivision, with agenesis of mandibular second molars and extrusion of maxillary second molars *

    PubMed Central

    Tavares, Rubens Rodrigues

    2015-01-01

    This clinical case reports the treatment of an Angle Class II malocclusion in a young woman with a balanced face affected by agenesis of second and third mandibular molars and subsequent extrusion of second maxillary molars. The atypical and peculiar occlusal anomaly led to individualized treatment proposed in order to normalize dental malpositions, with subsequent rehabilitation of edentulous areas by means of a multidisciplinary approach. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) in partial fulfillment of the requirements for obtaining the title of certified by the BBO. PMID:25992995

  1. Ectopic molar pregnancy: a case report.

    PubMed

    Bousfiha, Najoua; Erarhay, Sanaa; Louba, Adnane; Saadi, Hanan; Bouchikhi, Chahrazad; Banani, Abdelaziz; El Fatemi, Hind; Sekkal, Med; Laamarti, Afaf

    2012-01-01

    The incidence of hydatidiform moles is 1 per 1,000 pregnancies. Ectopic pregnancy occurs in 20 per 1,000 pregnancies. Thus, the incidence of the ectopic molar gestation is very rare. We report a case of tubal molar pregnancy diagnosed at the systematic histology exam of an ectopic pregnancy. We report the case of 32 years old nulliparus women who presented a vaginal bleeding, lower abdominal pain and 6 weeks amenorrhea corresponding to the last menstrual period. At the clinical examination, the arterial pressure was 100/60 mmHG. The gynecological examination was difficult because of lower abdominal pain. Serum gonadotropin activity was 3454 ui/l. Pelvic ultrasound revealed an irregular echogenic mass in the left adnexa. Diagnostic laparoscopy revealed a left-sided unruptured ampullary ectopic pregnancy. A left laparoscopic salpingectomy was performed. The systematic histologic test identified an ectopic partial molar pregnancy, which was confirmed by DNA ploidy image analysis. The patient was followed with weekly quantitative B-hCG titers until three successive B-hCG levels were negative. It is pertinent that clinicians take routine histological examination of tubal specimens in ectopic pregnancy very seriously in order to diagnose cases of ectopic molar gestations early and mount appropriate post treatment surveillance.

  2. Taurodontism in deciduous molars

    PubMed Central

    Bafna, Yash; Kambalimath, H V; Khandelwal, Vishal; Nayak, Prathibha

    2013-01-01

    Taurodont teeth are characterised by large pulp chambers at the expense of roots. An enlarged pulp chamber, apical displacement of the pulpal floor and no constriction at the level of the cement-enamel junction are the characteristic features of taurodont tooth. It appears more frequently as an isolated anomaly but its association with syndromes and other abnormalities have also been reported. Permanent dentition is more commonly affected than deciduous dentition. This paper presents a case report of taurodontism in relation to mandibular deciduous second molars. PMID:23737594

  3. Molar incisor hypomineralization.

    PubMed

    Takahashi, Karine; Correia, Adriana de Sales Cunha; Cunha, Robson Frederico

    2009-01-01

    Enamel defects are common alterations that can occur in both the primary or permanent dentition. A range of etiological factors related to this pathology can be found in the literature. Molar Incisor Hypomineralization (MIH) is a kind of enamel defect alteration that requires complex treatment solutions, and for this reason, it is of great clinical interest for dental practice. This article describes the management of a clinical case of MIH in a 7-year-old child. The different treatment options depending on the extension of the defect, the degree of tooth eruption and the hygiene and diet habits of the patient are also discussed.

  4. Entropy power inequalities for qudits

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris

    2016-05-01

    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.

  5. The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K

    ERIC Educational Resources Information Center

    Lambert, Frank L.; Leff, Harvey S.

    2009-01-01

    As a substance is heated at constant pressure from near 0 K to 298 K, each incremental enthalpy increase, dH, alters entropy by dH/T, bringing it from approximately zero to its standard molar entropy S degrees. Using heat capacity data for 32 solids and CODATA results for another 45, we found a roughly linear relationship between S degrees and…

  6. A generalized model on the evaluation of entropy and entropy of mixing of liquid Na-Sn alloys

    NASA Astrophysics Data System (ADS)

    Satpathy, Alok; Sengupta, Saumendu

    2017-01-01

    Recently proposed theory of entropy of mixing of the structurally inhomogeneous binary liquid alloys of alkali metals and group-IV elements is applied successfully to the liquid Na-Sn alloy. This alloy indicates chemical short range ordering (CSRO) i.e. exhibits partially salt like characteristics due to strong tendencies to compound formation, in the solid as well as in the liquid state. So, the generalized model for entropy of charged-hard-spheres mixture of arbitrary charge and size is employed to evaluate entropies of mixing, treating the sample as partially charge transfer system. The computed entropies of mixing are in excellent agreement with the experimental data.

  7. Molar Incisor Hypomineralization.

    PubMed

    Rao, Murali H; Aluru, Srikanth C; Jayam, Cheranjeevi; Bandlapalli, Anila; Patel, Nikunj

    2016-07-01

    Molar incisor hypomineralization (MIH) is a developmental defect affecting teeth. High prevalence rates of MIH and its clinical implications are significant for both the patients and clinicians. A wide variation in defect prevalence (2.4-40.2%) is reported. It seems to differ with regions and various birth cohorts. Some of the recent prevalence studies are tabulated. Patient implications include hypersensitive teeth, rapid progression of caries, mastication impairment due to rapid attrition, and esthetic repercussions. Implications for clinicians include complexity in treatment planning and treatment implementation, poor prognosis of the restorations, difficulty in achieving pain control during treatment, and behavior management problems. Intention of this paper is to review the etio-pathogenesis, prevalence, clinical features, diagnostic features, and eventually present a sequential treatment approach, i.e., in accordance with current clinical practice guidelines.

  8. Partial hydatidiform mole and coexisting viable twin pregnancy.

    PubMed

    Tay, Ee Tein

    2013-12-01

    Twin partial hydatidiform molar pregnancy with a viable fetus is an uncommon occurrence. Presentations of molar pregnancies include vaginal bleeding, unusually elevated β-human chorionic gonadotropin level, and preeclampsia. Previous descriptions of twin molar and fetus pregnancies in the literature have been described in the outpatient obstetric setting. We present a case of partial molar pregnancy with a viable fetus detected with emergency ultrasound in a pediatric emergency department.

  9. Controversy of the third molars.

    PubMed

    Pitekova, L; Satko, I

    2009-01-01

    Third molars are teeth that have little functional value and a relatively high rate of associated pain and disease. Their value as a part of the dentition of modern people is dubious. Our aim is to review the evolution, morbidity and complications of the third molars (Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  10. Generalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2016-07-01

    We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.

  11. Entropy, a Protean Concept

    NASA Astrophysics Data System (ADS)

    Balian, Roger

    We review at a tutorial level the many aspects of the concept of entropy and their interrelations, in thermodynamics, information theory, probability theory and statistical physics. The consideration of relevant entropies and the identification of entropy with missing information enlighten the paradoxes of irreversibility and of Maxwell's demon.

  12. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  13. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  14. Modeling loop entropy.

    PubMed

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  15. Peri-operative second molar tube failure during orthognathic surgery: two case reports.

    PubMed

    Wenger, N A; Atack, N E; Mitchell, C N; Ireland, A J

    2007-06-01

    With improvements in bonding techniques, bracket base design and bond strengths, molar tubes are becoming more popular in orthodontics. Molar tubes make an attractive alternative to conventional banding due to a reduction in clinical bonding time and ease of placement on partially erupted teeth. The use of molar tubes negates the need for orthodontic separation and subsequent cementation of bands, and offers improved periodontal health. Their use on terminal molars, however, should be limited to non-orthognathic cases. This paper presents two cases of peri-operative second molar tube failure during orthognathic surgery. They are presented in the hope that it will highlight the importance of banding the distal terminal molar in orthognathic cases to prevent loss of molar tubes and peri-operative contamination of the surgical wound site.

  16. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  17. Molar incisor hypomineralisation.

    PubMed

    Taylor, Greig D

    2017-03-01

    Data sourcesThe Medline and Embase databases and hand searches in the journals International Journal of Paediatric Dentistry and European Archives of Paediatric Dentistry.Study selectionEnglish language cohort and case-control studies.Data extraction and synthesisStudy selection was carried out independently by two reviewers with data abstraction being conducted by a single reviewer and checked by a second reviewer. Risk of bias was assessed using a modified version of the Newcastle-Ottawa Scale (NOS). Adjusted (aOR) and unadjusted odds ratios (uOR), P-values and 95% confidence intervals (CI) were obtained from the studies. Meta-analysis was not conducted.ResultsTwenty-eight studies were included; 25 reported on MIH, three on hypomineralised second primary molars (HSPM). Nineteen of the studies were of cohort design (six prospective,13 retrospective) and nine were case controls. There was little evidence of an association between the most frequently investigated prenatal factors (smoking, maternal illness, maternal medication, maternal stress) and MIH. Similarly there was little evidence of an association between MIH and perinatal factors such as prematurity, low birth weight, caesarean delivery and birth complications. Early childhood illness, up to three or four years of age, was widely investigated, with six studies reporting a crude association. Associations between antibiotics, anti-asthma medication and breastfeeding were also evaluated. Only three studies looked at HSPM; one study suggested that maternal antibiotic use during pregnancy is unlikely to be associated with HSPM but maternal alcohol intake may be. Another study reported possible associations with a large number of factors, with perinatal factors and neonatal illness being most common, followed by prenatal factors.ConclusionsPrenatal and perinatal factors are infrequently associated with MIH. However, despite a lack of prospective studies, early childhood illness (in particular fever) appears to

  18. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  19. Relative entropy equals bulk relative entropy

    SciTech Connect

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  20. Remarks on entanglement entropy for gauge fields

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Huerta, Marina; Rosabal, José Alejandro

    2014-04-01

    In gauge theories the presence of constraints can obstruct expressing the global Hilbert space as a tensor product of the Hilbert spaces corresponding to degrees of freedom localized in complementary regions. In algebraic terms, this is due to the presence of a center—a set of operators which commute with all others—in the gauge invariant operator algebra corresponding to a finite region. A unique entropy can be assigned to algebras with a center, giving a place to a local entropy in lattice gauge theories. However, ambiguities arise on the correspondence between algebras and regions. In particular, it is always possible to choose (in many different ways) local algebras with a trivial center, and hence a genuine entanglement entropy, for any region. These choices are in correspondence with maximal trees of links on the boundary, which can be interpreted as partial gauge fixings. This interpretation entails a gauge fixing dependence of the entanglement entropy. In the continuum limit, however, ambiguities in the entropy are given by terms local on the boundary of the region, in such a way relative entropy and mutual information are finite, universal, and gauge independent quantities.

  1. Entropy Transfer of Quantum Gravity Information Processing

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2015-05-01

    We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.

  2. Entropy and econophysics

    NASA Astrophysics Data System (ADS)

    Rosser, J. Barkley

    2016-12-01

    Entropy is a central concept of statistical mechanics, which is the main branch of physics that underlies econophysics, the application of physics concepts to understand economic phenomena. It enters into econophysics both in an ontological way through the Second Law of Thermodynamics as this drives the world economy from its ecological foundations as solar energy passes through food chains in dissipative process of entropy rising and production fundamentally involving the replacement of lower entropy energy states with higher entropy ones. In contrast the mathematics of entropy as appearing in information theory becomes the basis for modeling financial market dynamics as well as income and wealth distribution dynamics. It also provides the basis for an alternative view of stochastic price equilibria in economics, as well providing a crucial link between econophysics and sociophysics, keeping in mind the essential unity of the various concepts of entropy.

  3. Wehrl entropy, Lieb conjecture, and entanglement monotones

    SciTech Connect

    Mintert, Florian; Zyczkowski, Karol

    2004-02-01

    We propose to quantify the entanglement of pure states of NxN bipartite quantum systems by defining its Husimi distribution with respect to SU(N)xSU(N) coherent states. The Wehrl entropy is minimal if and only if the analyzed pure state is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (Renyi) subentropies, are proved to be Schur concave, so they are entanglement monotones and may be used as alternative measures of entanglement.

  4. Complications of third molar surgery.

    PubMed

    Bouloux, Gary F; Steed, Martin B; Perciaccante, Vincent J

    2007-02-01

    This article addresses the incidence of specific complications and, where possible, offers a preventive or management strategy. Injuries of the inferior alveolar and lingual nerves are significant issues that are discussed separately in this text. Surgical removal of third molars is often associated with postoperative pain, swelling, and trismus. Factors thought to influence the incidence of complications after third molar removal include age, gender, medical history, oral contraceptives, presence of pericoronitis, poor oral hygiene, smoking, type of impaction, relationship of third molar to the inferior alveolar nerve, surgical time, surgical technique, surgeon experience, use of perioperative antibiotics, use of topical antiseptics, use of intra-socket medications, and anesthetic technique. Complications that are discussed further include alveolar osteitis, postoperative infection, hemorrhage, oro-antral communication, damage to adjacent teeth, displaced teeth, and fractures.

  5. Molar incisor hypomineralization, prevalence, and etiology.

    PubMed

    Allazzam, Sulaiman Mohammed; Alaki, Sumer Madani; El Meligy, Omar Abdel Sadek

    2014-01-01

    Aim. To evaluate the prevalence and possible etiological factors associated with molar incisor hypomineralization (MIH) among a group of children in Jeddah, Saudi Arabia. Methods. A group of 8-12-year-old children were recruited (n = 267) from the Pediatric Dental Clinics at the Faculty of Dentistry, King Abdulaziz University. Children had at least one first permanent molar (FPM), erupted or partially erupted. Demographic information, children's medical history, and pregnancy-related data were obtained. The crowns of the FPM and permanent incisors were examined for demarcated opacities, posteruptive breakdown (PEB), atypical restorations, and extracted FPMs. Children were considered to have MIH if one or more FPM with or without involvement of incisors met the diagnostic criteria. Results. MIH showed a prevalence of 8.6%. Demarcated opacities were the most common form. Maxillary central incisors were more affected than mandibular (P = 0.01). The condition was more prevalent in children with history of illnesses during the first four years of life including tonsillitis (P = 0.001), adenoiditis (P = 0.001), asthma (P = 0.001), fever (P = 0.014), and antibiotics intake (P = 0.001). Conclusions. The prevalence of MIH is significantly associated with childhood illnesses during the first four years of life including asthma, adenoid infections, tonsillitis, fever, and antibiotics intake.

  6. Molar Incisor Hypomineralization, Prevalence, and Etiology

    PubMed Central

    Allazzam, Sulaiman Mohammed; Alaki, Sumer Madani; El Meligy, Omar Abdel Sadek

    2014-01-01

    Aim. To evaluate the prevalence and possible etiological factors associated with molar incisor hypomineralization (MIH) among a group of children in Jeddah, Saudi Arabia. Methods. A group of 8-12-year-old children were recruited (n = 267) from the Pediatric Dental Clinics at the Faculty of Dentistry, King Abdulaziz University. Children had at least one first permanent molar (FPM), erupted or partially erupted. Demographic information, children's medical history, and pregnancy-related data were obtained. The crowns of the FPM and permanent incisors were examined for demarcated opacities, posteruptive breakdown (PEB), atypical restorations, and extracted FPMs. Children were considered to have MIH if one or more FPM with or without involvement of incisors met the diagnostic criteria. Results. MIH showed a prevalence of 8.6%. Demarcated opacities were the most common form. Maxillary central incisors were more affected than mandibular (P = 0.01). The condition was more prevalent in children with history of illnesses during the first four years of life including tonsillitis (P = 0.001), adenoiditis (P = 0.001), asthma (P = 0.001), fever (P = 0.014), and antibiotics intake (P = 0.001). Conclusions. The prevalence of MIH is significantly associated with childhood illnesses during the first four years of life including asthma, adenoid infections, tonsillitis, fever, and antibiotics intake. PMID:24949012

  7. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization.

    PubMed

    Negre-Barber, A; Montiel-Company, J M; Boronat-Catalá, M; Catalá-Pizarro, M; Almerich-Silla, J M

    2016-08-25

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9-86.6) and the negative predictive value 84.7% (80.6-88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9-17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47-0.68). The odds ratio was 18.2 (9.39-35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH.

  8. Molarization of Mandibular Second Premolar

    PubMed Central

    Singh Khinda, Vineet Inder; Kallar, Shiminder; Singh Brar, Gurlal

    2014-01-01

    ABSTRACT Macrodontia (megadontia, megalodontia, mac rodontism) is a rare shape anomaly that has been used to describe dental gigantism. Mandibular second premolars show an elevated variability of crown morphology, as are its eruptive potential and final position in the dental arch. To date, only eight cases of isolated macrodontia of second premolars have been reported in the literature. This case report presents clinical and radiographic findings of unusual and rare case of isolated unilateral molarization of left mandibular second premolar. How to cite this article: Mangla N, Khinda VIS, Kallar S, Brar GS. Molarization of Mandibular Second Premolar. Int J Clin Pediatr Dent 2014;7(2):137-139. PMID:25356014

  9. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  10. The Holographic Entropy Cone

    DOE PAGES

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; ...

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  11. Extinction as discrimination: the molar view.

    PubMed

    Baum, William M

    2012-05-01

    The traditional molecular view of behavior explains extinction as the dissipation or inhibition of strength, formerly built up by contiguous reinforcement. In obstinate opposition to this explanation was the partial-reinforcement extinction effect: a partially reinforced response extinguishes more slowly than a continuously reinforced response. It suggests instead that extinction is discrimination. Four pigeons were exposed to daily sessions in which a variable period of food delivery, produced by pecking on a variable-interval schedule, was followed by extinction. The rate of food delivery was varied over a wide range across conditions. Varying the amount of food per delivery inversely with rate of delivery kept response rate from varying excessively. The results confirmed and extended the partial-reinforcement effect; persistence of pecking and time to extinction were inversely related to rate of obtaining food. The results support the molar view of extinction, not as loss of strength of a particular discrete response, but as a transition from one allocation of time among activities to another. Although molecular theories dismiss discrimination due to repeated training and extinction as an impurity or complication, repeated cycles of availability and privation are probably typical of the environment in which most vertebrate species evolved.

  12. Charged topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei

    2016-05-01

    A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.

  13. Replacement of missing molar teeth--a prosthodontic dilemma.

    PubMed

    Devlin, H

    1994-01-08

    In deciding whether to replace lost lower molar teeth with a denture or accept the status quo, the dentist is faced with a choice of equally unfavourable alternatives. Dentures tend to accumulate plaque, the main cause of periodontal destruction, but failure to provide a prosthesis may also disadvantage the patient. Whether or not the provision of a replacement partial denture following molar tooth extraction helps to maintain the periodontium of the remaining dentition is not known. Patients are also aware of the dilemma. Many surveys have shown that a large proportion of replacement lower, free-end saddle dentures are never worn. However, a failure to provide partial dentures may have many adverse effects, especially in young adults.

  14. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    PubMed Central

    Negre-Barber, A.; Montiel-Company, J. M.; Boronat-Catalá, M.; Catalá-Pizarro, M.; Almerich-Silla, J. M.

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9–86.6) and the negative predictive value 84.7% (80.6–88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9–17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47–0.68). The odds ratio was 18.2 (9.39–35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479

  15. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  16. The Mystique of Entropy.

    ERIC Educational Resources Information Center

    Kyle, Benjamin G.

    1988-01-01

    Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)

  17. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  18. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  19. Mandibular lip bumper for molar torque control.

    PubMed

    Celentano, Giuseppe; Longobardi, Annalisa; Cannavale, Rosangela; Perillo, Letizia

    2011-01-01

    Treatment effects of lip bumpers alone include flaring of the mandibular incisors, distalization and uprighting of the mandibular first molars, and buccal expansion of the canines, premolars, and molar. Lip forces are transmitted through this appliance onto the molars. Moreover the lip bumper is able to derotate, expand or constrict, upright and reinforce the anchorage whereas torque control is lacking. Aim of this paper is the presentation of a new type of lip bumper that allows the molar torque control.

  20. Numerical estimation of the relative entropy of entanglement

    SciTech Connect

    Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad

    2010-11-15

    We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10{sup -3}.

  1. Entropy of quasiblack holes

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-03-15

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  2. Entropy and environmental mystery.

    PubMed

    Stamps, Arthur E

    2007-06-01

    Two studies are reported regarding the effects of entropy, lighting, and occlusion on impressions of mystery in physical environments. The theoretical context of this study was the "informational theory" of environmental preference, which, among other claims, holds that mystery can be measured by the extent to which people perceive a promise of more information if they move deeper into an environment. Entropy, in the context of this article, is visual diversity as measured using information theory. Mystery was measured by a semantic differential scale. The definition of mystery was left up to each individual participant. Entropy of occluded objects was used to obtain an objective, experimentally manipulatable and operational definition of "promise of more information." Exp. 1 had 12 stimuli and 15 participants. Exp. 2 had 12 stimuli and 16 participants. Entropy of occluded objects ranged from 0 to 6 bits. Entropy of occluded objects was used to measure the promise that there would be more information if one moved deeper into an environment. Overall, amount of light had the strongest effect on responses of mystery (r = -.63, darker was more mysterious), followed by occlusion (r = .26, occluding objects made a scene seem more mysterious), and by the promise of more information if one moved about in the scene (r = .13), the more entropy in occluded objects, the greater the impression of mystery). The theoretical contribution of this work is that a relationship between subjective impressions of mystery and an objective measure of "promise of more information" was found.

  3. Renormalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2016-08-01

    We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement en-tropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renor-malization group flows. The renormalized entanglement entropy for disk regions in AdS 4 spacetimes agrees precisely with the holographically renormalized action for AdS 4 with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deforma-tions by operators of dimension 3 /2 < Δ < 5 /2 for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our renormalization method for the entangle-ment entropy is inherited directly from that of the partition function. We show explicitly how the entanglement entropy counterterms can be derived from the standard holographic renormalization counterterms for asymptotically locally anti-de Sitter spacetimes.

  4. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  5. Information Entropy of Fullerenes.

    PubMed

    Sabirov, Denis Sh; Ōsawa, Eiji

    2015-08-24

    The reasons for the formation of the highly symmetric C60 molecule under nonequilibrium conditions are widely discussed as it dominates over numerous similar fullerene structures. In such conditions, evolution of structure rather than energy defines the processes. We have first studied the diversity of fullerenes in terms of information entropy. Sorting 2079 structures from An Atlas of Fullerenes [ Fowler , P. W. ; Manolopoulos , D. E. An Atlas of Fullerenes ; Oxford : Clarendon , 1995 . ], we have found that the information entropies of only 14 fullerenes (<1% of the studied structures) lie between the values of C60 and C70, the two most abundant fullerenes. Interestingly, buckminsterfullerene is the only fullerene with zero information entropy, i.e., an exclusive compound among the other members of the fullerene family. Such an efficient sorting demonstrates possible relevance of information entropy to chemical processes. For this reason, we have introduced an algorithm for calculating changes in information entropy at chemical transformations. The preliminary calculations of changes in information entropy at the selected fullerene reactions show good agreement with thermochemical data.

  6. Differential entropy and time

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr

    2005-12-01

    We give a detailed analysis of the Gibbs-type entropy notion and its dynamical behavior in case of time-dependent continuous probability distributions of varied origins: related to classical and quantum systems. The purpose-dependent usage of conditional Kullback-Leibler and Gibbs (Shannon) entropies is explained in case of non-equilibrium Smoluchowski processes. A very different temporal behavior of Gibbs and Kullback entropies is confronted. A specific conceptual niche is addressed, where quantum von Neumann, classical Kullback-Leibler and Gibbs entropies can be consistently introduced as information measures for the same physical system. If the dynamics of probability densities is driven by the Schrödinger picture wave-packet evolution, Gibbs-type and related Fisher information functionals appear to quantify nontrivial power transfer processes in the mean. This observation is found to extend to classical dissipative processes and supports the view that the Shannon entropy dynamics provides an insight into physically relevant non-equilibrium phenomena, which are inaccessible in terms of the Kullback-Leibler entropy and typically ignored in the literature.

  7. Molar versus as a paradigm clash.

    PubMed Central

    Baum, W M

    2001-01-01

    The molar view of behavior arose in response to the demonstrated inadequacy of explanations based on contiguity. Although Dinsmoor's (2001) modifications to two-factor theory render it irrefutable, a more basic criticism arises when we see that the molar and molecular views differ paradigmatically. The molar view has proven more productive. PMID:11453623

  8. Fluctuation theorem for partially masked nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Sagawa, Takahiro

    2015-01-01

    We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.

  9. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  10. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  11. Heat capacty, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction.

    USGS Publications Warehouse

    Robinson, G.R.; Haas, J.L.

    1983-01-01

    Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.

  12. Sharp continuity bounds for entropy and conditional entropy

    NASA Astrophysics Data System (ADS)

    Chen, ZhiHua; Ma, ZhiHao; Nikoufar, Ismail; Fei, Shao-Ming

    2017-02-01

    The Renyi entropy plays an essential role in quantum information theory. We study the continuity estimation of the Renyi entropy. An inequality relating the Renyi entropy difference of two quantum states to their trace norm distance is derived. This inequality is shown to be tight in the sense that equality can be attained for every prescribed value of the trace norm distance. It includes the sharp Fannes inequality for von Neumann entropy as a special case.

  13. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  14. Entropy and Enzyme Catalysis.

    PubMed

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  15. Information entropy in cosmology.

    PubMed

    Hosoya, Akio; Buchert, Thomas; Morita, Masaaki

    2004-04-09

    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time evolution of "effective information" and explore some implications. We conjecture that the information content of the Universe-measured by relative information entropy of a cosmological model containing dust matter-is increasing.

  16. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2016-02-25

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  17. Rescaling Temperature and Entropy

    ERIC Educational Resources Information Center

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  18. Entropy of the Universe

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2010-06-01

    Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.

  19. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  20. An investigation of combustion and entropy noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.

  1. Diffusive mixing and Tsallis entropy

    DOE PAGES

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  2. The different paths to entropy

    NASA Astrophysics Data System (ADS)

    Benguigui, L.

    2013-03-01

    In order to understand how the complex concept of entropy emerged, we propose a trip into the past, reviewing the works of Clausius, Boltzmann, Gibbs and Planck. In particular, since Gibbs's work is not very well known we present a detailed analysis, recalling the three definitions of entropy that Gibbs gives. The introduction of entropy in quantum mechanics gives in a compact form all the classical definitions of entropy. Perhaps one of the most important aspects of entropy is to see it as a thermodynamic potential like the others proposed by Callen. The calculation of fluctuations in thermodynamic quantities is thus naturally related to entropy. We close with some remarks on entropy and irreversibility.

  3. Revolution vs status quo? Non-intervention strategy of asymptomatic third molars causes harm.

    PubMed

    Toedtling, V; Yates, J M

    2015-07-10

    The Faculty of Dental Surgery of the Royal College of Surgeons of England has prompted the National Institute for Health and Care Excellence to urgently re-assess the TA1 guidance on extractions of wisdom teeth and highlighted required amendments to the present version in light of published evidence concerning the harm caused by wisdom tooth retention. This article seeks to address the recent concerns relating the increasing frequency of distal-cervical caries in lower second molar teeth when associated with asymptomatic partially erupted mesial or horizontal impacted mandibular third molars. Such acute angle impactions are classified as partially erupted when one of the third molar cusps breached the epithelial attachment of the distal aspect of the second molar, thus prevents the formation of a gingival seal. At its earliest stage the wisdom tooth appears clinically absent or unerupted, yet histologically the architecture of the gingival epithelium has been disrupted allowing ingress of microbes, demineralisation and succeeding cavitation to take place on the distal aspect of the second molar. We hope to highlight the difficulties faced in addressing this growing clinical problem and encourage clinicians to re-evaluate their own caries risk assessment and caries prevention strategy in relation to mesial and horizontal third molar extractions.

  4. Histological evaluation of mandibular third molar roots retrieved after coronectomy.

    PubMed

    Patel, Vinod; Sproat, Chris; Kwok, Jerry; Beneng, Kiran; Thavaraj, Selvam; McGurk, Mark

    2014-05-01

    There is a resurgence of interest in coronectomy for the management of mandibular third molars because it has a low risk of injury to the inferior dental nerve. However, there is concern that the root that is left in place will eventually become a source of infection. We describe the histological evaluation of 26 consecutive symptomatic coronectomy roots in 21 patients. All roots had vital tissue in the pulp chamber and there was no evidence of periradicular inflammation. Persistent postoperative symptoms related predominantly to inflammation of the soft tissue, which was caused by partially erupted roots or failure of the socket to heal.

  5. Local Entropy, Metric Entropy and Topological Entropy for Countable Discrete Amenable Group Actions

    NASA Astrophysics Data System (ADS)

    Ren, Xiankun; Sun, Wenxiang

    2016-06-01

    Let X be a compact metric space and G a countable infinite discrete amenable group acting on X. Like in the ℤ-action cases we define the notion of local entropy and by it we bound the difference between metric entropy and that of a partition, and bound the difference between topological entropy and that of a separated set, which generalize Theorems 1(1) and 1(2) in [Newhouse, 1989] from ℤ-actions to amenable group actions. We further prove that the entropy function hμ(G) is upper semi-continuous on ℳ(X,G) for an asymptotic entropy expansive amenable group action.

  6. Dentinal innervation of impacted human third molars.

    PubMed

    Lilja, J; Fagerberg-Mohlin, B

    1984-12-01

    Five totally impacted third molars were studied in the transmission electron microscope for the presence of nervous structures in the dentin before eruption. In contradiction to earlier studies available, nervous structures were found in the predentin and the dentin of the impacted third molars in different parts of the crown and also in the predentin of the root.

  7. Entropy-stabilized oxides

    PubMed Central

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-01-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623

  8. Avoiding the entropy trap

    SciTech Connect

    Weinberg, A.M.

    1982-10-01

    Utopians who use entropy to warn of a vast deterioration of energy and mineral resources seek a self-fulfilling prophesy when they work to deny society access to new energy sources, particularly nuclear power. While theoretically correct, entropy is not the relevant factor for the rest of this century. The more extreme entropists call for a return to an eotechnic society based on decentralized, renewable energy technologies, which rests on the assumptions of a loss in Gibbs Free Energy, a mineral depletion that will lead to OPEC-like manipulation, and a current technology that is destroying the environment. The author challenges these assumptions and calls for an exorcism of public fears over reactor accidents. He foresees a resurgence in public confidence in nuclear power by 1990 that will resolve Western dependence on foreign oil. (DCK)

  9. Entropy and information optics

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.

    2000-03-01

    In this paper we shall begin our discussion with the relationship between optics and humans, in which we see that light has indeed provided us with a very valuable source of information. A general optical communication concept is discussed, in which we see that a picture is indeed worth more than a thousand words. Based on Shannon's information theory, one can show that entropy and information can be simply traded. One of the most intriguing laws of thermodynamics must be the second law, in which we have found that there exists a profound relationship between the physical entropy and information. Without this relationship, information theory would be totally useless in physical science. By applying this relationship, Maxwell and diffraction-limited demons are discussed. And finally, samples of information optics are provided.

  10. Negative Entropy of Life

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  11. The wisdom behind third molar extractions.

    PubMed

    Kandasamy, S; Rinchuse, D J; Rinchuse, D J

    2009-12-01

    The literature pertaining to the extraction of third molars is extensive. There is a large individual variation and a multitude of practitioners' beliefs and biases relating to the extraction of especially asymptomatic and pathology free third molars. With the current emphasis in dentistry being placed on clinicians to make evidence-based decisions, the routine removal of third molars has been re-assessed and questioned. The purpose of this paper was to evaluate past and present knowledge of third molar extractions and relate it to logical considerations relevant to science and the evidence-based decision-making process. This paper endeavours to encourage and stimulate clinicians to re-evaluate their views on third molar extractions based on suggested guidelines and current evidence.

  12. General technique of third molar removal.

    PubMed

    Farish, Sam E; Bouloux, Gary F

    2007-02-01

    The most commonly performed surgical procedure in most oral and maxillofacial surgery practices is the removal of impacted third molars. Extensive training, skill, and experience allow this procedure to be performed in an atraumatic fashion with local anesthesia, sedation, or general anesthesia. The decision to remove symptomatic third molars is not usually difficult, but the decision to remove asymptomatic third molars is sometimes less clear and requires clinical experience. A wide body of literature (discussed elsewhere in this issue) attempts to establish clinical practice guidelines for dealing with impacted teeth. Data is beginning to accumulate from third molar studies, which hopefully will provide surgeons and their patients with evidence-based guidelines regarding elective third molar surgery.

  13. Relative Entropy Credibility Theory

    NASA Astrophysics Data System (ADS)

    Fernández-Durán, Juan José; Gregorio-Domínguez, María Mercedes

    2004-11-01

    Consider a portfolio of personal motor insurance policies in which, for each policyholder in the portfolio, we want to assign a credibility factor at the end of each policy period that reflects the claim experience of the policyholder compared with the claim experience of the entire portfolio. In this paper we present the calculation of credibility factors based on the concept of relative entropy between the claim size distribution of the entire portfolio and the claim size distribution of the policyholder.

  14. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  15. Quantum information entropy for one-dimensional system undergoing quantum phase transition

    NASA Astrophysics Data System (ADS)

    Xu-Dong, Song; Shi-Hai, Dong; Yu, Zhang

    2016-05-01

    Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic “Landau” potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy Sx and the momentum entropy Sp at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11375005) and partially by 20150964-SIP-IPN, Mexico.

  16. Trading coherence and entropy by a quantum Maxwell demon

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.; Oehri, D.; Lesovik, G. B.; Blatter, G.

    2016-11-01

    The second law of thermodynamics states that the entropy of a closed system is nondecreasing. Discussing the second law in the quantum world poses different challenges and provides different opportunities, involving fundamental quantum-information-theoretic questions and interesting quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a nondecreasing entropy. Here, we seek the opposite, a system described by a nonunital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a microenvironment in the form of a spin that realizes this goal. Within this nonunital and energy-conserving quantum channel, the microenvironment acts with two noncommuting operations on the system in an autonomous way. We find that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the system's entropy decreasing if the environment's state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy conservation in the nonunital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing us to run this engine with no local waste heat.

  17. Sextant of Sapphires for Molar Distalization

    PubMed Central

    Palla, Yudistar Venkata; Ganugapanta, Vivek Reddy

    2016-01-01

    Introduction Space analysis quantifies the amount of crowding within the arches estimating the severity of space discrepancy. The space gaining procedures include extraction and non-extraction procedures like expansion, proximal stripping and molar distalization. Aim To identify features seen in molar distalization cases. Materials and Methods The sample size comprised 20 patients in whom molar distalization was decided as the treatment plan. The study models and lateral cephalograms of all the patients were taken. Occlusograms were obtained. Model analysis and cephalometric analysis were performed. Descriptive statistical analysis like mean, standard deviation, standard error and mode were done. Results The parameters in Question gave following results. The Bolton analysis showed anterior mandibular excess with mean value of 1.56mm±1.07. The first order discrepancy between maxillary central and lateral incisors was 5±1.95. The premolar rotation showed mean value of 16.58±5.12. The molar rotation showed the value of 7.66±2.26. The nasolabial angle showed the mean of 101.25±8.7 IMPA of 101.4±5.74. Conclusion The six features studied in molar distalization cases [First order discrepancy between upper central and lateral incisors; Rotation of premolars and molars; Bolton’s discrepancy in anterior dentition; Average to horizontal growth pattern; Proclined lower incisors and Obtuse nasolabial angle] can be taken as patterns seen in molar distalization cases and considered as a valid treatment plan. PMID:27656572

  18. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  19. Role of third molars in orthodontics

    PubMed Central

    Almpani, Konstantinia; Kolokitha, Olga-Elpis

    2015-01-01

    The role of third molars in the oral cavity has been extensively studied over the years. Literature includes numerous diagnostic and treatment alternatives regarding the third molars. However, an issue that has not been discussed at the same level is their involvement in orthodontic therapy. The aim of this study is to present a review of the contemporary literature regarding the most broadly discussed aspects of the multifactorial role of third molars in orthodontics and which are of general dental interest too. PMID:25685759

  20. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-12-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  1. Entanglement entropy on fuzzy spaces

    SciTech Connect

    Dou, Djamel; Ydri, Badis

    2006-08-15

    We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.

  2. Blog life: Entropy Bound

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter

    2008-06-01

    Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.

  3. Molars and incisors: show your microarray IDs

    PubMed Central

    2013-01-01

    Background One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). Results 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. Conclusion These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in

  4. Clinical management of the mandibular molars.

    PubMed

    Canut, J A

    1975-09-01

    The complex variety of clinical problems posed by the lower molars requires maximum care in diagnosis and in treatment planning. In this article several therapeutic solutions to these problems are presented. The need to treat positional anomalies of the second molars and to control their drifting in cases of bracing and mandibular insertion, may be an effective auxillary means of treatment of those malocclusions in which lengthening of the dental bracing zones is indicated.

  5. Molar shape variability in platyrrhine primates.

    PubMed

    Nova Delgado, Mónica; Galbany, Jordi; Pérez-Pérez, Alejandro

    2016-10-01

    Recent phylogenetic analyses suggest that platyrrhines constitute a monophyletic group represented by three families: Cebidae, Atelidae, and Pitheciidae. Morphological variability between and within these three families, however, is widely discussed and debated. The aim of this study was to assess molar shape variability in platyrrhines, to explore patterns of interspecific variation among extant species, and to evaluate how molar shape can be used as a taxonomic indicator. The analyses were conducted using standard multivariate analyses of geometric morphometric data from 802 platyrrhine lower molars. The results indicated that the interspecific variation exhibited a highly homoplastic pattern related to functional adaptation of some taxa. However, phylogeny was also an important factor in shaping molar morphological traits, given that some phenotypic similarities were consistent with current phylogenetic positions. Our results show that the phylogenetic and functional signals of lower molar shape vary depending on the taxa and the tooth considered. Based on molar shape, Aotus showed closer similarities to Callicebus, as well as to some Cebidae and Ateles-Lagothrix, due to convergent evolutionary trends caused by similar dietary habits, or due to fast-evolving branches in the Aotus lineage, somewhat similar to the shape of Callicebus and Cebidae.

  6. Maxillary molar distalization with first class appliance

    PubMed Central

    Ramesh, Namitha; Palukunnu, Biswas; Ravindran, Nidhi; Nair, Preeti P

    2014-01-01

    Non-extraction treatment has gained popularity for corrections of mild-to-moderate class II malocclusion over the past few decades. The distalization of maxillary molars is of significant value for treatment of cases with minimal arch discrepancy and mild class II molar relation associated with a normal mandibular arch and acceptable profile. This paper describes our experience with a 16-year-old female patient who reported with irregularly placed upper front teeth and unpleasant smile. The patient was diagnosed to have angles class II malocclusion with moderate maxillary anterior crowding, deep bite of 4 mm on a skeletal class II base with an orthognathic maxilla and retrognathic mandible and normal growth pattern. She presented an ideal profile and so molar distalization was planned with the first-class appliance. Molars were distalised by 8 mm on the right and left quadrants and class I molar relation achieved within 4 months. The space gained was utilised effectively to align the arch and establish a class I molar and canine relation. PMID:24577171

  7. Prevalence of asymmetric molar and canine relationship.

    PubMed

    Behbehani, Faraj; Roy, Rino; Al-Jame, Badreia

    2012-12-01

    The purpose of this study was to investigate the prevalence and severity of occlusal asymmetries in the molar and canine regions in a large population-based sample of adolescent Kuwaitis. Using a stratified cluster sampling method, 1299 Kuwaiti adolescents (674 boys mean age 13.3 years and 625 girls mean age 13.2 years), representing approximately 6.7 per cent of that age stratum in the population, were examined clinically for sagittal molar and canine relationships, with a view to recording half and full-step asymmetries. In this sample, 1244 subjects were examined clinically, while for the remaining 55, pre-treatment study models were assessed. All subjects were in the early permanent dentition stage. Descriptive statistical analyses were used to determine the proportion of different molar and canine asymmetries. Antero-posterior asymmetries were found to be a distinctive and common feature of the dental arches, with half-step outweighing full-step asymmetries both in the anterior and posterior regions. The total prevalence of an asymmetric molar or canine relationship was 29.7 and 41.4 per cent, respectively, with more than 95 per cent falling in the mild category. Patient gender did not influence the prevalence or magnitude of asymmetry. The results showed a clinically significant prevalence of asymmetric molar and canine relationships, which were mainly in the category of half-step asymmetry. Class II half and full-step asymmetries were more prevalent than Class III asymmetries in the molar and canine regions.

  8. Link Influence Entropy

    NASA Astrophysics Data System (ADS)

    Singh, Priti; Chakraborty, Abhishek; Manoj, B. S.

    2017-01-01

    In this paper we propose a new metric, Link Influence Entropy (LInE), which describes importance of each node based on the influence of each link present in a network. Influence of a link can neither be effectively estimated using betweenness centrality nor using degree based probability measures. The proposed LInE metric which provides an effective way to estimate the influence of a link in the network and incorporates this influence to identify nodal characteristics, performs better compared to degree based entropy. We found that LInE can differentiate various network types which degree-based or betweenness centrality based node influence metrics cannot. Our findings show that spatial wireless networks and regular grid networks, respectively, have lowest and highest LInE values. Finally, performance analysis of LInE is carried out on a real-world network as well as on a wireless mesh network testbed to study the influence of our metric as well as influence stability of nodes in dynamic networks.

  9. Possible extended forms of thermodynamic entropy

    NASA Astrophysics Data System (ADS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy.

  10. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  11. Configurational entropy of glueball states

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Braga, Nelson R. F.; da Rocha, Roldão

    2017-02-01

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton-dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  12. Evaluation of postoperative complications according to treatment of third molars in mandibular angle fracture

    PubMed Central

    2017-01-01

    Objectives The aim of this study was to evaluate the implication of third molars in postoperative complications of mandibular angle fracture with open reduction and internal fixation (ORIF). Materials and Methods Data were collected on patients who presented with mandibular angle fracture at our Department of Oral and Maxillofacial Surgery between January 2011 and December 2015. Of the 63 total patients who underwent ORIF and perioperative intermaxillary fixation (IMF) with an arch bar, 49 patients were identified as having third molars in the fracture line and were followed up with until plate removal. The complications of postoperative infection, postoperative nerve injury, bone healing, and changes in occlusion and temporomandibular joint were evaluated and analyzed using statistical methods. Results In total, 49 patients had third molars in the fracture line and underwent ORIF surgery and perioperative IMF with an arch bar. The third molar in the fracture line was retained during ORIF in 39 patients. Several patients complained of nerve injury, temporomandibular disorder (TMD), change of occlusion, and postoperative infection around the retained third molar. The third molars were removed during ORIF surgery in 10 patients. Some of these patients complained of nerve injury, but no other complications, such as TMD, change in occlusion, or postoperative infection, were observed. There was no delayed union or nonunion in either of the groups. No statistically significant difference was found between the non-extraction group and the retained teeth group regarding complications after ORIF. Conclusion If the third molar is partially impacted or completely nonfunctional, likely to be involved in pathologic conditions later in life, or possible to remove with the plate simultaneously, extraction of the third molar in the fracture line should be considered during ORIF surgery of the mandible angle fracture. PMID:28280708

  13. Retrospective analysis of the prevalence and incidence of caries in the distal surface of mandibular second molars in British military personnel.

    PubMed

    Pepper, T; Grimshaw, P; Konarzewski, T; Combes, J

    2017-02-01

    Mandibular third molars are commonly removed because of distal caries in the adjacent tooth. To find out the prevalence of distal caries in mandibular second molars we retrospectively studied the primary care dental records of 720 British military personnel (653 men and 67 women) from various centres. These records are standardised and personnel are required to attend for inspection regularly. Those who had been under 20 years of age at enlistment, who had served for at least five years, and had five recorded dental inspections, were included. The median (IQR) period from the first to last inspection was 15 (9.7 - 19.2) years, and inspections were a median (IQR) of 14.1 (12.8 - 15.8) months apart. A total of 59/1414 (4.2%) mandibular second molars developed caries in their distal surfaces. This was 4% higher when they were associated with a partially-erupted mandibular third molar than when associated with one that was fully erupted or absent (29/414 (7%) compared with 30/1000 (3%); p=0.001). Carious lesions developed in the distal aspect of 22/133 mandibular second molars (16.5%) that were adjacent to a mesioangularly impacted third molar. Of these, 19/22 were successfully restored. Four mesioangularly impacted mandibular third molars would have to be extracted to prevent one case of distal caries in a second molar (number needed to treat=3.25). Second molars that are associated with a partially-erupted mesioangular mandibular third molar have a higher risk of caries, and this can be reduced by removal of the third molar. However, distal caries in second molars seems to be a treatable and slowly-developing phenomenon and we recommend that the merits and risks of the prophylactic removal of third molars should be discussed with the patient, who should have long-term clinical and radiographic checks if the tooth is retained.

  14. Analysis of trajectory entropy for continuous stochastic processes at equilibrium.

    PubMed

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2014-07-17

    The analytical expression for the trajectory entropy of the overdamped Langevin equation is derived via two approaches. The first route goes through the Fokker-Planck equation that governs the propagation of the conditional probability density, while the second method goes through the path integral of the Onsager-Machlup action. The agreement of these two approaches in the continuum limit underscores the equivalence between the partial differential equation and the path integral formulations for stochastic processes in the context of trajectory entropy. The values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory entropy.

  15. Diagnosis of molar pregnancy and persistent trophoblastic disease by flow cytometry.

    PubMed Central

    Hemming, J D; Quirke, P; Womack, C; Wells, M; Elston, C W; Bird, C C

    1987-01-01

    Histopathological assessment and flow cytometric analyses were carried out on 32 placentas (representative of each trimester) and 88 molar pregnancies. Three first trimester placentas were triploid, and the remaining 29 placentas were diploid. Of the 88 cases originally diagnosed as molar pregnancies, 26 were triploid (two complete moles, 20 partial moles, and four hydropic abortions); 59 were diploid (46 complete moles, 10 partial moles, three hydropic abortions); one was tetraploid (partial mole); and two were DNA aneuploid (one partial mole, one complete mole). A significantly increased hyperdiploid fraction (a measure of cell proliferation) was detected in diploid complete moles (p less than 0.0001) and cases of persistent trophoblastic disease (p less than 0.001) when compared with diploid placentas and diploid partial moles. All seven cases of established persistent trophoblastic disease, for which follow up was available, were diploid and showed high hyperdiploid fractions within the range for diploid complete moles. These findings suggest that flow cytometric DNA measurements may be an important aid in the diagnosis of molar pregnancy. The high degree of cell proliferation found in this study may explain the premalignant potential of complete hydatidiform moles. PMID:3611391

  16. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints

    NASA Astrophysics Data System (ADS)

    Winter, Andreas

    2016-10-01

    We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}}, as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}}. Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.

  17. Caries Management Strategies for Primary Molars

    PubMed Central

    Santamaria, R.M.; Innes, N.P.T.; Machiulskiene, V.; Evans, D.J.P.; Splieth, C.H.

    2014-01-01

    Minimal invasive approaches to managing caries, such as partial caries removal techniques, are showing increasing evidence of improved outcomes over the conventional complete caries removal. There is also increasing interest in techniques where no caries is removed. We present the 1-yr results of clinical efficacy for 3 caries management options for occlusoproximal cavitated lesions in primary molars: conventional restorations (CR; complete caries removal and compomer restoration), Hall technique (HT; no caries removal, sealing in with stainless steel crowns), and nonrestorative caries treatment (NRCT; no caries removal, opening up the cavity, teaching brushing and fluoride application). In sum, 169 children (3-8 yr old; mean, 5.56 ± 1.45 yr) were enrolled in this secondary care–based, 3-arm, parallel-group, randomized clinical trial. Treatments were carried out by specialist pediatric dentists or postgraduate trainees. One lesion per child received CR, HT, or NRCT. Outcome measures were clinical failure rates, grouped as minor failure (restoration loss/need for replacement, reversible pulpitis, caries progression, etc.) and major failure (irreversible pulpitis, abscess, etc.). There were 148 children (87.6%) with a minimum follow-up of 11 mo (mean, 12.23 ± 0.98 mo). Twenty teeth were recorded as having at least 1 minor failure: NRCT, n = 8 (5%); CR, n = 11 (7%); HT, n = 1 (1%) (p = .002, 95% CI = 0.001 to 0.003). Only the comparison between NRCT and CR showed no significant difference (p = .79, 95% CI = 0.78 to 0.80). Nine (6%) experienced at least 1 major failure: NRCT, n = 4 (2%); CR, n = 5 (3%); HT, n = 0 (0%) (p = .002, 95% CI = 0.001 to 0.003). Individual comparison of NRCT and CR showed no statistically significant difference in major failures (p = .75, 95% CI = 0.73 to 0.76). Success and failure rates were not significantly affected by pediatric dentists’ level of experience (p = .13, 95% CI = 0.12 to 0.14). The HT was significantly more successful

  18. Revisiting sample entropy analysis

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.

    2007-03-01

    We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.

  19. Orthodontic extrusion of horizontally impacted mandibular molars

    PubMed Central

    Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei

    2014-01-01

    Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364

  20. Bayes' estimators of generalized entropies

    NASA Astrophysics Data System (ADS)

    Holste, D.; Große, I.; Herzel, H.

    1998-03-01

    The order-q Tsallis 0305-4470/31/11/007/img5 and Rényi entropy 0305-4470/31/11/007/img6 receive broad applications in the statistical analysis of complex phenomena. A generic problem arises, however, when these entropies need to be estimated from observed data. The finite size of data sets can lead to serious systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem of estimating generalized entropies from finite samples and derive the Bayes estimator of the order-q Tsallis entropy, including the order-1 (i.e. the Shannon) entropy, under the assumption of a uniform prior probability density. The Bayes estimator yields, in general, the smallest mean-quadratic deviation from the true parameter as compared with any other estimator. Exploiting the functional relationship between 0305-4470/31/11/007/img7 and 0305-4470/31/11/007/img8, we use the Bayes estimator of 0305-4470/31/11/007/img7 to estimate the Rényi entropy 0305-4470/31/11/007/img8. We compare these novel estimators with the frequency-count estimators for 0305-4470/31/11/007/img7 and 0305-4470/31/11/007/img8. We find by numerical simulations that the Bayes estimator reduces statistical errors of order-q entropy estimates for Bernoulli as well as for higher-order Markov processes derived from the complete genome of the prokaryote Haemophilus influenzae.

  1. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  2. Molar heat capacity and molar excess enthalpy measurements in aqueous amine solutions

    NASA Astrophysics Data System (ADS)

    Poozesh, Saeed

    Experimental measurements of molar heat capacity and molar excess enthalpy for 1, 4-dimethyl piperazine (1, 4-DMPZ), 1-(2-hydroxyethyl) piperazine (1, 2-HEPZ), I-methyl piperazine (1-MPZ), 3-morpholinopropyl amine (3-MOPA), and 4-(2-hydroxy ethyl) morpholine (4, 2-HEMO) aqueous solutions were carried out in a C80 heat flow calorimeter over a range of temperatures from (298.15 to 353.15) K and for the entire range of the mole fractions. The estimated uncertainty in the measured values of the molar heat capacity and molar excess enthalpy was found to be +/- 2%. Among the five amines studied, 3-MOPA had the highest values of the molar heat capacity and 1-MPZ the lowest. Values of molar heat capacities of amines were dominated by --CH 2, --N, --OH, --O, --NH2 groups and increased with increasing temperature, and contributions of --NH and --CH 3 groups decreased with increasing temperature for these cyclic amines. Molar excess heat capacities were calculated from the measured molar heat capacities and were correlated as a function of the mole fractions employing the Redlich-Kister equation. The molar excess enthalpy values were also correlated as a function of the mole fractions employing the Redlich-Kister equation. Molar enthalpies at infinite dilution were derived. Molar excess enthalpy values were modeled using the solution theory models: NRTL (Non Random Two Liquid) and UNIQUAC (UNIversal QUAsi Chemical) and the modified UNIFAC (UNIversal quasi chemical Functional group Activity Coefficients - Dortmund). The modified UNIFAC was found to be the most accurate and reliable model for the representation and prediction of the molar excess enthalpy values. Among the five amines, the 1-MPZ + water system exhibited the highest values of molar excess enthalpy on the negative side. This study confirmed the conclusion made by Maham et al. (71) that -CH3 group contributed to higher molar excess enthalpies. The negative excess enthalpies were reduced due to the contribution of

  3. Entanglement entropy converges to classical entropy around periodic orbits

    SciTech Connect

    Asplund, Curtis T.; Berenstein, David

    2016-03-15

    We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.

  4. Nonequilibrium stationary states and entropy.

    PubMed

    Gallavotti, G; Cohen, E G D

    2004-03-01

    In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It might be analogous to the "heat content" in transformations in equilibrium which is not well defined either, if they are not isochoric (i.e., do involve mechanical work). Hence we conjecture that in a nonequilibrium stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but has no physical meaning as "entropy content" as a property of the system.

  5. Entropy distance: New quantum phenomena

    SciTech Connect

    Weis, Stephan; Knauf, Andreas

    2012-10-15

    We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

  6. Entropy in statistical energy analysis.

    PubMed

    Le Bot, Alain

    2009-03-01

    In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.

  7. Lower third molar eruption following orthodontic treatment.

    PubMed

    Salehi, P; Danaie, S Momene

    2008-01-01

    This study assessed the effect of extraction and preservation of the 1st premolar on lower 3rd molar eruption. Orthodontic clinic records from 1993 to 1995 were evaluated before and after treatment and 8-9 years after treatment for 3 groups of patients: 32 with extraction of 1st premolars in both jaws, 32 with no extraction but orthodontic treatment and 48 controls with no extraction but orthodontic treatment in the upper jaws only. Successful eruption of 3rd molars was evaluated. There was a significant difference in the rates of successful eruptions in the extraction (42%), non-extraction (12%) and control (20%) groups. The findings indicate that 1st premolar extraction may increase the chance of 3rd molar eruption, leading to a lower incidence of health and economic complications.

  8. Diagnosis and treatment of molar incisor hypomineralization.

    PubMed

    Mathu-Muju, Kavita; Wright, J Timothy

    2006-11-01

    Molar incisor hypomineralization (MIH) is a relatively common condition that varies in clinical severity and can result in early loss of the permanent 6-year molars. The etiology of MIH remains unclear, and the diagnosis can be confused with more generalized enamel defects such as those that occur in amelogenesis imperfecta. The management of MIH depends largely on the severity of the enamel defect. Degrees of hypomineralization can range from mild enamel opacities to enamel that readily abrades from the tooth as it emerges into the oral cavity. Usually, severely affected molars are extremely hypersensitive, prone to rapid caries development, and can be difficult to manage in young patients. The purpose of this article is to review approaches to diagnosing and treating MIH.

  9. Fabrication and Evaluation of a Noncompliant Molar Distalizing Appliance: Bonded Molar Distalizer

    PubMed Central

    Sodagar, A.; Ahmad Akhoundi, M. S.; Rafighii, A.; Arab, S.

    2011-01-01

    Objective Attempts to treat class II malocclusions without extraction in non-compliant patients have led to utilization of intraoral molar distalizing appliances. The purpose of this study was to investigate dental and skeletal effects of Bonded Molar Distalizer (BMD) which is a simple molar distalizing appliance. Materials and Methods Sixteen patients (12 girls, four boys) with bilateral half-cusp class II molar relationship, erupted permanent second molars and normal or vertical growth pattern were selected for bilateral distalization of maxillary molars via BMD. The screws were activated every other day, alternately. Lateral cephalograms and study models were obtained before treatment and after 11 weeks activation of the appliance. Results Significant amounts of molar distalization, molar distal tipping and anchorage loss were observed. The mean maxillary first molar distal movement was 1.22±0.936 mm with a distal tipping of 2.97±3.74 degrees in 11 weeks. The rate of distal movement was 0.48 mm per month. Reciprocal mesial movement of the first premolars was 2.26±1.12 mm with a mesial tipping of 4.25±3.12 degrees. Maxillary incisors moved 3.55±1.46 mm and tipped 9.87±5.03 degrees mesially. Lower anterior face height (LAFH) decreased 1.28±1.36 mm. Conclusion BMD is appropriate for distalizing maxillary molars, especially in patients with critical LAFH, although significant amounts of anchorage loss occur using this appliance. PMID:22457837

  10. Molar tubal ectopic pregnancy: Report of two cases.

    PubMed

    Mbarki, Chaouki; Jerbi, Emna; Hsayaoui, Najeh; Zouari, Fatma; Ben Brahim, Ehsen; Oueslati, Hedhili

    2015-06-01

    Ectopic molar pregnancy is a rare occurrence and consequently not often considered as a diagnostic possibility. We report two cases of molar hydatidiform tubal pregnancy. Diagnosis of ectopic pregnancy was confirmed on clinical biological and sonographic investigations. Diagnosis of molar pregnancy was done on histopathology. The clinical course was favorable for both patients. Although rare, molar changes can occur at any site of an ectopic pregnancy. Clinical diagnosis of a molar pregnancy is difficult but histopathology is the gold standard for diagnosis.

  11. Entropy exchange for infinite-dimensional systems

    PubMed Central

    Duan, Zhoubo; Hou, Jinchuan

    2017-01-01

    In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein’s inequality, the subadditivity and the triangle inequality about the entropy including infinite entropy for the infinite-dimensional systems are established, and then, applied to compare the entropy exchange with the entropy change. PMID:28164995

  12. Orientational high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Subramaniam, Anandh

    2014-12-01

    In high-entropy alloys (HEA), the configurational entropy arising from the presence of multiple elements, stabilizes a disordered solid solution in preference to the possible formation of compounds. In the current work, we identify cluster compounds (of the type AM4X8) as orientational analogues of HEA (as a first report on orientational high-entropy systems). In cluster compounds, orientational disorder increases the entropy and plays a role analogous to positional disorder in HEA. In the GaMo4S8 compound, at temperatures greater than 50 K, the entropic benefit more than makes up for the strain energy cost and stabilizes the disordered phase in preference to an orientationally ordered compound.

  13. Quantum entropy and special relativity.

    PubMed

    Peres, Asher; Scudo, Petra F; Terno, Daniel R

    2002-06-10

    We consider a single free spin- 1 / 2 particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.

  14. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  15. Entropy of Open Lattice Systems

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Lebowitz, J. L.; Speer, E. R.

    2007-03-01

    We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L → ∞, the leading order ( O( L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k th such correlation is shown to be O( L - k+1). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.

  16. Steganography Detection Using Entropy Measures

    DTIC Science & Technology

    2012-08-19

    REPORT Steganography Detection Using Entropy Measures 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: There are two problems in steganalysis: (1) detecting...the existence of a hidden message and (2) decoding the message. As terrorist groups have been known to use steganography in planning their attacks...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Steganography Detection Using Entropy Measures Report Title ABSTRACT There are two problems in

  17. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  18. Maximum-entropy principle as Galerkin modelling paradigm

    NASA Astrophysics Data System (ADS)

    Noack, Bernd R.; Niven, Robert K.; Rowley, Clarence W.

    2012-11-01

    We show how the empirical Galerkin method, leading e.g. to POD models, can be derived from maximum-entropy principles building on Noack & Niven 2012 JFM. In particular, principles are proposed (1) for the Galerkin expansion, (2) for the Galerkin system identification, and (3) for the probability distribution of the attractor. Examples will illustrate the advantages of the entropic modelling paradigm. Partially supported by the ANR Chair of Excellence TUCOROM and an ADFA/UNSW Visiting Fellowship.

  19. Investigation on the utility of permanent maxillary molar cusp areas for sex estimation.

    PubMed

    Macaluso, P James

    2011-09-01

    Digital photogrammetric methods were employed to assess the level of sexual dimorphism present in permanent maxillary molar cusp areas of black South Africans (130 males, 105 females). Odontometric standards were then developed for diagnosing sex, based on the cusp area data derived for these teeth. Results demonstrated that all cusp area measurements of both the first and second maxillary molars were significantly dimorphic (P < 0.0001) in this group. Univariate and multivariate discriminant function analyses yielded overall sex prediction accuracy rates between 59.6 and 74.5%. Comparable allocation results were also obtained for binary logistic regression analyses, but with larger classification sex biases. The highest classification accuracies were observed for different combinations of just two cusp areas for the first molar. Allocation rates of formulae derived for second molar dimensions were on average 4.3% lower than those obtained for the first molar. Analyses incorporating cusp areas of both maxillary molars did not improve classification accuracies achieved when only using first molar measurements. The classification rates are below the suggested minimum accuracy of 75-80% for reliable forensic application of a method; however, the derived formulae may provide a useful statistical indication as to the sex of fragmentary remains in which complete or even partial tooth crowns are the only materials available for examination. Furthermore, the formulae can be applied not only to adults but also to subadults (above the age of 3 years) in which the more accurate sex discriminating features of the pelvis and skull are yet to develop.

  20. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  1. The Diagnosis of Choriocarcinoma in Molar Pregnancies: A Revised Approach in Clinical Testing

    PubMed Central

    Duffy, Lisa; Zhang, Liangtao; Sheath, Karen; Love, Donald R.; George, Alice M.

    2015-01-01

    Background Hydatidiform moles occur in approximately 1 in 1,500 pregnancies; however, early miscarriages or spontaneous abortions may not be correctly identified as molar pregnancies due to poor differentiation of chorionic villi. Methods The current clinical testing algorithm used for the detection of hydatidiform moles uses a combination of morphological analysis and p57 immunostaining followed by ploidy testing to establish a diagnosis of either a complete or partial molar pregnancy. We review here 198 referrals for fluorescence in situ hybridization (FISH) ploidy testing, where the initial diagnosis based on morphology is compared to the final diagnosis based on a combination of morphology, FISH and p57 immunohistochemical (IHC) staining. Results Approximately 40% of cases were determined to be genetically abnormal, but only 28.8% of cases were diagnosed as molar pregnancies. The underestimation of complete molar pregnancies and those with androgenetic inheritance was also found to be likely using conventional diagnostic methods, as atypical p57 staining was observed in approximately 10% of cases. Conclusions Our findings suggest that a revised approach to testing products of conception is necessary, with cases screened according to their clinical history in order to distinguish molar pregnancy referrals from hydropic pregnancies. PMID:26566410

  2. Mass versus molar doses, similarities and differences.

    PubMed

    Chmielewska, A; Lamparczyk, H

    2008-11-01

    Generally, they are two systems expressing the amounts of active substance in a given drug product, i.e. mass and molar dose. Currently, the dose system based on the mass is widely used in which doses are expressed in grams or milligrams. On the other hand, the molar dose system is in direct relation to the number of molecules. Hence, the objective of this work was to compare both systems in order to find their advantages and disadvantages. Active substances belonging to the groups of antibiotics, nootropic agents, beta-blockers, vitamins, GABA-analog, COX-2 inhibitors, calcium channel antagonists, benzodiazepine receptor agonists, lipid-modifying agents (fibrates), non-steroidal anti-inflammatory drugs (profens), estrogens, neuroleptics, analgesics and benzodiazepines were considered. Moreover, products containing two active substances were also taken into account. These are mixtures of hydrochlorothiazide with active substances influencing the renin-angiotensin system and combined oral contraceptives. For each active substance, belonging to the groups mentioned above molar doses were calculated from mass doses and molar mass. Hence, groups of drugs with a single active substance, drugs with similar pharmacological activities, pharmaceutical alternatives, and drugs with a single active ingredient manufactured in different doses were compared in order to find which dose system describes more adequately differences between and within the groups mentioned above. Comparisons were supported by a number of equations, which theoretically justify the data, and relationships derived from calculations.

  3. Uncertainty assessment of Si molar mass measurements

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Valkiers, S.; Willenberg, G.-D.

    2010-01-01

    The uncertainty of the Si molar mass measurement is theoretically investigated by means of a two-isotope model, with particular emphasis to the role of this measurement in the determination of the Avogadro constant. This model allows an explicit calibration formula to be given and propagation of error analysis to be made. It also shows that calibration cannot correct for non-linearity.

  4. Molecular structure, configurational entropy and viscosity of silicate melts: link through the Adam and Gibbs theory of viscous flow

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.

    2016-04-01

    communication, it is shown that such link is possible. By expressing the residual entropy of the glass as the sum of partial molar entropies of tetrahedral SiO2 units, with known quantities from 29Si NMR spectroscopy, and of a semi-ideal mixing of Na and K, it is possible to model the variations of the configurational entropy with chemical composition. The model reproduces the variations of the viscosity of melts with a standard deviation of 0.2 log unit in the K2O-Na2O-SiO2 ternary system, for SiO2 contents between 60 and 100 mol% SiO2. Such model opens new pathways in order to build semi-empirical viscosity models that provide structural, thermodynamic and rheological information about silicate melts.

  5. Topological and spatial aspects of the hydration of solutes of extreme solvation entropy

    NASA Astrophysics Data System (ADS)

    Bergman, Dan L.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    1999-10-01

    The hydration of charged Lennard-Jones spheres by simple point charge water is considered. Molecular dynamics and expanded ensemble simulations were used to compare the hydration structures surrounding solutes with extreme solvation entropy. The variations in the solvation entropy were analyzed in terms of changes in the spatial and topological structure of the hydration shells. The solvation entropy was found to be maximal for solutes that can replace water molecules in the hydrogen-bond network. Further, using a Kirkwood-type factorization, the solvation entropy was expanded as a sum over the partial n-body distribution functions. The two-body solute-water contribution to the solvation entropy was found to exceed the full solvation entropy for solutes with low charge, whereas the converse is true for the other solutes. This is consistent with the idea that water-water correlations are enhanced by solvation of, for example, noble gases, whereas they are disrupted by solvation of ions. Further, the orientational and radial parts of the two-body solute-water entropy were calculated as functions of the charge of the solute. The orientational part has a single maximum, whereas the radial part maintains the bimodal form of the full solvation entropy.

  6. Concentrating partial entanglement by local operations

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.; Bernstein, Herbert J.; Popescu, Sandu; Schumacher, Benjamin

    1996-04-01

    If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partly entangled pure states, one member of each pair being given to each observer, they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of particles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The concentration process asymptotically conserves entropy of entanglement-the von Neumann entropy of the partial density matrix seen by either observer-with the yield of singlets approaching, for large n, the base-2 entropy of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two systems can be produced by two classically communicating separated observers, drawing on a supply of singlets as their sole source of entanglement.

  7. Does horizon entropy satisfy a quantum null energy conjecture?

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald

    2016-12-01

    A modern version of the idea that the area of event horizons gives 4G times an entropy is the Hubeny-Rangamani causal holographic information (CHI) proposal for holographic field theories. Given a region R of a holographic QFTs, CHI computes A/4G on a certain cut of an event horizon in the gravitational dual. The result is naturally interpreted as a coarse-grained entropy for the QFT. CHI is known to be finitely greater than the fine-grained Hubeny-Rangamani-Takayanagi (HRT) entropy when \\partial R lies on a Killing horizon of the QFT spacetime, and in this context satisfies other non-trivial properties expected of an entropy. Here we present evidence that it also satisfies the quantum null energy condition (QNEC), which bounds the second derivative of the entropy of a quantum field theory on one side of a non-expanding null surface by the flux of stress-energy across the surface. In particular, we show CHI to satisfy the QNEC in 1  +  1 holographic CFTs when evaluated in states dual to conical defects in AdS3. This surprising result further supports the idea that CHI defines a useful notion of coarse-grained holographic entropy, and suggests unprecedented bounds on the rate at which bulk horizon generators emerge from a caustic. To supplement our motivation, we include an appendix deriving a corresponding coarse-grained generalized second law for 1  +  1 holographic CFTs perturbatively coupled to dilaton gravity.

  8. Incidence of distal caries in mandibular second molars due to impacted third molars: Nonintervention strategy of asymptomatic third molars causes harm? A retrospective study

    PubMed Central

    Srivastava, Nikhil; Shetty, Akshay; Goswami, Rahul Dev; Apparaju, Vijay; Bagga, Vivek; Kale, Saurabh

    2017-01-01

    Background: Removal of impacted third molars is the most common oral surgical procedure. Many investigators have questioned the necessity of removal in patients who are free of symptoms or associated pathologies. Aim: The aim of this retrospective study was to evaluate the incidence of caries on distal aspect of mandibular second molars in patients referred for corresponding third molar assessment and to identify its association with angular position and depth of the impacted mandibular third molars based on the classification of Pell and Gregory. Methodology: Records of 150 patients with impacted third molar presenting to the Department of Oral and Maxillofacial Surgery, Sri Rajiv Gandhi College of Dental Sciences and Hospital, were assessed retrospectively. The radiographic angulation and depth of mandibular third molar impaction were determined and compared to determine the relationship with incidence of caries on the distal surface of the second molar. Results: According to this study results, 37.5% cases show caries on the distal aspect of mandibular second molars. The incidence of caries with mesioangular impacted third molars was 55%. A majority of these mesioangular cases were Level B and Class I as per the Pell and Gregory classification. Conclusion: The prophylactic extraction of mandibular third molars is indicated if the angulation is between 30° and 70° and is justified by incidence of distal caries in the second molars. PMID:28251102

  9. Relative Entropy and Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas

    2014-02-01

    We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.

  10. Assessment of association between molar incisor hypomineralization and hypomineralized second primary molar

    PubMed Central

    Mittal, Rakesh; Chandak, Shweta; Chandwani, Manisha; Singh, Prabhat; Pimpale, Jitesh

    2016-01-01

    Background: The term molar incisor hypomineralization (MIH) has been described as a clinical entity of systemic origin affecting the enamel of one or all first permanent molars and also the incisors; less frequently the second primary molars have also been reported to develop hypomineralization of the enamel, along with MIH. Aim: To scrutinize the association between hypomineralized second primary molars (HSPMs) and MIH and their prevalence in schoolgoing pupils in Nagpur, Maharashtra, India and the associated severity of dental caries. Design: A sample of 1,109 pupils belonging to 3–12-year-old age group was included. The entire sample was then divided into Group I (3–5 years) and Group II (6–12 years). The scoring criteria proposed by the European Academy of Pediatric Dentistry for hypomineralization was used to score HSPM and MIH. The International Caries Detection and Assessment System II (ICDAS II) was used for appraising caries status in the hypomineralized molars. The examination was conducted by a single calibrated dentist in schools in daylight. The results, thus obtained, were statistically analyzed using Chi-square test and odds ratio. Result: Of the children examined, 10 in Group I (4.88%) had HSPM and 63 in Group II (7.11%) had MIH in at least one molar. In Group II, out of 63 subjects diagnosed with MIH, 30 subjects (48%) also had HSPM. Carious lesions with high severity were appreciated in hypomineralized molars. Conclusion: The prevalence of HSPM was 4.88% and of MIH was 7.11%. Approximately half of the affected first permanent molars were associated with HSPM. The likelihood of development of caries increased with the severity of hypomineralization defect. PMID:27011930

  11. Characterization of third molar morphometric variables.

    PubMed

    Trinks, Pablo W; Grifo, María Belén; Pari, Fernando; Amer, Mariano Ar; Sánchez, Gabriel A

    2016-09-01

    The third molar is a tooth of anatomical, surgical, prosthetic and forensic dental interest. However, there is currently a lack of updated data regarding its morphology. The aim of this study was to determine the morphometric features of third molars and their predictive capability as regards dental arch and side. Two calibrated operators (ƙ = 0.83) determined the cervicalocclusalvestibular (COV), cervicalocclusalpalatal (COP) and occlusalapical (OA) distances, mesiodistal (MD), and vestibularpalatal (VP) diameters, number of roots (R) and number of cusps (C) of 961 cadaveric third molars, both upper (n = 462) and lower (n = 499), using a CONCOR 050 thin mandible caliper (resolution 0.01 mm). Median and range for each variable were calculated and compared using Mann Whitney nonparametric test (p < 0.05). Multivariate cluster analysis was used to determine the predictive capability of each variable for dental arch and side. For upper molars (UM), 50.6% were from the right side (RS) and 49.4% from the left side (LS), while for lower molars (LM), 60.9% were from the RS and 39.1% from the LS. No significant difference was found in the study variables in LM according to side. For UM, MD diameter (10.90 mm), COP(7.42 mm) distance and number of R (3) were significantly higher (p < 0.05) forRS, and number of C (3) was higher (p < 0.0001) for LS. They were also significant predictive grouping factors for side. For dental arch, OA (17.84 mm) and COV (7.60 mm) distances, MD (11.26 mm) diameter and the number of C (5) were significantly higher (p < 0.0001) for LM, while VP (10.84 mm) and COP (7.34 mm) distances, and the number of R (3) were significantly higher (p < 0.0001) for UM. These variables were significant predictive factors for dental arch. Despite the morphometric heterogeneity of third molars, there are intrinsic parameters with predictive capability for dental arch and side, but it would be advisable to supplement this study with data from topographic occlusal

  12. Removal of Deeply Impacted Mandibular Molars by Sagittal Split Osteotomy

    PubMed Central

    Isler, Sabri Cemil

    2016-01-01

    Mandibular third molars are the most common impacted teeth. Mandibular first and second molars do not share the same frequency of occurrence. In rare cases the occlusal surfaces of impacted molars are united by the same follicular space and the roots pointing in opposite direction; these are called kissing molars. In some cases, a supernumerary fourth molar can be seen as unerupted and, in this case, such a supernumerary, deeply impacted fourth molar is seen neighboring kissing molars. The extraction of deeply impacted wisdom molars from the mandible may necessitate excessive bone removal and it causes complications such as damage to the inferior alveolar nerve and iatrogenic fractures of the mandible. This case report describes the use of the sagittal split osteotomy technique to avoid extensive bone removal and protect the inferior alveolar nerve during surgical extruction of multiple impacted teeth. PMID:27429810

  13. Determination of the molar absorptivity of NADH.

    PubMed

    McComb, R B; Bond, L W; Burnett, R W; Keech, R C; Bowers, G N

    1976-02-01

    The molar absorptivity of NADH at 340 nm has been determined by an indirect procedure in which high-purity glucose is phosphorylated by ATP in the presence of hexokinase, coupled to oxidation of the glucose-6-phosphate by NAD+ in the presence of glucose-6-phosphate dehydrogenase. The average value from 85 independent determinations is 6317 liter mol-1 cm-1 at 25 degrees C and pH 7.8. The overall uncertainty is -4.0 to +5.5 ppt (6292 to 6352 liter mol-1 cm-1), based on a standard error of the mean of 0.48 ppt and an estimate of systematic error of -2.6 to +4.1 ppt. Effects of pH, buffer, and temperature on the molar absorptivity are also reported.

  14. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  15. Information and Entropy Flow in the Kalman?Bucy Filter

    NASA Astrophysics Data System (ADS)

    Mitter, Sanjoy K.; Newton, Nigel J.

    2005-01-01

    We investigate the information theoretic properties of Kalman-Bucy filters in continuous time, developing notions of information supply, storage and dissipation. Introducing a concept of energy, we develop a physical analogy in which the unobserved signal describes a statistical mechanical system interacting with a heat bath. The abstract `universe' comprising the signal and the heat bath obeys a non-increase law of entropy; however, with the introduction of partial observations, this law can be violated. The Kalman-Bucy filter behaves like a Maxwellian demon in this analogy, returning signal energy to the heat bath without causing entropy increase. This is made possible by the steady supply of new information. In a second analogy the signal and filter interact, setting up a stationary non-equilibrium state, in which energy flows between the heat bath, the signal and the filter without causing any overall entropy increase. We introduce a rate of interactive entropy flow that isolates the statistical mechanics of this flow from marginal effects. Both analogies provide quantitative examples of Landauer's Principle.

  16. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  17. Wavelet entropy of stochastic processes

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.

    2007-06-01

    We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.

  18. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  19. Conditional entropy and Landauer principle

    NASA Astrophysics Data System (ADS)

    Chiuchiú, D.; Diamantini, M. C.; Gammaitoni, L.

    2015-08-01

    The Landauer principle describes the minimum heat produced by an information-processing device. Recently a new term has been included in the minimum heat production: it is called conditional entropy and takes into account the microstates content of a given logic state. Usually this term is assumed to be zero in bistable symmetric systems thanks to the strong hypothesis used to derive the Landauer principle. In this paper we show that conditional entropy can be nonzero even for bistable symmetric systems and that it can be expressed as the sum of three different terms related to the probabilistic features of the device. The contribution of the three terms to conditional entropy (and thus to the minimum heat production) is then discussed for the case of bit reset.

  20. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  1. Impaction of First Permanent Molars-Case Report.

    DTIC Science & Technology

    1982-06-10

    maxillary incisors . Impaction of first and second 6 molars is also reported as very uncommon. In a radiographic survey of 5,000 U.S. Army recruits, it was...second molar and fourth molar, maxillary central incisor and maxillary lateral incisor and maxillary first molar. Impacted mandibular central incisors ...old male patient sought treatment for discomfort during chewing on the left lower side of the jaw. A clinical examination revealed deep pocketing and

  2. Cusp expression of protostylid in deciduous and permanent molars

    PubMed Central

    Moreno, Sandra; Reyes, María Paula; Moreno, Freddy

    2016-01-01

    The present article is a case report on the cusp expression of protostylid in the deciduous inferior molars and in the first permanent inferior molar, in which the correspondence and bilateral symmetry of the mentioned expression can be evidenced, as well as the their relation with the foramen cecum of the mesiobuccal furrows of the deciduous and of the permanent inferior molars. PMID:28123270

  3. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  4. Cusp expression of protostylid in deciduous and permanent molars.

    PubMed

    Moreno, Sandra; Reyes, María Paula; Moreno, Freddy

    2016-01-01

    The present article is a case report on the cusp expression of protostylid in the deciduous inferior molars and in the first permanent inferior molar, in which the correspondence and bilateral symmetry of the mentioned expression can be evidenced, as well as the their relation with the foramen cecum of the mesiobuccal furrows of the deciduous and of the permanent inferior molars.

  5. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.

  6. Maximum Entropy Guide for BSS

    NASA Astrophysics Data System (ADS)

    Górriz, J. M.; Puntonet, C. G.; Medialdea, E. G.; Rojas, F.

    2005-11-01

    This paper proposes a novel method for Blindly Separating unobservable independent component (IC) Signals (BSS) based on the use of a maximum entropy guide (MEG). The paper also includes a formal proof on the convergence of the proposed algorithm using the guiding operator, a new concept in the genetic algorithm (GA) scenario. The Guiding GA (GGA) presented in this work, is able to extract IC with faster rate than the previous ICA algorithms, based on maximum entropy contrast functions, as input space dimension increases. It shows significant accuracy and robustness than the previous approaches in any case.

  7. Pain control after third molar surgery.

    PubMed

    Seymour, R A; Walton, J G

    1984-12-01

    The ideal agent for use after third molar surgery should alleviate pain, reduce swelling and trismus to a minimum, promote healing and have no unwanted effects. Of course, such an agent does not exist. For relief of pain, analgesics are the obvious choice. Where possible, an analgesic with additional anti-inflammatory properties should be used. There seems little to choose between aspirin, 1000 mg; diflunisal, 500 mg; ibuprofen, 400 mg and zomepirac sodium, 50 mg. In the subject allergic to aspirin and aspirin-like compounds, then paracetamol is the poor alternative. Surprisingly, the efficacy of most of the opioids in post-operative third molar pain is poor, and these drugs alone cannot be recommended for this purpose. Long-acting local anaesthetic solutions may be of value in some situations where extreme pain is likely to be a feature in the immediate post-operative period. However, there are no strict criteria for identifying such cases pre-operatively. Recent work on the use of corticosteroids would suggest that these drugs may be of value in reducing post-operative sequelae. Their future in dentistry in this rôle appears interesting and promising, and worthy of further study. Antihistamines and enzymes have been shown to be of little value, and the fact that these agents now receive little attention is evidence in its own right. The use of locally applied antimicrobials has been shown to be of little value in third molar surgery. In any case, their use is probably contraindicated because of the risk of sensitising the patient. The studies reviewed have not pointed to the effectiveness of the routine use of systemic antimicrobials in preventing or reducing postoperative sequelae after removal of impacted third molars in normal circumstances. Particular conditions, for example in patients susceptible to infection, may benefit by the use of prophylactic antimicrobials. However, each case must be judged on its individual merits, bearing in mind the attendant

  8. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  9. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  10. On the entropy variations and the Maxwell relations

    NASA Astrophysics Data System (ADS)

    Zadehgol, Abed; Ashrafizaadeh, Mahmud

    In the present work, it is shown that the Maxwell relations can effectively be used to partially verify the thermodynamic consistency of the entropic lattice kinetic models. As an example, we consider the Constant Speed Kinetic Model (CSKM) which has recently been introduced in [J. Comp. Phys. 274, 803 (2014); Phys Rev. E 91, 063311 (2015)] and show that, for the quasi-equilibrium flows and at low Mach numbers, the entropy variations are proportional to the pressure variations. The entropy variations of the CSKM are logarithmic (given by the Burg entropy) while the pressure variations obey a nonlogarithmic equation of state. The proportionality of these variations, which is in accordance with the Maxwell relations, can be used to partially verify the thermodynamic consistency of the model. A similar treatment of the previously introduced entropic lattice kinetic models (e.g. of the conventional ELBM of [I. V. Karlin, A. Ferrante and H. C. Öttinger, Europhys. Lett. 47, 182 (1999)]), can provide a new ground for comparing the thermodynamic consistency of the existing entropic lattice kinetic models with each other.

  11. Entropy of a vacuum: What does the covariant entropy count?

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Weinberg, Sean J.

    2014-11-01

    We argue that a unitary description of the formation and evaporation of a black hole implies that the Bekenstein-Hawking entropy is the "entropy of a vacuum": the logarithm of the number of possible independent ways in which quantum field theory on a fixed classical spacetime background can emerge in a full quantum theory of gravity. In many cases, the covariant entropy counts this entropy—the degeneracy of emergent quantum field theories in full quantum gravity—with the entropy of particle excitations in each quantum field theory giving only a tiny perturbation. In the Rindler description of a (black hole) horizon, the relevant vacuum degrees of freedom manifest themselves as an extra hidden quantum number carried by the states representing the second exterior region; this quantum number is invisible in the emergent quantum field theory. In a distant picture, these states arise as exponentially degenerate ground and excited states of the intrinsically quantum gravitational degrees of freedom on the stretched horizon. The formation and evaporation of a black hole involve processes in which the entropy of collapsing matter is transformed into that of a vacuum and then to that of final-state Hawking radiation. In the intermediate stage of this evolution, entanglement between the vacuum and (early) Hawking radiation develops, which is transferred to the entanglement among final-state Hawking quanta through the evaporation process. The horizon is kept smooth throughout the evolution; in particular, no firewall develops. Similar considerations also apply for cosmological horizons, for example for the horizon of a metastable de Sitter space.

  12. Orthodontic uprighting of a horizontally impacted third molar and protraction of mandibular second and third molars into the missing first molar space for a patient with posterior crossbites.

    PubMed

    Baik, Un-Bong; Kim, Myung-Rae; Yoon, Kyu-Ho; Kook, Yoon-Ah; Park, Jae Hyun

    2017-03-01

    A 22-year-old woman came with a unilateral missing mandibular first molar and buccal crossbite. The open space was closed by protraction of the mandibular left second molar and uprighting and protraction of the horizontally impacted third molar using temporary skeletal anchorage devices, and her buccal crossbite was corrected with modified palatal and lingual appliances. The total active treatment time was 36 months. Posttreatment records after 9 months showed excellent results with a stable occlusion.

  13. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  14. Entropy and temperatures of Nariai black hole

    NASA Astrophysics Data System (ADS)

    Eune, Myungseok; Kim, Wontae

    2013-06-01

    The statistical entropy of the Nariai black hole in a thermal equilibrium is calculated by using the brick-wall method. Even if the temperature depends on the choice of the timelike Killing vector, the entropy can be written by the ordinary area law which agrees with the Wald entropy. We discuss some physical consequences of this result and the properties of the temperatures.

  15. Remainder terms for some quantum entropy inequalities

    SciTech Connect

    Carlen, Eric A.; Lieb, Elliott H.

    2014-04-15

    We consider three von Neumann entropy inequalities: subadditivity; Pinsker's inequality for relative entropy; and the monotonicity of relative entropy. For these we state conditions for equality, and we prove some new error bounds away from equality, including an improved version of Pinsker's inequality.

  16. Complications of third molar surgery and their management.

    PubMed

    Marciani, Robert D

    2012-09-01

    The frequency and severity of untoward events associated with surgical procedures are influenced by multiple factors that may be related to the procedure, patient, and/or surgeon. Not every third molar needs to be removed. Full bony impacted lower third molars well below the cervical margin of the second molar crowns should be considered for retention. Certain deviations from normal healing should be considered to be complications. Risk factors associated with third molar removal should be carefully established and explained to the patient. Third molar surgery has a predictable postsoperative course for the average patient.

  17. Coherent Informational Energy and Entropy.

    ERIC Educational Resources Information Center

    Avramescu, Aurel

    1980-01-01

    Seeks to provide a common theoretical foundation for all known bibliometric laws by assimilating a systemic view of the information transfer process with a thermodynamic process, i.e., the conduction of heat in solids. The resulting diffusion model establishes new definitions for informational energy and entropy consistent with corresponding…

  18. Numerical calculation of granular entropy.

    PubMed

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-07

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  19. Numerical Calculation of Granular Entropy

    NASA Astrophysics Data System (ADS)

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-01

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S=-∑ipilnpi-lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  20. Holographic entropy and Calabi's diastasis

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Gutperle, Michael

    2014-10-01

    The entanglement entropy for interfaces and junctions of two-dimensional CFTs is evaluated on holographically dual half-BPS solutions to six-dimensional Type 4b supergravity with m anti-symmetric tensor supermultiplets. It is shown that the moduli space for an N-junction solution projects to N points in the Kähler manifold SO(2 , m) / (SO(2) × SO( m)). For N =2 the interface entropy is expressed in terms of the central charge and Calabi's diastasis function on SO(2 , m) / (SO(2) × SO( m)), thereby lending support from holography to a proposal of Bachas, Brunner, Douglas, and Rastelli. For N =3, the entanglement entropy for a 3-junction decomposes into a sum of diastasis functions between pairs, weighed by combinations of the three central charges, provided the flux charges are all parallel to one another or, more generally, provided the space of flux charges is orthogonal to the space of unattracted scalars. Under similar assumptions for N ≥4, the entanglement entropy for the N -junction solves a variational problem whose data consist of the N central charges, and the diastasis function evaluated between pairs of N asymptotic AdS 3 × S 3 regions.

  1. Origin of the 'Extra Entropy'

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    2008-01-01

    I will discuss how one can determine the origin of the 'extra entropy' in groups and clusters and the feedback needed in models of galaxy formation. I will stress the use of x-ray spectroscopy and imaging and the critical value that Con-X has in this regard.

  2. Entropy in an expanding universe

    NASA Astrophysics Data System (ADS)

    Frautschi, S.

    1982-08-01

    The evolution of organized structures from initial chaos in the expanding universe is demonstrated to be reconcilable with the second law of thermodynamics, and the effects of expansion and gravity on this problem are emphasized. Numerical estimates of the major sources of entropy increase are calculated, including the entropy increase in stars, the earth, black hole formation and decay, quantum tunneling of matter into black holes, positronium formation and decay, etc. An expanding 'causal' region is defined in which the entropy, though increasing, tends to fall further and further behind its maximum possible value, thus allowing for the development of order. That is, the classical heat death argument does not hold, because an expanding universe never achieves equilibrium and never reaches a constant temperature. Also considered are questions of whether entropy will continue increasing without limit in the future, and whether such increase in the form of Hawking radiation or radiation from positronium might enable life to maintain itself permanently. Attempts to find a scheme for preserving life based on solid structures fail because events such as quantum tunneling recurrently disorganize matter on a very long but fixed time scale.

  3. Entanglement entropy and anomaly inflow

    NASA Astrophysics Data System (ADS)

    Hughes, Taylor L.; Leigh, Robert G.; Parrikar, Onkar; Ramamurthy, Srinidhi T.

    2016-03-01

    We study entanglement entropy for parity-violating (time-reversal breaking) quantum field theories on R1 ,2 in the presence of a domain wall between two distinct parity-odd phases. The domain wall hosts a 1 +1 -dimensional conformal field theory (CFT) with nontrivial chiral central charge. Such a CFT possesses gravitational anomalies. It has been shown recently that, as a consequence, its intrinsic entanglement entropy is sensitive to Lorentz boosts around the entangling surface. Here, we show using various methods that the entanglement entropy of the three-dimensional bulk theory is also sensitive to such boosts owing to parity-violating effects, and that the bulk response to a Lorentz boost precisely cancels the contribution coming from the domain wall CFT. We argue that this can naturally be interpreted as entanglement inflow (i.e., inflow of entanglement entropy analogous to the familiar Callan-Harvey effect) between the bulk and the domain-wall, mediated by the low-lying states in the entanglement spectrum. These results can be generally applied to 2 +1 -d topological phases of matter that have edge theories with gravitational anomalies, and provide a precise connection between the gravitational anomaly of the physical edge theory and the low-lying spectrum of the entanglement Hamiltonian.

  4. Entropy, semantic relatedness and proximity.

    PubMed

    Hahn, Lance W; Sivley, Robert M

    2011-09-01

    Although word co-occurrences within a document have been demonstrated to be semantically useful, word interactions over a local range have been largely neglected by psychologists due to practical challenges. Shannon's (Bell Systems Technical Journal, 27, 379-423, 623-665, 1948) conceptualization of information theory suggests that these interactions should be useful for understanding communication. Computational advances make an examination of local word-word interactions possible for a large text corpus. We used Brants and Franz's (2006) dataset to generate conditional probabilities for 62,474 word pairs and entropy calculations for 9,917 words in Nelson, McEvoy, and Schreiber's (Behavior Research Methods, Instruments, & Computers, 36, 402-407, 2004) free association norms. Semantic associativity correlated moderately with the probabilities and was stronger when the two words were not adjacent. The number of semantic associates for a word and the entropy of a word were also correlated. Finally, language entropy decreases from 11 bits for single words to 6 bits per word for four-word sequences. The probabilities and entropies discussed here are included in the supplemental materials for the article.

  5. Stokes-Einstein relation and excess entropy in Al-rich Al-Cu melts

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2016-07-01

    We investigate the conditions for the validity of the Stokes-Einstein relation that connects diffusivity to viscosity in melts using entropy-scaling relationships developed by Rosenfeld. Employing ab initio molecular dynamics simulations to determine transport and structural properties of liquid Al1-xCux alloys (with composition x ≤ 0.4), we first show that reduced self-diffusion coefficients and viscosities, according to Rosenfeld's formulation, scale with the two-body approximation of the excess entropy except the reduced viscosity for x = 0.4. Then, we use our findings to evidence that the Stokes-Einstein relation using effective atomic radii is not valid in these alloys while its validity can be related to the temperature dependence of the partial pair-excess entropies of both components. Finally, we derive a relation between the ratio of the self-diffusivities of the components and the ratio of their pair excess entropies.

  6. Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Jakeš, V.; Sofer, Z.; Sedmidubský, D.; Růžička, K.; Svoboda, P.

    2011-02-01

    Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi 4Ta 2O 11, Bi 7Ta 3O 18 and Bi 3TaO 7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm =445.8+0.005451 T-7.489×10 6/ T2 J K -1 mol -1, Cpm =699.0+0.05276 T-9.956×10 6/ T2 J K -1 mol -1 and Cpm =251.6+0.06705 T-3.237×10 6/ T2 J K -1 mol -1 for Bi 3TaO 7, Bi 4Ta 2O 11 and for Bi 7Ta 3O 18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S° m(298.15 K)=449.6±2.3 J K -1 mol -1 for Bi 4Ta 2O 11, S° m(298.15 K)=743.0±3.8 J K -1 mol -1 for Bi 7Ta 3O 18 and S° m(298.15 K)=304.3±1.6 J K -1 mol -1 for Bi 3TaO 7, were evaluated from the low-temperature heat capacity measurements.

  7. Time evolution of entropy in gravitational collapse

    SciTech Connect

    Greenwood, Eric

    2009-06-01

    We study the time evolution of the entropy of a collapsing spherical domain wall, from the point of view of an asymptotic observer, by investigating the entropy of the entire system (i.e. domain wall and radiation) and induced radiation alone during the collapse. By taking the difference, we find the entropy of the collapsing domain wall, since this is the object which will form a black hole. We find that for large values of time (times larger than t/R{sub s} ≈ 8), the entropy of the collapsing domain wall is a constant, which is of the same order as the Bekenstein-Hawking entropy.

  8. Controlling the shannon entropy of quantum systems.

    PubMed

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  9. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  10. Negative temperatures and the definition of entropy

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.; Wang, Jian-Sheng

    2016-07-01

    The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the "volume entropy" suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

  11. Entropy-based portfolio models: Practical issues

    NASA Astrophysics Data System (ADS)

    Shirazi, Yasaman Izadparast; Sabiruzzaman, Md.; Hamzah, Nor Aishah

    2015-10-01

    Entropy is a nonparametric alternative of variance and has been used as a measure of risk in portfolio analysis. In this paper, the computation of entropy risk for a given set of data is discussed with illustration. A comparison between entropy-based portfolio models is made. We propose a natural extension of the mean entropy portfolio to make it more general and diversified. In terms of performance, this new model is similar to the mean-entropy portfolio when applied to real and simulated data, and offers higher return if no constraint is set for the desired return; also it is found to be the most diversified portfolio model.

  12. Tsallis Entropy Composition and the Heisenberg Group

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikos

    2013-03-01

    We present an embedding of the Tsallis entropy into the three-dimensional Heisenberg group, in order to understand the meaning of generalized independence as encoded in the Tsallis entropy composition property. We infer that the Tsallis entropy composition induces fractal properties on the underlying Euclidean space. Using a theorem of Milnor/Wolf/Tits/Gromov, we justify why the underlying configuration/phase space of systems described by the Tsallis entropy has polynomial growth for both discrete and Riemannian cases. We provide a geometric framework that elucidates Abe's formula for the Tsallis entropy, in terms the Pansu derivative of a map between sub-Riemannian spaces.

  13. Generalized gravitational entropy from total derivative action

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  14. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.

  15. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  16. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  17. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  18. Mechanics analysis of molar tooth splitting.

    PubMed

    Barani, Amir; Chai, Herzl; Lawn, Brian R; Bush, Mark B

    2015-03-01

    A model for the splitting of teeth from wedge loading of molar cusps from a round indenting object is presented. The model is developed in two parts: first, a simple 2D fracture mechanics configuration with the wedged tooth simulated by a compact tension specimen; second, a full 3D numerical analysis using extended finite element modeling (XFEM) with an embedded crack. The result is an explicit equation for splitting load in terms of indenter radius and key tooth dimensions. Fracture experiments on extracted human molars loaded axially with metal spheres are used to quantify the splitting forces and thence to validate the model. The XFEM calculations enable the complex crack propagation, initially in the enamel coat and subsequently in the interior dentin, to be followed incrementally with increasing load. The fracture evolution is shown to be stable prior to failure, so that dentin toughness, not strength, is the controlling material parameter. Critical conditions under which tooth splitting in biological and dental settings are likely to be met, however rare, are considered.

  19. Antibiotic therapy in impacted third molar surgery.

    PubMed

    Monaco, G; Staffolani, C; Gatto, M R; Checchi, L

    1999-12-01

    The use of routine antibiotic therapy in patients undergoing surgical third molar extraction is controversial. The efficacy of antibiotic therapy in preventing postoperative complications following surgical third molar extractions was evaluated in 141 patients. In the test group (66 patients), the protocol utilized a regimen of 2 g of amoxicillin orally daily for 5 d postoperatively, starting at the completion of surgery. In the control group (75 patients), no antibiotic therapy was given. No significant difference was found between the test group and the control group in the incidence of postoperative sequelae, i.e. fever, pain, swelling and alveolar osteitis. A statistically significant association between smoking, habitual drinking and increased postoperative pain and fever was found. Patient age > or = 18 yr was positively correlated with an increased incidence of alveolar osteitis. Swelling was found to be gender-related, in that female patients experienced more swelling than male patients. No correlation was found between the time required for surgery or difficulty of extraction and post-operative pain. In conclusion, no difference was found between patients receiving postoperative amoxicillin and the control group in the incidence of postoperative sequelae.

  20. Onset of molar incisor hypomineralization (MIH).

    PubMed

    Fagrell, Tobias G; Salmon, Phil; Melin, Lisa; Norén, Jörgen G

    2013-01-01

    The etiological factors and timing of the onset of molar incisor hypomineralization (MIH) are still not clear. The aim of this study was to examine ground radial and sagittal sections from teeth diagnosed with MIH using light microscopy, polarized light microscopy and X-ray micro-computed tomography (XMCT) and to estimate the onset and timing of the MIH and to relate the hypomineralized enamel to the incremental lines. Thirteen extracted permanent first molars diagnosed MIH, were analyzed with light microscopy and XMCT. The hypomineralized areas were mainly located in the mesio-buccal cusps, starting at the enamel-dentin-junction and continuing towards the enamel surface. In a relative gray scale analysis the values decreased from the EDJ towards the enamel surface. The findings indicate that the ameloblasts in the hypomineralized enamel are capable of forming an enamel of normal thickness, but with a substantial reduction of their capacity for maturation of enamel. Chronologically, it is estimated that the timing of the disturbance is at a period during the first 6-7 months of age.

  1. Primary retention of first permanent mandibular molars in 29 subjects.

    PubMed

    Nielsen, Signe Hauberg; Becktor, Karin Binner; Kjaer, Inger

    2006-12-01

    This study consisted of two parts: the first part describes the aetiology behind primary retention of first permanent mandibular molars by comparing the affected molar region with the contralateral region, and the second the follow-up of the retained molars. The material comprised dental pantomograms from 29 patients (17 males and 12 females; aged 6 years 2 months to 12 years 5 months) which were sent by Danish public dental clinics to the Department of Orthodontics at Copenhagen Dental School for treatment guidance (Part 1). Questionnaires were later sent to the dentists for follow-up information regarding the affected teeth (Part 2). Part 1-aetiological evaluation: From each radiograph, the number and location of the molars, maturity of individual molars, and deviations from normal morphology were recorded. The findings showed that, in an affected region, disruption of normal dental development and eruption had occurred, causing a delay in dental maturity as well as arrested eruption of the first molar. Part 2-follow-up of eruption: Completed questionnaires and radiographs were returned for 25 subjects. In 10, eruption had occurred, six after surgical removal of mucosa covering the retained first molar. In eight patients the molar had been removed while in seven the observation time from first diagnosis was too short to evaluate eruption. The results indicate that retained first permanent mandibular molars have the ability to erupt and suggest that a unilaterally retained first permanent mandibular molar may represent a temporary delay in eruption rather than permanent failure.

  2. Clinical significance of computed tomography assessment for third molar surgery

    PubMed Central

    Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto

    2014-01-01

    Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882

  3. Root growth during molar eruption in extant great apes.

    PubMed

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes.

  4. Bilateral maxillary fused second and third molars: a rare occurrence

    PubMed Central

    Liang, Rui-Zhen; Wu, Jin-Tao; Wu, You-Nong; Smales, Roger J; Hu, Ming; Yu, Jin-Hua; Zhang, Guang-Dong

    2012-01-01

    This case report describes the diagnosis and endodontic therapy of maxillary fused second and third molars, using cone-beam computed tomography (CBCT). A 31-year-old Chinese male, with no contributory medical or family/social history, presented with throbbing pain in the maxillary right molar area following an unsuccessful attempted tooth extraction. Clinical examination revealed what appeared initially to be a damaged large extra cusp on the buccal aspect of the distobuccal cusp of the second molar. However, CBCT revealed that a third molar was fused to the second molar. Unexpectedly, the maxillary left third molar also was fused to the second molar, and the crown of an unerupted supernumerary fourth molar was possibly also fused to the apical root region of the second molar. Operative procedures should not be attempted without adequate radiographic investigation. CBCT allowed the precise location of the root canals of the right maxillary fused molar teeth to permit successful endodontic therapy, confirmed after 6 months. PMID:23222992

  5. The entropy solution of a hyperbolic-parabolic mixed type equation.

    PubMed

    Zhan, Huashui

    2016-01-01

    The entropy solution of the equation [Formula: see text]is considered. Besides the usual initial value, only a partial boundary value is imposed. By choosing some special test functions, the stability of the solutions is obtained by Kruzkov's bi-variables method, provided that [Formula: see text] is an unit n-dimensional cube or the half space.

  6. Bacterial chemotaxis and entropy production

    PubMed Central

    Županović, Paško; Brumen, Milan; Jagodič, Marko; Juretić, Davor

    2010-01-01

    Entropy production is calculated for bacterial chemotaxis in the case of a migrating band of bacteria in a capillary tube. It is found that the speed of the migrating band is a decreasing function of the starting concentration of the metabolizable attractant. The experimentally found dependence of speed on the starting concentration of galactose, glucose and oxygen is fitted with power-law functions. It is found that the corresponding exponents lie within the theoretically predicted interval. The effect of the reproduction of bacteria on band speed is considered, too. The acceleration of the band is predicted due to the reproduction rate of bacteria. The relationship between chemotaxis, the maximum entropy production principle and the formation of self-organizing structure is discussed. PMID:20368258

  7. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  8. A Note on Entropy Estimation.

    PubMed

    Schürmann, Thomas

    2015-10-01

    We compare an entropy estimator H(z) recently discussed by Zhang (2012) with two estimators, H(1) and H(2), introduced by Grassberger (2003) and Schürmann (2004). We prove the identity H(z) ≡ H(1), which has not been taken into account by Zhang (2012). Then we prove that the systematic error (bias) of H(1) is less than or equal to the bias of the ordinary likelihood (or plug-in) estimator of entropy. Finally, by numerical simulation, we verify that for the most interesting regime of small sample estimation and large event spaces, the estimator H(2) has a significantly smaller statistical error than H(z).

  9. Entropy shaping by shock decay

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2016-11-01

    A previous model [Piriz et al., Phys. Plasmas 23, 032704 (2016)] developed for describing the evolution of a shock wave driven by an arbitrary pressure pulse, is shown to be suitable for calculating the entropy shaping induced by a shock of decaying intensity. It is also shown that by allowing a causal connection between the shock and the piston, the model results to be complementary to the well-known self-similar solution for the impulsive loading problem, which is valid in the asymptotic regime when both fronts become decoupled. As a consequence, the entropy distribution depends on the details of the driving pressure pulse. A comparison with the available numerical simulations is presented.

  10. Preserved entropy and fragile magnetism

    DOE PAGES

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  11. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  12. Preserved entropy and fragile magnetism

    SciTech Connect

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  13. Biological adaptabilities and quantum entropies.

    PubMed

    Kirby, Kevin G

    2002-01-01

    The entropy-based theory of adaptability set forth by Michael Conrad in the early 1970s continued to appear in his work for over two decades, and was the subject of the only book he published in his lifetime. He applied this theory to a host of subjects ranging from enzyme dynamics to sociology. This paper reviews the formalism of adaptability theory, clarifying some of its mathematical and interpretive difficulties. The theory frames the computational tradeoff principle, a thesis that was the most frequently recurring claim in his work. The formulation of adaptability theory presented here allows the introduction of quantum entropy functions into the theory, revealing an interesting relationship between adaptability and another one of Conrad's deep preoccupations, the role of quantum processes in life.

  14. Coverage-adjusted entropy estimation.

    PubMed

    Vu, Vincent Q; Yu, Bin; Kass, Robert E

    2007-09-20

    Data on 'neural coding' have frequently been analyzed using information-theoretic measures. These formulations involve the fundamental and generally difficult statistical problem of estimating entropy. We review briefly several methods that have been advanced to estimate entropy and highlight a method, the coverage-adjusted entropy estimator (CAE), due to Chao and Shen that appeared recently in the environmental statistics literature. This method begins with the elementary Horvitz-Thompson estimator, developed for sampling from a finite population, and adjusts for the potential new species that have not yet been observed in the sample-these become the new patterns or 'words' in a spike train that have not yet been observed. The adjustment is due to I. J. Good, and is called the Good-Turing coverage estimate. We provide a new empirical regularization derivation of the coverage-adjusted probability estimator, which shrinks the maximum likelihood estimate. We prove that the CAE is consistent and first-order optimal, with rate O(P)(1/log n), in the class of distributions with finite entropy variance and that, within the class of distributions with finite qth moment of the log-likelihood, the Good-Turing coverage estimate and the total probability of unobserved words converge at rate O(P)(1/(log n)(q)). We then provide a simulation study of the estimator with standard distributions and examples from neuronal data, where observations are dependent. The results show that, with a minor modification, the CAE performs much better than the MLE and is better than the best upper bound estimator, due to Paninski, when the number of possible words m is unknown or infinite.

  15. Steganography Detection Using Entropy Measures

    DTIC Science & Technology

    2012-11-16

    REPORT Steganography Detection Using Entropy MeasuresTechnical Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Steganography is the science of...hiding the fact that some communication is taking place. In general encryption, encoding and decoding are not required to accomplish steganography ...However, encryption serves as a layer of protection when steganography fails. The first objective of steganography is hiding the existence of data exchange

  16. Entropy estimation and Fibonacci numbers

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeniy A.; Kaltchenko, Alexei

    2013-05-01

    We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. Notably, the number of distinct metric values for a set of sequences of length m is equal to Fm+3 - 1, where Fm is a Fibonacci number.

  17. Entropy estimation in Turing's perspective.

    PubMed

    Zhang, Zhiyi

    2012-05-01

    A new nonparametric estimator of Shannon's entropy on a countable alphabet is proposed and analyzed against the well-known plug-in estimator. The proposed estimator is developed based on Turing's formula, which recovers distributional characteristics on the subset of the alphabet not covered by a size-n sample. The fundamental switch in perspective brings about substantial gain in estimation accuracy for every distribution with finite entropy. In general, a uniform variance upper bound is established for the entire class of distributions with finite entropy that decays at a rate of O(ln(n)/n) compared to O([ln(n)]2/n) for the plug-in. In a wide range of subclasses, the variance of the proposed estimator converges at a rate of O(1/n), and this rate of convergence carries over to the convergence rates in mean squared errors in many subclasses. Specifically, for any finite alphabet, the proposed estimator has a bias decaying exponentially in n. Several new bias-adjusted estimators are also discussed.

  18. Linearity of holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-02-01

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of `entropy operators' in general systems with a large number of degrees of freedom.

  19. Entropy in an expanding universe.

    PubMed

    Frautschi, S

    1982-08-13

    The question of how the observed evolution of organized structures from initial chaos in the expanding universe can be reconciled with the laws of statistical mechanics is studied, with emphasis on effects of the expansion and gravity. Some major sources of entropy increase are listed. An expanding "causal" region is defined in which the entropy, though increasing, tends to fall further and further behind its maximum possible value, thus allowing for the development of order. The related questions of whether entropy will continue increasing without limit in the future, and whether such increase in the form of Hawking radiation or radiation from positronium might enable life to maintain itself permanently, are considered. Attempts to find a scheme for preserving life based on solid structures fail because events such as quantum tunneling recurrently disorganize matter on a very long but fixed time scale, whereas all energy sources slow down progressively in an expanding universe. However, there remains hope that other modes of life capable of maintaining themselves permanently can be found.

  20. Molar mass distribution and solubility modeling of asphaltenes

    SciTech Connect

    Yarranton, H.W.; Masliyah, J.H.

    1996-12-01

    Attempts to model asphaltene solubility with Scatchard-Hildebrand theory were hampered by uncertainty in molar volume and solubility parameter distribution within the asphaltenes. By considering asphaltenes as a series of polyaromatic hydrocarbons with randomly distributed associated functional groups, molar volume and solubility parameter distributions are calculated from experimental measurements of molar mass and density. The molar mass distribution of Athabasca asphaltenes is determined from interfacial tension and vapor pressure osmometry measurements together with plasma desorption mass spectrometry determinations from the literature. Asphaltene densities are calculated indirectly from mixtures of known concentration of asphaltene in toluene. Asphaltene density, molar volume, and solubility parameter are correlated with molar mass. Solid-liquid equilibrium calculations based on solubility theory and the asphaltene property correlations successfully predict experimental data for both the precipitation point and the amount of precipitated asphaltenes in toluene-hexane solvent mixtures.

  1. Displacement of maxillary third molar into the lateral pharyngeal space.

    PubMed

    Lee, Doksa; Ishii, Syoichiro; Yakushiji, Noboru

    2013-10-01

    Iatrogenic tooth displacement is a rare complication during extraction of impacted molars, but displacement of a maxillary third molar into the maxillary sinus, infratemporal fossa, buccal space, pterygomandibular space, and lateral pharyngeal space has been reported. Currently, 6 published reports describe third molar displacement into the lateral pharyngeal space, only 1 of which involved the loss of a maxillary third molar into this area, which occurred after an attempted self-extraction by the patient. There have been no reported cases of iatrogenic displacement of the maxillary third molar during an extraction procedure. This article describes the recovery, under general anesthesia, of a maxillary third molar from the lateral pharyngeal space after an iatrogenic displacement.

  2. Formal groups and Z-entropies

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2016-11-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

  3. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  4. Statistical mechanical theory of liquid entropy

    SciTech Connect

    Wallace, D.C.

    1993-07-01

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n{ge}3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature.

  5. Formal groups and Z-entropies.

    PubMed

    Tempesta, Piergiulio

    2016-11-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys.365, 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

  6. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  7. Unusal canal configuration in maxillary and mandibular second molars

    PubMed Central

    Ragunathan, Ramachandran; Ebenezar, A. V. Rajesh; Mohan, Ajit George; Anand, S.

    2016-01-01

    This clinical article describes three different case reports of maxillary and mandibular second molars with the unusual anatomy of single root with a single canal and their endodontic management. An unusual case of bilateralism is observed in the first two cases in the form of single-rooted second mandibular molars in both the quadrant of the same patient. The presence of maxillary second molar with single root and single canal in the third case is unusual. PMID:27829778

  8. Molar absorptivity and the blank correction factor.

    PubMed

    Kroll, M H; Elin, R J

    1985-03-01

    In photometry, where both the product formed and one or several reactants absorb light at the same wavelength, the absorbance of the "blank" of the sample at the end of the reaction may be less than that measured at the beginning of the reaction, because of consumption of reactant(s). The blank correction factor for the determined result with one light-absorbing reagent is epsilon P / (epsilon P - epsilon R), where epsilon R and epsilon P are the molar absorptivities of the reagent and the product, respectively. We derived a factor for the case when more than one reagent absorbs light at the same wavelength as the measured product. This factor is independent of the concentration of reagent(s) and can correct the determined result or absorbance for the consumption of light-absorbing reagent(s) during the reaction.

  9. Amoxicillin may cause molar incisor hypomineralization.

    PubMed

    Laisi, S; Ess, A; Sahlberg, C; Arvio, P; Lukinmaa, P-L; Alaluusua, S

    2009-02-01

    The etiology of molar incisor hypomineralization (MIH) is unclear. Our hypothesis was that certain antibiotics cause MIH. We examined 141 schoolchildren for MIH and, from their medical files, recorded the use of antibiotics under the age of 4 yrs. MIH was found in 16.3% of children. MIH was more common among those children who had taken, during the first year of life, amoxicillin (OR=2.06; 95% CI, 1.01-4.17) or the rarely prescribed erythromycin (OR=4.14; 95% CI, 1.05-16.4), compared with children who had not received treatment. Mouse E18 teeth were cultured for 10 days with/without amoxicillin at concentrations of 100 microg/mL-4 mg/mL. Amoxicillin increased enamel but not dentin thickness. An altered pattern of amelogenesis may have interfered with mineralization. We conclude that the early use of amoxicillin is among the causative factors of MIH.

  10. Modeling Partial Attacks with Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Amerson; Bond, Mike; Clulow, Jolyon

    The automated and formal analysis of cryptographic primitives, security protocols and Application Programming Interfaces (APIs) up to date has been focused on discovering attacks that completely break the security of a system. However, there are attacks that do not immediately break a system but weaken the security sufficiently for the adversary. We term these attacks partial attacks and present the first methodology for the modeling and automated analysis of this genre of attacks by describing two approaches. The first approach reasons about entropy and was used to simulate and verify an attack on the ECB|ECB|OFB triple-mode DES block-cipher. The second approach reasons about possibility sets and was used to simulate and verify an attack on the personal identification number (PIN) derivation algorithm used in the IBM 4758 Common Cryptographic Architecture.

  11. Early introduction of entropy concepts in the first undergraduate course in thermodynamics

    SciTech Connect

    Smith, J.L. Jr.

    1996-12-31

    A new introductory course in mechanical engineering thermodynamics is described. The course develops the basic concepts as natural extensions of the students previous experience. The first law and the second law are developed simultaneously and with equal emphasis. Entropy, entropy transfer and entropy generation are introduced in a manner analogous to the introduction of energy, energy transfer and generation of heat. Extensive use is made of isolated systems for analysis so that all relevant relations are systematically identified. The PVT, energy and entropy constitutive relations for subsystems are presented separately from the first law and second law relations for a given problem. With the early introduction of entropy, all of the constitutive relations, including entropy, are described at the same time. The concept of mechanical-to-thermal cross coupling within the constitutive relations is introduced and related to the Maxwell-relation partial derivatives. The energy conversion requirement for cross coupling is developed. Control volume and flow system relations are developed from closed system relations in a conventional manner. The course ends with a description of the models for several important energy conversion plants and a discussion of the reason that all practical plants are flow systems.

  12. Local entropy of a nonequilibrium fermion system

    NASA Astrophysics Data System (ADS)

    Stafford, Charles A.; Shastry, Abhay

    2017-03-01

    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  13. Corrected Entropy of BTZ Black Holes

    NASA Astrophysics Data System (ADS)

    Farahani, Hoda; Sadeghi, Jafar; Saadat, Hassan

    2012-12-01

    In this paper, corrected entropy of a class of BTZ black holes, include charge and rotation, studied. We obtain corrected Bekenstein-Hawking entropy and find that effect of charge viewed at order A -2, and effect of rotation viewed at order A -6, therefore Q and J don't have contribution in corrected entropy lower than the second order. We also write the first law of black hole thermodynamics for the case of charged rotating BTZ black hole.

  14. Monitoring Brain Injury With TSALLIS Entropy

    DTIC Science & Technology

    2001-10-25

    significant but still remains to be studied. Literature has pointed to the role of q in the entropy computation for EEG studies [10]. In our study it is... EEG in the form of reduction during the bad physiological function outcome. The reduction level and recovery rate of TE are also consistent with...USA Abstract- Nonextensive entropy measure, Tsallis Entropy (TE), was undertaken to monitor the brain injury after cardiac arrest. EEG of human and

  15. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  16. The minimum entropy principle and task performance.

    PubMed

    Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten; Weinberger, Kelsey

    2013-07-01

    According to the minimum entropy principle, efficient cognitive performance is produced with a neurocognitive strategy that involves a minimum of degrees of freedom. Although high performance is often regarded as consistent performance as well, some variability in performance still remains which allows the person to adapt to changing goal conditions or fatigue. The present study investigated the connection between performance, entropy in performance, and four task-switching strategies. Fifty-one undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The temporal patterns of performance were analyzed using orbital decomposition to extract pattern types and lengths, which were then compared with regard to Shannon entropy, topological entropy, and overall performance. Task switching strategies from a previous study were available for the same participants as well. Results indicated that both topological entropy and Shannon entropy were negatively correlated with performance. Some task-switching strategies produced lower entropy in performance than others. Stepwise regression showed that the top three predictors of performance were Shannon entropy and arithmetic and spatial abilities. Additional implications for the prediction of work performance with cognitive ability measurements and the applicability of the minimum entropy principle to multidimensional performance criteria and team work are discussed.

  17. Rényi entropy perspective on topological order in classical toric code models

    NASA Astrophysics Data System (ADS)

    Helmes, Johannes; Stéphan, Jean-Marie; Trebst, Simon

    2015-09-01

    Concepts of information theory are increasingly used to characterize collective phenomena in condensed matter systems, such as the use of entanglement entropies to identify emergent topological order in interacting quantum many-body systems. Here, we employ classical variants of these concepts, in particular Rényi entropies and their associated mutual information, to identify topological order in classical systems. Like for their quantum counterparts, the presence of topological order can be identified in such classical systems via a universal, subleading contribution to the prevalent volume and boundary laws of the classical Rényi entropies. We demonstrate that an additional subleading O (1 ) contribution generically arises for all Rényi entropies S(n ) with n ≥2 when driving the system towards a phase transition, e.g., into a conventionally ordered phase. This additional subleading term, which we dub connectivity contribution, tracks back to partial subsystem ordering and is proportional to the number of connected parts in a given bipartition. Notably, the Levin-Wen summation scheme, typically used to extract the topological contribution to the Rényi entropies, does not fully eliminate this additional connectivity contribution in this classical context. This indicates that the distillation of topological order from Rényi entropies requires an additional level of scrutiny to distinguish topological from nontopological O (1 ) contributions. This is also the case for quantum systems, for which we discuss which entropies are sensitive to these connectivity contributions. We showcase these findings by extensive numerical simulations of a classical variant of the toric code model, for which we study the stability of topological order in the presence of a magnetic field and at finite temperatures from a Rényi entropy perspective.

  18. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  19. Impact of Entropy Generation on Stagnation-Point Flow of Sutterby Nanofluid: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Azhar, Ehtsham; Iqbal, Z.; Maraj, E. N.

    2016-09-01

    The present article dicusses the computational analysis of entropy generation for the stagnation-point flow of Sutterby nanofluid over a linear stretching plate. The Sutterby fluid is chosen to study the effect for three major classes of non-Newtonian fluids, i.e. pseudoplastic, Newtonian, and dilatant. The effects of pertinent physical parameters are examined under the approximation of boundary layer. The system of coupled nonlinear partial differential equations is simplified by incorporating suitable similarity transformation into a system of non-linear-coupled ordinary differential equations. Entropy generation analysis is conducted numerically, and the results are displayed through graphs and tables. Significant findings are listed in the closing remarks.

  20. Toward the Unification of Molecular and Molar Analyses

    PubMed Central

    2013-01-01

    Three categories of behavior analysis may be called molecular, molar, and unified. Molecular analyses focus on how manual shaping segments moment-to-moment behaving into new, unified, hierarchically organized patterns. Manual shaping is largely atheoretical, qualitative, and practical. Molar analyses aggregate behaviors and then compute a numerical average for the aggregate. Typical molar analyses involve average rate of, or average time allocated to, the aggregated behaviors. Some molar analyses have no known relation to any behavior stream. Molar analyses are usually quantitative and often theoretical. Unified analyses combine automated shaping of moment-to-moment behaving and molar aggregates of the shaped patterns. Unified controlling relations suggest that molar controlling relations like matching confound shaping and strengthening effects of reinforcement. If a molecular analysis is about how reinforcement organizes individual behavior moment by moment, and a molar analysis is about how reinforcement encourages more or less of an activity aggregated over time, then a unified analysis handles both kinds of analyses. Only theories engendered by computer simulation appear to be able to unify all three categories of behavior analysis. PMID:28018041

  1. Mandibular First Molar with a Single Root and Single Canal

    PubMed Central

    Sooriaprakas, Chandrasekaran; Ballal, Suma; Velmurugan, Natanasabapathy

    2014-01-01

    Successful endodontic management of mandibular first molar with a single root and single canal is diagnosed with the aid of dental operating microscope and multiple angled radiographs. In addition all the mandibular molars and premolars were single rooted on either side. PMID:24715990

  2. Molar incisor hypomineralisation: clinical management of the young patient.

    PubMed

    Daly, Dympna; Waldron, J M

    2009-01-01

    Molar incisor hypomineralisation (MIH) is a common developmental condition resulting in enamel defects in first permanent molars and permanent incisors. It presents at eruption of these teeth. Early diagnosis is essential since rapid breakdown of tooth structure may occur, giving rise to acute symptoms and complicated treatment. The purpose of this article is to review MIH and illustrate its clinical management in young children.

  3. Time dependence of Hawking radiation entropy

    SciTech Connect

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

  4. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  5. Gravitational entropies in LTB dust models

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.; Larena, Julien

    2014-04-01

    We consider generic Lemaître-Tolman-Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann-Lemaître-Robertson-Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes.

  6. Pulpotomies with Portland cement in human primary molars.

    PubMed

    Conti, Taísa Regina; Sakai, Vivien Thiemy; Fornetti, Ana Paula Camolese; Moretti, Ana Beatriz Silveira; Oliveira, Thais Marchini; Lourenço Neto, Natalino; Machado, Maria Aparecida Andrade Moreira; Abdo, Ruy Cesar Camargo

    2009-01-01

    Two clinical cases in which Portland cement (PC) was applied as a medicament after pulpotomy of mandibular primary molars in children are presented. Pulpotomy using PC was carried out in two mandibular first molars and one mandibular second molar, which were further followed-up. At the 3, 6 and 12-month follow-up appointments, clinical and radiographic examinations of the pulpotomized teeth and their periradicular area revealed that the treatments were successful in maintaining the teeth asymptomatic and preserving pulpal vitality. Additionally, the formation of a dentin bridge immediately below the PC could be observed in the three molars treated. PC may be considered as an effective alternative for primary molar pulpotomies, at least in a short-term period. Randomized clinical trials with human teeth are required in order to determine the suitability of PC before unlimited clinical use can be recommended.

  7. [Molar incisor hypomineralisation in the first permanent teeth].

    PubMed

    Ivanović, Mirjana; Zivojinović, Vesna; Sindolić, Mirjana; Marković, Dejan

    2007-01-01

    The aim of this study was to point out the prevalence of hypomineralised molars and incisors and emphasize importance of this condition in paediatric dentistry. This condition is defined as hypomineralisation of one or more first permanent molars frequently affecting incisors and referred to as molar incisor hypomineralisation (MIH). Aetiology of MIH has not been fully clarified and numerous aetiological factors have been cited. Hypomineralised molars are more prone to caries, cause severe restorative problems and are frequently extracted due to serious damage and caries complications. Incisors can present demarcated enamel opacities, while enamel breakdown is uncommon. Considering the fact that permanent first molars with severe defects demand complex treatment, they represent a serious problem for the patient as well as for the dentist.

  8. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins.

    PubMed

    Giusti, M M; Rodríguez-Saona, L E; Wrolstad, R E

    1999-11-01

    The effects of glycosylation and acylation on the spectral characteristics, molar absorptivity, and color attributes of purified acylated and non-acylated pelargonidin derivatives were compared. Pigments were obtained from strawberries, radishes, red-fleshed potatoes, and partially hydrolyzed radish pigments. Individual pigments were isolated by using semipreparative HPLC. Spectral and color (CIELch) attributes of purified pigments were measured. Molar absorptivity ranged from 15 600 to 39 590 for pelargonidin-3-glucoside (pg-3-glu) and pg-3-rutinoside-5-glucoside acylated with p-coumaric acid, respectively. The presence of cinnamic acid acylation had a considerable impact on spectral and color characteristics, causing a bathochromic shift of lambda(max). Sugar substitution also played an important role, with a hypsochromic shift caused by the presence of glycosylation. Pg-3, 5-diglu and pg-3,5-triglu possessed a higher hue angle (>40 degrees ) than the other pg derivatives at pH 1.0, corresponding to the yellow-orange region of the color solid. Acylation with malonic acid did not affect lambda(max) and showed little effect on color characteristics. The solvent system had an effect not only on the molar absorptivity, but also on the visual color characteristic of the pigments.

  9. Pulp size in molars: underestimation on radiographs.

    PubMed

    Chandler, N P; Ford, T R Pitt; Monteith, B D

    2004-08-01

    The aim was to determine whether radiographs provide a clinically useful indication of pulp size in diseased/restored human first molar teeth, and to investigate accessibility of pulp tissue for diagnostic testing using laser Doppler flowmetry (LDF). Extracted teeth of known age were collected. Restorative materials were removed and teeth with evidence of pulp exposures excluded. Fifty-six teeth were radiographed from buccal and mesial aspects, and then their crowns were sectioned axiobuccolingually and photographed. Images were digitally scanned and measurements made of the total pulp area (above a line across the most superior part of the pulpal floor) and the pulp area in the clinical crown (superior to a line between the amelocemental junctions). The pulp width at the cervix and the highest point of the pulp were also recorded. Data were analysed using Pearson correlations. Pulp areas within the clinical crowns were significantly larger than indicated by radiographs, by 23% in the case of the clinically attainable buccal view (P < 0.05). Pulps may be more accessible to flowmeter testing than they appear. Absence of pulp tissues in the crown was recorded in equal numbers of teeth on radiographs and sections, but with agreement for only one tooth. Sixteen per cent of the teeth had no pulp area in the clinical crown when sectioned, but might still be suitable for testing using LDF.

  10. Evaluation of tribological behavior of Al-Co-Cr-Fe-Ni high entropy alloy using molecular dynamics simulation.

    PubMed

    Huang, Jen-Ching

    2012-01-01

    High-entropy alloys have been studied extensively for their excellent properties and performance, including outstanding strength and resistance to oxidation at high temperatures. This study employed molecular dynamics simulation to produce a high-entropy alloy containing an equal molar ratio of Al, Co, Cr, Fe, and Ni and investigated the tribological behavior of the material using a diamond tool in a vacuum environment. We also simulated a AlCoCrFeNi high-entropy alloy cooled from a high temperature molten state to 300 K in a high-speed quenching process to produce an amorphous microstructure. In a simulation of nanoscratching, the cutting force-distance curve of high-entropy alloys was used to evaluate work hardening and stick-slip. An increase in temperature was shown to reduce the scratching force and scratching resistance. Nanoscratching the high-entropy alloy at elevated temperatures provided evidence of work hardening; however, the degree of work hardening decreased with an increase in temperature. And it can also be found that when the temperature is higher, the fluctuation of the cutting force curve is greater.

  11. Eruption of third permanent molars after the extraction of second permanent molars. Part 2: Functional occlusion and periodontal status.

    PubMed

    Orton-Gibbs, S; Orton, S; Orton, H

    2001-03-01

    Functional occlusion and periodontal health were investigated after orthodontic treatment that involved extraction of second molars and after eruption of the third molars in 37 patients (25 female, 12 male). The mean age was 21 years 9 months (range, 16 years 1 month-30 years 5 months). The third permanent molars invariably erupted into a position that maintained good functional occlusion. Sixty-three percent of patients had canine guidance in lateral excursion; the remainder of patients had satisfactory group function. There were only 2 non-working side interferences in the sample, 1 from a recently erupted mandibular third molar. The periodontal health of the sample was generally excellent. Plaque score and bleeding on probing was very low (1.7% of sites). Periodontal health around both maxillary and mandibular teeth was extremely good. When attachment loss was assessed, 2238 of 2240 sites were clinically healthy. One patient, who had generally poor oral hygiene, had a 4-mm probing depth interproximally on the maxillary first and third molar contact. There was no correlation between periodontal health and mandibular third molar position. Therefore, both functional occlusion and periodontal health in the sample were good after loss of second permanent molars and eruption of the third molars.

  12. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  13. The Origins of the Entropy Concept

    NASA Astrophysics Data System (ADS)

    Darrigol, Olivier

    To this day entropy remains a strange, difficult, and multiform concept. Even the great Henri Poincaré renounced precisely defining energy and entropy. In order to justify the success of the two laws of thermodynamics for his students at the Sorbonne, he turned to history:

  14. Entropy estimation of very short symbolic sequences

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  15. Entropy estimation of very short symbolic sequences.

    PubMed

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  16. Rudolf Clausius and the road to entropy

    NASA Astrophysics Data System (ADS)

    Cropper, William H.

    1986-12-01

    That Rudolf Clausius invented the entropy concept is well known, but less familiar is the argument that served as his inspiration. This paper traces the development of Clausius' ``transformation theory'' of heat, which finally persuaded him to define the measure of transformation equivalence he called entropy.

  17. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  18. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  19. Entropy and Certainty in Lossless Data Compression

    ERIC Educational Resources Information Center

    Jacobs, James Jay

    2009-01-01

    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in…

  20. Campbell's Rule for Estimating Entropy Changes

    ERIC Educational Resources Information Center

    Jensen, William B.

    2004-01-01

    Campbell's rule for estimating entropy changes is discussed in relation to an earlier article by Norman Craig, where it was proposed that the approximate value of the entropy of reaction was related to net moles of gas consumed or generated. It was seen that the average for Campbell's data set was lower than that for Craig's data set and…

  1. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  2. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  3. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  4. The role of entropy in magnetotail dynamics

    SciTech Connect

    Birn, Joachim; Zaharia, Sorin; Hesse, Michael

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.

  5. Entanglement entropy in top-down models

    NASA Astrophysics Data System (ADS)

    Jones, Peter A. R.; Taylor, Marika

    2016-08-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entan-glement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduc-tion over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  6. Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies

    NASA Astrophysics Data System (ADS)

    Weilenmann, Mirjam; Kraemer, Lea; Faist, Philippe; Renner, Renato

    2016-12-01

    Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [E. H. Lieb and J. Yngvason Proc. R. Soc. 469, 20130408 (2013)]. In particular, we obtain a direct relation between the Clausius entropy and the Shannon entropy, or its generalization to quantum systems, the von Neumann entropy. More generally, we find that entropy measures relevant in nonequilibrium thermodynamics correspond to entropies used in one-shot information theory.

  7. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics.

  8. Experimental and analytical separation of hydrodynamic, entropy and combustion noise in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Muthukrishnan, M.; Strahle, W. C.; Neale, D. H.

    1977-01-01

    This paper deals with noise sources which are central to the problem of core engine noise in turbopropulsion systems. The sources dealt with are entropy noise and direct combustion noise, as well as a non-propagating psuedosound which is hydrodynamic noise. It is shown analytically and experimentally that a transition can occur from a combustion noise dominant situation to an entropy noise dominant case if the contraction of a terminating nozzle to the combustor is high enough. In the combustor tested, entropy noise is the dominant source for propagational noise if the combustor is choked at the exit. Analysis techniques include spectral, cross spectral, cross correlation, and ordinary and partial coherence analysis. Measurements include exterior and interior fluctuating and mean pressures and temperatures.

  9. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  10. Periodontal tissue reaction during orthodontic relapse in rat molars.

    PubMed

    Franzen, Tanya J; Brudvik, Pongsri; Vandevska-Radunovic, Vaska

    2013-04-01

    Relapse after orthodontic tooth movement (OTM) is an undesirable outcome that involves a number of factors. This study investigated the remodelling of the alveolar bone and related periodontal structures during orthodontic relapse in rat molars. The maxillary right first molars of 35 Wistar rats were moved mesially by a fixed orthodontic appliance for 10 days and the contralateral molars served as controls. The appliances were removed and six animals killed. The molars were allowed to relapse, and the remaining animals were sacrificed at 1, 3, 5, 7, 14, and 21 days. The jaws were sectioned and stained with haematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP). One day after appliance removal, the molars relapsed to a mean 62.5 per cent of the achieved OTM and then steadily relapsed to 86.1 per cent at 21 days. The number of osteoclasts situated along the alveolar bone of the first molars was highest at the end of active treatment and significantly decreased during the relapse period. In the OTM group, osteoclasts were most numerous in the pressure side of the periodontal ligament (PDL). As the molars relapsed over time, the osteoclast distribution shifted, and after 7 days of relapse, TRAP-positive cells were registered in previous pressure and tension sides of the first molars. After 21 days, these cells were concentrated in the distal parts of the PDL of all three maxillary right molars. These results indicate that orthodontic relapse in the rat model occurs rapidly and remodelling of the alveolar bone and PDL plays a central role in the relapse processes of both actively moved and adjacent teeth.

  11. Main occluding area in partially edentulous patients: changes before and after implant treatment.

    PubMed

    Goto, T; Nishinaka, H; Kashiwabara, T; Nagao, K; Ichikawa, T

    2012-09-01

    The 'main occluding area', the location where food crushing occurs during the first stroke of mastication, is reported to be an important concept; however, it is currently limited to findings in individuals with normal dentition. The purpose of this study was to assess the changes in the location, area and bite force of the main occluding area before and after implant treatments. We enrolled 50 partially edentulous and 22 normally dentate subjects. To identify the location of the main occluding area, each subject was instructed to freely bite once on a dental stopping using the partially edentulous side or the normally dentate area. The location, occluding contact area and bite force of the main occluding area before and after the implant treatments were analysed. The main occluding area was located at a reproducible location in the partially edentulous and normally dentate subjects. This location was principally the first molar region, and for the partially edentulous patients with missing teeth in the molar regions, it moved from the premolar region to the first molar region after treatment. The occluding contact area and bite force for the main occluding area increased (P < 0·05) after the implant treatment in the partially edentulous patients with missing teeth in the molar regions. These results suggest that the main occluding area can be restored to the first molar region after implant treatment and may be an important factor in the assessment of prosthodontic treatment.

  12. Revascularization/Regeneration performed in immature molars: case reports.

    PubMed

    Sönmez, I S; Akbay Oba, A; Erkmen Almaz, M

    2013-01-01

    These 3 case reports the outcome of revascularization treatment in necrotic immature molars. During treatment, a tri antibiotic mix was used to disinfect the pulp for 2 weeks. Then a blood clot was created in the canal, over which mineral trioxide aggregate was placed. After 24 months, the immature molars showed continuation of root development. The patients were asymptomatic, no sinus tracts were evident and apical periodontitis was resolved Results from these cases show that revascularization/regeneration using 3Mix-MP method could be effective for managing immature permanent molar teeth with pulpal necrosis.

  13. Crown dimensions of the maxillary molars in Tupaia glis.

    PubMed

    Kondo, S; Hanamura, H; Wakatsuki, E

    1994-03-01

    The crown dimensions of the maxillary molars in Tupaia glis were measured, and the most common molar size sequence was M1 > M2 > M3. The M2 and M3 molars were smaller than the M1 in the mesiodistal crown diameters. With regard to the buccolingual diameters, the distal part of M1 and mesial part of M2 were relatively larger and less variable in size. This stable area corresponded to the inflection point of the maxillary arch curve. These results could be explained from a functional morphological standpoint.

  14. Area terms in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Mazzitelli, F. D.; Testé, Eduardo

    2015-05-01

    We discuss area terms in entanglement entropy and show that a recent formula by Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of the stress tensor in the Adler-Zee formula for the renormalization of the Newton constant. We elaborate on how to fix the ambiguities in these formulas: Improving terms for the stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact terms in the Euclidean correlation functions. We make computations for free fields and show how to apply these calculations to understand some results for interacting theories which have been studied in the literature. We also discuss an application to the F-theorem.

  15. Increasing entropy for colloidal stabilization

    PubMed Central

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications. PMID:27872473

  16. Urban Transfer Entropy across Scales

    PubMed Central

    Murcio, Roberto

    2015-01-01

    The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Urban migration to and from cities is characterised as non-random and following non-random pathways. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales. PMID:26207628

  17. Entropy concepts in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    2002-11-01

    Aspects of entropy and related thermodynamic analyses are discussed here that have been deduced in recent years in the area of classical electrodynamics. A motivating factor for most of this work has been an attempted theory of nature often called, "stochastic electrodynamics" (SED). This theory involves classical electrodynamics (Maxwell's equations plus the relativistic version of Newton's second law of motion for particles), but with the consideration that motion and fluctuations should not necessarily be assumed to reduce to zero at temperature T = 0. Both fairly subtle and rather blatant assumptions were often imposed in early thermodynamic analyses of electrodynamic systems that prevented the analyses from being sufficiently general to account for these "zero-point" properties, which hindered classical physics from being able to better account for quantum mechanical phenomena observed in nature. In turn, such thermodynamic considerations have helped motivate many of the key ideas of SED.

  18. Increasing entropy for colloidal stabilization

    NASA Astrophysics Data System (ADS)

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-11-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications.

  19. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    PubMed

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  20. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems

    PubMed Central

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-01-01

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann–Gibbs–Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon–Khinchin axioms, the -entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process. PMID:24782541

  1. A three-dimensional finite element analysis of molar distalization with a palatal plate, pendulum, and headgear according to molar eruption stage

    PubMed Central

    Kang, Ju-Man; Park, Jae Hyun; Bayome, Mohamed; Oh, Moonbee; Park, Chong Ook; Mo, Sung-Seo

    2016-01-01

    Objective This study aimed to (1) evaluate the effects of maxillary second and third molar eruption status on the distalization of first molars with a modified palatal anchorage plate (MPAP), and (2) compare the results to the outcomes of the use of a pendulum and that of a headgear using three-dimensional finite element analysis. Methods Three eruption stages were established: an erupting second molar at the cervical one-third of the first molar root (Stage 1), a fully erupted second molar (Stage 2), and an erupting third molar at the cervical one-third of the second molar root (Stage 3). Retraction forces were applied via three anchorage appliance models: an MPAP with bracket and archwire, a bone-anchored pendulum appliance, and cervical-pull headgear. Results An MPAP showed greater root movement of the first molar than crown movement, and this was more noticeable in Stages 2 and 3. With the other devices, the first molar showed distal tipping. Transversely, the first molar had mesial-out rotation with headgear and mesial-in rotation with the other devices. Vertically, the first molar was intruded with an MPAP, and extruded with the other appliances. Conclusions The second molar eruption stage had an effect on molar distalization, but the third molar follicle had no effect. The application of an MPAP may be an effective treatment option for maxillary molar distalization. PMID:27668192

  2. On entropy, financial markets and minority games

    NASA Astrophysics Data System (ADS)

    Zapart, Christopher A.

    2009-04-01

    The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B-Condensed Matter and Complex Systems 15/4 (2000) 733-737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey-Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

  3. Determining Molar Combining Ratios Using Radioisotopes--A Student Experiment

    ERIC Educational Resources Information Center

    Sears, Jerry A.

    1976-01-01

    Outlines an experimental procedure in which an iodine radioisotope is used to determine molar combining ratios of lead and silver with the iodine. Tables and graphs show the definitive results that should be attainable. (CP)

  4. On the Etiology of Molar-Incisor Hypomineralization.

    PubMed

    Vieira, Alexandre R; Kup, Elaine

    Molar-incisor hypomineralization (MIH) is a condition that is defined based on its peculiar clinical presentation. Reports on the etiology of the condition and possible risk factors are inconclusive and the original suggestion that MIH is an idiopathic condition is often cited. Our group was the first to suggest MIH has a genetic component that involves genetic variation in genes expressed during dental enamel formation. In this report, we provide a rationale to explain the preferential affection of molars and incisors. We suggest that MIH is a genetic condition based on its prevalence, which varies depending on the geographic location, and the evidence that on occasion second primary molars, permanent canines, and premolars can show signs of hypomineralization of enamel when molars and incisors are affected.

  5. Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management.

    PubMed

    Weerheijm, K L

    2004-01-01

    In this paper, the current knowledge about Molar Incisor Hypomineralization (MIH) is presented. MIH is defined as hypomineralization of systemic origin of one to four permanent first molars frequently associated with affected incisors and these molars are related to major clinical problems in severe cases. At the moment, only limited data are available to describe the magnitude of the phenomenon. The prevalence of MIH in the different studies ranges from 3.6-25% and seems to differ in certain regions and birth cohorts. Several aetiological factors (for example, frequent childhood diseases) are mentioned as the cause of the defect. Children at risk should be monitored very carefully during the period of eruption of their first permanent molars. Treatment planning should consider the long-term prognosis of these teeth.

  6. Cementoblastoma Relating to Right Mandibular Second Primary Molar

    PubMed Central

    Manepalli, Swapna; Mohapatra, Abinash

    2016-01-01

    Cementoblastoma is a benign lesion of the odontogenic ectomesenchymal origin. It rarely occurs in primary dentition. This report describes a case of a cementoblastoma relating to the right mandibular second primary molar in a 7-year-old girl. Her panoramic radiograph revealed a well-defined radiopaque lesion with a radiolucent border extending from the distal surface of the mandibular right first primary molar to the distal surface of mandibular second primary molar. The tumor was attached to the mesial root of primary second molar and was excised along with the teeth involved and sent for histopathological evaluation, which showed irregular trabeculae of mineralized tissue interspersed with fibrovascular connective tissue, trabeculae of mineralized tissue with prominent reversal lines, and peripheral rimming of the mineralized tissue with blast cells. On a six-month follow-up, there has been no recurrence of the lesion. PMID:27738532

  7. Growth rate, population entropy, and perturbation theory.

    PubMed

    Demetrius, L

    1989-04-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate--the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity--population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce the notion of environmental intensity. The intensity function, expressed in terms of the entropy parameters, is applied to give a comparative study of the effect of environmental factors on the dynamics of Swedish and French populations.

  8. Boundary fluctuations and a reduction entropy

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher; Huang, Kuo-Wei

    2017-01-01

    The boundary Weyl anomalies live on a codimension-1 boundary, ∂M . The entanglement entropy originates from infinite correlations on both sides of a codimension-2 surface, Σ . Motivated to have a further understanding of the boundary effects, we introduce a notion of reduction entropy, which, guided by thermodynamics, is a combination of the boundary effective action and the boundary stress tensor defined by allowing the metric on ∂M to fluctuate. We discuss how a reduction might be performed so that the reduction entropy reproduces the entanglement structure.

  9. A psychophysical theory of Shannon entropy.

    PubMed

    Takahashi, Taiki

    2013-01-01

    Connections between information theory and decision under uncertainty have been attracting attention in econophysics, neuroeconomics and quantum decision theory. This paper proposes a psychophysical theory of Shannon entropy based on a mathematical equivalence of delay and uncertainty in decision-making, and psychophysics of the perception of waiting time in probabilistic choices. Furthermore, it is shown that the well-known Shannon entropy is a special case of the general psychophysical entropy. Future directions in the application of the present theory to studies in econophysics and neuroeconomics are discussed.

  10. Influence of molar ratios on properties of magnesium oxychloride cement

    SciTech Connect

    Li Zongjin . E-mail: zongjin@ust.hk; Chau, C.K.

    2007-06-15

    A parametric study has been conducted to investigate the influences of the molar ratios of MgO/MgCl{sub 2} and H{sub 2}O/MgCl{sub 2} on the properties of magnesium oxychloride (MOC) cement. By an integrated assessment of the experimental studies of strength development and X-ray diffractograms, together with application of the relevant phase diagram, it is recognized that the molar ratios of MgO/MgCl{sub 2} and H{sub 2}O/MgCl{sub 2} can significantly affect the properties of MOC cement. For a MOC cement paste possessing a dominance of 5MgO.MgCl{sub 2}.8H{sub 2}O (phase 5) crystals, the molar ratios of MgO/MgCl{sub 2} of 11-17 and H{sub 2}O/MgCl{sub 2} of 12-18 are found to be the most favorite ranges for design purpose. The choose of the molar ratio of H{sub 2}O/MgCl{sub 2} is, however, largely depends on the molar ratio of MgO/MgCl{sub 2} mainly for controlling workability of paste. Therefore, the most critical parameter to be selected in the design process is the molar ratio of MgO/MgCl{sub 2}, although the reactivity of the MgO powder is also important. Besides, the molar ratio can also be affected by the reactivity of the MgO powder to be employed. It is believed that a molar ratio of MgO/MgCl{sub 2} of 13, the most suitable one shown in this study, can be used as a starting point in the normal practice.

  11. Cervicothoracic Subcutaneous Emphysema and Pneumomediastinum After Third Molar Extraction.

    PubMed

    Picard, Maxime; Pham Dang, Nathalie; Mondie, Jean Michel; Barthelemy, Isabelle

    2015-12-01

    Third molar extraction is one of the most common interventions in dental and maxillofacial surgery. Complications are frequent and well documented, with swelling, pain, bleeding, infection, and lingual or alveolar nerve injury being the most common. This report describes a case of subcutaneous extensive emphysema and pneumomediastinum that occurred 4 days after extraction of an impacted right mandibular third molar. The management and etiology of this case and those reported in the literature are discussed.

  12. Treatment of a Maxillary First Molar with Two Palatal Roots

    PubMed Central

    Asghari, Vahideh; Rahimi, Saeed; Ghasemi, Negin; Talebzadeh, Bita; Norlouoni, Ahmad

    2015-01-01

    Thorough knowledge of the morphology and internal anatomy of the root canal system is essential, because it determines the successful outcome of endodontic treatment. The main goal of endodontic treatment is to prevent apical periodontitis and/or to promote the healing of periapical lesion. Presence of two canals or roots on the palatal side of the first maxillary molar has rarely been reported. This case report presents a maxillary first molar with two separate palatal roots. PMID:26523146

  13. An epidemiologic study of deciduous molar relations in preschool children.

    PubMed

    Infante, P F

    1975-01-01

    This study indicated that distoclusion decreased significantly with age and was more prevalent in siblings of children with Class II molar relation as compared with the prevalence for the total population. Children of middle socioeconomic status (SES) and girls with Class I molar relation had prevalences of posterior crossbite significantly greater than lower SES children and boys, respectively. Finger habits were highly associated with posterior crossbite (P less than 0.001).

  14. Prevalence of Taurodont molars in a North Indian population

    PubMed Central

    Bharti, Ramesh; Chandra, Anil; Tikku, Aseem Prakash; Arya, Deeksha

    2015-01-01

    Background: It is very important for dentists to be familiar with anomalies of teeth not only for the clinical complications but also their management. Taurodontism also provides a valuable clue in detecting its association with various syndromes and other systemic conditions. The purpose of this study was to assess the prevalence of Taurodont molars among a North Indian population. Materials and Methods: A total of 1000 patients’ full-mouth periapical radiographs were screened. The radiographs were evaluated under optimal conditions using double magnifying glasses. A total of 7615 molars (including third molars) were evaluated. The relative incidence and the correlations regarding the location of Taurodont teeth (right versus left side and maxillary versus mandibular) were analyzed using the Chi-square test. Results: Twenty-eight patients were found to have a Taurodont molar (11 women and 17 men [P = 0.250]). The prevalence of Taurodont molar was 2.8%. Males had a higher prevalence rate than females (3.4% vs. 2.2%, respectively). A cluster analysis of total Taurodonts in the mandible (45%) versus maxilla (55%) of both males and females combined showed a statistically significant difference (P < 0.05). Conclusion: The occurrence of Taurodontism is basically based on racial expression in different populations. These variations in prevalence between different populations may be due to ethnic variations. The occurrence of Taurodont molars among this Indian population was rare. PMID:25767357

  15. Prediction of maxillary third molar impaction in adolescent orthodontic patients.

    PubMed

    Artun, Jon; Behbehani, Faraj; Thalib, Lukman

    2005-11-01

    The purpose of this study was to identify risk factors for maxillary third molar impaction in adolescent orthodontic patients. Radiographs made before treatment (T1) and after treatment (T2) and at a minimum of 10 years postretention (T3) of 132 patients that allowed accurate diagnosis of impaction vs eruption of one or both maxillary third molars were evaluated. Although univariate logistic regression revealed that the decision to extract premolars reduced the risk of impaction by 76% (P < .01), this parameter was not included in the final prediction model at T1. Multiple logistic regression analyses revealed that third molar impaction could be predicted at T1 according to the size of the retromolar space and the amount of mesial molar movement that will occur during active appliance therapy, reducing the risk of impaction by 22% and 34% for every millimeter increase in distance, respectively (P < .01). At T2, multiple logistic regression revealed that the odds of impaction were more than 60 times higher (P < .01) if the third molar was angulated mesially as compared with less than 30 degrees distally relative to the occlusal plane and almost five times (P < .05) higher if the third molar was angulated more than 30 degrees distally as compared with less than 30 degrees distally. Similar analyses at T2 showed 29% reduced risk of impaction for every millimeter increase in retromolar space and 18% reduced risk for every degree increase in angle MP/SN (P < .01).

  16. Bonded molar tubes: a retrospective evaluation of clinical performance.

    PubMed

    Millett, D T; Hallgren, A; Fornell, A C; Robertson, M

    1999-06-01

    This study investigated time to first failure of stainless steel orthodontic first permanent molar tubes (Ormco Corp) bonded with a light-cured resin adhesive (Transbond) and assessed whether this was related to patient gender, age of the patient at the start of treatment, the presenting malocclusion, or the operator. All first molar tubes were bonded to intact buccal enamel, free of any restoration. Survival analysis was carried out on data from 483 patients with 1190 bonded first molar tubes. For each case, a single molar tube, either that which was first to fail or had the shortest follow-up time, was chosen for analysis. The median time until first bonded tube failure was 699 days with an overall failure rate of 21% recorded. There was no significant difference in time to first failure of molar tubes with respect to patient gender or presenting malocclusion but significant differences were recorded with respect to the patients' age at the start of treatment and the operator. Age at the start of treatment and operator were identified as independently useful predictors of bonded molar tube survival.

  17. Third molar impaction and agenesis: influence on anterior crowding.

    PubMed

    Esan, Temitope; Schepartz, Lynne A

    2017-02-01

    Background Third molar influence on anterior crowding is controversial, but they are assumed to play a major role in compromising dental arch space. Aim To evaluate the relationship among impaction, agenesis and crowding in black South African males. Subjects and method Mandibles and maxillae of 535 black South African males in the Raymond A. Dart Collection of Human Skeletons, University of the Witwatersrand were examined for anterior crowding and third molar agenesis and impaction. Dental crowding was determined using Little's irregularity index. Results Individuals with impaction showed more moderate-to-extreme crowding than those with agenesis. Bilateral third molar presence was more frequently associated with ideal-to-minimal crowding. Weak positive but significant correlations between crowding and impaction were found (mandible, ρ = 0.154, p = 0.000; maxilla ρ = 0.130, p = 0.000). The direction was the opposite for bilateral presence of molars (mandible, ρ = -0.135, p = 0.02; maxilla, ρ = -0.111, p = 0.010). Odds of mandibular crowding were greatest in individuals with impaction (OR = 3.22, CI = 1.716-6.05, p < 0.001). Maxillary results were similar. Conclusion Third molar impaction plays a role in anterior crowding. Third molar presence was not associated with anterior crowding, while agenesis did not explain absence of crowding.

  18. Role of the Molar Volume on Estimated Diffusion Coefficients

    NASA Astrophysics Data System (ADS)

    Santra, Sangeeta; Paul, Aloke

    2015-09-01

    The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.

  19. Finite Element Reconstruction of a Mandibular First Molar

    PubMed Central

    Ehsani, Sara; Mirhashemi, Fatemeh Sadat; Asgary, Saeed

    2013-01-01

    Introduction Mandibular first molar is the most important tooth with complicated morphology. In finite element (FE) studies, investigators usually prefer to model anterior teeth with a simple and single straight root; it makes the results deviate from the actual case. The most complicated and time-consuming step in FE studies is modeling of the desired tooth, thus this study was performed to establish a finite element method (FEM) of reconstructing a mandibular first molar with the greatest precision. Materials and Methods An extracted mandibular first molar was digitized, and then radiographed from different aspects to achieve its outer and inner morphology. The solid model of tooth and root canals were constructed according to this data as well as the anatomy of mandibular first molar described in the literature. Result A three-dimensional model of mandibular first molar was created, giving special consideration to shape and root canal system dimensions. Conclusion This model may constitute a basis for investigating the effect of different clinical situations on mandibular first molars in vitro, especially on its root canal system. The method described here seems feasible and reasonably precise foundation for investigations. PMID:23717327

  20. Root canal morphology of South Asian Indian maxillary molar teeth

    PubMed Central

    Singh, Shishir; Pawar, Mansing

    2015-01-01

    Objective: The objective was to study the root canal morphology of South Asian Indian Maxillary molars using a tooth clearing technique. Materials and Methods: Hundred teeth each comprising of first, second, and third molars collected from different dental schools and clinics in India were subjected to standard dye penetration, decalcification and clearing procedure before being studied. Results: The first molar mesiobuccal roots exhibited 69% Type I, 24% Type II, 4% Type IV, 2% Type V, and 1% exhibited a Vertuccis Type VIII canal anatomy. In the group with three separate roots the second molar mesiobuccal roots in exhibited 80.6% Type I, 15.3% Type II, 2.7% Type IV, and 1.4% Type V canal anatomy while the third molars mesiobuccal roots exhibited 57.4% Type I, 32% Type II, 2.1% Type III, 8.5% Type IV, 1% had a Type V canal anatomy in the similar group. Conclusion: A varied root canal anatomy was seen in the mesiobuccal root canal of the maxillary molars. PMID:25713497

  1. Kissing molars extraction: Case series and review of the literature

    PubMed Central

    Arjona-Amo, Manuel; Torres-Carranza, Eusebio; Batista-Cruzado, Antonio; Serrera-Figallo, Maria-Angeles; Crespo-Torres, Santos; Belmonte-Caro, Rodolfo; Albisu-Andrade, Claudio; Gutiérrez-Pérez, José-Luis

    2016-01-01

    Kissing molars are a very rare form of inclusion defined as molars included in the same quadrant, with occlusal surfaces contacting each other within a single dental follicle. We present four cases of this pathology: a 35 year-old male, referred to the Oral and Maxillofacial Surgery Department of the Hospital Virgen del Rocio in Seville, and three females of 24, 26, and 31 years, all of which had kissing molars that were treated by tooth extraction. We have found only 10 cases published in the medical literature in which this type of inclusion is briefly described, none of which elaborate on the surgical technique employed. In these cases, the indication for surgery is established when there is a history of recurring infections or cystic lesions associated with dental inclusions. The extraction of kissing molars requires an exhaustive comprehension of the anatomy of the region involved, sufficiently developed surgical abilities, and an extensive planning process. Key words:Impacted molar, kissing molar, surgical extraction. PMID:26855716

  2. Black hole entropy, topological entropy and the Baum-Connes conjecture in K-theory

    NASA Astrophysics Data System (ADS)

    Zois, Ioannis P.

    2002-03-01

    We shall try to show a relation between black hole (BH) entropy and topological entropy using the famous Baum-Connes conjecture for foliated manifolds which are particular examples of noncommutative spaces. Our argument is qualitative and it is based on the microscopic origin of the Beckenstein-Hawking area-entropy formula for BHs, provided by superstring theory, in the more general noncommutative geometric context of M-theory following the approach of Connes-Douglas-Schwarz.

  3. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  4. Modified correlation entropy estimation for a noisy chaotic time series.

    PubMed

    Jayawardena, A W; Xu, Pengcheng; Li, W K

    2010-06-01

    A method of estimating the Kolmogorov-Sinai (KS) entropy, herein referred to as the modified correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic time series. It has been applied to some clean and noisy data sets and the numerical results show that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation entropy is more robust to noise than the correlation entropy.

  5. Structural information in two-dimensional patterns: entropy convergence and excess entropy.

    PubMed

    Feldman, David P; Crutchfield, James P

    2003-05-01

    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.

  6. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  7. Entropy growth in emotional online dialogues

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Skowron, M.; Paltoglou, G.; Hołyst, Janusz A.

    2013-02-01

    We analyze emotionally annotated massive data from IRC (Internet Relay Chat) and model the dialogues between its participants by assuming that the driving force for the discussion is the entropy growth of emotional probability distribution.

  8. α-z-Rényi relative entropies

    SciTech Connect

    Audenaert, Koenraad M. R.; Datta, Nilanjana

    2015-02-15

    We consider a two-parameter family of Rényi relative entropies D{sub α,z}(ρ ∥ σ) that are quantum generalisations of the classical Rényi divergence D{sub α}(p ∥ q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum generalizations of Rényi’s axioms for a divergence. We consider the range of the parameters α, z for which the data-processing inequality holds. We also investigate a variety of limiting cases for the two parameters, obtaining explicit formulas for each one of them.

  9. Hard sphere study of condensation entropy

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2008-06-01

    A simple procedure is devised to calculate the Ben-Naim standard condensation entropy by treating neat liquids as hard sphere fluids. The calculated values are close to the experimental ones for nonpolar liquids, but not for polar aprotic ones and for H-bonded liquids. For the latter the calculated entropy values become close to the experimental ones if the molecular van der Waals diameters are used instead of the effective ones. This implies that the magnitude of the orientational entropy loss due to H-bond formation is quantitatively similar to that of the configurational entropy gain for the decrease in excluded volume due to the bunching up effect caused by H-bonds.

  10. Lethality and entropy of protein interaction networks.

    PubMed

    Manke, Thomas; Demetrius, Lloyd; Vingron, Martin

    2005-01-01

    We characterize protein interaction networks in terms of network entropy. This approach suggests a ranking principle, which strongly correlates with elements of functional importance, such as lethal proteins. Our combined analysis of protein interaction networks and functional profiles in single cellular yeast and multi-cellular worm shows that proteins with large contribution to network entropy are preferentially lethal. While entropy is inherently a dynamical concept, the present analysis incorporates only structural information. Our result therefore highlights the importance of topological features, which appear as correlates of an underlying dynamical property, and which in turn determine functional traits. We argue that network entropy is a natural extension of previously studied observables, such as pathway multiplicity and centrality. It is also applicable to networks in which the processes can be quantified and therefore serves as a link to study questions of structural and dynamical robustness in a unified way.

  11. Generalized entropies and the similarity of texts

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Dias, Laércio; Gerlach, Martin

    2017-01-01

    We show how generalized Gibbs–Shannon entropies can provide new insights on the statistical properties of texts. The universal distribution of word frequencies (Zipf’s law) implies that the generalized entropies, computed at the word level, are dominated by words in a specific range of frequencies. Here we show that this is the case not only for the generalized entropies but also for the generalized (Jensen–Shannon) divergences, used to compute the similarity between different texts. This finding allows us to identify the contribution of specific words (and word frequencies) for the different generalized entropies and also to estimate the size of the databases needed to obtain a reliable estimation of the divergences. We test our results in large databases of books (from the google n-gram database) and scientific papers (indexed by Web of Science).

  12. Entropy and order in urban street networks

    PubMed Central

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-01-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time. PMID:24281305

  13. Group entropies, correlation laws, and zeta functions

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    2011-08-01

    The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

  14. Standardised studies on Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM): a need.

    PubMed

    Elfrink, M E C; Ghanim, A; Manton, D J; Weerheijm, K L

    2015-06-01

    In November 2014, a review of literature concerning prevalence data of Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM) was performed. A search of PubMed online databases was conducted for relevant articles published until November 2014. The reference lists of all retrieved articles were hand-searched. Studies were included after assessing the eligibility of the full-text article. Out of 1078 manuscripts, a total of 157 English written publications were selected based on title and abstract. Of these 157, 60 were included in the study and allocated as 52 MIH and 5 HSPM, and 3 for both MIH and HSPM. These studies utilised the European Academy of Paediatric Dentistry judgment criteria, the modified index of developmental defects of enamel (mDDE) and self-devised criteria, and demonstrated a wide variation in the reported prevalence (MIH 2.9-44 %; HSPM 0-21.8 %). Most values mentioned were representative for specific areas. More studies were performed in cities compared with rural areas. A great variation was found in calibration methods, number of participants, number of examiners and research protocols between the studies. The majority of the prevalence studies also investigated possible aetiological factors. To compare MIH and HSPM prevalence and or aetiological data around the world, standardisation of such studies seems essential. Standardisation of the research protocol should include a clearly described sample of children (minimum number of 300 for prevalence and 1000 for aetiology studies) and use of the same calibration sets and methods whereas aetiological studies need to be prospective in nature. A standardised protocol for future MIH and HSPM prevalence and aetiology studies is recommended.

  15. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  16. Tissue radiation response with maximum Tsallis entropy.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  17. Maximum entropy production - Full steam ahead

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-05-01

    The application of a principle of Maximum Entropy Production (MEP, or less ambiguously MaxEP) to planetary climate is discussed. This idea suggests that if sufficiently free of dynamical constraints, the atmospheric and oceanic heat flows across a planet may conspire to maximize the generation of mechanical work, or entropy. Thermodynamic and information-theoretic aspects of this idea are discussed. These issues are also discussed in the context of dust devils, convective vortices found in strongly-heated desert areas.

  18. Carnot to Clausius: caloric to entropy

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2009-07-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly incorrect, Clausius showed that by reinterpreting Carnot's caloric as entropy he was able to formulate the second law.

  19. Variation in Cuspal Morphology in Maxillary First Permanent Molar with Report of 3 Cusp Molar- A Prevalence Study

    PubMed Central

    2016-01-01

    Introduction Human teeth has always been known for morphological variations in both the crown and root structures. The corono-morphological variations can be in the form of extra cusp or missing cusp. Permanent maxillary first molars are the biggest teeth in maxillary arch and have a high anchorage value and are known for their four cusp and five cusp patterns, if present with cusp of Carebelli. Aim The aim of this study was to determine the prevalence of cuspal variations and quantification of cusps of permanent maxillary first molar in Malwa population. Materials and Methods A total of 1249 individuals were studied at Government College of Dentistry, Indore, Madhya Pradesh, India, to evaluate the number of cusps in permanent maxillary first molars. Results Of the studied 1249 individuals, permanent maxillary first molars had five cusps in 407 (32.6%) cases while 838 (67.08%) cases had four cusp and four (0.32%) cases had three cusps. The four cases having three cusp permanent maxillary first molars were present unilaterally and only in females. Conclusion This article emphasizes the presence of permanent maxillary first molar with only three cusps in the Malwa population of India. It also reviews the literature in respect to this rare anomaly and calls for continuous and close monitoring to report such cases in the future. PMID:27790576

  20. Another short and elementary proof of strong subadditivity of quantum entropy

    NASA Astrophysics Data System (ADS)

    Ruskai, Mary Beth

    2007-08-01

    A short and elementary proof of the joint convexity of relative entropy is presented, using nothing beyond linear algebra. The key ingredients are an easily verified integral representation and the strategy used to prove the Cauchy-Schwarz inequality in elementary courses. Several consequences are proved in a way which allows an elementary proof of strong subadditivity in a few more lines. Some expository material on Schwarz inequalities for operators and the Holevo bound for partial measurements is also included.

  1. Entropies and correlations in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe

    2016-09-01

    We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.

  2. Continuously differentiable sample-spacing entropy estimation.

    PubMed

    Ozertem, Umut; Uysal, Ismail; Erdogmus, Deniz

    2008-11-01

    The insufficiency of using only second-order statistics and premise of exploiting higher order statistics of the data has been well understood, and more advanced objectives including higher order statistics, especially those stemming from information theory, such as error entropy minimization, are now being studied and applied in many contexts of machine learning and signal processing. In the adaptive system training context, the main drawback of utilizing output error entropy as compared to correlation-estimation-based second-order statistics is the computational load of the entropy estimation, which is usually obtained via a plug-in kernel estimator. Sample-spacing estimates offer computationally inexpensive entropy estimators; however, resulting estimates are not differentiable, hence, not suitable for gradient-based adaptation. In this brief paper, we propose a nonparametric entropy estimator that captures the desirable properties of both approaches. The resulting estimator yields continuously differentiable estimates with a computational complexity at the order of those of the sample-spacing techniques. The proposed estimator is compared with the kernel density estimation (KDE)-based entropy estimator in the supervised neural network training framework with computation time and performance comparisons.

  3. Normalized entropy measure for multimodality image alignment

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Hawkes, David J.; Hill, Derek L.

    1998-06-01

    Automated multi-modality 3D medical image alignment has been an active area of research for many years. There have been a number of recent papers proposing and investigating the use of entropy derived measures of brain image alignment. Any registration measure must allow us to choose between transformation estimates based on the similarity of images within their volume of overlap. Since 3D medical images often have a limited extent and overlap, the similarity measure for the two transformation estimates may be derived from two very different regions within the images. Direct measures of information such as the joint entropy and mutual information will therefore be a function of, not only image similarity in the region of overlap, but also of the local image content within the overlap. In this paper we present a new measure, normalized mutual information, which is simply the ratio of the sum of the marginal entropies and the joint entropy. The effect of changing overlap on current entropy measures and this normalized measure are compared using a simple image model and experiments on clinical MR-PET and MR-CT image data. Results indicate that the normalized entropy measure provides significantly improved behavior over a range of imaged fields of view.

  4. Improved entropy rate estimation in physiological data.

    PubMed

    Lake, D E

    2011-01-01

    Calculating entropy rate in physiologic signals has proven very useful in many settings. Common entropy estimates for this purpose are sample entropy (SampEn) and its less robust elder cousin, approximate entropy (ApEn). Both approaches count matches within a tolerance r for templates of length m consecutive observations. When physiologic data records are long and well-behaved, both approaches work very well for a wide range of m and r. However, more attention to the details of the estimation algorithm is needed for short records and signals with anomalies. In addition, interpretation of the magnitude of these estimates is highly dependent on how r is chosen and precludes comparison across studies with even slightly different methodologies. In this paper, we summarize recent novel approaches to improve the accuracy of entropy estimation. An important (but not necessarily new) alternative to current approaches is to develop estimates that convert probabilities to densities by normalizing by the matching region volume. This approach leads to a novel concept introduced here of reporting entropy rate in equivalent Gaussian white noise units. Another approach is to allow r to vary so that a pre-specified number of matches are found, called the minimum numerator count, to ensure confident probability estimation. The approaches are illustrated using a simple example of detecting abnormal cardiac rhythms in heart rate records.

  5. Wavelet Packet Entropy for Heart Murmurs Classification

    PubMed Central

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri

    2012-01-01

    Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043

  6. Entanglement entropy and nonabelian gauge symmetry

    NASA Astrophysics Data System (ADS)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  7. On variational definition of quantum entropy

    SciTech Connect

    Belavkin, Roman V.

    2015-01-13

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.

  8. Mechanical Entropy and Its Implications

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2001-09-01

    It is shown that the classical laws of thermodynamics require that mechanical systems must exhibit energy that becomes unavailable to do useful work. In thermodynamics, this type of energy is called entropy. It is further shown that these laws require two metrical manifolds, equations of motion, field equations, and Weyl's quantum principles. Weyl's quantum principle requires quantization of the electrostatic potential of a particle and that this potential be non-singular. The interactions of particles through these non-singular electrostatic potentials are analyzed in the low velocity limit and in the relativistic limit. It is shown that writing the two particle interactions for unlike particles allows an examination in two limiting cases: large and small separations. These limits are shown to have the limiting motions of: all motions are ABOUT the center of mass or all motion is OF the center of mass. The first limit leads to the standard Dirac equation. The second limit is shown to have equations of which the electroweak theory is a subset. An extension of the gauge principle into a five-dimensional manifold, then restricting the generality of the five-dimensional manifold by using the conservation principle, shows that the four-dimensional hypersurface that is embedded within the 5-D manifold is required to obey Einstein's field equations. The 5-D gravitational quantum equations of the solar system are presented.

  9. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  10. Entropy and the Magic Flute

    NASA Astrophysics Data System (ADS)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  11. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  12. Entropy-Driven Cutoff Phenomena

    NASA Astrophysics Data System (ADS)

    Lancia, Carlo; Nardi, Francesca R.; Scoppola, Benedetto

    2012-10-01

    In this paper we present, in the context of Diaconis' paradigm, a general method to detect the cutoff phenomenon. We use this method to prove cutoff in a variety of models, some already known and others not yet appeared in literature, including a non-reversible random walk on a cylindrical lattice. All the given examples clearly indicate that a drift towards the opportune quantiles of the stationary measure could be held responsible for this phenomenon. In the case of birth-and-death chains this mechanism is fairly well understood; our work is an effort to generalize this picture to more general systems, such as systems having stationary measure spread over the whole state space or systems in which the study of the cutoff may not be reduced to a one-dimensional problem. In those situations the drift may be looked for by means of a suitable partitioning of the state space into classes; using a statistical mechanics language it is then possible to set up a kind of energy-entropy competition between the weight and the size of the classes. Under the lens of this partitioning one can focus the mentioned drift and prove cutoff with relative ease.

  13. Holographic entanglement entropy of anisotropic minimal surfaces in LLM geometries

    NASA Astrophysics Data System (ADS)

    Kim, Chanju; Kim, Kyung Kiu; Kwon, O.-Kab

    2016-08-01

    We calculate the holographic entanglement entropy (HEE) of the Zk orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level k. By solving the partial differential equations analytically, we obtain the HEEs for all LLM solutions with arbitrary M2 charge and k up to μ02 -order where μ0 is the mass parameter. The renormalized entanglement entropies are all monotonically decreasing near the UV fixed point in accordance with the F-theorem. Except the multiplication factor and to all orders in μ0, they are independent of the overall scaling of Young diagrams which characterize LLM geometries. Therefore we can classify the HEEs of LLM geometries with Zk orbifold in terms of the shape of Young diagrams modulo overall size. HEE of each family is a pure number independent of the 't Hooft coupling constant except the overall multiplication factor. We extend our analysis to obtain HEE analytically to μ04 -order for the symmetric droplet case.

  14. Molar Intrusion in Open-bite Adults Using Zygomatic Miniplates.

    PubMed

    Marzouk, Eiman S; Abdallah, Essam Mohamed; El-Kenany, Walid A

    2015-01-01

    The aim of this study is to evaluate the skeletal, dental and soft tissue changes that arise after intrusion of the maxillary molars using zygomatic miniplates in adult skeletal anterior open bite patients. In addition to measuring the amount and rate of molar intrusion; with special emphasis on changes in the axial inclination of the intruded molars. The study group was composed of 13 anterior open bite patients (mean age 18 years, 8 months ± 2 years, 2 months) with posterior dentoalveolar excess. Mini-plates were placed in the zygomatic buttress bilaterally. The upper arch was segmentally leveled and a double Trans-Palatal Arch (TPA) was bonded. Closed NiTi coil spring was placed bilaterally between the book of the mini-plate just mesial and distal to the first molar buccal tube applying intrusive force of 450 gper side. Lateral and posteroanterior cephalograms were taken before intrusion (T1: post upper segmental leveling) and after intrusion (T2). Comparison between means before and after the intrusion was done using Wilcoxon Signed Ranks test (WSRT). Mandibular autorotation followed the molar intrusion, SNB and SN-Pog angles significantly increased while the ANB, MP-SN angle and N-S-Gn angle significantly decreased. The mean amount of accomplished molar intrusion was 3.1mm ± 0.74mm, with a rate of 0.36mm per month ± 0.08mm per month and a bite closure of 6.55mm ± 1.83mm. There was no significant buccal tip in the right and left molars upon intrusion. Conclusion: Miniplates zygomatic anchorage can be used effectively for skeletal open bite correction through posterior dento-alveolar intrusion. Intrusion of the posterior teeth with skeletal anchorage induced counterclockwise rotation of the mandible and, as a consequence, corrected the anteroposterior intermaxillary relationship with a dramatic improvement in the facial soft tissue convexity.

  15. Erupted complex odontoma delayed eruption of permanent molar.

    PubMed

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier.

  16. First molar health status in different craniofacial relationships

    PubMed Central

    Linjawi, Amal I

    2016-01-01

    Objective To investigate the association between the health status of permanent first molars and different craniofacial relationships among adolescents. Study design This is a retrospective study on patients’ records aged 11–15 years. Sex, skeletal relationship, vertical growth pattern, malocclusion, overjet, and overbite were assessed. The health status of permanent first molars was recorded from the orthopantomograms and intraoral photographs as “sound” and “not sound”. Chi-square, Mann–Whitney U and Kruskal–Wallis tests, and Pearson’s correlation coefficient were used to analyze and correlate the assessed variables. Significance level was set at P<0.05. Results A total of 210 records were evaluated; 81 were male, 68 had Class I and 91 had Class II skeletal relationships. More than half of the subjects had normal (n=67) to moderate deep bite (n=72); normal (n=91), moderately increased (n=54), to severely increased (n=50) overjet; and Class I (n=106) and Class II division 1 (n=75) malocclusion. Significant differences were found in the health status of the permanent first molars with respect to sex (P=0.034), vertical growth pattern (P=0.01), and overbite (P=0.047). Strong correlations were only found between the health status of the permanent first molars and the following variables: sex (P=0.036) and vertical growth pattern (P=0.004). Significant correlation was further found between the upper left first molar health status and sex (P=0.019) and the lower right first molar health status and the vertical growth pattern (P=0.001). No significant association was found with the anteroposterior craniofacial relationships (P>0.05). Conclusion Sex difference and vertical growth patterns were found to be potential predictors of the health status of the permanent first molars. No significant association was found with the anteroposterior craniofacial relationships. PMID:27462176

  17. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  18. Sex discrimination potential of permanent maxillary molar cusp diameters.

    PubMed

    Macaluso, P J

    2010-12-01

    The purpose of the present investigation was to assess the potential usefulness of permanent maxillary molar cusp diameters for sex discrimination of poorly preserved skeletal remains. Cusp diameters were measured from standardized occlusal view photographs in a sample of black South Africans consisting of 130 males and 105 females. Results demonstrated that all cusp dimensions for both first and second maxillary molars exhibited significant sexual dimorphism (p < 0.001). Univariate and multivariate discriminant function equations permitted low to moderate classification accuracy in discriminating sex (58.3%-73.6%). The allocation accuracies for cusp diameter measurements were as high as, and even surpassed, those observed for conventional crown length and breadth dimensions of the same teeth. The most accurate result (73.6%, with a sex bias of only 0.5%) was obtained when all cusp diameters from both maxillary molars were used concurrently. However, only slightly less accurate results (~70.0%) were achieved when selected dimensions from only one of the molars, or even a single cusp, were utilized. Although not as reliable at predicting sex as other skeletal elements in black South Africans, the derived odontometric standards can be used with highly fragmentary skeletal material, as well as immature remains in which crown formation of the maxillary molars is complete.

  19. Mandibular first molar with six root canals: a rare entity

    PubMed Central

    Hasan, Muhammad; Rahman, Munawar; Saad, Najeeb

    2014-01-01

    Recently, there has been an ongoing trend of case reports that highlight the presence of more than four root canals in mandibular first molars. This tendency warns clinicians to be more prudent when dealing with mandibular first molars requiring endodontic treatment. Moreover, radiographic examination should be taken as a clue providing tool rather than as an absolute guide to anatomy and its associated aberrances. This case reports the successful non-surgical endodontic management of a mandibular first molar with six root canal systems with three canals in the mesial root and three in the distal root. The classification of root canal systems found in this case was Sert and Bayirli type XV in both the roots. After non-surgical endodontic treatment, the tooth was restored definitively with a resin composite core followed by porcelain fused to the metal crown. This case adds to the library of previously reported cases of mandibular first molars with six root canals and further emphasises on the importance of rare morphological deviations that may occur in the mandibular first molars. PMID:25082869

  20. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  1. Entropy generation at multi-fluid magnetohydrodynamic shocks with emphasis to the solar wind termination shock

    NASA Astrophysics Data System (ADS)

    Fahr, H.-J.; Siewert, M.

    2015-04-01

    In a series of earlier papers, we developed expressions for ion and electron velocity distribution functions and their velocity moments at the passage over the solar wind termination shock. As we have shown there, with the introduction of appropriate particle invariants and the use of Liouville's theorem one can get explicit solutions for the resulting total downstream pressure by adding up from partial pressure contributions of solar wind protons, solar wind electrons and pick-up protons. These expressions are the first step toward delivering the main contributions to the total plasma pressure in the downstream plasma flow and consistently determine the shock compression ratio. Here we start from these individual fluid pressures downstream of the shock and thereafter evaluate for the first time the shock-induced entropy production of the different fluids, when they are passing over the shock to the downstream side. As shown here, the resulting ion entropy production substantially deviates from earlier calculations using a pseudo-polytropic reaction of the ions to the shock compression, with polytropies selected to describe fluid-specific reactions at the shock passage similar to those seen by the Voyagers. From these latter models, ion entropy jumps are derived that depend on the pick-up ion abundance, while our calculations deliver an abundance-independent ion entropy production that only depends on the shock compression ratio and the tilt angle between the upstream magnetic field and the normal to the shock surface. We also show here that the thermodynamically permitted upper limit in the entropy production is only reached when strongly heated electrons are included in the entropy balance.

  2. Quantum statistical entropy for Kerr de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Zhao, Ren

    2004-06-01

    Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.

  3. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  4. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  5. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  6. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  7. Pendulum Therapy of Molar Distalization in Mixed Dentition

    PubMed Central

    Prakash, Amit; Agarwal, Anshu

    2016-01-01

    ABSTRACT Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient’s compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73. PMID:27274159

  8. Pendulum Therapy of Molar Distalization in Mixed Dentition.

    PubMed

    Patil, Raju Umaji; Prakash, Amit; Agarwal, Anshu

    2016-01-01

    Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient's compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73.

  9. Use of sevoflurane inhalation sedation for outpatient third molar surgery.

    PubMed

    Ganzberg, S; Weaver, J; Beck, F M; McCaffrey, G

    1999-01-01

    This study attempted to determine if sevoflurane in oxygen inhaled via a nasal hood as a sole sedative agent would provide an appropriate level of deep sedation for outpatient third molar surgery. Twenty-four patients scheduled for third molar removal were randomly assigned to receive either nasal hood inhalation sevoflurane or an intravenous deep sedation using midazolam and fentanyl followed by a propofol infusion. In addition to measuring patient, surgeon, and dentist anesthesiologist subjective satisfaction with the technique, physiological parameters, amnesia, and psychomotor recovery were also assessed. No statistically significant difference was found between the sevoflurane and midazolam-fentanyl-propofol sedative groups in physiological parameters, degree of amnesia, reported quality of sedation, or patient willingness to again undergo a similar deep sedation. A trend toward earlier recovery in the sevoflurane group was identified. Sevoflurane can be successfully employed as a deep sedative rather than a general anesthetic for extraction of third molars in healthy subjects.

  10. First permanent molar root development arrest associated with compound odontoma.

    PubMed

    Gunda, Sachin A; Patil, Anil; Varekar, Aniruddha

    2013-07-04

    Trauma or infection to the primary tooth may have deleterious effects on the underlying developing tooth buds. Anatomically the root apices of primary teeth are in close proximity to the developing permanent tooth buds; hence spread of infection originating from pulp necrosis of primary tooth may not only affect the underlying tooth bud but may also affect the adjacent tooth buds. The extent of malformation depends on the developmental stage of tooth or the age of patient. Presented here is a rare case of complete arrest of maxillary first permanent molar root growth due to spread of periapical infection originating from second primary molar leading to failure of its eruption and finally extraction. Histopathlogical analysis revealed compound odontoma associated with maxillary first permanent molar.

  11. Rapid palatal expander: an anchor unit for second molar distalization in Angle Class II treatment.

    PubMed

    Kolokitha, Olga-Elpis; Papadopoulou, Alexandra K

    2010-01-01

    Distal movement of maxillary molars is a common approach for nonextraction treatment of Angle Class II patients. Because of known difficulties involving moving the maxillary first molars distally in the presence of second molars, this article describes how the distally directed force is applied immediately to the second molars. A rapid palatal expander can be used as a reliable unit to facilitate the distal movement of the second maxillary molars.

  12. Efficacy of 5 machining instruments in scaling of molar furcations.

    PubMed

    Takacs, V J; Lie, T; Perala, D G; Adams, D F

    1993-03-01

    The scaling efficacy of machining instruments was studied in the furcations of 100 extracted molars. The molars were divided into 5 groups with similar furcation anatomy, painted with artificial calculus, partly submerged in stone blocks, and the furcation entrances covered with a heavy rubber dam material. Ten mandibular and 10 maxillary molars were scaled by an experienced operator with each of the following instruments/inserts: ultrasonic instrument with either a prototype ball point insert or with a new pointed insert; ultrasonic instrument with a ball point insert; reciprocating hand-piece with new inserts for furcations; and a sonic scaler with a universal insert. The molar groups were coded and graded in a stereomicroscope by 2 independent examiners, and the rankings were tested with the Kruskal-Wallis test and the multiple comparisons between treatments test. The results revealed statistically significant differences between the instruments, as well as between different topographical areas of the furcations. The sonic scaler with a universal insert and the ultrasonic instrument with ball point inserts were significantly more efficient (P < 0.05) than the reciprocating handpiece with inserts in most of the areas studied. For mandibular molars, significantly better results (P < 0.05) were obtained for lingual furcation entrances than for furcation roofs. For maxillary molars, significantly better results (P < 0.05) were obtained for distal and buccal entrance areas than for furcation roofs and inside of mesial roots. The present study may give some guidance to the practitioner in choosing machining instruments for furcation cleaning as well as identifying the most difficult topographical areas to instrument.

  13. Maximum entropy production rate in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schrödinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible, well

  14. Subjective values of different treatments for missing molars in older Japanese.

    PubMed

    Ikebe, K; Hazeyama, T; Kagawa, R; Matsuda, K; Maeda, Y

    2010-12-01

    The purpose of this study was to determine how elderly Japanese people subjectively value treatment options for missing molars. Subjects were 528 independently community-dwelling elderly people. They were presented with photographs and descriptions of the process and expected outcomes of five possible treatment options: cantilever fixed dental prosthesis (FDP); resin or metal removable partial denture prosthesis (RPDP); implant-supported fixed prosthesis; and no replacement (shortened dental arch: SDA) for missing lower bilateral first and second molars. The participants filled in the questionnaire on subjective importance for treatment and indicated on a visual analogue scale how they valued the treatment (utility value: UV). Values were analysed by Mann-Whitney U-tests and multiple logistic regression analyses. Overall, the UVs for the FDP and the metal RPDP were the highest, and the UV for the SDA was the lowest. With respect to subjective importance, 'chewing ability' and 'no pain during function' were significantly selected more frequently. Multiple logistic regression analyses showed that the UV for the resin RPDP had significant positive associations with denture wearers and low treatment cost, whereas the implant had significant negative associations with denture wearers and older age. The SDA had significant positive associations with men and low treatment cost and a negative association with appearance. In conclusion, these elderly Japanese preferred cantilever FDPs and metal RPDPs to implants and 'no replacement.' It suggests that the SDA as an oral health goal can be questionable from the patients' point of view, even if it is biologically correct.

  15. Entropy and Energy, - a Universal Competition

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    When a body approaches equilibrium, energy tends to a minimum and entropy tends to a maximum. Often, or usually, the two tendencies favour different configurations of the body. Thus energy is deterministic in the sense that it favours fixed positions for the atoms, while entropy randomizes the positions. Both may exert considerable forces in the attempt to reach their objectives. Therefore they have to compromise; indeed, under most circumstances it is the available free energy which achieves a minimum. For low temperatures that free energy is energy itself, while for high temperatures it is determined by entropy. Several examples are provided for the roles of energy and entropy as competitors: - Planetary atmospheres; - osmosis; - phase transitions in gases and liquids and in shape memory alloys, and - chemical reactions, viz. the Haber Bosch synthesis of ammonia and photosynthesis. Some historical remarks are strewn through the text to make the reader appreciate the difficulties encountered by the pioneers in understanding the subtlety of the concept of entropy, and in convincing others of the validity and relevance of their arguments.

  16. Enzyme catalysis by entropy without Circe effect

    PubMed Central

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-01-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  17. Enzyme catalysis by entropy without Circe effect.

    PubMed

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  18. Approximate von Neumann entropy for directed graphs.

    PubMed

    Ye, Cheng; Wilson, Richard C; Comin, César H; Costa, Luciano da F; Hancock, Edwin R

    2014-05-01

    In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks.

  19. Infraocclusion of secondary deciduous molars--an unusual outcome.

    PubMed

    Ponduri, Sirisha; Birnie, David J; Sandy, Jonathan R

    2009-09-01

    Infraocclusion is a condition frequently associated with primary molars. The infraoccluded primary teeth remain in a fixed position, while the teeth adjacent to them continue to erupt, moving occlusally. It is generally accepted that the cause of the altered occlusal level is ankylosis of the affected tooth. This report describes a case in which a short course of interceptive treatment with a 2 x 4 fixed appliance resulted in resolution of the infrocclusion. Recreating space for a severely infraoccluded second deciduous molar resulted in 'eruption' of the tooth without the need for extraction.

  20. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  1. Measuring entanglement entropies in many-body systems

    SciTech Connect

    Klich, Israel; Refael, Gil; Silva, Alessandro

    2006-09-15

    We explore the relation between entanglement entropy of quantum many-body systems and the distribution of corresponding, properly selected, observables. Such a relation is necessary to actually measure the entanglement entropy. We show that, in general, the Shannon entropy of the probability distribution of certain symmetry observables gives a lower bound to the entropy. In some cases this bound is saturated and directly gives the entropy. We also show other cases in which the probability distribution contains enough information to extract the entropy: we show how this is done in several examples including BEC wave functions, the Dicke model, XY spin chain, and chains with strong randomness.

  2. An Entropy Model for Artificial Grammar Learning

    PubMed Central

    Pothos, Emmanuel M.

    2010-01-01

    A model is proposed to characterize the type of knowledge acquired in artificial grammar learning (AGL). In particular, Shannon entropy is employed to compute the complexity of different test items in an AGL task, relative to the training items. According to this model, the more predictable a test item is from the training items, the more likely it is that this item should be selected as compatible with the training items. The predictions of the entropy model are explored in relation to the results from several previous AGL datasets and compared to other AGL measures. This particular approach in AGL resonates well with similar models in categorization and reasoning which also postulate that cognitive processing is geared towards the reduction of entropy. PMID:21607072

  3. Entropy production of doubly stochastic quantum channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  4. Zipf's law, power laws and maximum entropy

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2013-04-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  5. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  6. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  7. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  8. Holographic entanglement entropy of surface defects

    NASA Astrophysics Data System (ADS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-04-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  9. Entropy production of doubly stochastic quantum channels

    SciTech Connect

    Müller-Hermes, Alexander; Stilck França, Daniel Wolf, Michael M.

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  10. Transfer Entropy and Transient Limits of Computation

    PubMed Central

    Prokopenko, Mikhail; Lizier, Joseph T.

    2014-01-01

    Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation. PMID:24953547

  11. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  12. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  13. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  14. Entanglement entropy of subtracted geometry black holes

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Saleem, Zain H.; Satz, Alejandro

    2014-09-01

    We compute the entanglement entropy of minimally coupled scalar fields on subtracted geometry black hole backgrounds, focusing on the logarithmic corrections. We notice that matching between the entanglement entropy of original black holes and their subtracted counterparts is only at the order of the area term. The logarithmic correction term is not only different but also, in general, changes sign in the subtracted case. We apply Harrison transformations to the original black holes and find out the choice of the Harrison parameters for which the logarithmic corrections vanish.

  15. Maximum entropy spherical deconvolution for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-01-01

    This paper proposes a maximum entropy method for spherical deconvolution. Spherical deconvolution arises in various inverse problems. This paper uses the method to reconstruct the distribution of microstructural fibre orientations from diffusion MRI measurements. Analysis shows that the PASMRI algorithm, one of the most accurate diffusion MRI reconstruction algorithms in the literature, is a special case of the maximum entropy spherical deconvolution. Experiments compare the new method to linear spherical deconvolution, used previously in diffusion MRI, and to the PASMRI algorithm. The new method compares favourably both in simulation and on standard brain-scan data.

  16. Black hole entropy without brick walls

    NASA Astrophysics Data System (ADS)

    Xiang, Li

    2002-07-01

    The properties of the thermal radiation are discussed by using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity. There is no burst at the last stage of the emission of a Schwarzschild black hole. When the new equation of state density is utilized to investigate the entropy of a scalar field outside the horizon of a static black hole, the divergence appearing in the brick wall model is removed, without any cutoff. The entropy proportional to the horizon area is derived from the contribution of the vicinity of the horizon.

  17. High resolution schemes and the entropy condition

    NASA Technical Reports Server (NTRS)

    Osher, S.; Chakravarthy, S.

    1983-01-01

    A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.

  18. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  19. Refractory High-Entropy Alloys (Postprint)

    DTIC Science & Technology

    2010-06-23

    AFRL-RX-WP-JA-2015-0119 REFRACTORY HIGH-ENTROPY ALLOYS (POSTPRINT) D.B. Miracle AFRL/RXCM O.N. Senkov UES, Inc. G.B. Wilks...AUTHOR(S) D.B. Miracle - AFRL/RXCM O.N. Senkov - UES, Inc. G.B. Wilks - General Dynamics, Corp. C.P. Chuang and P.K. Liaw - The University...intermetRefractory high-entropy alloys O.N. Senkov a,b,*, G.B. Wilks a,c, D.B. Miracle a, C.P. Chuang d, P.K. Liawd aAir Force Research Laboratory

  20. Variations in the mechanical properties of Alouatta palliata molar enamel.

    PubMed

    Darnell, Laura A; Teaford, Mark F; Livi, Kenneth J T; Weihs, Timothy P

    2010-01-01

    Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross-section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross-sections from the occlusal surface to the dentin-enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from approximately 6% near the occlusal surface to approximately 20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species.

  1. Endodontic and restorative management of incompletely fractured molar teeth.

    PubMed

    Gutmann, J L; Rakusin, H

    1994-11-01

    The treatment of fractured teeth poses significant problems for the practitioner. However, once the treatment planning decision has been made to attempt to retain the tooth, various practical regimens are available to effect this goal. This paper addresses the specific use of glass ionomer in the restorative management of incompletely, vertically fractured molar teeth integrated with specific root canal treatment techniques.

  2. Evaluation of the surgical difficulty in lower third molar extraction.

    PubMed

    Barreiro-Torres, José; Diniz-Freitas, Marcio; Lago-Méndez, Lucía; Gude-Sampedro, Francisco; Gándara-Rey, José-Manuel; García-García, Abel

    2010-11-01

    The ability to predict the surgical difficulty of lower third molar extraction facilitates the design of treatment plans by minimizing complications and improving the preparation of patients and assistants in terms of the postoperative management of inflammation and pain. The aims of this study were to evaluate the value of panoramic radiographs in predicting lower third molar extraction difficulty and technique and to determine if the experience of the practitioner had any influence on this predictive ability. Fourteen dental practitioners with varying levels of experience evaluate the difficulty of lower third molar extraction in a group of patients using a 100-mm visual analog scale (VAS) and a modified version of a surgical difficulty scale. The results were then compared to postoperative scores calculated using the same scale. A tendency to underestimate the difficulty of procedures that was more pronounced in observers with greater levels of experience was observed. A low level of agreement between preoperative and postoperative evaluations using the surgical difficulty scale as well as an association between difficulty assessed preoperatively using the VAS and difficulty assessed postoperatively using the surgical difficulty scale was also found. The use of panoramic radiographs does not allow practitioners to accurately predict lower third molar extraction difficulty and technique, regardless of their level of experience.

  3. Incidence of lingual nerve paraesthesia following mandibular third molar surgery

    PubMed Central

    Lata, Jeevan; Tiwari, Arunesh K.

    2011-01-01

    Context: The surgical removal of impacted mandibular third molar is associated with minor but expected complications like pain, swelling, bruising and trismus. The lingual nerve damage sometimes occurs after the removal of mandibular third molar producing impaired sensation or permanent sensory loss. This complication is usually unexpected and unacceptable for the patients particularly if no prior warning has been given. Aims: The aim of the present clinical prospective study was to determine the clinical incidence of lingual nerve injury following mandibular third molar removal and to analyze possible factors for the lingual nerve injury. Settings and Design: Clinical prospective study in the Department of Oral Surgery, Punjab Government Dental College and Hospital, Amritsar. Materials and Methods: Ninety patients were selected randomly, amongst the patients, who reported to our department from January 2009 to December 2009 for the surgical removal of impacted mandibular third molar. To minimize the risk of lingual nerve injury, the standard terence wards incision was made in all cases and only buccal flap was raised. Statistical Analysis: The small number of paraesthesia precluded statistical analysis. Results: Out of 90 patients, six patients were diagnosed with lingual nerve paraesthesia. The overall incidence rate of lingual nerve injury was 6.6%. Conclusions: It can be concluded that lingual nerve paraesthesia can occur with or without reflection of lingual flap in spite of all the measures taken to protect it. It may be contributed to the fact of anatomical variations of lingual nerve. PMID:22639500

  4. Long term effects of primary molar pulpotomies on succedaneous bicuspids.

    PubMed

    Messer, L B; Cline, J T; Korf, N W

    1980-02-01

    Forty-three bicuspids which replaced successfully pulpotomized vital or non-vital primary molars, and twenty bicuspids, which erupted following unsuccessful pulpotomies requiring extraction of the preceding teeth, were examined for defects of position and enamel. In comparison with contralateral control teeth, test teeth in both groups showed an increased prevalence of rotation and enamel surface defects.

  5. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  6. Non-compliance Appliances for Upper Molar Distalization: An Overview.

    PubMed

    Noorollahian, Saeed; Alavi, Shiva; Shirban, Farinaz

    2015-01-01

    Tooth Size Arch-length Discrepancy (TSALD) is a common problem in orthodontics. Its clinical signs are tooth crowding, impaction and incisor proclination. The treatment options are dental arch expansion or tooth mass reduction (stripping or extraction). The "extraction versus non-extraction" controversy has been widely debated in the orthodontic literature. Distalization is a kind of arch expansion in anetro-posterior dimension. Several studies have evaluated both the therapeutic effectiveness and the side effects of the appliances for this method of space gaining. In some cases molar distalization is preferred, e.g., a patient with acceptable profile and skeletal pattern and half cusp Class II molar malocclusion or even less. In some cases molar distalization is the only way, e.g., the patient with previous upper premolar extraction and excessive overijet, or a skeletal Class III patient with previous upper premolar extraction needed upper anterior teeth retraction to create reverse overjet aspre surgical orthodontic decompensation. In this review article, we described non-compliance upper molar distalizing appliances.

  7. Zaleplon (Sonata) Oral Sedation for Outpatient Third Molar Extraction Surgery

    PubMed Central

    Ganzberg, Steven I; Dietrich, Thomas; Valerin, Manuel; Beck, F. Michael

    2005-01-01

    Zalpelon was compared with triazolam for oral sedation in a third molar surgery model using a double-blind crossover design. Factors such as anxiolysis, amnesia, and quality of sedation were assessed. Of the 14 participants who completed the study, zaleplon sedation was found to be similar to triazolam sedation in all regards except that recovery from zaleplon was more rapid. PMID:16596911

  8. Molar incisor hypomineralization: review and recommendations for clinical management.

    PubMed

    William, Vanessa; Messer, Louise B; Burrow, Michael F

    2006-01-01

    Molar incisor hypomineralization (MIH) describes the clinical picture of hypomineralization of systemic origin affecting one or more first permanent molars (FPMs) that are associated frequently with affected incisors. Etiological associations with systemic conditions or environmental insults during the child's first 3 years have been implicated. The complex care involved in treating affected children must address their behavior and anxiety, aiming to provide a durable restoration under pain-free conditions. The challenges include adequate anaesthesia, suitable cavity design, and choice of restorative materials. Restorations in hypomineralized molars appear to fail frequently; there is little evidence-based literature to facilitate clinical decisions on cavity design and material choice. A 6-step approach to management is described: (1) risk identification; (2) early diagnosis; (3) remineralization and desensitization; (4) prevention of caries and posteruption breakdown; (5) restorations and extractions; and (6) maintenance. The high prevalence of MIH indicates the need for research to clarify etiological factors and improve the durability of restorations in affected teeth. The purpose of this paper was to describe the diagnosis, prevalence, putative etiological factors, and features of hypomineralized enamel in molar incisor hypomineralization and to present a sequential approach to management.

  9. Factors associated with molar incisor hypomineralization in Thai children.

    PubMed

    Pitiphat, Waranuch; Luangchaichaweng, Sarunporn; Pungchanchaikul, Patimaporn; Angwaravong, Onauma; Chansamak, Nusara

    2014-08-01

    Molar incisor hypomineralization (MIH) is a qualitative developmental enamel defect that affects one to four permanent first molars, with or without involvement of permanent incisors. Its etiology is of systemic origin, but is not well understood. Therefore, we conducted this cross-sectional study to examine pre-, peri-, and postnatal risk factors for MIH among children, 7-8 yr of age, in urban areas of Khon Kaen, Thailand. Molar incisor hypomineralization defects were diagnosed using the European Academy of Pediatric Dentistry criteria. Mothers or primary caregivers were interviewed on maternal medical history and habits during pregnancy, pregnancy and delivery complications, and the child's medical history. Molar incisor hypomineralization defects were observed in 78 (27.7%) of 282 children. Multiple logistic regression analysis showed a statistically significant association between the development of MIH and Cesarean section (adjusted OR = 2.0, 95% CI = 1.1-3.7), complications during vaginal delivery (adjusted OR = 4.5, 95% CI = 1.9-11.0), and severe/chronic illness when under 3 yr of age (adjusted OR = 2.9, 95% CI = 1.6-5.0). There was no association of preterm birth and low birth weight with MIH. The results suggest that Cesarean section, complications during vaginal delivery, and poor health during the first 3 yr of life are independent risk factors for MIH.

  10. Unilateral maxillary molar distalization with zygoma-gear appliance.

    PubMed

    Kilkis, Dogan; Bayram, Mehmet; Celikoglu, Mevlut; Nur, Metin

    2012-08-01

    The aim of this study was to present the orthodontic treatment of a 15-year-old boy with a unilateral maxillary molar distalization system, called the zygoma-gear appliance. It consisted of a zygomatic anchorage miniplate, an inner bow, and a Sentalloy closed coil spring (GAC International, Bohemia, NY). A distalizing force of 350 g was used during the distalization period. The unilateral Class II malocclusion was corrected in 5 months with the zygoma-gear appliance. The maxillary left first molar showed distalization of 4 mm with an inclination of 3°. The maxillary premolars moved distally with the help of the transseptal fibers. In addition, there were slight decreases in overjet (-0.5 mm) and maxillary incisor inclination (-1°), indicating no anchorage loss from the zygoma-gear appliance. Preadjusted fixed appliances (0.022 × 0.028-in, MBT system; 3M Unitek, Monrovia, Calif) were placed in both arches to achieve leveling and alignment. After 14 months of unilateral distalization with the zygoma-gear appliance and fixed appliances, Class I molar and canine relationships were established with satisfactory interdigitation of the posterior teeth. Acceptable overjet and overbite were also achieved. This article shows that this new system, the zygoma-gear appliance, can be used for unilateral maxillary molar distalization without anchorage loss.

  11. Entropy analysis in foreign exchange markets and economic crisis

    NASA Astrophysics Data System (ADS)

    Ha, Jin-Gi; Yim, Kyubin; Kim, Seunghwan; Jung, Woo-Sung

    2012-08-01

    We investigate the relative market efficiency in 11 foreign exchange markets by using the Lempel-Ziv (LZ) complexity algorithm and several entropy values such as the Shannon entropy, the approximate entropy, and the sample entropy. With daily data in 11 foreign exchange markets from Jan. 2000 to Sep. 2011, we observe that mature markets have higher LZ complexities and entropy values than emerging markets. Furthermore, with sliding time windows, we also investigate the temporal evolutions of those entropies from Jan. 1994 to Sep. 2011, and we find that, after an economic crisis, the approximate entropy and the sample entropy of mature markets such as Japan, Europe and the United Kingdom suddenly become lower.

  12. Gravitational correlation, black hole entropy, and information conservation

    NASA Astrophysics Data System (ADS)

    He, DongShan; Cai, QingYu

    2017-04-01

    When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by Verlinde's paper, we first calculate the entropy change of a system when gravity does positive work on this system. Based on the concept of gravitational correlation entropy, we prove that the entropy of a Schwarzschild black hole originates from the gravitational correlations between the interior matters of the black hole. By analyzing the gravitational correlation entropies in the process of Hawking radiation in a general context, we prove that the reduced entropy of a black hole is exactly carried away by the radiation and the gravitational correlations between these radiating particles, and the entropy or information is conserved at all times during Hawking radiation. Finally, we attempt to give a unified description of the non-extensive black-hole entropy and the extensive entropy of ordinary matter.

  13. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  14. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  15. A logarithmic correction in the entropy functional formalism

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal; Faizal, Mir

    2016-04-01

    The entropy functional formalism allows one to recover general relativity, modified gravity theories, as well as the Bekenstein-Hawking entropy formula. In most approaches to quantum gravity, the Bekenstein-Hawking’s entropy formula acquires a logarithmic correction term. As such terms occur almost universally in most approaches to quantum gravity, we analyze the effect of such terms on the entropy functional formalism. We demonstrate that the leading correction to the micro-canonical entropy in the entropy functional formalism can be used to recover modified theories of gravity already obtained with an uncorrected micro-canonical entropy. Furthermore, since the entropy functional formalism reproduces modified gravity, the rise of gravity-dependent logarithmic corrections turns out to be one way to impose constraints on these theories of modified gravity. The constraints found here for the simple case of an ℱ(R)-gravity are the same as those obtained in the literature from cosmological considerations.

  16. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  17. Odontometric analysis of permanent maxillary first molar in gender determination

    PubMed Central

    Shireen, Ayesha; Ara, Syeda Arshiya

    2016-01-01

    Aims: This study was conducted to assess the sex determination potential from mesiodistal (MD) and buccolingual (BL) dimensions of permanent maxillary first molar. Subjects and Methods: The study was conducted in the Department of Oral Medicine and Radiology, Al-Badar Rural Dental College and Hospital, Gulbarga, Karnataka, on 600 subjects (300 male and 300 female), aged 17–25 years. The subjects were selected based on the inclusion and exclusion criteria set forth for the study. After obtaining informed consent, the intraoral measurements of MD and BL dimensions on casts of the first maxillary molars were taken using digital vernier caliper with resolution of 0.01 mm. Statistical Analysis Used: The data obtained were subjected to statistical analysis using paired and unpaired t-test to compare MD and BL dimensions between males and females. P ≤0.05 was considered statistically significant. Results: The mean MD width of the first maxillary molar was 10.60 ± 0.6644 mm (right) and 10.60 ± 0.6644 mm (left) in males and 10.40 ± 0.6255 mm (right) and 10.40 ± 0.6255 mm (left) in females. The mean BL width of the first maxillary molar was 11.60 ± 1.2227 mm (right) and 11.60 ± 1.2227 mm (left) in males and 11.20 ± 0.8440 mm (right) and 11.20 ± 0.8440 mm (left) in females. The differences between males and females in MD and BL dimensions measured were statistically significant (P < 0.05). Right and left MD dimensions exhibited sexual dimorphism of 1.92% and right and left BL dimensions exhibited sexual dimorphism of 3.57%. Conclusions: The MD and BL dimensions of the maxillary first molars may be used as an aid in sex discrimination. PMID:28123268

  18. Electronic structure and vibrational entropies of fcc Au-Fe alloys

    SciTech Connect

    Munoz, Jorge A.; Lucas, Matthew; Mauger, L; Halevy, I; Horwath, J; Semiatin, S L; Xiao, Yuming; Stone, Matthew B; Abernathy, Douglas L; Fultz, B.

    2013-01-01

    Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms. The 57Fe partial phonon DOS of the dilute alloy Au0.97 57Fe0.03 shows a localized mode centered 4.3% above the cutoff energy of the phonons in pure Au. The Mannheim model for impurity modes accurately reproduced this partial phonon DOS using the fcc Au phonon DOS with a ratio of host-host to impurity-host force constants of 1.55. First-principles calculations validated the assumption of first-nearest-neighbor forces in the Mannheim model and gave a similar ratio of force constants. The high energy local mode broadens with increasing Fe composition, but this has a small effect on the composition dependence of the vibrational entropy. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. This stiffening is attributed to two main effects: 1) an increase in electron density in the free-electron-like states, and 2) stronger sd-hybridization. These two effects are comparable in magnitude.

  19. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements.

  20. Waste heat boiler optimization by entropy minimization principle

    SciTech Connect

    Reddy, B.V.; Murali, J.; Satheesh, V.S.; Nag, P.K.

    1996-12-31

    A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

  1. Discovery and Entropy in the Revision of Technical Reports.

    ERIC Educational Resources Information Center

    Marder, Daniel

    A useful device in revising technical reports is the metaphor of entropy, which refers to the amount of disorder that is present in a system. Applied to communication theory, high entropy would correspond to increased amounts of unfamiliar or useless information in a text. Since entropy in rhetorical systems increases with the unfamiliarity of…

  2. LETTER TO THE EDITOR: Bias analysis in entropy estimation

    NASA Astrophysics Data System (ADS)

    Schürmann, Thomas

    2004-07-01

    We consider the problem of finite sample corrections for entropy estimation. New estimates of the Shannon entropy are proposed and their systematic error (the bias) is computed analytically. We find that our results cover correction formulae of current entropy estimates recently discussed in the literature. The trade-off between bias reduction and the increase of the corresponding statistical error is analysed.

  3. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety

    ERIC Educational Resources Information Center

    Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B.

    2012-01-01

    Entropy, a concept derived from thermodynamics and information theory, describes the amount of uncertainty and disorder within a system. Self-organizing systems engage in a continual dialogue with the environment and must adapt themselves to changing circumstances to keep internal entropy at a manageable level. We propose the entropy model of…

  4. Entropy analysis of automatic sequences revisited: An entropy diagnostic for automaticity

    NASA Astrophysics Data System (ADS)

    Karamanos, Kostas

    2001-06-01

    We give a necessary entropy condition, valid for all automatic sequences read by lumping. We next establish new entropic decimation schemes for the Thue-Morse, the Rudin-Shapiro and the paperfolding sequences read by lumping.

  5. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    NASA Astrophysics Data System (ADS)

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-02-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  6. Information, entropy and fidelity in visual communication

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  7. Entropy conservation in simulations of magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.; Schindler, K.

    2006-09-15

    Entropy and mass conservation are investigated for the dynamic field evolution associated with fast magnetic reconnection, based on the 'Newton Challenge' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this problem, the formation of a thin current sheet and magnetic reconnection are initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. Using resistive magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations, specifically the entropy and mass integrated along the magnetic flux tubes are compared between the simulations. In the MHD simulation these should be exactly conserved quantities, when slippage and Ohmic dissipation are negligible. It is shown that there is very good agreement between the conservation of these quantities in the two simulation approaches, despite the effects of dissipation, provided that the resistivity in the MHD simulation is strongly localized. This demonstrates that dissipation is highly localized in the PIC simulation also, and that heat flux across magnetic flux tubes has negligible effect as well, so that the entropy increase on a full flux tube remains small even during reconnection. The mass conservation also implies that the frozen-in flux condition of ideal MHD is a good integral approximation outside the reconnection site. This result lends support for using the entropy-conserving MHD approach not only before and after reconnection but even as a constraint connecting the two phases.

  8. Rényi entropy and conformal defects

    NASA Astrophysics Data System (ADS)

    Bianchi, Lorenzo; Meineri, Marco; Myers, Robert C.; Smolkin, Michael

    2016-07-01

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  9. Entropy viscosity method applied to Euler equations

    SciTech Connect

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-07-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  10. Nonextensive entropies derived from Gauss' principle

    NASA Astrophysics Data System (ADS)

    Wada, Tatsuaki

    2011-05-01

    Gauss' principle in statistical mechanics is generalized for a q-exponential distribution in nonextensive statistical mechanics. It determines the associated stochastic and statistical nonextensive entropies which satisfy Greene-Callen principle concerning on the equivalence between microcanonical and canonical ensembles.

  11. Le Chatelier's Principle, Temperature Effects, and Entropy.

    ERIC Educational Resources Information Center

    Campbell, J. Arthur

    1985-01-01

    One of the most useful methods of understanding chemical equilibria is provided by Le Chatelier's principle. The relationships between this principle, temperature, and entropy are discussed. Tables with thermodynamic data for some net reactions commonly used to illustrate the principle and for reactions involving gases are included. (JN)

  12. On the Entropy of Protein Families

    NASA Astrophysics Data System (ADS)

    Barton, John P.; Chakraborty, Arup K.; Cocco, Simona; Jacquin, Hugo; Monasson, Rémi

    2016-03-01

    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1- and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the mutation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.

  13. Carnot to Clausius: Caloric to Entropy

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2009-01-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…

  14. Impact of Information Entropy on Teaching Effectiveness

    ERIC Educational Resources Information Center

    Wang, Zhi-guo

    2007-01-01

    Information entropy refers to the process in which information is sent out from the information source, transmitted through information channel and acquired by information sink, while the teaching process is the one of transmitting teaching information from teachers and teaching material to students. How to improve teaching effectiveness is…

  15. The Statistical Interpretation of Entropy: An Activity

    ERIC Educational Resources Information Center

    Timmberlake, Todd

    2010-01-01

    The second law of thermodynamics, which states that the entropy of an isolated macroscopic system can increase but will not decrease, is a cornerstone of modern physics. Ludwig Boltzmann argued that the second law arises from the motion of the atoms that compose the system. Boltzmann's statistical mechanics provides deep insight into the…

  16. Symbolic transfer entropy: inferring directionality in biosignals.

    PubMed

    Staniek, Matthäus; Lehnertz, Klaus

    2009-12-01

    Inferring directional interactions from biosignals is of crucial importance to improve understanding of dynamical interdependences underlying various physiological and pathophysiological conditions. We here present symbolic transfer entropy as a robust measure to infer the direction of interactions between multidimensional dynamical systems. We demonstrate its performance in quantifying driver-responder relationships in a network of coupled nonlinear oscillators and in the human epileptic brain.

  17. Stock market stability: Diffusion entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  18. Graphical representation of the excess entropy

    NASA Astrophysics Data System (ADS)

    Bednorz, Adam

    2001-09-01

    The generalized Mayer graphs invented by Nettleton and Green are used to express the probability distribution of statistical systems by reduced distribution functions. The entropy is expressed in terms of graphs and a simple rule of counting them is presented. The hyper-netted chain approximations are discussed.

  19. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  20. Hagedorn transition and topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Zuo, Fen; Gao, Yi-Hong

    2016-06-01

    Induced by the Hagedorn instability, weakly-coupled U (N) gauge theories on a compact manifold exhibit a confinement/deconfinement phase transition in the large-N limit. Recently we discover that the thermal entropy of a free theory on S3 gets reduced by a universal constant term, -N2 / 4, compared to that from completely deconfined colored states. This entropy deficit is due to the persistence of Gauss's law, and actually independent of the shape of the manifold. In this paper we show that this universal term can be identified as the topological entangle entropy both in the corresponding 4 + 1 D bulk theory and the dimensionally reduced theory. First, entanglement entropy in the bulk theory contains the so-called "particle" contribution on the entangling surface, which naturally gives rise to an area-law term. The topological term results from the Gauss's constraint of these surface states. Secondly, the high-temperature limit also defines a dimensionally reduced theory. We calculate the geometric entropy in the reduced theory explicitly, and find that it is given by the same constant term after subtracting the leading term of O (β-1). The two procedures are then applied to the confining phase, by extending the temperature to the complex plane. Generalizing the recently proposed 2D modular description to an arbitrary matter content, we show the leading local term is missing and no topological term could be definitely isolated. For the special case of N = 4 super Yang-Mills theory, the results obtained here are compared with that at strong coupling from the holographic derivation.

  1. Upper bound for the average entropy production based on stochastic entropy extrema

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate

    2017-03-01

    The second law of thermodynamics, which asserts the non-negativity of the average total entropy production of a combined system and its environment, is a direct consequence of applying Jensen's inequality to a fluctuation relation. It is also possible, through this inequality, to determine an upper bound of the average total entropy production based on the entropies along the most extreme stochastic trajectories. In this work, we construct an upper bound inequality of the average of a convex function over a domain whose average is known. When applied to the various fluctuation relations, the upper bounds of the average total entropy production are established. Finally, by employing the result of Neri, Roldán, and Jülicher [Phys. Rev. X 7, 011019 (2017)], 10.1103/PhysRevX.7.011019, we are able to show that the average total entropy production is bounded only by the total entropy production supremum, and vice versa, for a general nonequilibrium stationary system.

  2. Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction

    PubMed Central

    Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan

    2015-01-01

    Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups. The number of included randomized controlled

  3. SUPERMODEL ANALYSIS OF A1246 AND J255: ON THE EVOLUTION OF GALAXY CLUSTERS FROM HIGH TO LOW ENTROPY STATES

    SciTech Connect

    Fusco-Femiano, R.; Lapi, A.

    2015-02-10

    We present an analysis of high-quality X-ray data out to the virial radius for the two galaxy clusters A1246 and GMBCG J255.34805+64.23661 (J255) by means of our entropy-based SuperModel. For A1246 we find that the spherically averaged entropy profile of the intracluster medium (ICM) progressively flattens outward, and that a nonthermal pressure component amounting to ≈20% of the total is required to support hydrostatic equilibrium in the outskirts; there we also estimate a modest value C ≈ 1.6 of the ICM clumping factor. These findings agree with previous analyses on other cool-core, relaxed clusters, and lend further support to the picture by Lapi et al. that relates the entropy flattening, the development of the nonthermal pressure component, and the azimuthal variation of ICM properties to weakening boundary shocks. In this scenario clusters are born in a high-entropy state throughout, and are expected to develop on similar timescales a low-entropy state both at the center due to cooling, and in the outskirts due to weakening shocks. However, the analysis of J255 testifies how such a typical evolutionary course can be interrupted or even reversed by merging especially at intermediate redshift, as predicted by Cavaliere et al. In fact, a merger has rejuvenated the ICM of this cluster at z ≈ 0.45 by reestablishing a high-entropy state in the outskirts, while leaving intact or erasing only partially the low-entropy, cool core at the center.

  4. Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster).

    PubMed

    Jheon, Andrew H; Prochazkova, Michaela; Sherman, Michael; Manoli, Devanand S; Shah, Nirao M; Carbone, Lawrence; Klein, Ophir

    2015-03-23

    Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth.

  5. Emergent Geometry from Entropy and Causality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum

  6. On the apparent molar volumes of nonelectrolytes in water

    SciTech Connect

    Anderko, A.; Chan, J.P.; Pitzer, K.S. )

    1993-04-01

    Apparent molar volumes of aqueous solutions of argon and xenon have been calculated using a previously developed comprehensive equation of state for nonelectrolyte systems. The equation consists of a virial expansion truncated after the fourth virial coefficient and a closed-form term approximating higher coefficients. Mixing rules are based on the composition dependence of virial coefficients, which is known from statistical mechanics. The equation accurately represents vapor-liquid and gas-gas equilibria for the Ar + H[sub 2]O and Xe + H[sub 2]O systems over wide ranges of pressure and temperature using two binary parameters. With the binary parameters determined from phase equilibrium data, the equation accurately predicts apparent molar volumes V[sub [phi

  7. Natal molars in Pfeiffer syndrome type 3: a case report.

    PubMed

    Alvarez, M P; Crespi, P V; Shanske, A L

    1993-01-01

    The following report is the first documented case of natal teeth associated with a recently described new entity, Pfeiffer syndrome type 3. The clinical manifestations consistent with the spectrum of this rare disorder are described with an emphasis on the concomitant natal teeth. Pfeiffer syndrome type 3 is one of the craniosynostosis syndromes and has been described in only two patients to date. Both mandibular incisors and maxillary molar natal teeth were found. Natal teeth are teeth, which are present in the oral cavity at birth. They are often associated with developmental abnormalities and recognized syndromes. Their incidence ranges from 1 in 2,000 to 3,500 births. The natal teeth found in this infant included both the mandibular primary incisors and maxillary primary first molars bilaterally. The clinical and histological considerations of natal teeth and their management are discussed. The presence of multiple natal teeth is extremely rare.

  8. Dentigerous cyst associated with a formocresol pulpotomized deciduous molar.

    PubMed

    Asián-González, Eugenia; Pereira-Maestre, Manuela; Conde-Fernández, Dolores; Vilchez, Ignacio; Segura-Egea, Juan José; Gutiérrez-Pérez, José Luis

    2007-04-01

    This report presents a case of dentigerous cyst associated with a formocresol pulpotomized deciduous molar detected during routine examination. Dentigerous cyst is an epithelial-lined developmental cavity that encloses the crown of an unerupted tooth at the cementoenamel junction. The present case describes a 9-year-old girl sent to the dental clinic by her dentist, who had accidentally discovered in the panoramic radiograph a single, unilocular, well-defined, radiolucent area enclosing the second left unerupted mandibular premolar. The second left primary molar had been pulpotomized 2 years before and buccal swelling without redness occurred near the tooth, evidencing bone expansion. Surgical treatment was carried out, the tooth was extracted, and a cystectomy was performed under local anesthesia in the dental office. The histological study confirmed the suspected diagnosis of dentigerous cyst. The relation between pulpotomy and dentigerous cysts is discussed.

  9. Molar distalization with the assistance of Temporary Anchorage Devices.

    PubMed

    Palencar, Adrian J

    2015-01-01

    This article describes efficient techniques for distalization of maxillary and mandibular molars with the assistance of Temporary Anchorage Devices (TADs). There are numerous occasions where the distalization of molars is required in lieu of the odontectomy of bicuspids. In the past, extra-oral force has been used, (i.e. Cervical or Combination Head Gear, or intra-oral force, i.e. Posterior Sagittal Appliance, Modified Greenfield Appliance, Williams DMJ 20001, CD Distalizer, Magill Sagittal, Pendulum Appliance, etc.). All the intra-oral appliances have a common denominator the orthodontic clinician has to deal with, the undesirable expression of the Third Law of Newton. The utilization of TADs allows us to circumvent this shortcoming, establishing an absolute anchorage, and thus completely negate the expression of the Third Law of Newton.

  10. Thermal correction to the molar polarizability of a Boltzmann gas

    SciTech Connect

    Jentschura, U. D.; Puchalski, M.; Mohr, P. J.

    2011-12-15

    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation.

  11. Entropy principle and complementary second law of thermodynamics for self-gravitating systems

    NASA Astrophysics Data System (ADS)

    He, Ping; Kang, Dong-Biao

    2010-08-01

    The statistical mechanics of isolated collisionless self-gravitating systems is a long-held puzzle, which has not been successfully resolved for nearly 50years. In this work, we employ a phenomenological entropy form of ideal gas, first proposed by White & Narayan, to revisit this issue. By calculating the first-order variation of the entropy, subject to the usual mass- and energy-conservation constraints, we obtain an entropy stationary equation. Incorporated with the Jeans equation, and by specifying some functional form for the anisotropy parameter β, we numerically solve the two equations, and demonstrate that the velocity anisotropy parameter plays an important role in attaining a density profile that is finite in mass, energy and spatial extent. If incorporated again with some empirical density profile from simulations, our theoretical predictions of the anisotropy parameter, and the radial pseudo-phase-space density ρ/σ3r in the outer non-gravitationally degenerate region of the dark matter halo, agree rather well with the simulation data, and the predictions are also acceptable in the middle weak-degenerate region of the dark halo. The disagreements occur just in the inner strong-degenerate region because of the neglect of gravitational degeneracy. As far as we know, our results may be the first theoretical predictions based on the entropy principle that can partially match the empirical data. The second-order variational calculus reveals the seemingly paradoxical but actually complementary consequence that the equilibrium state of self-gravitating systems is the global minimum entropy state for the whole system under long-range violent relaxation, but simultaneously the local maximum entropy state for every and any small part of the system under short-range two-body relaxation and Landau damping. This minimum-maximum entropy duality means that the standard second law of thermodynamics needs to be re-expressed or generalized for self-gravitating systems

  12. Does the Lesche condition for stability validate generalized entropies?

    NASA Astrophysics Data System (ADS)

    Yamano, Takuya

    2004-08-01

    We reconsider the Lesche condition for a stability of entropies, which has been used for supporting validity of a generalized entropy over the others in recent papers. The fabric of an argument for applying the stability criterion with specific distributions to generalized entropies is shown to be interrogative. We show that a local stability analysis for the generalized entropies does not lead to the same conclusion as the one derived from the Lesche condition. It is also pointed out that the bound on the Shannon entropy by Lesche with an auxiliary function, and that on its generalized version are weak compared to those on the variational distance of their entropies against small changes in distribution. We conclude that there is no good reason for putting much emphasis on the criterion in the sense of Lesche when we advocate the validity of a generalized entropy.

  13. Extrusion of impacted mandibular second molar using removable appliance

    PubMed Central

    Karthikeyan, M. K.; Prabhakar, Ramachandran; Saravanan, R.; Vikram, N. Raj; Kumar, R. Vinoth; Prasath, R. Eshwara

    2014-01-01

    The purpose of this article is to review the principles of case management of impacted mandibular molars and to illustrate their potential to respond well to treatment. Although the scope of treatment may be influenced by the patient's age, past dental history, severity of impaction, dentoalveolar development, and root form, the case reports demonstrate the inherent potential for good treatment outcome even in the most unfavorable circumstances. PMID:25210378

  14. Fate of the Molar Dental Lamina in the Monophyodont Mouse

    PubMed Central

    Dosedělová, Hana; Dumková, Jana; Lesot, Hervé; Glocová, Kristýna; Kunová, Michaela; Tucker, Abigail S.; Veselá, Iva; Krejčí, Pavel; Tichý, František; Hampl, Aleš; Buchtová, Marcela

    2015-01-01

    The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity. PMID:26010446

  15. Formation and development of maxillary first molars with delayed eruption.

    PubMed

    Sano, Natsuki; Kameda, Takashi; Terashima, Yukari; Batbayar, Nomintsetseg; Terada, Kazuto

    2015-09-01

    Cases of congenitally missing and delayed eruption of the maxillary first molar are rare. However, in recent years, we have experienced cases of suspected delayed eruption of or congenitally missing first molars. The purpose of this study was to analyze the formation of delayed erupted maxillary first molars (M1) (>2 standard deviations), which play important roles in occlusion, and normal eruption of the maxillary first molars (U6). The frequency of M1 among patients born between 1974 and 1994 in one institution with a clear total patient number and personal oral histories was 1.55 % [80 % bilateral eruption in 8 of 806 male patients (0.99 %) and 23 of 1195 female patients (1.92 %)]. To evaluate the formation and eruption of M1 according to Moorrees's tooth formation stages, panoramic X-ray films were obtained every year for 73 patients with M1 from 3 institutions (20 male and 53 female patients, total 131 M1s) without systematic histories or genetic disorders. The development/growth curve of M1 was fitted to both the logistic curve and U6 curve. The M1 development/growth curve was started behind with U6 curve; however, the straight part of the M1 curve exhibited steep inclination compared with the straight part of the U6 curve. The curve of the eruption pathway of M1 also exhibited a sigmoid S shape. These results indicate that the development and migration speed of M1 are faster than that of U6, excluding the delayed start point. These results may help orthodontists in treatment planning for patients with M1.

  16. From molecular to molar: a paradigm shift in behavior analysis.

    PubMed Central

    Baum, William M

    2002-01-01

    A paradigm clash is occurring within behavior analysis. In the older paradigm, the molecular view, behavior consists of momentary or discrete responses that constitute instances of classes. Variation in response rate reflects variation in the strength or probability of the response class. The newer paradigm, the molar view, sees behavior as composed of activities that take up varying amounts of time. Whereas the molecular view takes response rate and choice to be "derived" measures and hence abstractions, the molar view takes response rate and choice to be concrete temporally extended behavioral allocations and regards momentary "responses" as abstractions. Research findings that point to variation in tempo, asymmetry in concurrent performance, and paradoxical resistance to change are readily interpretable when seen in the light of reinforcement and stimulus control of extended behavioral allocations or activities. Seen in the light of the ontological distinction between classes and individuals, extended behavioral allocations, like species in evolutionary taxonomy, constitute individuals, entities that change without changing their identity. Seeing allocations as individuals implies that less extended activities constitute parts of larger wholes rather than instances of classes. Both laboratory research and everyday behavior are explained plausibly in the light of concrete extended activities and their nesting. The molecular- view, because it requires discrete responses and contiguous events, relies on hypothetical stimuli and consequences to account for the same phenomena. One may prefer the molar view on grounds of elegance, integrative power, and plausibility. PMID:12144313

  17. Molar Macrowear Reveals Neanderthal Eco-Geographic Dietary Variation

    PubMed Central

    Fiorenza, Luca; Benazzi, Stefano; Tausch, Jeremy; Kullmer, Ottmar; Bromage, Timothy G.; Schrenk, Friedemann

    2011-01-01

    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources. PMID:21445243

  18. Efficacy of Postoperative Prophylactic Antibiotic Therapy in Third Molar Surgery

    PubMed Central

    Reddy B, Praveen

    2014-01-01

    Introduction: Surgical extraction of mandibular third molar is the most frequently performed procedure in oral surgery. This procedure is associated with significant postoperative sequelae such as trismus, swelling, pain and infection. The need of antibiotic therapy during the removal of mandibular third molar has been a contentious issue. Method: This study investigated a regimen by using amoxycillin and metronidazole in one group and without using antibiotics in the other. Both the groups were assessed postoperatively on the 1st, 2nd, 5th, 7th and 10th days by the same observer for post operative mouth opening (interincisal distance), presence of a purulent discharge at the site of surgery, pain and swelling. Result: Overall, no statistically significant difference was seen between both the treatment groups when interincisal distance, pain, swelling and purulent discharge were considered. Conclusion: The results of this study failed to show any advantage which was associated with the routine postoperative use of antibiotics in asymptomatic third molar surgeries. PMID:24995236

  19. Variable permanent mandibular first molar: Review of literature

    PubMed Central

    Ballullaya, Srinidhi V; Vemuri, Sayesh; Kumar, Pabbati Ravi

    2013-01-01

    Introduction: The success of root canal therapy depends on the locations of all the canals, thourough debridement and proper sealing. At times the clinicians are challenged with variations in morphology of root canal. This review article attempts to list out all the variations of permanent mandibular first molar published so for in the literature. Materials and Methods: An exhaustive search was undertaken using PUBMED database to identify published literature from 1900 to 2010 relating to the root canal morphology of permanent first molar by using key words. The selected artcles were obtained and reviewed. Results: Total ninty seven articles were selected out of which 50 were original article and forty seven were case reports. The incidence of third canal in mesial root was 0.95% to 15%. The incidence of three rooted mandibular first molar was 3% to 33%. Only ninety cases reported with c-shape canal configuration. Incidence of Taurodintism without congenital disorder was very rare. Conclusion: The root canal treatment requires proper knowlegde of variations in root canal morphology in order to recognise, disinfect and seal all portal of exit. This can be accomplished with proper diagnosis using newer modes, modification in access preparation, use of operating microscope, enhanced methods of disinfecting and sealing of all canals. PMID:23716959

  20. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    PubMed Central

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500–750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  1. Quality of life following third molar removal under conscious sedation

    PubMed Central

    Sancho-Puchades, Manuel; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2012-01-01

    Aim: The aim of this study was to assess quality of life (QoL) and degree of satisfaction among outpatients subjected to surgical extraction of all four third molars under conscious sedation. A second objective was to describe the evolution of self-reported pain measured in a visual analogue scale (VAS) in the 7 days after extraction. Study design: Fifty patients received a questionnaire assessing social isolation, working isolation, eating and speaking ability, diet modifications, sleep impairment, changes in physical appearance, discomfort at suture removal and overall satisfaction at days 4 and 7 after surgery. Pain was recorded by patients on a 100-mm pain visual analogue scale (VAS) every day after extraction until day 7. Results: Thirty-nine patients fulfilled correctly the questionnaire. Postoperative pain values suffered small fluctuations until day 5 (range: 23 to 33 mm in a 100-mm VAS), when dicreased significantly. A positive association was observed between difficult ranked surgeries and higher postoperative pain levels. The average number of days for which the patient stopped working was 4.9. Conclusion: The removal of all third molars in a single appointment causes an important deterioration of the patient’s QoL during the first postoperative week, especially due to local pain and eating discomfort. Key words:Third molar removal, quality of life, sedation. PMID:22926461

  2. Subcutaneous emphysema during third molar surgery: a case report.

    PubMed

    Romeo, Umberto; Galanakis, Alexandros; Lerario, Francesco; Daniele, Gabriele Maria; Tenore, Gianluca; Palaia, Gaspare

    2011-01-01

    Extraction of third molars is the most common surgical procedure performed in oral surgery on a daily basis and, despite surgical skills and expertise, complications may occur. Complications observed during or after third molar removal may include pain, swelling, bleeding, infection, sinus perforation and nerve damage. Fortunately, with a proper management and a good surgical technique, the incidence of such events is low. Subcutaneous emphysema associated with dental extraction occurs when the air from the high-speed dental handpiece is forced into the soft tissue through the reflected flap and invades the adjacent tissues, leading to swelling, crepitus on palpation and occasionally spreading through the tissue spaces of the fascial planes. Although rare, iatrogenic subcutaneous emphysema can have serious and potentially life-threatening consequences. Care should be taken when using air-driven handpieces. The access of air into the facial tissues is not limited to tooth extractions, but may also occur through other portals of entrance, such as endodontically treated teeth, periodontium and lacerations of intraoral soft tissues. When subcutaneous emphysema occurs, it must be quickly diagnosed and properly managed to reduce the risk of further complications. This report presents a case of subcutaneous emphysema occurred during extraction of a mandibular third molar extraction with the use of an air turbine handpiece. Case management is described and issues relative to the diagnosis and prevention of this surgical complication are discussed.

  3. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    PubMed

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-07

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  4. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  5. A Neanderthal lower molar from Stajnia Cave, Poland.

    PubMed

    Dąbrowski, P; Nowaczewska, W; Stringer, C B; Compton, T; Kruszyński, R; Nadachowski, A; Stefaniak, K; Urbanowski, M

    2013-04-01

    The primary aim of this study was to conduct a taxonomic assessment of the second of three isolated human teeth found in the Stajnia Cave (north of the Carpathians, Poland) in 2008. The specimen was located near a human tooth (S5000), which was identified by Urbanowski et al. (2010) as a Neanderthal permanent upper molar. Both of these teeth were excavated from the D2 layer, which belongs to the D stratigraphic complex comprising the archaeological assemblage associated with the Micoquian tradition. An Ursus spelaeus bone and Mammuthus primigenius tooth that were also excavated from the D2 layer were dated to >49,000 years BP (by AMS (14)C) and 52.9 ka BP (by U-Th), respectively. The sediment overlying stratigraphic complex D was dated to 45.9 ka BP by the OSL method. The S4300 tooth is a lower first or second permanent molar belonging to an individual other than that who once possessed the S5000 tooth. The S4300 tooth exhibits a combination of traits typical of Neanderthal lower molars, including a mid-trigonid crest, large anterior fovea, taurodontism and subvertical grooves on the interproximal face, indicating that this tooth belonged to a Neanderthal individual. The S4300 tooth from Stajnia Cave is one of the oldest human remains found in Poland.

  6. The Use of Narrow Diameter Implants in the Molar Area

    PubMed Central

    Saad, M.; Assaf, A.; Gerges, E.

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  7. 3-D diagnosis-assisted management of anomalous mandibular molar

    PubMed Central

    Mittal, Neelam; Narang, Isha

    2012-01-01

    This case report describes the successful non-surgical endodontic management of carious exposed three-rooted mandibular molar with four root canals detected on the pre-operative radiograph taken with 20 degrees mesial angulation and confirmed with a 64-slice helical computed tomography scan-assisted 3-D-reconstructed images. Access cavity shape was modified to locate the extra canal with respect to the distolingual root in the left mandibular first molar. Copious irrigation was accomplished with 5.25% sodium hypochlorite and 17% EDTA. Biomechanical preparation was done using protapers. Calcium hydroxide dressing was done for 1 week. The tooth was obturated using gutta percha and AH 26 root canal sealer, and it was permanently restored with composite. Clinical examination on follow-up visits revealed no sensitivity to percussion and palpation in the left mandibular first molar. Thorough knowledge of root canal variations and use of advanced diagnostic modalities lead to successful non-surgical management of the complex cases. PMID:22629067

  8. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non

  9. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  10. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  11. Partial Torus Instability

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar; Zhang, J.

    2010-05-01

    Flux ropes are now generally accepted to be the magnetic configuration of Coronal Mass Ejections (CMEs), which may be formed prior or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its instability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, the partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches one, the critical index goes to a maximum value that depends on the distribution of the external magnetic field. We demonstrate that the partial torus instability helps us to understand the confinement, growth, and eventual eruption of a flux rope CME.

  12. An odontometric study of the maxillary molars in Australian marsupials. I. The koala (Phascolarctos cinereus).

    PubMed

    Ueno, Ryuji; Iimura, Akira; Yoshida, Shunji; Kondo, Kenji; Sato, Iwao; Henneberg, Maciej; Townsend, Grant C

    2010-02-01

    Crown dimensions of the maxillary molars were measured in the koala (Phascolarctos cinereus). There were no significant differences in crown diameters between the first and second molars, however the fourth molars were reduced in all crown diameters. The third molar was smaller than the first or second molars in buccolingual crown diameters but there were no significant differences in mesiodistal crown diameters. It is proposed that the similar shapes of the first and second molars are associated with similar types of masticatory activity involving these teeth, The shape of the third molar, which is reduced in size buccolingually, may be linked to the koala's occlusal function which is characterized by a condylar action that leads to differences in movement between opposing anterior and posterior molar teeth during the occlusal stroke. The fourth molar, the smallest of the molar teeth in crown diameter, erupts significantly later than the other molars, and its reduction may be explained by the terminal and distal reduction theories. It is proposed that the pattern of molar morphology in the koala is associated with both masticatory activity linked to its characteristic occlusal function, as well as reflecting the sequence of tooth emergence.

  13. The origin of the lower fourth molar in canids, inferred by individual variation

    PubMed Central

    2016-01-01

    Background An increase in tooth number is an exception during mammalian evolution. The acquisition of the lower fourth molar in the bat-eared fox (Otocyon megalotis, Canidae, Carnivora, Mammalia) is one example; however, its developmental origin is not clear. In some canids (Canidae), individual variation exist as supernumerary molar M4. This study focuses on the acquisition of the lower fourth molar in canids and proposes that the inhibitory cascade model can explain its origin. Methods Occlusal view projected area of lower molars was determined from 740 mandibles obtained from Canis latrans, Nyctereutes procyonoides, and Urocyon cinereoargenteus museum specimens. For each molar, relative sizes of molars (M2/M1 and M3/M1 scores) affected by inhibition/activation dynamics during development, were compared between individuals with and without supernumerary molar (M4). Results Possession of a supernumerary molar was associated with significantly larger M2/M1 score in Canis latrans, M3/M1 score in Nyctereutes procyonoides, and M2/M1 and M3/M1 scores in Urocyon cinereoargenteus compared to individuals of these species that lacked supernumerary molars. Discussion We propose that, in canids, the supernumerary fourth molar is attributable to reduced inhibition and greater activation during molar development. In the bat-eared fox, altered inhibition and activation dynamics of dental development during omnivorous-insectivorous adaptation may be a contributing factor in the origin of the lower fourth molar. PMID:27843722

  14. Sub-10-Minute Characterization of an Ultrahigh Molar Mass Polymer by Multi-detector Hydrodynamic Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molar mass averages, distributions, and architectural information of polymers are routinely obtained using size-exclusion chromatography (SEC). It has previously been shown that ultrahigh molar mass polymers may experience degradation during SEC analysis, leading to inaccurate molar mass averages a...

  15. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  16. Patient with oligodontia treated with a miniscrew for unilateral mesial movement of the maxillary molars and alignment of an impacted third molar.

    PubMed

    Maeda, Aya; Sakoguchi, Yoko; Miyawaki, Shouichi

    2013-09-01

    This report describes the treatment of a 20-year-old woman with a dental midline deviation and 7 congenitally missing premolars. She had retained a maxillary right deciduous canine and 4 deciduous second molars, and she had an impacted maxillary right third molar. The maxillary right deciduous second molar was extracted, and the space was nearly closed by mesial movement of the maxillary right molars using an edgewise appliance and a miniscrew for absolute anchorage. The miniscrew was removed, and the extraction space of the maxillary right deciduous canine was closed, correcting the dental midline deviation. After the mesial movement of the maxillary right molars, the impacted right third molar was aligned. To prevent root resorption, the retained left deciduous second molars were not aligned by the edgewise appliance. The occlusal contact area and the maximum occlusal force increased over the 2 years of retention. The miniscrew was useful for absolute anchorage for unilateral mesial movement of the maxillary molars and for the creation of eruption space and alignment of the impacted third molar in a patient with oligodontia.

  17. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Content of Fuel Gas Constituents 1 Table 1 to Subpart Ja of Part 60 Protection of Environment... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol Methane (CH4) 7.29 842 Ethane (C2H6) 12.96 1,475 Hydrogen (H2) 1.61 269 Ethene (C2H4) 11.34 1,335...

  18. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  19. Superior hydrogen storage in high entropy alloys.

    PubMed

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-10

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  20. Charged Renyi entropies for free scalar fields

    NASA Astrophysics Data System (ADS)

    Dowker, J. S.

    2017-04-01

    I first calculate the charged spherical Rényi entropy by a numerical method that does not require knowledge of any eigenvalue degeneracies, and applies to all odd dimensions. An image method is used to relate the full sphere values to those for an integer covering, n. It is shown to be equivalent to a ‘transformation’ property of the zeta-function. The n\\to ∞ limit is explicitly constructed analytically and a relation deduced between the limits of corner coefficients and the effective action (free energy) which generalises, for free fields, a result of Bueno, Myers and Witczak-Krempa and Elvang and Hadjiantonis to any dimension. Finally, the known polynomial expressions for the Rényi entropy on even spheres at zero chemical potential are re–derived in a different form and a simple formula for the conformal anomaly given purely in terms of central factorials is obtained.